in

Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus)

  • 1.

    Gentile, G. & Snell, H. Conolophus marthae sp.nov. (Squamata, Iguanidae), a new species of land iguana from the Galapagos archipelago. Zootaxa 1–10 (2009).

  • 2.

    Gentile, G. et al. An overlooked pink species of land iguana in the Galapagos. Proc. Natl. Acad. Sci. 106, 507–511 (2009).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Gentile, G. Conolophus marthae. The IUCN Red List of Threatened Species 2012: e.T174472A1414375. (2012).

  • 4.

    Rivas, L. R. A reinterpretation of the concepts ‘sympatric’ and ‘allopatric’ with proposal of the additional terms ‘syntopic’ and ‘allotopic’. Syst. Biol. 13, 42–43 (1964).

    Article  Google Scholar 

  • 5.

    MacLeod, A. et al. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B Biol. Sci. 282, 20150425 (2015).

    Article  Google Scholar 

  • 6.

    Rassmann, K., Tautz, D., Trillmich, F. & Gliddon, C. The microevolution of the Galápagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analyses. Mol. Ecol. 6, 437–452 (1997).

    CAS  Article  Google Scholar 

  • 7.

    Di Giambattista, L. et al. Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf Volcano (Galápagos Islands). Conserv. Genet. 19, 1461–1469 (2018).

    Article  Google Scholar 

  • 8.

    Vuillaume, B., Valette, V., Lepais, O., Grandjean, F. & Breuil, M. Genetic evidence of hybridization between the endangered native species Iguana delicatissima and the invasive Iguana iguana (Reptilia, Iguanidae) in the Lesser Antilles: Management implications. PLoS One 10, (2015).

  • 9.

    Jančúchová-Lásková, J., Landová, E. & Frynta, D. Are genetically distinct lizard species able to hybridize? A review. Curr. Zool. 61, 155–180 (2015).

    Article  Google Scholar 

  • 10.

    Servedio, M. R. Beyond reinforcement: the evolution of premating isolation by direct selection on preferences and postmating, prezygotic incompatibilities. . Evolution (N. Y) 55, 1909–1920 (2001).

    CAS  Google Scholar 

  • 11.

    Hoskin, C. J., Higgie, M., McDonald, K. R. & Moritz, C. Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356 (2005).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 196, 729–749 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Barbosa, D., Font, E., Desfilis, E. & Carretero, M. A. Chemically mediated species recognition in closely related Podarcis wall lizards. J. Chem. Ecol. 32, 1587–1598 (2006).

    CAS  Article  Google Scholar 

  • 15.

    Labra, A., Escobar, C. A. & Niemeyer, H. M. Chemical discrimination in liolaemus lizards: comparison of behavioral and chemical data. In Chemical Signals in Vertebrates 9 439–444 (Springer US, 2001). https://doi.org/10.1007/978-1-4615-0671-3_60

  • 16.

    Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).

    Article  Google Scholar 

  • 17.

    Gabirot, M., Castilla, A. M., López, P. & Martín, J. Chemosensory species recognition may reduce the frequency of hybridization between native and introduced lizards. Can. J. Zool. 88, 73–80 (2010).

    CAS  Article  Google Scholar 

  • 18.

    Gabirot, M., Castilla, A. M., López, P. & Martín, J. Differences in chemical signals may explain species recognition between an island lizard, Podarcis atrata, and related mainland lizards P. hispanica. Biochem. Syst. Ecol. 38, 521–528 (2010).

    CAS  Article  Google Scholar 

  • 19.

    Ibáñez, A. et al. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus ). PeerJ 5, e3689 (2017).

    Article  Google Scholar 

  • 20.

    Chiu, K. W. & Maderson, P. F. A. The microscopic anatomy of epidermal glands in two species of gekkonine lizards, with some observations on testicular activity. J. Morphol. 147, 23–39 (1975).

    CAS  Article  Google Scholar 

  • 21.

    Alberts, A. C. Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain. Behav. Evol. 41, 255–260 (1993).

    CAS  Article  Google Scholar 

  • 22.

    John, C. R. MLeval: Machine Learning Model Evaluation (2019).

  • 23.

    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 1, 409 (2018).

  • 24.

    Alberts, A. C. Phylogenetic and adaptive variation in lizard femoral gland secretions. Copeia 1991, 69–79 (1991).

    Article  Google Scholar 

  • 25.

    Gismondi, A. et al. GC–MS detection of plant pigments and metabolites in Roman Julio-Claudian wall paintings. Phytochem. Lett. 25, 47–51 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  Article  Google Scholar 

  • 27.

    Alberts, A. C., Sharp, T. R., Werner, D. I. & Weldon, P. J. Seasonal variation of lipids in femoral gland secretions of male green iguanas (Iguana iguana). J. Chem. Ecol. 18, 703–712 (1992).

    CAS  Article  Google Scholar 

  • 28.

    Gabirot, M., Picerno, P., Valencia, J., Lopez, P. & Martin, J. Species recognition by chemical cues in neotropical snakes. Copeia 2012, 472–477 (2012).

    Article  Google Scholar 

  • 29.

    Gabirot, M., López, P. & Martín, J. Differences in chemical sexual signals may promote reproductive isolation and cryptic speciation between iberian wall lizard populations. Int. J. Evol. Biol. 2012, 1–13 (2012).

    Article  Google Scholar 

  • 30.

    Alberts, A. C., Phillips, J. A. & Werner, D. I. Sources of intraspecific variability in the protein composition of lizard femoral gland secretions. Copeia 1993, 775 (1993).

    Article  Google Scholar 

  • 31.

    Shine, R., Phillips, B., Waye, H., LeMaster, M. & Mason, R. T. Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates. Behav. Ecol. Sociobiol. 54, 162–166 (2003).

    Article  Google Scholar 

  • 32.

    Martins, E. P., Ord, T. J., Slaven, J., Wright, J. L. & Housworth, E. A. Individual, sexual, seasonal, and temporal variation in the amount of sagebrush lizard scent marks. J. Chem. Ecol. 32, 881–893 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Baeckens, S., García-Roa, R., Martín, J. & Van Damme, R. The role of diet in shaping the chemical signal design of lacertid lizards. J. Chem. Ecol. 43, 902–910 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Martín, J. & Lopez, P. Pheromones and chemical communication in lizards. In Reproductive Biology and Phylogeny of Lizards and Tuatara 43–75 (2014). https://doi.org/10.1016/B978-008045046-9.01825-8

  • 35.

    Karnauskas, K. B., Murtugudde, R. & Owens, W. B. Climate and the global reach of the galápagos archipelago. In The Galapagos: A Natural Laboratory for the Earth Sciences 215–231 (2014). https://doi.org/10.1002/9781118852538.ch11

  • 36.

    Gentile, G., Marquez, C., Snell, H. L., Tapia, W. & Izurieta, A. Conservation of a new flagship species: the Galápagos Pink Land Iguana (Conolophus marthae Gentile and Snell, 2009). In Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 315–336 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22246-2

  • 37.

    Khannoon, E. R., El-Gendy, A. & Hardege, J. D. Scent marking pheromones in lizards: cholesterol and long chain alcohols elicit avoidance and aggression in male Acanthodactylus boskianus (Squamata: Lacertidae). Chemoecology 21, 143–149 (2011).

    CAS  Article  Google Scholar 

  • 38.

    Martin, S. J., Shemilt, S., Lima, C. B. D. S. & de Carvalho, C. A. L. are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona Spp). J. Chem. Ecol. 43, 1066–1072 (2017).

    CAS  Article  Google Scholar 

  • 39.

    Greene, M. J. & Gordon, D. M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J. Exp. Biol. https://doi.org/10.1242/jeb.02706 (2007).

    Article  PubMed  Google Scholar 

  • 40.

    Aragón, P., López, P. & Martín, J. Size-dependent chemosensory responses to familiar and unfamiliar conspecific faecal pellets by the iberian rock-lizard Lacerta monticola. Ethology 106, 1115–1128 (2000).

    Article  Google Scholar 

  • 41.

    Buellesbach, J., Vetter, S. G. & Schmitt, T. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front. Zool. 15, 22 (2018).

    Article  Google Scholar 

  • 42.

    Moss, J. B. et al. First evidence for crossbreeding between invasive Iguana iguana and the native rock iguana (Genus Cyclura) on Little Cayman Island. Biol. Invasions 20, 817–823 (2018).

    Article  Google Scholar 

  • 43.

    Lovern, M. B. & Jenssen, T. A. Form emergence and fixation of head bobbing displays in the green anole lizard (Anolis carolinensis): a reptilian model of signal ontogeny. J. Comp. Psychol. 117, 133–141 (2003).

    Article  Google Scholar 

  • 44.

    Escobar, C. A., Labra, A. & Niemeyer, H. M. Chemical composition of precloacal secretions of Liolaemus lizards. J. Chem. Ecol. 27, 1677–1690 (2001).

    CAS  Article  Google Scholar 

  • 45.

    Giovannini, D. et al. Lavandula angustifolia Mill. Essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to Staphylococcus aureus. Immunol. Invest. 45, 11–28 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Baeckens, S., Martín, J., García-Roa, R. & Van Damme, R. Sexual selection and the chemical signal design of lacertid lizards. Zool. J. Linn. Soc. 183, 445–457 (2018).

    Article  Google Scholar 

  • 47.

    Oksanen, J. Multivariate analysis of ecological communities in R: vegan tutorial. (2015).

  • 48.

    Oksanen, J. et al. Vegan: Community Ecology Package (2018).

  • 49.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics https://doi.org/10.1111/j.1541-0420.2005.00440.x (2006).

    MathSciNet  Article  PubMed  MATH  Google Scholar 

  • 50.

    Maindonald, J. & Braun, J. Data Analysis and Graphics Using R. Data Analysis and Graphics Using R (Cambridge University Press, Cambridge , 2006). https://doi.org/10.1017/CBO9780511790935

  • 51.

    Gini, C. Variabilità e mutabilità (Variability and Mutability), C. Cuppini, Bologna, 156pp. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (1955). (1912).

  • 52.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 53.

    Kuhn, M. Caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing