in

Pseudogymnoascus destructans growth in wood, soil and guano substrates

  • 1.

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160332 (2016).

    Article  Google Scholar 

  • 3.

    Ghosh, P. N., Fisher, M. C. & Bates, K. A. Diagnosing emerging fungal threats: A one health perspective. Front. Genet. 9, 376 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Seyedmousavi, S. et al. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. 53, 765–797 (2015).

    PubMed  Article  Google Scholar 

  • 5.

    Stephen, C., Lester, S., Black, W., Fyfe, M. & Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43, 792–794 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Speare, R., Thomas, A. D., O’Shea, P. & Shipton, W. A. Mucor amphibiorum in the toad, Bufo marinus Australia. J. Wildl. Dis. 30, 399–407 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Connolly, J. H. A review of mucormycosis in the platypus (Ornithorhynchus anatinus). Aust. J. Zool. 57, 235–244 (2009).

    Article  Google Scholar 

  • 8.

    Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Austral. Mycol. 28, 1–8 (2009).

    Google Scholar 

  • 9.

    Thiel, R. P., Mech, L. D., Ruth, G. R., Archer, J. R. & Kaufman, L. Blastomycosis in wild wolves. J. Wildl. Dis. 23, 321–323 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Storms, T. N., Victoria L. Clyde, Linda Munson & Edward C. Ramsay. Blastomycosis in nondomestic felids. J. Zool. Wildl. Med. 34, 231–238 (2003).

  • 11.

    Guillot, J., Guérin, C. & Chermette, R. Histoplasmosis in Animals. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S., de Hoog, G. S., Guillot, J. & Verweij, P. E.) 115–128 (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-72093-7_5.

  • 12.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110, 15325 (2013).

  • 14.

    Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1–7 (2013).

    Article  CAS  Google Scholar 

  • 17.

    Shikano, I. & Cory, J. S. Impact of environmental variation on host performance differs with pathogen identity: Implications for host-pathogen interactions in a changing climate. Sci. Rep. 5, 15351 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Kraay, A. N. M. et al. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 540 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Stephens, B. et al. Microbial exchange via fomites and implications for human health. Curr. Pollut. Rep. 5, 198–213 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Langwig, K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. Biol. Sci. 282, (2015).

  • 21.

    Huebschman, J. J. et al. Detection of Pseudogymnoascus destructans during Summer on Wisconsin Bats. J. Wildl. Dis. https://doi.org/10.7589/2018-06-146 (2019).

    Article  PubMed  Google Scholar 

  • 22.

    Hoyt, J. R. et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc. Natl. Acad. Sci. USA 117, 7255 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Foley, J., Clifford, D., Castle, K., Cryan, P. & Osfeld, R. S. Investigating and managing the rapid emergence of white nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231 (2011).

    PubMed  Google Scholar 

  • 24.

    Blanco, C. M. & Garrie, J. Species specific effects of prescribed burns on bat occupancy in northwest Arkansas. For. Ecol. Manage. 460, 117890 (2020).

    Article  Google Scholar 

  • 25.

    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).

  • 26.

    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Cryan, P. M. et al. Electrolyte depletion in white-nose syndrome bats. J. Wildl. Dis. 49, 398–402 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A Five-year assessment of mortality and geographic spread of white-nose syndrome in North American Bats, with a Look at the Future. Update of white-nose syndrome in bats. Bat Res. News 52, 13–27 (2011).

  • 32.

    Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).

    PubMed  Article  Google Scholar 

  • 33.

    Langwig, K. E. et al. Invasion dynamics of white-nose syndrome fungus, midwestern United States. Emerg. Infect. Dis. 21, 1023–1026 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    USFW. U.S. Fish and Wildlife Service. 2019. White-nose syndrome: The devastating disease of hibernating bats in North America. Accessed 1 May 2020. https://www.whitenosesyndrome.org/mmedia-education/white-nose-syndrome-fact-sheet-june-2018. (2019).

  • 35.

    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 36.

    Lorch, J. M. et al. Distribution and environmental persistence of the causative agent of white-nose syndrome, geomyces destructans, in bat hibernacula of the Eastern United States. Appl. Environ. Microbiol. 79, 1293–1301 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Hoyt, J. R. et al. Long-term persistence of Pseudogymnoascus destructans, the Causative Agent of white-nose syndrome, in the absence of bats. EcoHealth 12, 330–333 (2015).

    PubMed  Article  Google Scholar 

  • 38.

    Campbell, L. J., Walsh, D., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildl. Dis. 56, 278–287 (2020).

    PubMed  Article  Google Scholar 

  • 39.

    Urbina, J., Chestnut, T., Schwalm, D., Allen, J. & Levi, T. Experimental evaluation of genomic DNA degradation rates for the pathogen Pseudogymnoascus destructans (Pd) in bat guano. PeerJ 8, e8141 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Reynolds, H. T., Ingersoll, T. & Barton, H. A. Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the White-nose syndrome epidemic. J. Wildl. Dis. 51, 318–331 (2015).

    PubMed  Article  Google Scholar 

  • 42.

    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. USA 109, 6999 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    WNS Multiagency decontamination team. https://www.whitenosesyndrome.org/mmedia-education/united-states-national-white-nose-syndrome-decontamination-protocol-april-2016-2. (2018).

  • 44.

    Verant, M., Bohuski, E., Lorch, J. & Blehert, D. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples. J. VET Diagn. Invest. 28, 110–118 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Zhelyazkova, V. L. et al. Screening and biosecurity for white-nose Fungus Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) in Hawai‘i. Pac. Sci. 73, 357–365 (2019).

    Article  Google Scholar 

  • 47.

    Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Vanderwolf, K. J., Malloch, D. & McAlpine, D. F. Detecting viable Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) from walls of bat hibernacula: Effect of culture media. J. Cave Karst Stud. 78, 158 (2016).

    CAS  Article  Google Scholar 

  • 49.

    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).

    Article  Google Scholar 

  • 50.

    Micalizzi, E. W., Mack, J. N., White, G. P., Avis, T. J. & Smith, M. L. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS ONE 12, e0179770 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Singh, A., Lasek-Nesselquist, E., Chaturvedi, V. & Chaturvedi, S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. Microbiome 6, 139 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    De Mandal, S., Zothansanga, Panda, A. K., Bisht, S. S. & Senthil Kumar, N. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing. Genom. Data 4, 99–101. (2015).

  • 53.

    Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S. & Shouche, Y. S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 6, 36948 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Newman, M. M., Kloepper, L. N., Duncan, M., McInroy, J. A. & Kloepper, J. W. Variation in bat guano bacterial community composition with depth. Front. Microbiol. 9, 914 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 114, 4507 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Khan, N. et al. Antifungal activity of bacillus species against fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Kerr, J. R. Bacterial inhibition of fungal growth and pathogenicity. Microb. Ecol. Health Dis. 11, 129–142 (1999).

    Google Scholar 

  • 59.

    Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81, 357–364 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Cornelison, C. T., Gabriel, K. T., Barlament, C. & Crow, S. A. Inhibition of pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia 177, 1–10 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Sussman, A. & Douthit, H. Dormancy in microbial spores. Annu. Rev. Plant Physiol. 24, 311–352 (1973).

    CAS  Article  Google Scholar 

  • 62.

    Feofilova, E. P., Ivashechkin, A. A., Alekhin, A. I. & Sergeeva, Ya. E. Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review). Appl. Biochem. Microbiol. 48, 1–11 (2012).

  • 63.

    Gasch, A. P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).

    Article  Google Scholar 

  • 65.

    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Gabriel, K. T., Kartforosh, L., Crow, S. A. & Cornelison, C. T. Antimicrobial activity of essential oils against the fungal pathogens ascosphaera apis and pseudogymnoascus destructans. Mycopathologia 183, 921–934 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Boire, N. et al. Potent inhibition of pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless valencia orange oil. PLoS ONE 11, e0148473 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 68.

    Turbill, C. & Welbergen, J. A. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans pose a serious risk to Australia’s bat fauna. Austral. Ecol. 45, 89–96 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)