in

Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa

  • 1.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, 1–8 (2011).

    Google Scholar 

  • 3.

    Atherstone, C., Roesel, K. & Grace, D. Ebola Risk Assessment in the Pig Value Chain in Uganda. ILRI Research Report 34. Nairobi, Kenya: International Livestock Research Institute (2014).

  • 4.

    CDC. Centers for Disease Control and Prevention (CDC). Ebola Virus Disease Distribution Map: cases of Ebola Virus Disease in Africa Since 1976 (2019). https://www.cdc.gov/vhf/ebola/history/distribution-map.html. Accessed August 3rd 2019.

  • 5.

    WHO. World Health Organization (WHO) Ebola virus disease – fact-sheet. (2019). https://www.who.int/health-topics/ebola/#tab=overview. Accessed September 20th 2018.

  • 6.

    Swanepoel, R. et al. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 2, 321–325 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Cantoni, D., Hamlet, A., Michaelis, M., Wass, M. N. & Rossmann, J. S. Risks posed by Reston, the forgotten Ebolavirus. mSphere 1, 1–10 (2016).

    Google Scholar 

  • 8.

    GIDEON. GIDEON: Stephan Berger. Ebola: Global Status (GIDEON Informatics, Inc., Los Angeles, 2019).

    Google Scholar 

  • 9.

    Pourrut, X. et al. Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 196, S176–S183 (2007).

    PubMed  Google Scholar 

  • 10.

    Gire, S. et al. Genomic surveillance elucidates Ebola virus orgin and transmission during the 2014 outbreak. Science 12, 1–13 (2014).

    Google Scholar 

  • 11.

    Taniguchi, S. et al. Reston ebolavirus antibodies in bats, the Philippines. Emerg. Infect. Dis. 17, 1559–1560 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Schar, D. & Daszak, P. Ebola economics: the case for an upstream approach to disease emergence. EcoHealth 11, 451–452 (2014).

    PubMed  Google Scholar 

  • 13.

    Voigt, C. C. Bats in the anthropocene: conservation of bats in a changing world. Springer, Berlin. https://doi.org/10.1007/978-3-319-25220-9 (2015).

    Article  Google Scholar 

  • 14.

    Leendertz, S. A. J., Gogarten, J. F., Düx, A., Calvignac-Spencer, S. & Leendertz, F. H. Assessing the evidence supporting fruit bats as the primary reservoirs for ebola viruses. EcoHealth 13, 18–25 (2016).

    PubMed  Google Scholar 

  • 15.

    Pourrut, X. et al. The natural history of Ebola virus in Africa. Microbes Infect. 7, 1005–1014 (2005).

    PubMed  Google Scholar 

  • 16.

    Pourrut, X. et al. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 9, 159 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Peterson, T. T., Carroll, D. S., Mills, J. N. & Johnson, K. M. Potential mammalian filovirus reservoirs. Emerg. Infect. Dis. 10, 2073–2081 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Allen, T., Murray, K., Olival, K. J. & Daszak, P. The Influcence of global environmental change on infectious disease dynamics: workshop summary. Global change and infectious disease dynamics. Eight critical questions for pandemic prediction (2012).

  • 19.

    Olival, K. J., Weekley, C. & Daszak, P. Are bats really ‘special’ as viral reservoirs? What do we know and need to know? In Bats and Viruses: a new frontier of emerging infectious diseases (eds Wang, L.-F. & Cowled, C.) 281–294 (Wiley, Hoboken, 2015).

    Google Scholar 

  • 20.

    Olival, K. & Hayman, D. Filoviruses in bats: current knowledge and future directions. Viruses 6, 1759–1788 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Hayman, D. T. S. et al. Long-term survival of an urban fruit bat seropositive for ebola and lagos bat viruses. PLoS ONE 5, 2008–2010 (2010).

    Google Scholar 

  • 23.

    Hayman, D. T. S. et al. Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg. Infect. Dis. 18, 1207–1209 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    De Nys, H. M. et al. Survey of Ebola viruses in frugivorous and insectivorous bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerg. Infect. Dis. 24, 2228–2240 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Sylla, M. et al. Chiropteran and Filoviruses in Africa: unveiling an ancient history. African J. Microbiol. Res. 9, 1446–1472 (2015).

    Google Scholar 

  • 26.

    Gay, N. et al. Parasite and viral species richness of Southeast Asian bats: fragmentation of area distribution matters. Int. J. Parasitol. Parasites Wildl. 3, 161–170 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    CDC. Bushmeat. Centers for Disease Control and Prevention (CDC). (2018). https://www.cdc.gov/importation/bushmeat.html. Accessed January 21st 2020.

  • 28.

    Bonwitt, J. et al. Unintended consequences of the ‘bushmeat ban’ in West Africa during the 2013–2016 Ebola virus disease epidemic. Soc. Sci. Med. 200, 166–173 (2018).

    PubMed  Google Scholar 

  • 29.

    Pigott, D. M. et al. Mapping the zoonotic niche of Ebola virus disease in Africa. Elife 3, e04395 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    ACR. African Chiroptera Report 2018. AfricanBats NPC. (2018). https://doi.org/10.13140/RG.2.2.18794.82881

  • 31.

    ACR. African Chiroptera Report 2019. AfricanBats NPC. (2019). https://doi.org/10.13140/RG.2.2.27442.76482.1990-6471

  • 32.

    Haensler, A., Saeed, F. & Jacob, D. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections. in Climate Change Scenarios for the Congo Basin (eds. Haensler, A., Jacob, D., Kabat, P. & Ludwig, F.) 11–42 (2013).

  • 33.

    Voigt, C. C., Schneeberger, K., Voigt-Heucke, S. L., Lewanzik, D. & Supplement, D. Rain increases the energy cost of bat flight Subject collections Email alerting service rain increases the energy cost of bat flight. Society https://doi.org/10.1098/rsbl.2011.0313 (2011).

    Article  Google Scholar 

  • 34.

    PREDICT. Distribution and seasonality of potential Ebola bat reservoirs. Emerg. Dis. Insights (2016).

  • 35.

    Erickson, J. L. & West, S. D. The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica 4, 17–24 (2002).

    Google Scholar 

  • 36.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Ecological Niches and Geographic Distributions (MPB-49) (2011). https://doi.org/10.23943/princeton/9780691136868.001.0001

  • 37.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 38.

    Peel, A. J. et al. Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nat. Commun. 4, 1–14 (2013).

    MathSciNet  Google Scholar 

  • 39.

    Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. B Biol. Sci. 265, 1283–1289 (1998).

    Google Scholar 

  • 40.

    Altizer, S. et al. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 34, 517–547 (2003).

    Google Scholar 

  • 41.

    Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 531–545 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Loehle, C. Social barriers to pathogen transmission in wild animal populations. Ecology 76, 326–335 (1995).

    Google Scholar 

  • 43.

    Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).

  • 44.

    Alexander, K. A. et al. What factors might have led to the emergence of ebola in West Africa?. PLoS Negl. Trop. Dis. 9, 1–26 (2015).

    Google Scholar 

  • 45.

    Leroy, E. M. et al. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector-Borne Zoonotic Dis. 9, 723–728 (2009).

    PubMed  Google Scholar 

  • 46.

    Ng, M. et al. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. Elife 4, 1–22 (2015).

    Google Scholar 

  • 47.

    MacNeil, A., Reed, Z. & Rollin, P. E. Serologic cross-reactivity of human IgM and IgG antibodies to five species of Ebola virus. PLoS Negl. Trop. Dis. 5, e1175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Schuh, A. J. et al. Comparative analysis of serologic cross-reactivity using convalescent sera from filovirus-experimentally infected fruit bats. Sci. Rep. 9, 1–12 (2019).

    ADS  CAS  Google Scholar 

  • 49.

    Olival, K. J., Epstein, J. H., Wang, L. F., Field, H. E. & Daszak, P. Are bats unique viral reservoirs? In New Directions in Conservation Medicine Applied Cases of Ecological Health Aguirre (eds Aguirre, A. A. et al.) 195–212 (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 50.

    GBIF. Global Biodiversity Information Facility. GBIF Home Page (2018).

  • 51.

    Chamberlain, S., Boettiger, C., Ram, K., Brave, V. & McGlinn, D. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 0.9.3. https://github.com/ropensci/rgbif (2016).

  • 52.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2017).

  • 53.

    Geluso, K. N. & Geluso, K. Effects of environmental factors on capture rates of insectivorous bats, 1971–2005. J. Mammal. 93, 161–169 (2012).

    Google Scholar 

  • 54.

    Wolbert, S. J., Zellner, A. S. & Whidden, H. P. Bat activity, insect biomass, and temperature along an elevational gradient. Northeast. Nat. 21, 72–85 (2014).

    Google Scholar 

  • 55.

    Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). © European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA. https://doi.org/10.1594/PANGAEA.787668 (2012)

  • 56.

    Bicheron, P. et al. GLOBCOVER – Products Description and Validation Report (2008).

  • 57.

    Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). https://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 2019 (2017).

  • 58.

    Elith, J. et al. Novel methods improve prediction of species ’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).

    Google Scholar 

  • 59.

    Cunze, S. & Tackenberg, O. Decomposition of the maximum entropy niche function: a step beyond modelling species distribution. Environ. Model. Softw. 72, 250–260 (2015).

    Google Scholar 

  • 60.

    Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of the species presence to either-or- presence–absence. Acta Oecologica 31, 361–369 (2007).

    ADS  Google Scholar 

  • 61.

    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

    Google Scholar 

  • 62.

    Schröder, B. & Richter, O. Are habitat models transferable in space and time?. Zeitschrift für Ökologie und Naturschutz 8, 195–205 (2000).

    Google Scholar 

  • 63.

    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).

    Google Scholar 

  • 64.

    IUCN. IUCN (International Union for Conservation of Nature and Natural Resources). The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2020). https://www.iucnredlist.org/search.

  • 65.

    CDC. Ebola Virus Disease Distribution Map: Cases of Ebola Virus Disease in Africa Since 1976. (2019). https://www.cdc.gov/vhf/ebola/history/distribution-map.html. Accessed July 28th 2020.

  • 66.

    Judson, S. D., Fischer, R., Judson, A. & Munster, V. J. Ecological contexts of index cases and spillover events of different Ebolaviruses. PLoS Pathog. 12, 1–17 (2016).

    Google Scholar 

  • 67.

    ESRI. Environmental Systems Research Institute (ESRI). ArcGIS Release 10.6. Redlands, CA (2018).


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing