in

A record of vapour pressure deficit preserved in wood and soil across biomes

  • 1.

    Almeida, A. C. & Landsberg, J. J. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil. Agric. For. Meteorol. 118, 237–250 (2003).

    ADS  Article  Google Scholar 

  • 2.

    Hashimoto, H. et al. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sens. Environ. 112, 142–155 (2008).

    ADS  Article  Google Scholar 

  • 3.

    Silva, L. C. R. & Lambers, H. Soil-plant-atmosphere interactions : structure, function, and predictive scaling for climate change mitigation. Plant Soil https://doi.org/10.1007/s11104-020-04427-1 (2020).

    Article  Google Scholar 

  • 4.

    Maxwell, T. M. & Silva, L. C. R. A state factor model for ecosystem carbon: water relations. Trends Plant Sci. 25, 652–660 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Penuelas, J. & Sardans, J. Developing holistic models of the structure and function of the soil/plant/atmosphere continuum. Plant Soil https://doi.org/10.1007/s11104-020-04641-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    ADS  Article  Google Scholar 

  • 7.

    Retallack, G. J. Greenhouse crises of the past 300 million years. Bull. Geol. Soc. Am. 121, 1441–1455 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Barbour, M. M., Walcroft, A. S. & Farquhar, G. D. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant. Cell Environ. 25, 1483–1499 (2002).

    Article  Google Scholar 

  • 9.

    Breecker, D. O., Sharp, Z. D. & McFadden, L. D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bull. Geol. Soc. Am. 121, 630–640 (2009).

    CAS  Article  Google Scholar 

  • 10.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  • 11.

    Cerling, T. E. Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Global Biogeochem. Cycles 6, 307–314 (1992).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Scheidegger, Y., Saurer, M., Bahn, M. & Siegwolf, R. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125, 350–357 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Maxwell, T. M., Silva, L. C. R. & Horwath, W. R. Using multielement isotopic analysis to decipher drought impacts and adaptive management in ancient agricultural systems: Fig. 1. Proc. Natl. Acad. Sci. 111, E4807–E4808 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Barbour, M. M. & Farquhar, A. Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. https://doi.org/10.1046/j.1365-3040.2000.00575.x (2000).

    Article  Google Scholar 

  • 15.

    Roden, J. S., Lin, G. & Ehleringer, J. R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21–35 (2000).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Roden, J. S. & Farquhar, G. D. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiol. 32, 490–503 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Saurer, M., Aellen, K. & Siegwolf, R. Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ. 20, 1543–1550 (1997).

    Article  Google Scholar 

  • 18.

    Johnstone, J. A., Roden, J. S. & Dawson, T. E. Oxygen and carbon stable isotopes in coast redwood tree rings respond to spring and summer climate signals. J. Geophys. Res. Biogeosciences 118, 1438–1450 (2013).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Sidorova, O. V. et al. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?. Oecologia 161, 825–835 (2009).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Yakir, D. & Sternberg, L. D. S. L. The use of stable isotopes to study ecosystem gas exchange. Oecologia 123, 297–311 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801 (2004).

    ADS  Article  Google Scholar 

  • 22.

    Koch, P. L. Isotopic reconstruction of past continental environments. Annu. Rev. Earth Planet. Sci. 26, 573–613 (1998).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Hook, B. A., Halfar, J., Gedalof, Z., Bollmann, J. & Schulze, D. J. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic. Biogeosciences 12, 5899–5914 (2015).

    ADS  Article  Google Scholar 

  • 24.

    Zhang, H. & Nobel, P. S. Dependency of cI/ca and leaf transpiration efficiency on the vapour pressure deficit. Funct. Plant Biol. 23, 561–568 (1996).

    Article  Google Scholar 

  • 25.

    Silva, L. C. R., Pedroso, G., Doane, T. A., Mukome, F. N. D. & Horwath, W. R. Beyond the cellulose: oxygen isotope composition of plant lipids as a proxy for terrestrial water balance. Geochemical Perspect. Lett. https://doi.org/10.7185/geochemlet.1504 (2015).

    Article  Google Scholar 

  • 26.

    Breecker, D. O., Sharp, Z. D. & McFadden, L. D. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proc. Natl. Acad. Sci. 107, 576–580 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Breecker, D. O., McFadden, L. D., Sharp, Z. D., Martinez, M. & Litvak, M. E. Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico. Ecosystems 15, 83–96 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Abels, H. A. et al. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming. Clim. Past Discuss. 11, 1857–1885 (2015).

    Article  Google Scholar 

  • 29.

    Leary, R. J., Quade, J., DeCelles, P. G. & Reynolds, A. Evidence from paleosols for low to moderate elevation of the India-Asia suture zone during mid-Cenozoic time. Geology 45, 399–402 (2017).

    ADS  Article  Google Scholar 

  • 30.

    Silva, L. C. R. et al. Expansion of gallery forests into central Brazilian savannas. Glob. Chang. Biol. 14, 2108–2118 (2008).

    ADS  Article  Google Scholar 

  • 31.

    Oerter, E. J. & Amundson, R. Climate controls on spatial temporal variations in the formation of pedogenic carbonate in the western Great Basin of North Americ. Bull. Geol. Soc. Am. 128, 1095–1104 (2016).

    Article  Google Scholar 

  • 32.

    Quade, J., Cerling, T. E. & Bowman, J. R. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation trasects in the southern Great Basin, United States. Geol. Soc. Am. Bull. 101, 464–475 (1989).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Zamanian, K., Pustovoytov, K. & Kuzyakov, Y. Pedogenic carbonates : forms and formation processes. Earth Sci. Rev. 157, 1–17 (2016).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Botsyun, S. et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science 80, 363 (2019).

    Google Scholar 

  • 35.

    Maxwell, T. M., Silva, L. C. R. & Horwath, W. R. Predictable oxygen isotope exchange between plant lipids and environmental water: implications for ecosystem water balance reconstruction. J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2018JG004553 (2018).

    Article  Google Scholar 

  • 36.

    Nyachoti, S., Jin, L., Tweedie, C. E. & Ma, L. Insight into factors controlling formation rates of pedogenic carbonates: a combined geochemical and isotopic approach in dryland soils of the US Southwest. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2017.10.014 (2017).

    Article  Google Scholar 

  • 37.

    Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K. & Sangode, S. J. Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 23–41 (2004).

    Article  Google Scholar 

  • 38.

    Ufnar, D. F., Gröcke, D. R. & Beddows, P. A. Assessing pedogenic calcite stable-isotope values: Can positive linear covariant trends be used to quantify palaeo-evaporation rates?. Chem. Geol. 256, 46–51 (2008).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Jahren, A. H. & Sternberg, L. S. L. Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): isotopic signatures of precipitation, relative humidity, and deciduousness. Geology 36, 99–102 (2008).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Retallack, G. J., Wynn, J. G. & Fremd, T. J. Glacial-interglacial-scale paleoclimatic change without large ice sheets in the Oligocene of central Oregon. Geology 32, 297–300 (2004).

    ADS  Article  Google Scholar 

  • 41.

    Howell, T. A. & Dusek, D. Comparison of vapor-pressure-deficit calculation methods: Southern high plains. J. Irrig. Drain. Eng. 121, 191–198 (1995).

    Article  Google Scholar 

  • 42.

    Castellvi, F., Perez, P. J., Villar, J. M. & Rose, J. I. Analysis of methods for estimating vapor pressure deficits and relative humidity. Agric. For. Meteorol. 82, 29–45 (1996).

    ADS  Article  Google Scholar 

  • 43.

    Jahren, A. H. & Sternberg, L. S. L. Humidity estimate for the middle Eocene Arctic rain forest. Geology 31, 463–466 (2003).

    ADS  Article  Google Scholar 

  • 44.

    Schubert, B. A. & Jahren, A. H. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim. Cosmochim. Acta 96, 29–43 (2012).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Sheldon, N. D., Retallack, G. J. & Tanaka, S. Geochemical climofunctions from North American soils and application to paleosols across the eocene: oligocene boundary in oregon geochemical climofunctions from North American soils and application to paleosols across the eocene-oligocene boundary in Or. J. Geol. 110, 687–696 (2015).

    ADS  Article  Google Scholar 

  • 46.

    Retallack, G. J., Bestland, E. & Fremd, T. Eocene and oligocene paleosols of central oregon. Geol. Soc. Am. Spec. Pap. 344, 1–192 (2000).

    Google Scholar 

  • 47.

    White, P. D. & Schiebout, J. A. Paleogene paleosols of Big Bend National Park, Texas. Spec. Pap. Geol. Soc. Am. 369, 537–550 (2003).

    Google Scholar 

  • 48.

    Fischer-Femal, B. J. & Bowen, G. J. Coupled carbon and oxygen isotope model for pedogenic carbonates. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2020.10.022 (2020).

    Article  Google Scholar 

  • 49.

    Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Clim. Chang. Cont. Isot. Rec. 78, 78 (1993).

    Google Scholar 

  • 50.

    Sarangi, V., Agrawal, S. & Sanyal, P. The disparity in the abundance of C4 plants estimated using the carbon isotopic composition of paleosol components. Palaeogeogr. Palaeoclimatol. Palaeoecol. 561, 110068 (2021).

    Article  Google Scholar 

  • 51.

    Huang, C. M., Wang, C. S. & Tang, Y. Stable carbon and oxygen isotopes of pedogenic carbonates in Ustic Vertisols: Implications for paleoenvironmental change. Pedosphere 15, 539–544 (2005).

    CAS  Google Scholar 

  • 52.

    Werner, C. et al. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9, 3083–3111 (2012).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Wynn, J. G. & Bird, M. I. C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Glob. Chang. Biol. 13, 2206–2217 (2007).

    ADS  Article  Google Scholar 

  • 54.

    Garzione, C. N., Dettman, D. L. & Horton, B. K. Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 119–140 (2004).

    Article  Google Scholar 

  • 55.

    Rice, C. M. et al. A Devonian auriferous hot spring system, Rhynie, Scotland. J. Geol. Soc. Lond. 152, 229–250 (1995).

    CAS  Article  Google Scholar 

  • 56.

    Bera, M. K., Sarkar, A., Tandon, S. K., Samanta, A. & Sanyal, P. Does burial diagenesis reset pristine isotopic compositions in paleosol carbonates?. Earth Planet. Sci. Lett. 300, 85–100 (2010).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Vargas, A. I., Schaffer, B., Yuhong, L. & Lobo, S. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments. New Phytol. https://doi.org/10.1111/nph.14616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Flanagan, L. B. & Farquhar, G. D. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ. 37, 425–438 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Sheshshayee, M. S. et al. Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 56, 3033–3039 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Sternberg, L., Fernandes, P. & Ellsworth, V. Divergent biochemical fractionation, not convergent temperature , explains cellulose oxygen isotope enrichment across latitudes. 6, (2011).

  • 62.

    Retallack, G. J. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Res. 36, 94–110 (2016).

    Article  CAS  Google Scholar 

  • 63.

    Farquhar, G. D. & Cernusak, L. A. Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ. 35, 1221–1231 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Maxwell, T. M., Silva, L. C. R. & Horwath, W. R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon–water relations. Proc. Natl. Acad. Sci. 201718864 (2018). https://doi.org/10.1073/pnas.1718864115

  • 65.

    Locatelli, E. R. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. Paleontol. Soc. Pap. 20, 237–258 (2014).

    Article  Google Scholar 

  • 66.

    Castruita-Esparza, L. U. et al. Coping with extreme events: growth and water-use efficiency of trees in Western Mexico during the driest and wettest periods of the past one hundred sixty years. J. Geophys. Res. Biogeosci. 124, 3419–3431 (2019).

    Article  Google Scholar 

  • 67.

    Jahren, A. H. The arctic forest of the middle eocene. Annu. Rev. Earth Planet. Sci. 35, 509–540 (2007).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Falini, F. On the formation of coal deposits of lacustrine origin. Bull. Geol. Soc. Am. 76, 1317–1346 (1965).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)