in

Changes in diving behaviour and habitat use of provisioned whale sharks: implications for management

  • 1.

    Wearing, S. & Neil, J. Ecotourism: Impacts, Potentials and Possibilities? (Routledge, London, 2009).

    Google Scholar 

  • 2.

    Scheyvens, R. Ecotourism and the empowerment of local communities. Tour. Manag. 20(2), 245–249 (1999).

    Article  Google Scholar 

  • 3.

    Cisneros-Montemayor, A. M., Barnes-Mauthe, M., Al-Abdulrazzak, D., Navarro-Holm, E. & Sumaila, U. R. Global economic value of shark ecotourism: implications for conservation. Oryx 47(3), 381–388 (2013).

    Article  Google Scholar 

  • 4.

    Ziegler, J. A. et al. Measuring perceived crowding in the marine environment: perspectives from a mass tourism. Tour. Mar. Environ. 14(4), 211–230 (2019).

    Article  Google Scholar 

  • 5.

    Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution, frequency, and economic value of shark ecotourism. Curr. Issues Tour. 14(8), 797–812 (2011).

    Article  Google Scholar 

  • 6.

    Gallagher, A. J. et al. Biological effects, conservation potential, and research priorities of shark diving tourism. Biol. Conserv. 184, 365–379 (2015).

    Article  Google Scholar 

  • 7.

    Apps, K., Dimmock, K., Lloyd, D. & Huveneers, C. In the water with white sharks (Carcharodon carcharias): participants’ beliefs toward cage-diving in Australia. Anthrozoös 29(2), 231–245 (2016).

    Article  Google Scholar 

  • 8.

    Vianna, G. M. S., Meekan, M. G., Pannell, D. J., Marsh, S. P. & Meeuwig, J. J. Socio-economic value and community benefits from shark-diving tourism in Palau: a sustainable use of reef shark populations. Biol. Conserv. 145(1), 267–277 (2012).

    Article  Google Scholar 

  • 9.

    Huveneers, C. et al. The economic value of shark-diving tourism in Australia. Rev. Fish Biol. Fish. 27(3), 665–680 (2017).

    MathSciNet  Article  Google Scholar 

  • 10.

    Semeniuk, C. A. & Rothley, K. D. Costs of group-living for a normally solitary forager: effects of provisioning tourism on southern stingrays Dasyatis americana. Mar. Ecol. Prog. Ser. 357, 271 (2008).

    ADS  Article  Google Scholar 

  • 11.

    Barnett, A., Payne, N. L., Semmens, J. M. & Fitzpatrick, R. Ecotourism increases the field metabolic rate of whitetip reef sharks. Biol. Conserv. 199, 132–136 (2016).

    Article  Google Scholar 

  • 12.

    Meyer, C. G., Dale, J. J., Papastamatiou, Y. P., Whitney, N. M. & Holland, K. N. Seasonal cycles and long-term trends in abundance and species composition of sharks associated with cage diving ecotourism activities in Hawaii. Environ. Conserv. 36(2), 104–111 (2009).

    Article  Google Scholar 

  • 13.

    Bruce, B. D. & Bradford, R. W. The effects of shark cage-diving operations on the behaviour and movements of white sharks, Carcharodon carcharias, at the Neptune Islands, South Australia. Mar. Biol. 160(4), 889–907 (2013).

    Article  Google Scholar 

  • 14.

    Brunnschweiler, J. M. & Barnett, A. Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji. PLoS ONE 8(3), e58522 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2, e543 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Corcoran, M. J. et al. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana. PLoS ONE 8(3), e59235 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Huveneers, C. et al. The effects of cage-diving activities on the fine-scale swimming behaviour and space use of white sharks. Mar. Biol. 160(11), 2863–2875 (2013).

    Article  Google Scholar 

  • 18.

    Fitzpatrick, R., Abrantes, K. G., Seymour, J. & Barnett, A. Variation in depth of whitetip reef sharks: does provisioning ecotourism change their behaviour?. Coral Reefs 30(3), 569–577 (2011).

    ADS  Article  Google Scholar 

  • 19.

    Smith, K., Scarr, M. & Scarpaci, C. Grey nurse shark (Carcharias taurus) diving tourism: tourist compliance and shark behaviour at Fish Rock, Australia. Environ. Manag. 46(5), 699–710 (2010).

    ADS  Article  Google Scholar 

  • 20.

    Huveneers, C., Watanabe, Y. Y., Payne, N. L. & Semmens, J. M. Interacting with wildlife tourism increases activity of white sharks. Conserv. Physiol. 6(1), coy019 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Rowat, D. & Brooks, K. S. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80(5), 1019–1056 (2012).

    PubMed  Article  CAS  Google Scholar 

  • 22.

    Cagua, E. F., Collins, N., Hancock, J. & Rees, R. Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives. PeerJ 2, e515 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Topelko, K. N. & Dearden, P. The shark watching industry and its potential contribution to shark conservation. J. Ecotour. 4(2), 108–128 (2005).

    Article  Google Scholar 

  • 24.

    Araujo, G. et al. Assessing the impacts of tourism on the world’s largest fish Rhincodon typus at Panaon Island, Southern Leyte, Philippines. Aquat. Conserv. 27(5), 986–994 (2017).

    Article  Google Scholar 

  • 25.

    Dearden P, Ziegler J. Protecting an endangered species: the role of whale shark tourism as an incentive-based conservation approach. In: Pierce S, Dove A (eds) Saving Earth’s Largest Fish: Biology and Conservation of Whale Sharks. Taylor & Francis/CRC Press (in press, 2021).

  • 26.

    Thomson, J. A. et al. Feeding the world’s largest fish: highly variable whale shark residency patterns at a provisioning site in the Philippines. R. Soc. Open Sci. 4(9), 170394 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Schleimer, A. et al. Learning from a provisioning site: code of conduct compliance and behaviour of whale sharks in Oslob, Cebu, Philippines. PeerJ 3, e1452 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Wong, C. M. et al. Whale Shark tourism: impacts on coral reefs in the Philippines. Environ. Manag. 63(2), 282–291 (2019).

    ADS  Article  Google Scholar 

  • 29.

    Graham, R. T., Roberts, C. M. & Smart, J. C. Diving behaviour of whale sharks in relation to a predictable food pulse. J. R. Soc. Interface 3(6), 109–116 (2006).

    PubMed  Article  Google Scholar 

  • 30.

    Tyminski, J. P., de la Parra-Venegas, R., Cano, J. G. & Hueter, R. E. Vertical movements and patterns in diving behavior of Whale Sharks as revealed by pop-up satellite tags in the Eastern Gulf of Mexico. PLoS ONE 10(11), e0142156 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Weihs, D. Mechanically efficient swimming techniques for fish with negative buoyancy. J. Mar. Res. 31, 194–209 (1973).

    Google Scholar 

  • 32.

    Carey, F. G. & Scharold, J. V. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).

    Article  Google Scholar 

  • 33.

    Gleiss, A. C., Norman, B. & Wilson, R. P. Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct. Ecol. 25(3), 595–607 (2011).

    Article  Google Scholar 

  • 34.

    Brunnschweiller, J. W., Baensch, H., Pierce, S. J. & Sims, D. W. Deep-diving behaviour of a whale shark (Rhincodon typus) during long-distance movement in the western Indian Ocean. J. Fish Biol. 74, 706–714. https://doi.org/10.1111/j.1095-8649.2008.02155.x (2009).

    Article  Google Scholar 

  • 35.

    Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761 (2005).

    Article  Google Scholar 

  • 36.

    Thums, M., Meekan, M., Stevens, J., Wilson, S. & Polovina, J. Evidence for behavioural thermoregulation by the world’s largest fish. J. R. Soc. Interface 10, 20120477 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Fry, F. E. J. & Hart, J. S. The relation of temperature to oxygen consumption in the gold sh. Biol. Bull. 94, 66–77 (1948).

    PubMed  Article  CAS  Google Scholar 

  • 38.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19(11), 1372–1385 (2016).

    PubMed  Article  Google Scholar 

  • 39.

    Rohner, C. A. et al. Diet of whale sharks Rhincodon typus inferred from stomach content and signature fatty acid analyses. Mar. Ecol. Prog. Ser. 493, 219–235 (2013).

    ADS  Article  CAS  Google Scholar 

  • 40.

    Brierley, A. S. Diel vertical migration. Curr. Biol. 24(22), R1074–R1076. https://doi.org/10.1016/j.cub.2014.08.054 (2014).

    Article  PubMed  CAS  Google Scholar 

  • 41.

    Meekan, M., Fuiman, L., Davis, R., Berger, Y. & Thums, M. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation. Front. Mar. Sci. 2, 64 (2015).

    Article  Google Scholar 

  • 42.

    Diamant, S. et al. Movements and habitat use of satellite-tagged whale sharks off western Madagascar. Endanger. Species Res. 36, 49–58 (2018).

    Article  Google Scholar 

  • 43.

    Rohner, C. A. et al. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks. PeerJ 6, e4161 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Araujo, G. et al. Satellite tracking of juvenile whale sharks in the Sulu and Bohol Seas, Philippines. PeerJ 6, e5231 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Araujo, G. et al. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci. Rep. 9(1), 1–12 (2019).

    Article  CAS  Google Scholar 

  • 46.

    Robinson, D. P. et al. Some like it hot: repeat migration and residency of whale sharks within an extreme natural environment. PLoS ONE 12(9), e0185360 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Gervais, C. R. et al. Too hot to handle? Using movement to alleviate effects of elevated temperatures in a benthic elasmobranch, Hemiscyllium ocellatum. Mar. Biol. 165(11), 162 (2018).

    Article  Google Scholar 

  • 48.

    Nakamura, I., Matsumoto, R. & Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 223(11), jeb210286 (2020).

    PubMed  Article  Google Scholar 

  • 49.

    Watanabe, Y. Y., Payne, N. L., Semmens, J. M., Fox, A. & Huveneers, C. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222(4), jeb185603 (2019).

    PubMed  Article  Google Scholar 

  • 50.

    Gleiss, A. C., Wright, S., Liebsch, N., Wilson, R. P. & Norman, B. Contrasting diel patterns in vertical movement and locomotor activity of whale sharks at Ningaloo Reef. Mar. Biol. 160(11), 2981–2992 (2013).

    Article  CAS  Google Scholar 

  • 51.

    White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2(1), 125–127 (2006).

    PubMed  Article  Google Scholar 

  • 52.

    Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32(2), 379–388 (2018).

    Article  Google Scholar 

  • 53.

    Payne, N. L. et al. A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668–677 (2015).

    Article  Google Scholar 

  • 54.

    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).

    Article  Google Scholar 

  • 55.

    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol. Evol. 34(4), 369–383 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B 285(1875), 20172456 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Doane, M. P., Haggerty, J. M., Kacev, D., Papudeshi, B. & Dinsdale, E. A. The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function β-diversity. Environ. Microbiol. Rep. 9, 357–373. https://doi.org/10.1111/1758-2229.12537 (2017).

    Article  PubMed  CAS  Google Scholar 

  • 58.

    Ratnarajah, L., Nicol, S. & Bowie, A. R. Pelagic iron recycling in the southern ocean: exploring the contribution of marine animals. Front. Mar. Sci. 5, 109 (2018).

    Article  Google Scholar 

  • 59.

    Gordon, A. L., Sprintall, J. & Ffield, A. Regional oceanography of the Philippine Archipelago. Oceanography 24(1), 14–27 (2011).

    Article  Google Scholar 

  • 60.

    Keinath, J. A. & Musick, J. A. Movements and diving behaviour of a Leatherback Turtle, Dermochelys coriacea. Copeia 1993, 1010–1017 (1993).

    Article  Google Scholar 

  • 61.

    Moore, G. I. & Newbrey, M. G. Whale shark on a white shark’s menu. Mar. Biodivers. 46(4), 745–746 (2016).

    Article  Google Scholar 

  • 62.

    Hammerschlag, N. Quantifying shark predation effects on prey: dietary data limitations and study approaches. Endanger. Species Res. 38, 147–151 (2019).

    Article  Google Scholar 

  • 63.

    Araujo, G. et al. Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: results from dedicated photo-ID and citizen science. Aquat. Conserv. 27(1), 237–252. https://doi.org/10.1002/aqc.2636 (2017).

    Article  Google Scholar 

  • 64.

    Brena, P. F., Mourier, J., Planes, S. & Clua, E. Shark and ray provisioning: functional insights into behavioral, ecological and physiological responses across multiple scales. Mar. Ecol. Prog. Ser. 538, 273 (2015).

    ADS  Article  CAS  Google Scholar 

  • 65.

    Gallagher, A. J. & Huveneers, C. P. Emerging challenges to shark-diving tourism. Mar. Pollut. 96, 9–12 (2018).

    Article  Google Scholar 

  • 66.

    Pierce, S. J. & Norman, B. Rhincodon typus.The IUCN Red List of Threatened Species 2016: e.T19488A2365291. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T19488A2365291.en (2016)

  • 67.

    Himawan, M. R. et al. Sex and size range composition of whale shark (Rhincodon typus) and their sighting behaviour in relation with fishermen lift-net within Cenderawasih Bay National Park, Indonesia. AACL Bioflux 8(2), 123–133 (2015).

    Google Scholar 

  • 68.

    Weinfield, N. S., Sroufe, L. A. & Egeland, B. Attachment from infancy to early adulthood in a high-risk sample: continuity, discontinuity, and their correlates. Child Dev. 71(3), 695–702 (2000).

    PubMed  Article  CAS  Google Scholar 

  • 69.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (eds Gail, M., Krickeberg, K., Samet, J. M., Tsiatis, A., & Wong, W). (New York, NY: Springer, 2009).

  • 70.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).

    Google Scholar 

  • 71.

    Lawson, C. L. et al. Powering ocean giants: the energetics of shark and ray megafauna. Trends Ecol. Evol. 34(11), 1009–1021 (2019).

    PubMed  Article  Google Scholar 

  • 72.

    Clarke, A. Principles of Thermal Ecology: Temperature, Energy and Life (Oxford University Press, Oxford, 2017).

    Google Scholar 

  • 73.

    Dowd, W., Brill, R. W., Bushnell, P. G. & Musick, J. A. Standard and routine metabolic rates of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body mass and acute temperature change. Fish Bull. 104, 323–331 (2006).

    Google Scholar 

  • 74.

    Chapman, C. A., Harahush, B. K. & Renshaw, G. M. The physiological tolerance of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxic exposure at three seasonal temperatures. Fish Physiol. Biochem. 37(3), 387–399 (2011).

    PubMed  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe