Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (World Resources Institute, Washington, DC, 2005). http://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed 22 April 2020).
Willis, K. & Birks, H. What is natural? The need for a long-term perspective. Science 314(5803), 1261–1266. https://doi.org/10.1126/science.1122667 (2006).
Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25. https://doi.org/10.1016/j.revpalbo.2015.12.011 (2016).
Li, K., Liao, M., Ni, J., Liu, X. & Wang, Y. Treeline composition and biodiversity change on the southeastern Tibetan Plateau during the past millennium, inferred from a high-resolution alpine pollen record. Quat. Sci. Rev. 206, 44–55. https://doi.org/10.1016/j.quascirev.2018.12.029 (2019).
Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957. https://doi.org/10.1016/j.tree.2018.09.003 (2018).
Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411. https://doi.org/10.1007/s11157-019-09501-4 (2019).
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).
Kress, W. J. & Erickson, D. L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 105, 2761–2762. https://doi.org/10.1073/pnas.0800476105 (2008).
CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).
China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646. https://doi.org/10.1073/pnas.1104551108 (2011).
Li, X. W. et al. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
Fior, S. et al. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol. 198, 579–592. https://doi.org/10.1111/nph.12163 (2013).
Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408, 4615–4630. https://doi.org/10.1007/s00216-016-9595-8 (2016).
Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14. https://doi.org/10.1093/nar/gkl938 (2007).
Kraaijeveld, K. et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15, 8–16. https://doi.org/10.1111/1755-0998.12288 (2015).
Leontidou, K. et al. DNA metabarcoding of airborne pollen: New protocols for improved taxonomic identification of environmental samples. Aerobiologia 34, 63–74. https://doi.org/10.1007/s10453-017-9497-z (2018).
Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942 (2017).
Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 1–21 (2019).
Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, 1–19. https://doi.org/10.1371/journal.pone.0205575 (2018).
Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).
Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00189 (2019).
Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, 1–23. https://doi.org/10.1371/journal.pone.0195403 (2018).
Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114. https://doi.org/10.1126/science.1141758 (2007).
Willerslev, E. et al. Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300, 791–795 (2003).
Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51. https://doi.org/10.1038/nature12921 (2014).
Zimmermann, H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences 14, 575–596. https://doi.org/10.5194/bg-14-575-2017 (2017).
Alaeddini, R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 6, 297–305. https://doi.org/10.1016/j.fsigen.2011.08.006 (2012).
Haeberli, W. & Alean, J. Temperature and accumulation of high altitude firn in the alps. Ann. Glaciol. 6, 161–163. https://doi.org/10.3189/1985AoG6-1-161-163 (1985).
Bennett, K. D. & Buck, C. E. Interpretation of lake sediment accumulation rates. Holocene 26, 1092–1102. https://doi.org/10.1177/0959683616632880 (2016).
Festi, D. et al. A novel pollen-based method to detect seasonality in ice cores: A case study from the Ortles glacier, South Tyrol, Italy. J. Glaciol. 61, 815–824. https://doi.org/10.3189/2015JoG14J236 (2015).
Nakazawa, F. Application of pollen analysis to dating of ice cores from lower-latitude glaciers. J. Geophys. Res. 109, 168–170. https://doi.org/10.1029/2004JF000125 (2004).
Nakazawa, F. et al. Dating of seasonal snow/firn accumulation layers using pollen analysis. J. Glaciol. 51, 483–490. https://doi.org/10.3189/172756505781829179 (2005).
Nakazawa, F. et al. Establishing the timing of chemical deposition events on Belukha Glacier, Altai Mountains, Russia, using Pollen analysis. Arctic Antarct. Alp. Res. 43, 66–72. https://doi.org/10.1657/1938-4246-43.1.66 (2011).
Nakazawa, F., Konya, K., Kadota, T. & Ohata, T. Reconstruction of the depositional environment upstream of Potanin Glacier, Mongolian Altai, from pollen analysis. Environ. Res. Lett. 7, 035402. https://doi.org/10.1088/1748-9326/7/3/035402 (2012).
Santibañez, P. et al. Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. J. Glaciol. 54, 452–462. https://doi.org/10.3189/002214308785837101 (2008).
Uetake, J. et al. Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann. Glaciol. 43, 70–78. https://doi.org/10.3189/172756406781811925 (2006).
Andreev, A. A., Nikolaev, V. I., Boi’sheiyanov, D. Y. & Petrov, V. N. Pollen and isotope investigations of an ice core from Vavilov ice cap, October revolution island, Severnaya Zemlya archipelago, Russia. Geogr. Phys. Quat. 51, 379–389. https://doi.org/10.7202/033137ar (1997).
Liu, K. B., Reese, C. A. & Thompson, L. G. A potential pollen proxy for ENSO derived from the Sajama ice core. Geophys. Res. Lett. 34, 1–5. https://doi.org/10.1029/2006GL029018 (2007).
Reese, C. A., Liu, K. B. & Thompson, L. G. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Ann. Glaciol. 54, 183–190. https://doi.org/10.3189/2013AoG63A375 (2013).
Papina, T. et al. Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past 9, 2399–2411. https://doi.org/10.5194/cp-9-2399-2013 (2013).
Winkler, S. et al. An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64, 97–118. https://doi.org/10.3112/erdkunde.2010.02.01 (2010).
Citterio, M. et al. The fluctuations of Italian glaciers during the last century: A contribution to knowledge about alpine glacier changes. Geogr. Ann. Ser. A Phys. Geogr. 89, 167–184. https://doi.org/10.1111/j.1468-0459.2007.00316.x (2007).
Knoll, C. & Kerschner, H. A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data. Ann. Glaciol. 50, 46–52. https://doi.org/10.3189/172756410790595903 (2009).
Diolaiuti, G., Bocchiola, D., D’agata, C. & Smiraglia, C. Evidence of climate change impact upon glaciers’ recession within the Italian Alps: The case of Lombardy glaciers. Theor. Appl. Climatol. 109, 429–445. https://doi.org/10.1007/s00704-012-0589-y (2012).
IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, R.K. Pachauri and L.A. Meyer) 151 (IPCC, Geneva, 2014).
Maggi, V. et al. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia 562, 43–56. https://doi.org/10.1007/s10750-005-1804-y (2006).
Gabrielli, P. et al. Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere 10, 2779–2797. https://doi.org/10.5194/tc-10-2779-2016 (2016).
Bohleber, P. et al. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Clim. Past 14, 21–37. https://doi.org/10.5194/cp-14-21-2018 (2018).
Rizzi, C., Finizio, A., Maggi, V. & Villa, S. Spatial–temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environ. Pollut. 248, 659–666. https://doi.org/10.1016/j.envpol.2019.02.067 (2019).
Garzonio, R. et al. Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains. J. Glaciol. 64, 12–26. https://doi.org/10.1017/jog.2017.75 (2018).
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).
Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226. https://doi.org/10.1002/ece3.2186 (2016).
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).
Soons, M. B. & Ozinga, W. A. How important is long-distance seed dispersal for the regional survival of plant species?. Divers. Distrib. 11, 165–172. https://doi.org/10.1111/j.1366-9516.2005.00148.x (2005).
Lyscov, V. N. & Moshkovsky, Y. S. DNA cryolysis. Biochim. Biophys. Acta 190, 101–110 (1969).
Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).
Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).
Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).
Bortenschlager, S. Aspects of pollen morphology in the Cupressaceae. Grana 29, 129–137 (1990).
Kurmann, M. H. Pollen morphology and ultrastructure in the Cupressaceae. Acta Bot. Gall. 141, 141–147 (1994).
Chichiriccò, G. & Pacini, E. Cupressus arizonica pollen wall zonation and in vitro hydration. Plant Syst. Evol. 270, 231–242 (2008).
Moran, T., Marshall, S. J. & Sharp, M. J. Isotope thermometry in melt-affected ice cores. J. Geophys. Res. Earth Surf. 116, 1–10. https://doi.org/10.1029/2010JF001738 (2011).
Baroni, C., Armiraglio, S., Gentili, R. & Carton, A. Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell’Avio, Adamello Group, Italy). Geomorphology 84, 59–79 (2007).
Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847. https://doi.org/10.1111/j.1365-294X.2012.05550.x (2012).
Celesti-Grapow, L. et al. (eds) Flora vascolare alloctona e invasiva delle regioni d’Italia (Casa Editrice Università La Sapienza, Roma, 2010).
Wu, P.-C., Su, H.-J., Lung, S.-C.C., Chen, M.-J. & Lin, W.-P. Pollen of Broussonetia papyrifera: An emerging aeroallergen associated with allergic illness in Taiwan. Sci. Total Environ. 657, 804–810. https://doi.org/10.1016/j.scitotenv.2018.11.324 (2019).
Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00283 (2017).
Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).
Picotti, S., Francese, R., Giorgi, M., Pettenati, F. & Carcione, J. M. Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. J. Glaciol. 63, 229–248. https://doi.org/10.1017/jog.2016.135 (2017).
Smiraglia, C. et al. The evolution of the Italian glaciers from the previous data base to the new Italian inventory. Preliminary considerations and results. Geogr. Fis. e Din. Quat. 38, 79–87. https://doi.org/10.4461/GFDQ.2015.38.08 (2015).
Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche. Catasto dei ghiacciai italiani. Anno geofisico 1957–1958. Volume III—Ghiacciai della Lombardia e dell’Ortles-Cevedale. (Comitato Glaciologico Italiano, Torino, 1961).
Marson, L. Sui ghiacciai dell’Adamello – Presanella (alto bacino del Sarca – Mincio). Boll. Soc. Geogr. It. 7, 546–568 (1906).
Servizio Glaciologico Lombardo. Ghiacciai in Lombardia (Edizioni Bolis, Bergamo, 1992).
Payer, J. Originalkarte der Adamello-Presanella Alpen, scala di 1:56.000. In Pajer J. – Die Adamello-Presanella Alpen nach den Forschungen und Aufnahmen, Petermanns Geogr. Mitt. Erganzungs-Hefte, 11 (17) (Gotha, 1865).
Bombarda, R. Il cuore Bianco. Guida ai ghiacciai del Trentino (Edizioni Arca, 1996).
Baroni, C., Carton, A. & Casarotto, C. I ghiacciai dell’Adamello. In: Itinerari Glaciologici sulle montagne italiane (ed. Comitato Glaciologico Italiano) Vol. 3 (Società Geologica Italiana, Roma, 2017).
Bertoni, E. & Casarotto, C. Estensione dei ghiacciai trentini dalla fine della Piccola Età glaciale a oggi. Rilevamento sul terreno, digitalizzazione GIS e analisi. (2015). Progetto finanziato dal Servizio sviluppo sostenibile e aree protette della PAT (rif. prot. n. P001/0640691/29-2014-16 dd. 2/12/2014) (accessed on 27 April 2020). http://www.climatrentino.it/binary/pat_climaticamente/osservatorio_trentino_clima/2014_Estensione_dei_ghiacciai_dalla_fine_della_Piccola_Et_Glaciale_a_oggi_MUSE_.1462456788.pdf.
Abeni, F. et al. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS ONE 10(5), e0127391. https://doi.org/10.1371/journal.pone.0127391 (2015).
Bocchiola, D., Bombelli, G. M., Camin, F. & Ossi, P. M. Field study of mass balance, and hydrology of the West Khangri Nup Glacier (Khumbu, Everest). Water 12(2), 433. https://doi.org/10.3390/w12020433 (2020).
Erdtman, G. The acetolysis method, A revised description. Svensk Bot. Tidskr. 54, 561–569 (1960).
Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, London, 1989).
Bucher, E., Kofler, V., Vorwohl, G. & Zieger, E. Lo spettro pollinico dei mieli dell’Alto Adige (Laboratorio Biologico, Agenzia Provinciale per l’Ambiente, Laives, Bolzano. 2004).
Albanese, D. et al. MICCA: Aa complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).
Source: Ecology - nature.com