in

Assumptions about fence permeability influence density estimates for brown hyaenas across South Africa

  • 1.

    Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Machado, A. P., Clément, L., Uva, V., Goudet, J. & Roulin, A. The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J. Biogeogr. 45, 1288–1300 (2018).

    Article  Google Scholar 

  • 3.

    Patton, J. L., Da Silva, M. N. F. & Malcolm, J. R. Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: a test of the riverine barrier hypothesis. Evolution 48, 1314–1323 (1994).

    PubMed  Article  Google Scholar 

  • 4.

    Trinkel, M. et al. Inbreeding and density-dependent population growth in a small, isolated lion population. Anim. Conserv. 13, 374–382 (2010).

    Article  Google Scholar 

  • 5.

    Vanak, A. T., Thaker, M. & Slotow, R. Do fences create an edge-effect on the movement patterns of a highly mobile mega-herbivore?. Biol. Conserv. 143, 2631–2637 (2010).

    Article  Google Scholar 

  • 6.

    Parchizadeh, J. et al. Roads threaten Asiatic cheetahs in Iran. Curr. Biol. 28, R1141–R1142 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Williams, S. T., Collinson, W., Patterson-Abrolat, C., Marneweck, D. G. & Swanepoel, L. H. Using road patrol data to identify factors associated with carnivore roadkill counts. PeerJ 7, e6650 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Hayward, M. W. & Kerley, G. I. H. Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).

    Article  Google Scholar 

  • 9.

    Taylor, A., Lindsey, P., Davies-Mostert, H. & Goodman, P. An assessment of the economic, social and conservation value of the wildlife ranching industry and its potential to support the green economy in South Africa. 1–163 (The Endangered Wildlife Trust, Johannesburg, South Africa, 2015).

  • 10.

    Pekor, A. et al. Fencing Africa’s protected areas: costs, benefits, and management issues. Biol. Conserv. 229, 67–75 (2019).

    Article  Google Scholar 

  • 11.

    Woodroffe, R., Hedges, S. & Durant, S. M. To fence or not to fence. Science 344, 46–48 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Hayward, M. W. & Somers, M. J. An introduction to fencing for conservation. In Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? (eds Somers, M. J. & Hayward, M.) 1–6 (Springer, Berlin, 2012).

    Google Scholar 

  • 13.

    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J. Anim. Ecol. 82, 707–715 (2013).

    PubMed  Article  Google Scholar 

  • 14.

    Kesch, M. K., Bauer, D. T. & Loveridge, A. J. Break on through to the other side: the effectiveness of game fencing to mitigate human—wildlife conflict. Afr. J. Wildl. Res. 45, 76–87 (2015).

    Article  Google Scholar 

  • 15.

    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. Game fence presence and permeability influences the local movement and distribution of South African mammals. Afr. Zool. 52, 217–227 (2017).

    Article  Google Scholar 

  • 16.

    Lindsey, P. A., Masterson, C. L., Beck, A. L. & Romañach, S. Ecological, social, and financial issues related to fencing as a conservation tool in Africa. In Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? (eds Somers, M. J. & Hayward, M.) 215–234 (Springer, Berlin, 2012).

    Google Scholar 

  • 17.

    Connolly, T. A., Day, T. D. & King, C. M. Estimating the potential for reinvasion by mammalian pests through pest-exclusion fencing. Wildl. Res. 36, 410–421 (2009).

    Article  Google Scholar 

  • 18.

    Kesch, K. M., Bauer, D. T. & Loveridge, A. J. Undermining game fences: who is digging holes in Kalahari sands?. Afr. J. Ecol. 52, 144–150 (2013).

    Article  Google Scholar 

  • 19.

    Edwards, S., Noack, J., Heyns, L. & Rodenwoldt, D. Evidence of a high-density brown hyena population within an enclosed reserve: the role of fenced systems in conservation. Mammmal Res. 64, 519–527 (2019).

    Article  Google Scholar 

  • 20.

    Kent, V. T. & Hill, R. A. The importance of farmland for the conservation of brown hyaena, Parahyaena brunnea. Oryx 47, 431–440 (2013).

    Article  Google Scholar 

  • 21.

    Welch, R. J. & Parker, D. M. Brown hyaena population explosion: rapid population growth in a small, fenced system. Wildl. Res. 43, 178–187 (2016).

    Article  Google Scholar 

  • 22.

    Rogan, M. S. et al. The influence of movement on the occupancy–density relationship at small spatial scales. Ecosphere 10, e02807 (2019).

    Article  Google Scholar 

  • 23.

    Efford, M. G. & Fewster, R. M. Estimating population size by spatially explicit capture–recapture. Oikos 122, 918–928 (2013).

    Article  Google Scholar 

  • 24.

    Noack, J., Heyns, L., Rodenwoldt, D. & Edwards, S. Leopard density estimation within an enclosed reserve, Namibia using spatially explicit capture-recapture models. Animals 9, 724 (2019).

    Article  Google Scholar 

  • 25.

    Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267 (2019).

    Article  Google Scholar 

  • 26.

    Noss, A. J. et al. Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape. Anim. Conserv. 15, 527–535 (2012).

    Article  Google Scholar 

  • 27.

    Foster, R. J. & Harmsen, B. J. A critique of density estimation from camera-trap data. J. Wildl. Manag. 76, 224–236 (2012).

    Article  Google Scholar 

  • 28.

    Wiesel, I. Parahyaena brunnea. The IUCN Red List of Threatened Species 2015: e.T10276A82344448., Available from http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T10276A82344448.en [Accessed 1 March 2020] (2015).

  • 29.

    Yarnell, R. et al. A conservation assessment of Parahyaena brunnea. In The Red List of Mammals of South Africa, Swaziland and Lesotho (eds Child, M. F. et al.) (South African National Biodiversity Institute and Endangered Wildlife Trust, Midrand, 2016).

    Google Scholar 

  • 30.

    QGIS Development Team. QGIS Geographic Information System version 3.10.10. Open Source Geospatial Foundation Project (Available from http://qgis.org) (2020).

  • 31.

    Natural Earth.Available from http://www.naturalearthdata.com [Accessed Feb 01 2020] (2020).

  • 32.

    Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. Afr. J. Wildl. Res. 39, 1–10 (2009).

    Article  Google Scholar 

  • 33.

    Yarnell, R. W. et al. The influence of large predators on the feeding ecology of two African mesocarnivores: the black-backed jackal and the brown hyaena. Afr. J. Wildl. Res. 43, 155–166 (2013).

    Article  Google Scholar 

  • 34.

    Falkena, H. B. & van Hoven, W. Bulls, bears and lions: game ranch profitability in southern Africa (The South Africa Financial Sector Forum, Midrand, 2000).

    Google Scholar 

  • 35.

    Thorn, M., Green, M., Bateman, P. W., Waite, S. & Scott, D. M. Brown hyaenas on roads: estimating carnivore occupancy and abundance using spatially auto-correlated sign survey replicates. Biol. Conserv. 144, 1799–1807 (2011).

    Article  Google Scholar 

  • 36.

    Wiesel, I. Predatory and foraging behaviour of brown hyenas (Parahyaena brunnea (Thunberg, 1820)) at cape fur seal (Arctocephalus pusillus pusillus Schreber, 1776) colonies PhD thesis, University of Hamburg, (2006).

  • 37.

    Brassine, E. & Parker, D. Trapping elusive cats: using intensive camera trapping to estimate the density of a rare African felid. PLoS ONE 10, e0142508 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Ramesh, T., Kalle, R., Rosenlund, H. & Downs, C. T. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator. Ecol. Evol. 7, 1964–1973 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Miller, J. R., Pitman, R. T., Mann, G. K., Fuller, A. K. & Balme, G. A. Lions and leopards coexist without spatial, temporal or demographic effects of interspecific competition. J. Anim. Ecol. 87, 1709–1726 (2018).

    PubMed  Article  Google Scholar 

  • 40.

    Trinkel, M. et al. Translocating lions into an inbred lion population in the Hluhluwe-iMfolozi Park, South Africa. Anim. Conserv. 11, 138–143 (2008).

    Article  Google Scholar 

  • 41.

    Thompson, S., Avent, T. & Doughty, L. S. Range analysis and terrain preference of adult southern white rhinoceros (Ceratotherium simum) in a South African private game reserve: insights into carrying capacity and future management. PLoS ONE 11, e0161724 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).

    Article  Google Scholar 

  • 43.

    Royle, J. A., Chandler, R. B., Sun, C. C. & Fuller, A. K. Integrating resource selection information with spatial capture–recapture. Methods Ecol. Evol. 4, 520–530 (2013).

    Article  Google Scholar 

  • 44.

    Proffitt, K. M. et al. Integrating resource selection into spatial capture-recapture models for large carnivores. Ecosphere 6, 1–15 (2015).

    Article  Google Scholar 

  • 45.

    Davies-Mostert, H. T. et al. Long-distance transboundary dispersal of African wild dogs among protected areas in southern Africa. Afr. J. Ecol. 50, 500–506 (2012).

    Article  Google Scholar 

  • 46.

    Williams, K. S. et al. Utilizing bycatch camera-trap data for broad-scale occupancy and conservation: a case study of the brown hyaena Parahyaena brunnea. Oryx, 1–11, (2020).

  • 47.

    Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution – Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).

    Article  Google Scholar 

  • 48.

    Palmer, M. S., Swanson, A., Kosmala, M., Arnold, T. & Packer, C. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr. J. Ecol. 56, 791–803 (2018).

    Article  Google Scholar 

  • 49.

    Swanepoel, L. H. et al. A conservation assessment of Panthera pardus. In The Red List of South Africa, Swaziland and Lesotho (eds Child, M. F. et al.) (South African National Biodiversity Institute and Endangered Wildlife Trust, Midrand, 2016).

    Google Scholar 

  • 50.

    Williams, K. S. Human-brown hyaena relationships and the role of mountainous environments as refuges in a postcolonial landscape PhD thesis, Durham University, (2017).

  • 51.

    Richmond-Coggan, L. Comparative abundance and ranging behaviour of brown hyaena (Parahyaena brunnea) inside and outside protected areas in South Africa PhD thesis, Nottingham Trent University, (2014).

  • 52.

    WorldPop.South Africa 100m population, Available from https://www.worldpop.org/doi/https://doi.org/10.5258/SOTON/WP00246. [Accessed 30 May 2020] (2013).

  • 53.

    Welch, R. J. Population estimates and spatial ecology of brown hyaenas in Kwandwe Private Game Reserve MSc thesis, Rhodes University, (2014).

  • 54.

    Karanth, K. U., Nichols, J. D. & Samba-Kumar, N. Ch.7: Estimating tiger abundance from camera trap data: field surveys and analytical issues. In Camera traps in animal ecology: methods and analyses (eds O’Connell, A. F. et al.) 97–118 (Springer, Berlin, 2011).

    Google Scholar 

  • 55.

    Edwards, S. et al. Making the most of by-catch data: assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56, 885–894 (2018).

    Article  Google Scholar 

  • 56.

    Mazzamuto, M. V., Valvo, M. L. & Anile, S. The value of by-catch data: how species-specific surveys can serve non-target species. Eur. J. Wildl. Res. 65, 68 (2019).

    Article  Google Scholar 

  • 57.

    Sun, C. C., Fuller, A. K. & Royle, J. A. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS ONE 10, e0141634 (2014).

    Article  CAS  Google Scholar 

  • 58.

    Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildlife Monogr. 62, 3–135 (1978).

  • 59.

    Kays, R. W. & Slauson, K. M. Ch.5: Remote cameras. In Noninvasive survey methods for carnivores (eds Long, R. A. et al.) 110–140 (Island Press, Washington, 2008).

    Google Scholar 

  • 60.

    Williams, S. T., Williams, K. S., Lewis, B. P. & Hill, R. A. Population dynamics and threats to an apex predator outside of protected areas: Implications for carnivore management. Roy. Soc. Open. Sci. 4, 1–10 (2017).

  • 61.

    Mills, M. G. L. The comparative behavioural ecology of the brown hyaena Hyaena brunnea and the spotted hyaena Crocuta crocuta in the southern Kalahari. Koedoe 27, 237–247 (1984).

    Google Scholar 

  • 62.

    Kent, V. T. The status and conservation potential of carnivores in semi-arid rangelands, Botswana the Ghanzi farmlands: a case study PhD thesis, Durham University, (2011).

  • 63.

    Satter, C. B. et al. Long-term monitoring of ocelot densities in Belize. J. Wildl. Manag. 83, 283–294 (2019).

    Article  Google Scholar 

  • 64.

    Jordan, M. J., Barrett, R. H. & Purcell, K. L. Camera trapping estimates of density and survival of fishers Martes pennanti. Wildl. Biol. 17, 266–276 (2011).

    Article  Google Scholar 

  • 65.

    Efford, M. G. secr: Spatially explicit capture-recapture models. R package version 3.2.1. (Available from http://cran.r-project.org/package=secr) (2019).

  • 66.

    R Development Core Team. R: A language and environment for statistical computing. Version 3.6.0 (Available from https://www.R-project.org/.) (2019).

  • 67.

    Bahaa-ed-din, L. et al. Effects of human land-use on Africa’s only forest-dependent felid: The African golden cat Caracal aurata. Biol. Conserv. 199, 1–9 (2016).

    Article  Google Scholar 

  • 68.

    Loock, D. J., Williams, S. T., Emslie, K. W., Matthews, W. S. & Swanepoel, L. H. High carnivore population density highlights the conservation value of industrialised sites. Sci. Rep-UK 8, 16575 (2018).

    ADS  Article  CAS  Google Scholar 

  • 69.

    Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B. & Liu, J. G. Coexistence between wildlife and humans at fine spatial scales. Proc. Natl. Acad. Sci. U.S.A. 109, 15360–15365 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Treves, A., Mwima, P., Plumptre, A. J. & Isoke, S. Camera-trapping forest–woodland wildlife of western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biol. Conserv. 143, 521–528 (2010).

    Article  Google Scholar 

  • 71.

    O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).

    Article  Google Scholar 

  • 72.

    Williams, K. S., Williams, S. T., Fitzgerald, L. E., Sheppard, E. C. & Hill, R. A. Brown hyaena and leopard diets on private land in the Soutpansberg Mountains, South Africa. Afr. J. Ecol. 56, 1021–1027 (2018).

    Article  Google Scholar 

  • 73.

    Maddock, A. H. Analysis of brown hyena (Hyaena brunnea) scats from the central Karoo, South Africa. J. Zool. 231, 679–683 (1993).

    Article  Google Scholar 

  • 74.

    Maude, G. The comparative ecology of the brown hyaena (Hyaena brunnea) in Makgadikgadi National Park and a neighbouring community cattle area in Botswana MSc thesis, University of Pretoria, (2005).

  • 75.

    Harihar, A. & Pandav, B. Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape. PLoS ONE 7, e40105 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach 2nd edn. (Springer, Berlin, 2002).

    Google Scholar 

  • 77.

    Balme, G. A., Hunter, L. T. B. & Slotow, R. Evaluating methods for counting cryptic carnivores. J. Wildl. Manage. 73, 433–441 (2009).

    Article  Google Scholar 

  • 78.

    Gopalaswamy, A. M. et al. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models. Methods Ecol. Evol. 3, 1067–1072 (2012).

    Article  Google Scholar 

  • 79.

    Williams, S. T. et al. R code and data for estimating brown hyaena density across South Africa. Available from https://figshare.com/s/f958e721d38dff237bab (2020).


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)