in

Life-history strategies of soil microbial communities in an arid ecosystem

  • 1.

    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43.

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.

    PubMed  Article  CAS  Google Scholar 

  • 6.

    Koch AL. Oligotrophs versus copiotrophs. BioEssays. 2001;23:657–61.

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.

    PubMed  Article  Google Scholar 

  • 8.

    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:fix006.

    Article  CAS  Google Scholar 

  • 9.

    Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.

    Article  CAS  Google Scholar 

  • 11.

    Botzman M, Margalit H. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol. 2011;12:R109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 2010;6:e1000808.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Pereira-Flores E, Glöckner FO, Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinforma. 2019;20:453.

    Article  CAS  Google Scholar 

  • 14.

    Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, et al. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA. 2009;106:15527–33.

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Wyman SK, Avila-Herrera A, Nayfach S, Pollard KS. A most wanted list of conserved microbial protein families with no known domains. PLoS ONE. 2018;13:e0205749.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, et al. Exploration of uncharted regions of the protein universe. PLoS Biol. 2009;7:e1000205.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Giovannoni S, Stingl U. The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol. 2007;5:820–6.

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Barberán A, Caceres Velazquez H, Jones S, Fierer N. Hiding in plain sight: Mining bacterial species records for phenotypic trait information. mSphere. 2017;2:e00237–17.

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Aguiar MR, Sala OE. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol. 1999;14:273–7.

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Schlesinger WH, Raikes JA, Hartley AE, Cross AF. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 1996;77:364–74.

    Article  Google Scholar 

  • 25.

    Maestre FT, Bautista S, Cortina J, Bellot J. Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecol Appl. 2001;11:1641–55.

    Article  Google Scholar 

  • 26.

    Butterfield BJ, Betancourt JL, Turner RM, Briggs JM. Facilitation drives 65 years of vegetation change in the Sonoran Desert. Ecology. 2010;91:1132–9.

    PubMed  Article  Google Scholar 

  • 27.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.

    Article  Google Scholar 

  • 29.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.

    Article  CAS  Google Scholar 

  • 32.

    Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Novembre JA. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol. 2002;19:1390–4.

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Yunta RG, Okuda S, et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat Microbiol. 2016;1:1–8.

    Article  CAS  Google Scholar 

  • 39.

    Barberán A, Fenández-Guerra A, Bohannan BJ, Casamayor EO. Exploration of community traits as ecological markers in microbial metagenomes. Mol Ecol. 2012;21:1909–17.

    PubMed  Article  CAS  Google Scholar 

  • 40.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.

  • 41.

    Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.

    Article  Google Scholar 

  • 42.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  • 44.

    Goberna M, Navarro‐Cano JA, Valiente‐Banuet A, García C, Verdú M. Abiotic stress tolerance and competition‐related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.

    PubMed  Article  Google Scholar 

  • 45.

    Rodríguez-Echeverría S, Lozano YM, Bardgett RD. Influence of soil microbiota in nurse plant systems. Funct Ecol. 2016;30:30–40.

    Article  Google Scholar 

  • 46.

    Yahdjian L, Gherardi L, Sala OE. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J Arid Environ. 2011;75:675–80.

    Article  Google Scholar 

  • 47.

    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967–72.

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Musto H, Naya H, Zavala A, Romero H, Alvarez-Valı́n F, Bernardi G. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 2004;573:73–7.

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34:564–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012;16:553–66.

    PubMed  Article  Google Scholar 

  • 52.

    Lajoie G, Kembel SW. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 2019;27:814–23.

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol. 2014;102:275–301.

    Article  Google Scholar 

  • 54.

    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. 2018;12:1658–67.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Song H-K, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, et al. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol. 2017;93:fix114.

    Article  CAS  Google Scholar 

  • 57.

    Ferenci T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 2016;24:209–23.

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ, Hamoen LW. Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun. 2019;10:890.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 59.

    Trivedi P, Anderson IC, Singh BK. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 2013;21:641–51.

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet. 2016;50:211–34.

    PubMed  Article  CAS  Google Scholar 

  • 61.

    Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. MBio. 2019;10:e01318–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature. 2018;557:503–9.

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:1–1.

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Individual species provide multifaceted contributions to the stability of ecosystems

    Superconductor technology for smaller, sooner fusion