in

Using machine learning to understand the implications of meteorological conditions for fish kills

  • 1.

    Burkholder, J. M., Mallin, M. A. & Glasgow, J. H. B. Fish kills, bottom-water hypoxia, and the toxic Pfiesteria complex in the Neuse River and Estuary. Mar. Ecol. Prog. Ser. 179, 301–310. https://doi.org/10.3354/meps179301 (1999).

    ADS  Article  Google Scholar 

  • 2.

    Ochumba, P. B. O. Massive fish kills within the Nyanza Gulf of Lake Victoria, Kenya. Hydrobiologia 208, 93–99. https://doi.org/10.1007/BF00008448 (1990).

    Article  Google Scholar 

  • 3.

    Thronson, A. & Quigg, A. Fifty-five years of fish kills in Coastal Texas. Estuaries Coasts 31, 802–813. https://doi.org/10.1007/s12237-008-9056-5 (2008).

    CAS  Article  Google Scholar 

  • 4.

    Wang, C. H., Hsu, C. C., Tzeng, W. N., You, C. F. & Chang, C. W. Origin of the mass mortality of the flathead grey mullet (Mugil cephalus) in the Tanshui River, northern Taiwan, as indicated by otolith elemental signatures. Mar. Pollut. Bull. 62, 1809–1813. https://doi.org/10.1016/j.marpolbul.2011.05.011 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Yñiguez, A. T. & Ottong, Z. J. Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model. Sci. Total Environ. 707, 136173. https://doi.org/10.1016/j.scitotenv.2019.136173 (2020).

    ADS  CAS  Article  Google Scholar 

  • 6.

    La, V. T. & Cooke, S. J. Advancing the Science and Practice of Fish Kill Investigations. Rev. Fish. Sci. 19, 21–33. https://doi.org/10.1080/10641262.2010.531793 (2011).

    Article  Google Scholar 

  • 7.

    Epaphras, A. M., Gereta, E., Lejora, I. A. & Mtahiko, M. G. G. The importance of shading by riparian vegetation and wetlands in fish survival in stagnant water holes, Great Ruaha River, Tanzania. Wetl. Ecol. Manag. 15, 329–333. https://doi.org/10.1007/s11273-007-9033-y (2007).

    Article  Google Scholar 

  • 8.

    Peña, M. A., Katsev, S., Oguz, T. & Gilbert, D. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7, 933–957. https://doi.org/10.5194/bg-7-933-2010 (2010).

    ADS  Article  Google Scholar 

  • 9.

    Ekau, W., Auel, H., Pörtner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699. https://doi.org/10.5194/bg-7-1669-2010 (2010).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098. https://doi.org/10.5194/bg-6-2063-2009 (2009).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coasts 32, 123–145. https://doi.org/10.1007/s12237-008-9108-x (2009).

    CAS  Article  Google Scholar 

  • 12.

    Townsend, S. A. & Edwards, C. A. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes Reserv. Res. Manag. 8, 169–176. https://doi.org/10.1111/j.1440-1770.2003.00222.x (2003).

    Article  Google Scholar 

  • 13.

    Evans, M. A. & Scavia, D. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change. Environ. Res. Lett. 6, 015001. https://doi.org/10.1088/1748-9326/6/1/015001 (2011).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Yang, C. P., Lung, W. S., Liu, J. H. & Hsiao, W. P. Establishment and application of water quality model of hypoxic stream. J. Taiwan Agric. Eng. 55, 27–39. https://doi.org/10.29974/JTAE.200903.0004 (2009).

    Article  Google Scholar 

  • 15.

    Nelson, N. G., Muñoz-Carpena, R., Neale, P. J., Tzortziou, M. & Megonigal, J. P. Temporal variability in the importance of hydrologic, biotic, and climatic descriptors of dissolved oxygen dynamics in a shallow tidal-marsh creek. Water Resour. Res. 53, 7103–7120. https://doi.org/10.1002/2016wr020196 (2017).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Ouellet, V., Mingelbier, M., Saint-Hilaire, A. & Morin, J. Frequency analysis as a tool for assessing adverse conditions during a massive fish kill in the St. Lawrence River, Canada. Water Qual. Res. J. 45, 47–57. https://doi.org/10.2166/wqrj.2010.006 (2010).

    CAS  Article  Google Scholar 

  • 17.

    Chin, D. A. Water-Quality Engineering in Natural Systems: Fate and Transport Processes in the Water Environment (Wiley, New York, 2013).

    Google Scholar 

  • 18.

    Carpenter, J. H. New measurements of oxygen solubility in pure and natural water. Limnol. Oceanogr. 11, 264–277. https://doi.org/10.4319/lo.1966.11.2.0264 (1966).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Gameson, A. L. H. & Robertsonn, K. G. The solubility of oxygen in pure water and sea-water. J. Appl. Chem. 5, 502. https://doi.org/10.1002/jctb.5010050909 (1955).

    CAS  Article  Google Scholar 

  • 20.

    Liss, P. S. Processes of gas exchange across an air-water interface. Deep-Sea Res. Oceanogr. Abstr. 20, 221–238. https://doi.org/10.1016/0011-7471(73)90013-2 (1973).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Marino, R. & Howarth, R. W. Atmospheric oxygen exchange in the Hudson River. Estuaries 16, 433–445. https://doi.org/10.2307/1352591 (1993).

    CAS  Article  Google Scholar 

  • 22.

    Loucks, D. P. & van Beek, E. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (UNESCO, Paris, 2005).

    Google Scholar 

  • 23.

    Lucas, M. C. & Baras, E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 1, 283–316. https://doi.org/10.1046/j.1467-2979.2000.00028.x (2000).

    Article  Google Scholar 

  • 24.

    Roscoe, R. W. & Hinch, S. G. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish Fish. 11, 12–33. https://doi.org/10.1111/j.1467-2979.2009.00333.x (2010).

    Article  Google Scholar 

  • 25.

    Townsend, S. A., Boland, K. T. & Wrigley, T. J. Factors contributing to a fish kill in the Australian wet/dry tropics. Water Res. 26, 1039–1044. https://doi.org/10.1016/0043-1354(92)90139-U (1992).

    CAS  Article  Google Scholar 

  • 26.

    Cheng, S. T., Hwang, G. W., Chen, C. P., Hou, W. S. & Hsieh, H. L. An integrated modeling approach to evaluate the performance of an oxygen enhancement device in the Hwajiang wetland, Taiwan. Ecol. Eng. 42, 244–248. https://doi.org/10.1016/j.ecoleng.2012.02.011 (2012).

    Article  Google Scholar 

  • 27.

    Nakamura, Y. & Stefan, H. G. Effect of flow velocity on sediment oxygen demand: theory. J. Environ. Eng. 120, 996–1016. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:5(996) (1994).

    CAS  Article  Google Scholar 

  • 28.

    Welcomme, R. L. Fisheries Ecology of Floodplain Rivers (Longman, Harlow, 1979).

    Google Scholar 

  • 29.

    Hsu, H. H. & Chen, C. T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 79, 87–104. https://doi.org/10.1007/s703-002-8230-x (2002).

    ADS  Article  Google Scholar 

  • 30.

    Yu, P. S., Yang, T. C. & Wu, C. K. Impact of climate change on water resources in southern Taiwan. J. Hydrol. 260, 161–175. https://doi.org/10.1016/S0022-1694(01)00614-X (2002).

    ADS  Article  Google Scholar 

  • 31.

    Huang, W. C., Chiang, Y., Wu, R. Y., Lee, J. L. & Lin, S. H. The impact of climate change on rainfall frequency in Taiwan. Terr. Atmos. Ocean. Sci. https://doi.org/10.3319/TAO.2012.05.03.04(WMH) (2012).

    Article  Google Scholar 

  • 32.

    IPCC, Working Groups I, II and III to the Fifth Assessment Report.Climate Change 2014: Synthesis Report (2014).

  • 33.

    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field C.B. et al.) 109–230 (A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), 2012).

  • 34.

    Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406. https://doi.org/10.1111/gcb.12754 (2015).

    ADS  Article  Google Scholar 

  • 35.

    Kuo, C. W. & Lee, C. T. Trend analysis of water quality in the upper watershed of the Feitsui reservoir. J. Geogr. Sci. 38, 111–128 (2004).

    Google Scholar 

  • 36.

    Turner, R. E., Rabalais, N. N., Swenson, E. M., Kasprzak, M. & Romaire, T. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Mar. Environ. Res. 59, 65–77. https://doi.org/10.1016/j.marenvres.2003.09.002 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Urbina, W. A. & Glover, C. N. Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia. Physiol. Biochem. Zool. 86, 740–749. https://doi.org/10.1086/673727 (2013).

    Article  PubMed  Google Scholar 

  • 38.

    Brett, J. R. & Groves, T. D. D. Physiological energetics. In Fish Physiology (eds Hoar, W. S. et al.) 279–352 (Academic Press, Cambridge, 1979).

    Google Scholar 

  • 39.

    Chang, C. W., Tzeng, W. N. & Lee, Y. C. Recruitment and hatching dates of grey-mullet (Mugil cephalus L.) juveniles in the Tanshui estuary of northwest Taiwan. Zool. Stud. 39, 99–106 (2000).

    Google Scholar 

  • 40.

    Young, J. L. et al. Integrating physiology and life history to improve fisheries management and conservation. Fish Fish. 7, 262–283. https://doi.org/10.1111/j.1467-2979.2006.00225.x (2006).

    Article  Google Scholar 

  • 41.

    Hamilton, P. B. et al. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals—a critical review. Fish Fish. 17, 545–566. https://doi.org/10.1111/faf.12125 (2016).

    Article  Google Scholar 

  • 42.

    Cheng, S. T., Herricks, E. E., Tsai, W. P. & Chang, F. J. Assessing the natural and anthropogenic influences on basin-wide fish species richness. Sci. Total Environ. 572, 825–836. https://doi.org/10.1016/j.scitotenv.2016.07.120 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Radinger, J. et al. Effective monitoring of freshwater fish. Fish Fish. 20, 729–747. https://doi.org/10.1111/faf.12373 (2019).

    Article  Google Scholar 

  • 44.

    Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. & Kolehmainen, M. Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38, 2895–2907. https://doi.org/10.1016/j.atmosenv.2004.02.026 (2004).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Cheng, S. T., Tsai, W. P., Yu, T. C., Herricks, E. E. & Chang, F. J. Signals of stream fish homogenization revealed by AI-based clusters. Sci. Rep. 8, 15960. https://doi.org/10.1038/s41598-018-34313-x (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65. https://doi.org/10.1016/j.neunet.2012.09.018 (2013).

    Article  PubMed  Google Scholar 

  • 47.

    Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480. https://doi.org/10.1109/5.58325 (1990).

    Article  Google Scholar 

  • 48.

    Kohonen, T. et al. Self organization of a massive document collection. IEEE Trans. Neural Netw. 11, 574–585. https://doi.org/10.1109/72.846729 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Tsai, W. P., Huang, S. P., Cheng, S. T., Shao, K. T. & Chang, F. J. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Sci. Total Environ. 579, 474–483. https://doi.org/10.1016/j.scitotenv.2016.11.071 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1–19. https://doi.org/10.18637/jss.v021.i05 (2007).

    Article  Google Scholar 

  • 51.

    Kirt, T., Vainik, E. & Võhandu, L. A method for comparing self-organizing maps: case studies of banking and linguistic data. In Proceedings of Eleventh East-European Conference on Advances in Databases and Information Systems (eds Ioannidis, Y., Novikov, B. & Rachev, B.) 107–115 (Technical University of Varna, Levski, 2007).

    Google Scholar 

  • 52.

    Kohonen, T. Self-Organizing Maps 3rd edn. (Springer, New York, 2001).

    Google Scholar 

  • 53.

    Kalteh, A. M., Hjorth, P. & Berndtsson, R. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ. Model. Softw. 23, 835–845. https://doi.org/10.1016/j.envsoft.2007.10.001 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe