in

Ecological restoration impact on total terrestrial water storage

  • 1.

    Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    CAS  Google Scholar 

  • 2.

    Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    CAS  Google Scholar 

  • 3.

    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Google Scholar 

  • 4.

    Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).

    Google Scholar 

  • 5.

    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039 (2018).

    CAS  Google Scholar 

  • 6.

    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019 (2016).

    Google Scholar 

  • 7.

    Jia, X., Shao, M. A., Zhu, Y. & Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 546, 113–122 (2017).

    Google Scholar 

  • 8.

    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

    Google Scholar 

  • 9.

    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129 (2020).

    CAS  Google Scholar 

  • 10.

    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    CAS  Google Scholar 

  • 11.

    Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    Google Scholar 

  • 12.

    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    CAS  Google Scholar 

  • 13.

    Branch, O. & Wulfmeyer, V. Deliberate enhancement of rainfall using desert plantations. Proc. Natl Acad. Sci. USA 116, 18841–18847 (2019).

    CAS  Google Scholar 

  • 14.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  • 15.

    McDonnell, J. J. et al. Water sustainability and watershed storage. Nat. Sustain. 1, 378–379 (2018).

    Google Scholar 

  • 16.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    CAS  Google Scholar 

  • 17.

    Mirzabaev, A. et al. in IPCC Special Report on Climate Change and Land (eds Akhtar-Schuster, M., Driouech, F. & Sankaran, M.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).

  • 18.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    CAS  Google Scholar 

  • 19.

    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080 (2018).

    CAS  Google Scholar 

  • 20.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE Measurements of Mass Variability in the Earth System. Science 305, 503–505 (2004).

    CAS  Google Scholar 

  • 21.

    Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Google Scholar 

  • 22.

    Tian, H. et al. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 82, 276–289 (2015).

    Google Scholar 

  • 23.

    Zhang, Z. & Huisingh, D. Combating desertification in China: monitoring, control, management and revegetation. J. Clean. Prod. 182, 765–775 (2018).

    Google Scholar 

  • 24.

    Huang, Y., Wang, N.-a, He, T., Chen, H. & Zhao, L. Historical desertification of the Mu Us Desert, Northern China: A multidisciplinary study. Geomorphology 110, 108–117 (2009).

    Google Scholar 

  • 25.

    Xu, D. Y., Kang, X. W., Zhuang, D. F. & Pan, J. J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification–a case study of the Ordos Plateau, China. J. Arid Environ. 74, 498–507 (2010).

    Google Scholar 

  • 26.

    Yan, F., Wu, B. & Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 200, 119–128 (2015).

    Google Scholar 

  • 27.

    Li, S. et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 569–570, 1032–1039 (2016).

    Google Scholar 

  • 28.

    Xu, Z. et al. Recent greening (1981–2013) in the Mu Us dune field, north-central China, and its potential causes. Land Degrad. Dev. 29, 1509–1520 (2018).

    Google Scholar 

  • 29.

    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    Google Scholar 

  • 30.

    Xu, Z., Mason, J. A. & Lu, H. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology 228, 486–503 (2015).

    Google Scholar 

  • 31.

    Review of the Kubuqi Ecological Restoration Project: A Desert Green Economy Pilot Initiative (United Nations Environment Programme, 2015).

  • 32.

    Cheng, D.-h et al. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China. J. Hydrol. 490, 106–113 (2013).

    Google Scholar 

  • 33.

    Yu, X., Huang, Y., Li, E., Li, X. & Guo, W. Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China. CATENA 161, 96–103 (2018).

    Google Scholar 

  • 34.

    Li, Q. et al. Feasibility of the combination of CO2 Geological storage and saline water development in sedimentary basins of China. Energy Proc. 37, 4511–4517 (2013).

    CAS  Google Scholar 

  • 35.

    Xie, X., Xu, C., Wen, Y. & Li, W. Monitoring groundwater storage changes in the Loess Plateau using GRACE satellite gravity data, hydrological models and coal mining data. Remote Sens. 10, 605 (2018).

    Google Scholar 

  • 36.

    Griffin-Nolan, R. J. et al. Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecol. 219, 505–515 (2018).

    Google Scholar 

  • 37.

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS  Google Scholar 

  • 38.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Google Scholar 

  • 39.

    Cho, S., Ser-Oddamba, B., Batkhuu, N.-O. & Seok Kim, H. Comparison of water use efficiency and biomass production in 10-year-old Populus sibirica and Ulmus pumila plantations in Lun soum, Mongolia. For. Sci. Technol. 15, 147–158 (2019).

    Google Scholar 

  • 40.

    Swenson, S. C. & Lawrence, D. M. A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res. 51, 8817–8833 (2015).

    Google Scholar 

  • 41.

    Guo, J., Huang, G., Wang, X., Li, Y. & Lin, Q. Investigating future precipitation changes over China through a high-resolution regional climate model ensemble. Earth’s Future 5, 285–303 (2017).

    Google Scholar 

  • 42.

    Gong, T., Lei, H., Yang, D., Jiao, Y. & Yang, H. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland. Hydrol. Earth Syst. Sci. 21, 863–877 (2017).

    Google Scholar 

  • 43.

    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).

    Google Scholar 

  • 44.

    Famiglietti, J. S. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    Google Scholar 

  • 45.

    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    CAS  Google Scholar 

  • 46.

    Chen, X. et al. Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979–2010). J. Geophys. Res. Atmos. 121, 5177–5192 (2016).

    Google Scholar 

  • 47.

    Peng, D. & Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 122, 9060–9075 (2017).

    Google Scholar 

  • 48.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Google Scholar 

  • 49.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645 (2017).

    CAS  Google Scholar 

  • 50.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  • 51.

    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Google Scholar 

  • 52.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

    Google Scholar 

  • 53.

    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).

    Google Scholar 

  • 54.

    Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K. & Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 26, 139–168 (2007).

    Google Scholar 

  • 55.

    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Google Scholar 

  • 56.

    Fan, X. & Liu, Y. Multisensor normalized difference vegetation index intercalibration: A comprehensive overview of the causes of and solutions for multisensor differences. IEEE Geosci. Remote Sens. Mag. 6, 23–45 (2018).

    Google Scholar 

  • 57.

    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Google Scholar 

  • 58.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Google Scholar 

  • 59.

    Zhou, Y., Shi, C., Du, J. & Fan, X. Characteristics and causes of changes in annual runoff of the Wuding River in 1956–2009. Environ. Earth Sci. 69, 225–234 (2013).

    Google Scholar 

  • 60.

    Rodell, M. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).

    Google Scholar 

  • 61.

    Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).

    CAS  Google Scholar 

  • 62.

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Google Scholar 

  • 63.

    Haxeltine, A. & Prentice, I. C. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10, 693–709 (1996).

    CAS  Google Scholar 

  • 64.

    Prestele, R. et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dyn. 8, 369–386 (2017).

    Google Scholar 

  • 65.

    Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).

    CAS  Google Scholar 

  • 66.

    Tian, H. et al. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).

    Google Scholar 

  • 67.

    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).

    CAS  Google Scholar 

  • 68.

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing