in

Optimization of subsampling, decontamination, and DNA extraction of difficult peat and silt permafrost samples

  • 1.

    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Birks, H. J. B. & Birks, H. H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?. New Phytol. 209, 499–506 (2016).

    CAS  PubMed  Google Scholar 

  • 3.

    Froese, D., Westgate, J., Preece, S. & Storer, J. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quatern. Sci. Rev. 21, 2137–2142 (2002).

    ADS  Google Scholar 

  • 4.

    Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Waters, M. R. & Stafford, T. W. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 1122–1126 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Nikrad, M. P., Kerkhof, L. J. & Häggblom, M. M. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92, fiw81 (2016).

    Google Scholar 

  • 10.

    Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008).

    Google Scholar 

  • 11.

    Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Weyrich, L. S. et al. Laboratory contamination over time during low-biomass sample analysis. Mol. Ecol. Resour. 19, 982–996 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. 111, 2229–2234 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Bang-Andreasen, T., Schostag, M., Priemé, A., Elberling, B. & Jacobsen, C. S. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci. Rep. 7, 43338 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).

    PubMed  Google Scholar 

  • 17.

    Barbato, R. A. et al. Removal of exogenous materials from the outer portion of frozen cores to investigate the ancient biological communities harbored inside. JoVE 3, e54091 (2016).

    Google Scholar 

  • 18.

    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457 (2011).

    ADS  PubMed  Google Scholar 

  • 19.

    Rivkina, E., Petrovskaya, L., Vishnivetskaya, T., Krivushin, K., Shmakova, L., Tutukina, M., Meyers, A., & Kondrashov, F. Metagenomic analyses of the late Pleistocene permafrost—Additional tools for reconstruction of environmental conditions. Biogeosciences 13 (2016).

  • 20.

    Kallmeyer, J. Contamination Control for Scientific Drilling Operations Vol. 98, 61–91 (Academic Press, London, 2017).

    Google Scholar 

  • 21.

    Kallmeyer, J., Mangelsdorf, K., Cragg, B. & Horsfield, B. Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol. J. 23, 227–239 (2006).

    CAS  Google Scholar 

  • 22.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    PubMed  Google Scholar 

  • 23.

    Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR: Sci. Technol. Archaeol. Res. 3, 1–14 (2017).

    Google Scholar 

  • 24.

    Yanagawa, K., Nunoura, T., McAllister, S., Hirai, M., Breuker, A., Brandt, L., House, C., Moyer, C., Birrien, J.-L., Aoike, K., Sunamura, M., Urabe, T., Mottl, M., & Takai, K. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front. Microbiol. 4 (2013).

  • 25.

    Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32, 331–336 (2005).

    Google Scholar 

  • 26.

    Bollongino, R., Tresset, A. & Vigne, J.-D. Environment and excavation: pre-lab impacts on ancient DNA analyses. C. R. Palevol 7, 91–98 (2008).

    Google Scholar 

  • 27.

    Smith, D. C. Ajsmrfsahhs. Tracer-based estimates of drilling-induced microbial contamination of Deep Sea Crust. Geomicrobiol. J. 17, 207–219 (2000).

    CAS  Google Scholar 

  • 28.

    Krivushin, K. et al. Two metagenomes from late pleistocene Northeast Siberian Permafrost. Genome Announc. 3, e01380-e1414 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Vishnivetskaya, T. A. et al. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6, 400–414 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Wright, G. D. & Poinar, H. Antibiotic resistance is ancient: implications for drug discovery. Trends Microbiol. 20, 157–159 (2012).

    CAS  PubMed  Google Scholar 

  • 31.

    Kalmár, T., Bachrati, C. Z., Marcsik, A. & Raskó, I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucl. Acids Res. 28, e67–e67 (2000).

    PubMed  Google Scholar 

  • 32.

    Palmirotta, R. et al. Use of a multiplex polymerase chain reaction assay in the sex typing of DNA extracted from archaeological bone. Int. J. Osteoarchaeol. 7, 605–609 (1997).

    Google Scholar 

  • 33.

    González-Oliver, A., Márquez-Morfín, L., Jiménez, J. C. & Torre-Blanco, A. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo. Am. J. Phys. Anthropol. 116, 230–235 (2001).

    PubMed  Google Scholar 

  • 34.

    Kemp, B. M. & Smith, D. G. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forens. Sci. Int. 154, 53–61 (2005).

    CAS  Google Scholar 

  • 35.

    Rogers, S. O. et al. Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 70, 2540–2544 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Salamon, M., Tuross, N., Arensburg, B. & Weiner, S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc. Natl. Acad. Sci. USA 102, 13783–13788 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME 11, 2305 (2017).

    CAS  Google Scholar 

  • 38.

    Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. & Tiedje, J. M. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165–173 (2000).

    CAS  PubMed  Google Scholar 

  • 39.

    Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME 4, 1206 (2010).

    CAS  Google Scholar 

  • 40.

    Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).

    CAS  PubMed  Google Scholar 

  • 41.

    Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).

    CAS  PubMed  Google Scholar 

  • 42.

    Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Porter, T. M. et al. Amplicon pyrosequencing late Pleistocene permafrost: the removal of putative contaminant sequences and small-scale reproducibility. Mol. Ecol. Resour. 13, 798–810 (2013).

    CAS  PubMed  Google Scholar 

  • 44.

    Porter, T. J. et al. Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum. Nat. Commun. 10, 1631 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Durfee, T. et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190, 2597–2606 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139–1139 (2000).

    CAS  PubMed  Google Scholar 

  • 49.

    Bottos, E. M., Kennedy, D. W., Romero, E. B., Fansler, S. J., Brown, J. M., Bramer, L. M., Chu, R. K., Tfaily, M. M., Jansson, J. K. & Stegen, J. C. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94 (2018).

  • 50.

    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Smith, D. C., Spivack, A. J., Fisk, M. R., Haveman, S. A. & Staudigel, H. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J. 17, 207–219 (2000).

    CAS  Google Scholar 

  • 52.

    Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl. Acad. Sci. 109, 16213–16216 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Juck, D. F. et al. Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl. Environ. Microbiol. 71, 1035–1041 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Colwell, F. S., Pryfogle, P. A., Lee, B. D. & Bishop, C. L. Use of a cyanobacterium as a particulate tracer for terrestrial subsurface applications. J. Microbiol. Methods 20, 93–101 (1994).

    Google Scholar 

  • 55.

    Friese, A. et al. (2017) A simple and inexpensive technique for assessing contamination during drilling operations. Limnol. Oceanogr. Methods 15, 200–211 (2017).

    CAS  Google Scholar 

  • 56.

    Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage—Building and working in an ancient DNA laboratory. Ann. Anat. Anatomischer Anzeiger 194, 3–6 (2012).

    CAS  PubMed  Google Scholar 

  • 57.

    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing