in

Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor

  • 1.

    Adeyemi, M. M. H. The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243–246 (2010).

    CAS  Google Scholar 

  • 2.

    Walling, L. L. The myriad plant response to herbivores. J. Plant Growth Regul. 19, 195–216 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Croteau, R., Kutchan, T. M. & Lewis, N. G. Natural products (Secondary metabolites). In Biochemistry & Molecular Biology of Plants (eds Buchanan, B. B. et al.) 1250–1318 (American Society of Plants Biologists, Rockville, 2000).

    Google Scholar 

  • 4.

    Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 2nd edn. (Wiley, Chichester, England, 2002).

    Google Scholar 

  • 5.

    Pham, A. & Hwang, S. Chemical-based resistance of Brassica oleracea and Rorippa dubia in response to Spodoptera litura attack. J. Appl. Entomol. 144, 201–2011 (2019).

    Article  CAS  Google Scholar 

  • 6.

    Niemetz, R. & Gross, G. G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 66, 2001–2011 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Barbosa, P. et al. Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenoptera:Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 12, 1319–1328 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Reitz, S. R. & Trumble, J. T. Effects of linear furanocoumarins on the herbivore Spodoptera exigua and the parasitoid Archytas marmoratus: host quality and parasitoid success. Entomol. Exp. Appl. 84, 9–16 (1997).

    CAS  Article  Google Scholar 

  • 9.

    Vinson, S. B. & Barbosa, P. Interrelationships of nutritional ecology of parasitoids. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates (eds Slansky, F., Jr. & Rodriguez, J. G.) 673–695 (Wiley, New York, 1987).

    Google Scholar 

  • 10.

    Vinson, S. B. & Iwantsch, G. F. Host Suitability for Insect Parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).

    Article  Google Scholar 

  • 11.

    Duffey, S. S., Bloem, K. A. & Campbell, B. C. Consequences of sequestration of plant natural products in plant insect-parasitoid interactions. In Interactions of Plant Resistance and Parasitoids and Predators of Insects (eds Boethel, D. J. & Eikenbary, R. D.) 31–60 (Wiley, New York, 1986).

    Google Scholar 

  • 12.

    Rowell-Rahier, M., Pasteels, J. M. Phenolglucosides and interactions at three trophic levels: Salicaceae herbivores-predators. In Insect Plant Interactions Volume 2. pp. 75–94. Boca Raton, Florida: CRC. (1990).

  • 13.

    Kester, K. M. & Barbosa, P. Behavioral and ecological constraints imposed by plants on insect parasitoids: implications for biological control. Biol. Control 1, 94–106 (1991).

    Article  Google Scholar 

  • 14.

    Dhir, B. C., Mohapatra, H. K. & Senapati, B. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian J. Plant Prot. 20, 215–217 (1992).

    Google Scholar 

  • 15.

    Armes, N. J., Wightman, J. A., Jadhav, D. R. & Ranga-Rao, G. V. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Sci. 50, 240–248 (1997).

    CAS  Article  Google Scholar 

  • 16.

    Kranthi, K. R., Jadhav, D. R., Wanjari, R. R., Ali, S. S. & Russell, D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 91, 37–46 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Brower, J. H., Smith, L., Vail, P. V. & Flinn, P. W. Biological control. In Integrated Management of Insects in Stored Products (eds Subramanyam, B. & Hagstrum, D. W.) 223–286 (Marcel Dekker Inc, New York, 1996).

    Google Scholar 

  • 18.

    Reinert, J. A. & King, E. W. Action of Bracon hehetor Say as a parasite of Plodia interpunctella at controlled densities. Ann. Entomol. Soc. Am. 64, 1335–1340 (1971).

    Article  Google Scholar 

  • 19.

    Press, J. W., Flaherty, B. R. & McDonald, I. C. Survival and reproduction of Bracon hebetor on insecticide-treated Ephestia cautella larvae. J. Georgia Entomol. Soc. 16, 231–234 (1981).

    CAS  Google Scholar 

  • 20.

    Gerling, D. & Rotary, N. Hypersensitivity, resulting from host-unsuitability, as exemplified by two parasite species attacking Spodoptera littoralis (Lepidoptera: Noctuidae). Entomophaga 18, 391–396 (1973).

    Article  Google Scholar 

  • 21.

    Selin-Rani, S. et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165, 257–267 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Ghumare, S. S. & Mukherjee, S. N. Performance of Spodoptera litura (Fabricius) on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Indian J. Exp. Biol. 41, 895–899 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23

    Ananthakrishnan, T. N., Gurusubramanian, G. & Gopichandran, R. Influence of chemical profiles of host plant on the infestation diversity of Retithrips syriacus (Mayet). J. Biosci. 7, 483–489 (1991).

    Google Scholar 

  • 24.

    Bhattacharya, A. K. & Chenchaiah, K. C. Seed coat phenolic compounds of Cajanus cajan as chemical barrier in formulation of artificial diet of Spodoptera litura (F.). Ann. Plant Prot. Sci. 15, 92–96 (2007).

    Google Scholar 

  • 25.

    Gautam, S., Samiksha, R., Arora, S. & Sohal, S. K. Chemical profiling of polyphenols in extracts from bark of Acacia nilotica (Linn.) and their efficacy against Spodoptera litura (Fab.). Arch. Phytopathol. Plant Prot. 51, 41–53 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Bernays, E. A., Driver, G. C. & Bilgener, M. Herbivores and plant tannins. Adv. Ecol. Res. 19, 263–302 (1989).

    Article  Google Scholar 

  • 27.

    Sharma, R. & Sohal, S. K. Oviposition response of melon fruit fly, Bactrocera cucurbitae (Coquillett) to different phenolic compounds. J. Biopest. 9, 46–51 (2016).

    CAS  Google Scholar 

  • 28.

    Nathan, S. S. & Kalaivani, K. Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol. Control 39, 96–104 (2006).

    CAS  Article  Google Scholar 

  • 29.

    Deota, P. T. & Upadhyay, P. R. Biological studies of azadirachtin and its derivatives against polyphagous pest, Spodoptera litura. Nat. Prod. Res. 19, 529–539 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Shu, B. et al. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers Physiol. 9, 137 (2018).

    Article  Google Scholar 

  • 31.

    De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T. & Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–573 (1998).

    ADS  Article  Google Scholar 

  • 32.

    Camphell, B. C. & Duffey, S. S. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205, 700–702 (1979).

    ADS  Article  Google Scholar 

  • 33.

    Campbell, B. C. & Duffey, S. S. Alleviation of α-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea. J. Chem. Ecol. 7, 927–946 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Bloem, K. A. & Duffey, S. S. Interactive effect of protein and rutin on larval Heliothis zea and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54, 149–161 (1990).

    CAS  Article  Google Scholar 

  • 35.

    El-Heneidy, A. H., Barbosa, P. & Gross, P. Influence of dietary nicotine on fall armyworm, Spodoptera frugiperda and its parasitoid, the ichneumonid wasp Hyposoter annulipes. Entomol. Exp. Appl. 46, 227–232 (1988).

    CAS  Article  Google Scholar 

  • 36.

    Reitz, S. R. & Trumble, J. T. Tritrophic interactions among linear furanocoumarins, the Herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ. Entomol. 25, 1391–1397 (1996).

    Article  Google Scholar 

  • 37.

    Mondy, N. et al. Importance of sterols acquired through host feeding in synovigenic parasitoid oogenesis. J. Insect Physiol. 52, 897–904 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Punia, A., Chauhan, N. S., Kaur, S. & Sohal, S. K. Effect of Ellagic acid on the larvae of Spodoptera litura (Lepidoptera: Noctuidae) and its parasitoid Bracon hebetor (Hymenoptera: Braconidae). J. Asia-Pac. Entomol. 23, 660–665 (2020).

    Article  Google Scholar 

  • 39.

    Barbosa, P. & Saunders, J. A. Plant allelochemicals: Linkages between herbivores and their natural enemies. Rec. Adv. Phytochem. 19, 107–137 (1985).

    CAS  Google Scholar 

  • 40.

    Ode, P., Berenbaum, J. R., Zangerl, M. R. & Hardy, I. C. W. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104, 388–400 (2004).

    CAS  Article  Google Scholar 

  • 41.

    Narendra, G., Khokhar, S. & Ram, P. Effect of insecticides on some biological parameters of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammtidae). J. Biol. Control 21, 130–134 (2013).

    Google Scholar 

  • 42.

    Abedi, Z., Saber, M., Gharekhani, G., Mehrvar, A. & Kamita, S. G. Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). J. Econ. Entomol. 107, 638–645 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Radcliffe, E. B. Population responses of green peach aphid in Minnesota on potatoes treated with various insecticides. Proc. N Cent. Branch Entomol. Soc. Am. 27, 103–105 (1972).

    Google Scholar 

  • 44.

    Flanders, S. E. Environmental resistance to the establishment of parasitic hymenoptera. Ann. Entomol. Soc. Am. 33, 245–253 (1940).

    Article  Google Scholar 

  • 45.

    Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Ayyangar, G. S. G. & Rao, P. J. Changes in haemolymph constituents of Spodoptera litura (Fabr.) under the influence of azadirachtin. Indian J. Entomol. 52, 69–83 (1990).

    Google Scholar 

  • 47.

    Zibaee, A. & Bandani, A. R. Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res. 100, 185–196 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 48.

    Kalyani, S. S. & Holihosur, R. S. N. Toxic effect of crude aqueous leaf extracts of Clerodendron inerme, on the total haemocyte count of sixth instar larva of Helicoverpa armigera (H). Int. J. Innov. Res. Sci. Technol. 1, 221–224 (2015).

    Google Scholar 

  • 49.

    Saxena, B. P. & Tikku, K. Effect of plumbagin on haemocytes of Dysdercus koenigii F. Proc. Anim. Sci. 99, 119–124 (1990).

    Article  Google Scholar 

  • 50.

    Sakihama, Y. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177, 67–80 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Krishnan, N. & Sehnal, F. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch. Insect Biochem. Physiol. 63, 1–10 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Lindroth, R. L. Biochemical detoxication: mechanism of differential tiger swallowtail tolerance to phenolic glycosides. Oecologia 81, 219–224 (1989).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Despres, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Terriere, L. C. Induction of detoxication enzymes in insects. Annu. Rev. Entomol. 29, 71–88 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Li, X. C., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 56.

    Koul, O. G., Singh, R. & Singh, J. Bioefficacy and mode-of-action of Aglaroxin B and Aglaroxin C from Aglaia elaeagmoidea (syn. A. Irox burghiana) against Helicoverpa armigera and Spodoptera litura. Biopesticides Int. 1, 54–64 (2005).

    Google Scholar 

  • 57.

    Waldbauer, G. P. The Consumption and Utilization of Food by Insects. Adv. Insect Physiol. 5, 229–288 (1968).

    Article  Google Scholar 

  • 58.

    Tauber, O. E. & Yeager, J. F. On total hemolymph (blood) cell counts of insects I. Orthoptera, odonata, hemiptera, and homoptera. Ann. Entomol. Soc. Am. 28, 229–240 (1935).

    Article  Google Scholar 

  • 59.

    Arnold, J. W. & Hinks, C. F. Insect haemocytes under light microscopy: techniques. In Insect Haemocyte Development, Forms, Functions and Techniques (ed. Gupta, A. P.) 531–538 (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  • 60.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)