in

Win-stay/lose-switch, prospecting-based settlement strategy may not be adaptive under rapid environmental change

  • 1.

    Orians, G. H. & Wittenberger, J. F. Spatial and temporal scales in habitat selection. Am. Nat. 137, S29–S49 (1991).

    Article  Google Scholar 

  • 2.

    Doligez, B., Cadet, C., Danchin, E. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).

    Article  Google Scholar 

  • 3.

    Schmidt, K. A., Dall, S. R. X. & van Gils, J. A. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119, 304–316 (2010).

    Article  Google Scholar 

  • 4.

    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).

    Article  Google Scholar 

  • 5.

    Fletcher, R. J., Orrock, J. L. & Robertson, B. A. How the type of anthropogenic change alters the consequences of ecological traps. Proc. R. Soc. B 279, 2546–2552 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Cosmides, L. & Tooby, J. From evolution to behavior: evolutionary psychology as the missing link. In The Latest on the Best: Essays on Evolution and Optimality (ed. Dupré, J.) 227–306 (MIT Press, Cambridge, 1987).

    Google Scholar 

  • 8.

    Sih, A., Trimmer, P. C. & Ehlman, S. M. A conceptual framework for understanding behavioural responses to HIREC. Curr. Opin. Behav. Sci. 12, 109–114 (2016).

    Article  Google Scholar 

  • 9.

    Trimmer, P. C., Barrett, B. J., McElreath, R. & Sih, A. Rapid environmental change in games: complications and counter-intuitive outcomes. Sci. Rep. 9, 7373 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Crowley, P. H. et al. Predicting habitat choice after rapid environmental change. Am. Nat. 193, 619–632 (2019).

    PubMed  Article  Google Scholar 

  • 11.

    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction?. Evolution 49, 201–207 (1995).

    PubMed  Article  Google Scholar 

  • 12.

    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).

    Article  Google Scholar 

  • 13.

    Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 603–610 (2001).

    Google Scholar 

  • 14.

    Greggor, A. L., Trimmer, P. C., Barrett, B. J. & Sih, A. Challenges of learning to escape evolutionary traps. Front. Ecol. Evol. 7, 408 (2019).

    Article  Google Scholar 

  • 15.

    Fawcett, T. W. et al. The evolution of decision rules in complex environments. Trends Cogn. Sci. 18, 153–161 (2014).

    PubMed  Article  Google Scholar 

  • 16.

    Beletsky, L. D. & Orians, G. H. Effects of breeding experience and familiarity on site fidelity in female red-winged blackbirds. Ecology 72, 787–796 (1991).

    Article  Google Scholar 

  • 17.

    Forero, M. G., Donázar, J. A., Blas, J. & Hiraldo, F. Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80, 1298–1310 (1999).

    Article  Google Scholar 

  • 18.

    Schaub, M. & Hirschheydt, J. Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).

    PubMed  Article  Google Scholar 

  • 19.

    Switzer, P. V. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).

    Article  Google Scholar 

  • 20.

    Beletsky, L. D. & Orians, G. H. Site fidelity and territorial movements of males in a rapidly declining population of yellow-headed blackbirds. Behav. Ecol. Sociobiol. 34, 257–265 (1994).

    Article  Google Scholar 

  • 21.

    Reed, J. M., Boulinier, T., Danchin, E. & Oring, L. W. Informed dispersal. Curr. Ornithol. 15, 189–259 (1999).

    Article  Google Scholar 

  • 22.

    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B 281, 20132851 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Delibes, M., Ferreras, P. & Gaona, P. Attractive sinks, or how individual behavioural decisions determine source-sink dynamics. Ecol. Lett 4, 401–403 (2001).

    Article  Google Scholar 

  • 24.

    Vlug, J. J. Red-necked grebe. BWP Update 4, 139–179 (2002).

    Google Scholar 

  • 25.

    Kloskowski, J. Consequences of the size structure of fish populations for their effects on a generalist avian predator. Oecologia 166, 517–530 (2011).

    ADS  PubMed  Article  Google Scholar 

  • 26.

    Kloskowski, J. Fish stocking creates an ecological trap for an avian predator via effects on prey availability. Oikos 121, 1567–1576 (2012).

    Article  Google Scholar 

  • 27.

    Kloskowski, J. An avian equivalent of selective abortion: postlaying clutch reduction under resource limitation. Behav. Ecol. 30, 864–871 (2019).

    Article  Google Scholar 

  • 28.

    Bellebaum, J., Szostek, K. L. & Kloskowski, J. Population dynamics and survival of the red-necked grebe Podiceps grisegena: results from a long-term study in eastern Poland. J. Ornithol. 159, 631–641 (2018).

    Article  Google Scholar 

  • 29.

    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).

    Article  Google Scholar 

  • 30.

    Arlt, D. & Pärt, T. Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88, 792–801 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Kloskowski, J., Grela, P., Krogulec, J., Gąska, M. & Tchórzewski, M. Sexing red-necked grebes Podiceps grisegena by molecular techniques and morphology. Acta Ornithol. 41, 176–180 (2006).

    Article  Google Scholar 

  • 32.

    Kloskowski, J. Temporal patterns of parental resource distribution in the red-necked grebe: equalizing the share of the survivors. Behaviour 138, 1355–1370 (2001).

    Article  Google Scholar 

  • 33.

    Haas, C. A. Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115, 929–936 (1998).

    Article  Google Scholar 

  • 34.

    Hakkarainen, H., Ilmonen, P., Koivunen, V. & Korpimäki, E. Experimental increase of predation risk induces breeding dispersal of Tengmalm’s owl. Oecologia 126, 355–359 (2001).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Schall, R. Estimation in generalized linear models with random effects. Biometrika 78, 719–727 (1991).

    MATH  Article  Google Scholar 

  • 36.

    Piper, W. H., Tischler, K. B. & Klich, M. Territory acquisition in loons: the importance of take-over. Anim. Behav. 59, 385–394 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Nocera, J. J., Forbes, G. J. & Giraldeau, L.-A. Inadvertent social information in breeding site selection of natal dispersing birds. Proc. R. Soc. B 273, 349–355 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Ward, M. P. Habitat selection by dispersing yellow-headed blackbirds: evidence of prospecting and the use of public information. Oecologia 145, 650–657 (2005).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Pärt, T., Arlt, D., Doligez, B., Low, M. & Qvarnström, A. Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. J. Anim. Ecol. 80, 1227–1235 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).

    Article  Google Scholar 

  • 41.

    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the “multiplier effect”. Ecol. Lett. 14, 237–243 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Piper, W. H., Palmer, M. W., Banfield, N. & Meyer, M. W. Can settlement in natal-like habitat explain maladaptive habitat selection?. Proc. R. Soc. B 280, 20130979 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    McParland, C. E., Paszkowski, C. A. & Newbrey, J. L. Trophic relationships of breeding Red-necked Grebes (Podiceps grisegena) on wetlands with and without fish in the Aspen Parkland. Can. J. Zool. 88, 186–194 (2010).

    Article  Google Scholar 

  • 45.

    Mäntylä, E., Sirkiä, P. M., Klemola, T. & Laaksonen, T. An experimental test of whether pied flycatchers choose the best territory for rearing the young. Curr. Zool. 61, 604–613 (2015).

    Article  Google Scholar 

  • 46.

    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Nudds, R. L. & Bryant, D. M. Consequences of load carrying by birds during short flights are found to be behavioral and not energetic. Am. J. Physiol. 283, R249–R256 (2002).

    CAS  Google Scholar 

  • 50.

    Hutchinson, J. M. C. & Gigerenzer, G. Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav. Proc. 69, 97–124 (2005).

    Article  Google Scholar 

  • 51.

    Hipfner, J. Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Mar. Ecol. Prog. Ser. 368, 295–304 (2008).

    ADS  Article  Google Scholar 

  • 52.

    Ponchon, A., Garnier, R., Grémillet, D. & Boulinier, T. Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Divers. Distrib. 21, 88–100 (2015).

    Article  Google Scholar 

  • 53.

    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).

    PubMed  Article  Google Scholar 

  • 54.

    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture–recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).

    Article  Google Scholar 

  • 55.

    Owen, M. A., Swaisgood, R. R. & Blumstein, D. T. Contextual influences on animal decision-making: significance for behavior-based wildlife conservation and management. Integr. Zool. 12, 32–48 (2017).

    PubMed  Article  Google Scholar 

  • 56.

    Grieco, F., van Noordwijk, A. J. & Visser, M. E. Evidence for the effect of learning on timing of reproduction in blue tits. Science 296, 136–138 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 57.

    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)