Stearns, S. C. The Evolution of Life Histories (Oxford University Press, Oxford, 1996).
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).
Kozlowski, J. Why life histories are diverse. Polish J. Ecol. 54, 585–605 (2006).
Ejsmond, M. J., Varpe, Ø., Czarnoleski, M. & Kozłowski, J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am. Nat. 186, E111–E125 (2015).
Filipiak, M. A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees-the application of ecological stoichiometry. Insects 9, 85 (2018).
Filipiak, Z. M. & Filipiak, M. The scarcity of specific nutrients in wild bee larval food negatively influences certain life history traits. Biology (Basel). 9, 462 (2020).
Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).
Bärlocher, F. & Rennenberg, H. Food chains and nutrient cycles. In Ecological biochemistry (eds Krauss, G. J. & Nies, D. H.) 92–122 (Wiley, New York, 2014).
DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Springer Netherlands, Amsterdam, 1992).
Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry (Academic Press, London, 2020).
Jeyasingh, P. D., Cothran, R. D. & Tobler, M. Testing the ecological consequences of evolutionary change using elements. Ecol. Evol. 4, 528–538 (2014).
Jeyasingh, P. D., Goos, J. M., Thompson, S. K., Godwin, C. M. & Cotner, J. B. Ecological stoichiometry beyond redfield: An ionomic perspective on elemental homeostasis. Front. Microbiol. 8, 722 (2017).
González, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Funct. Ecol. 32, 2448–2463 (2018).
Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652 (2019).
Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).
Kay, A. D. et al. Toward a stoichiometric framework for evolutionary biology. Oikos 109, 6–17 (2005).
Cherif, M. et al. An operational framework for the advancement of a molecule-to-biosphere stoichiometry theory. Front. Mar. Sci. 4, 1–16 (2017).
Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).
Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).
Lemoine, N. P., Giery, S. T. & Burkepile, D. E. Differing nutritional constraints of consumers across ecosystems. Oecologia 174, 1367–1376 (2014).
Morehouse, N. I., Nakazawa, T., Booher, C. M., Jeyasingh, P. D. & Hall, M. D. Sex in a material world: Why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119, 766–778 (2010).
Filipiak, M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J. Appl. Ecol. 56, 1410–1418 (2019).
Goos, J. M., Cothran, R. D. & Jeyasingh, P. D. Within-population variation in the chemistry of life: The stoichiometry of sexual dimorphism in multiple dimensions. Evol. Ecol. 31, 635–651 (2017).
Halvorson, H. M., Scott, J. T., Sanders, A. J. & Evans-White, M. A. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw. Sci. 34, 508–518 (2015).
Meunier, C. L. et al. From elements to function: Toward unifying ecological stoichiometry and trait-based ecology. Front. Environ. Sci. 5, 1–10 (2017).
Sperfeld, E., Wagner, N. D., Halvorson, H. M., Malishev, M. & Raubenheimer, D. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 31, 286–296 (2017).
Filipiak, M. & Weiner, J. Plant–insect interactions: The role of ecological stoichiometry. Acta Agrobot. 70, 1–16 (2017).
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. Organism size, life history, and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 46, 674–684 (1996).
Polidori, C. et al. Strong phylogenetic constraint on transition metal incorporation in the mandibles of the hyper-diverse Hymenoptera (Insecta). Org. Divers. Evol. https://doi.org/10.1007/s13127-020-00448-x (2020).
Bosch, J., Sgolastra, F. & Kemp, W. P. Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In Bee Pollination in Agricultural Eco-systems (eds James, R. & Pitts-Singer, T. L.) 83–105 (Oxford Scholarship Online, Oxford, 2008).
Giejdasz, K. & Wilkaniec, Z. Individual development of the red mason bee (Osmia rufa L., Megachilidae) under natural and laboratory conditions. J. Apic. Sci. 46, 51–57 (2002).
Gruber, B., Eckel, K., Everaars, J. & Dormann, C. F. On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie 42, 564–576 (2011).
Kaspari, M. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 23, 1153–1168 (2020).
Rizzuto, M. et al. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare (Lepus americanus). Ecol. Evol. 9, 14453–14464 (2019).
Sitters, J. & Olde Venterink, H. The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant Soil 396, 421–426 (2015).
Sitters, J. et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).
Sitters, J. et al. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences. Front. Earth Sci. 5, 1–8 (2017).
González, A. L., Fariña, J. M., Kay, A. D., Pinto, R. & Marquet, P. A. Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120, 1247–1255 (2011).
Seidelmann, K. Optimal progeny body size in a solitary bee, Osmia bicornis (Apoidea: Megachilidae). Ecol. Entomol. 39, 656–663 (2014).
Kim, J. Y. Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol. Entomol. 22, 275–282 (1997).
Markow, T. et al. Elemental stoichiometry of Drosophila and their hosts. Funct. Ecol. 13, 78–84 (1999).
Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).
Werner, A. & Kinne, R. K. H. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R301–R312 (2001).
Morgan, A. J., Kille, P. & Stürzenbaum, S. R. Microevolution and ecotoxicology of metals in invertebrates. Environ. Sci. Technol. 41, 1085–1096 (2007).
Bednarska, A. J., Świątek, Z. M. & Labecka, A. M. Effects of cadmium bioavailability in food on its distribution in different tissues in the ground beetle Pterostichus oblongopunctatus. Bull. Environ. Contam. Toxicol. 103, 421–427 (2019).
Świątek, Z. M. & Bednarska, A. J. Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ. Sci. Pollut. Res. Int. 26, 24933–24945 (2019).
Cohen, A. C. Insect Diets: Science and Technology (CRC Press, Boca Raton, 2005).
Seidelmann, K. Optimal resource allocation, maternal investment, and body size in a solitary bee, Osmia bicornis. Entomol. Exp. Appl. 166, 790–799 (2018).
Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33 (2006).
Seidelmann, K., Ulbrich, K. & Mielenz, N. Conditional sex allocation in the Red Mason bee, Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347 (2010).
González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).
Lemmen, K. D., Butler, O. M., Koffel, T., Rudman, S. M. & Symons, C. C. Stoichiometric traits vary widely within species: A meta-analysis of common garden experiments. Front. Ecol. Evol. 7, 1–15 (2019).
Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408 (2017).
Sherman, R. E., Chowdhury, P. R., Baker, K. D., Weider, L. J. & Jeyasingh, P. D. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria. R. Soc. Open Sci. 4, 170770 (2017).
Zajitschek, F. & Connallon, T. Partitioning of resources: The evolutionary genetics of sexual conflict over resource acquisition and allocation. J. Evol. Biol. 30, 826–838 (2017).
Moe, S. J. et al. Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos 109, 29–39 (2005).
Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 56, 613–622 (2008).
Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).
Jeyasingh, P. D., Goos, J. M., Lind, P. R., Roy Chowdhury, P. & Sherman, R. E. Phosphorus supply shifts the quotas of multiple elements in algae and Daphnia: Ionomic basis of stoichiometric constraints. Ecol. Lett. 23, 1064–1072 (2020).
Ruedenauer, F. A. et al. Best be (e) on low fat: Linking nutrient perception, regulation and fitness. Ecol. Lett. 23, 545–554 (2020).
Trinkl, M. et al. Floral species richness correlates with changes in the nutritional quality of larval diets in a stingless bee. Insects 11, E125 (2020).
Roswell, M., Dushoff, J. & Winfree, R. Male and female bees show large differences in floral preference. PLoS ONE 14, e0214909 (2019).
Vaudo, A. D. et al. Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132 (2020).
Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Smilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 (Cambridge University Press, Cambridge, 2014).
Source: Ecology - nature.com