in

Aircraft events correspond with vocal behavior in a passerine

  • 1.

    Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189 (2010).

    PubMed  Article  Google Scholar 

  • 2.

    Buxton, R. T. et al. Noise pollution is pervasive in US protected areas. Science (80-) 356, 531–533 (2017).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Manci, K. M., Gladwin, D. N., Villella, R. & Cavendish, M. G. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis (Engineering and Services Center U. S. Air Force, 1988).

  • 4.

    Pott-Pollenske, M. et al. Airframe noise characteristics from flyover measurements and prediction. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) 2567 (2006).

  • 5.

    Khardi, S. Reduction of commercial aircraft noise emission around airports. A new environmental challenge. Eur. Transp. Res. Rev. 1, 175–184 (2009).

    Article  Google Scholar 

  • 6.

    Dooling, R. J. & Popper, A. N. The effects of highway noise on birds (The California Department of Transportation Division of Environmental Analysis, 2007).

  • 7.

    Etzel, R. A. & Balk, S. J. Pediatric environmental health (American Academy of Pediatrics, Itasca, 2011).

    Google Scholar 

  • 8.

    Schomer, P. D. Growth function for human response to large-amplitude impulse noise. J. Acoust. Soc. Am. 64, 1627–1632 (1978).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Kunc, H. P. & Schmidt, R. The effects of anthropogenic noise on animals: a meta-analysis. Biol. Lett. 15, 20190649 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).

    PubMed  Article  Google Scholar 

  • 11.

    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).

    PubMed  Article  Google Scholar 

  • 12.

    Brown, A. L. Measuring the effect of aircraft noise on sea birds. Environ. Int. 16, 587–592 (1990).

    Article  Google Scholar 

  • 13.

    McLaughlin, K. E. & Kunc, H. P. Experimentally increased noise levels change spatial and singing behaviour. Biol. Lett. 9, 20120771 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Injaian, A. S., Poon, L. Y. & Patricelli, G. L. Effects of experimental anthropogenic noise on avian settlement patterns and reproductive success. Behav. Ecol. 29, 1181–1189 (2018).

    Article  Google Scholar 

  • 15.

    McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G. & Barber, J. R. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc. R. Soc. London B Biol. Sci. 280, 20132290 (2013).

    Google Scholar 

  • 16.

    Kruger, D. J. D. & Du Preez, L. H. The effect of airplane noise on frogs: a case study on the Critically Endangered Pickersgill’s reed frog (Hyperolius pickersgilli). Ecol. Res. 31, 393–405 (2016).

    Article  Google Scholar 

  • 17.

    Melcon, M. L. et al. Blue whales respond to anthropogenic noise. PLoS ONE 7, e32681 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Sierro, J., Schloesing, E., Pavón, I. & Gil, D. European blackbirds exposed to aircraft noise advance their chorus, modify their song and spend more time singing. Front. Ecol. Evol. 5, 68 (2017).

    Article  Google Scholar 

  • 19.

    McCarthy, E. et al. Changes in spatial and temporal distribution and vocal behavior of Blainville’s beaked whales (Mesoplodon densirostris) during multiship exercises with mid-frequency sonar. Mar. Mammal Sci. 27, E206–E226 (2011).

    Article  Google Scholar 

  • 20.

    Dominoni, D. M., Greif, S., Nemeth, E. & Brumm, H. Airport noise predicts song timing of European birds. Ecol. Evol. 6, 6151–6159 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Gil, D., Honarmand, M., Pascual, J., Pérez-Mena, E. & Macías, G. C. Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behav. Ecol. 26, 435–443 (2014).

    Article  Google Scholar 

  • 22.

    Habib, L., Bayne, E. M. & Boutin, S. Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. J. Appl. Ecol. 44, 176–184 (2007).

    Article  Google Scholar 

  • 23.

    Halfwerk, W., Holleman, L. J. M., Lessells, C. K. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).

    Article  Google Scholar 

  • 24.

    Wolfenden, A. D., Slabbekoorn, H., Kluk, K. & de Kort, S. R. Aircraft sound exposure leads to song frequency decline and elevated aggression in wild chiffchaffs. J. Anim. Ecol. 88, 1720–1731 (2019).

    PubMed  Article  Google Scholar 

  • 25.

    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Blickley, J. L., Blackwood, D. & Patricelli, G. L. Experimental evidence for the effects of chronic anthropogenic noise on abundance of Greater Sage-Grouse at leks. Conserv. Biol. 26, 461–471 (2012).

    PubMed  Article  Google Scholar 

  • 27.

    Pepper, C. B., Nascarella, M. A. & Kendall, R. J. A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study. Environ. Manag. 32, 418–432 (2003).

    Article  Google Scholar 

  • 28.

    Staicer, C. A., Spector, D. A. & Horn, A. G. The dawn chorus and other diel patterns in acoustic signaling. In Ecology and evolution of acoustic communication in birds, 426–453 (1996).

  • 29.

    Gil, D. & Llusia, D. The bird dawn chorus revisited. In Coding strategies in vertebrate acoustic communication 45–90 (Springer, Berlin, 2020).

  • 30.

    Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502 (2006).

    Article  Google Scholar 

  • 31.

    Dooling, R. Avian hearing and the avoidance of wind turbines (University of Maryland, College Park, 2002).

    Google Scholar 

  • 32.

    Díaz, M., Parra, A. & Gallardo, C. Serins respond to anthropogenic noise by increasing vocal activity. Behav. Ecol. 22, 332–336 (2011).

    Article  Google Scholar 

  • 33.

    Gentry, K. E. & Luther, D. A. Spatiotemporal patterns of avian vocal activity in relation to urban and rural background noise. J. Ecoacoust. https://doi.org/10.22261/jea.z9tqh (2017).

    Article  Google Scholar 

  • 34.

    Cunnington, G. M. & Fahrig, L. Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica 36, 463–470 (2010).

    ADS  Article  Google Scholar 

  • 35.

    Kaiser, K. & Hammers, J. The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour 146, 1053–1069 (2009).

    Article  Google Scholar 

  • 36.

    Brumm, H. & Slater, P. J. B. Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behav. Ecol. Sociobiol. 60, 475–481 (2006).

    Article  Google Scholar 

  • 37.

    Meh, F. et al. Humpback whales Megaptera novaeangliae alter calling behavior in response to natural sounds and vessel noise. Mar. Ecol. Prog. Ser. 607, 251–268 (2018).

    Article  Google Scholar 

  • 38.

    Slabbekoorn, H. & Peet, M. Ecology: birds sing at a higher pitch in urban noise. Nature 424, 267 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Ríos-Chelén, A. A., Lee, G. C. & Patricelli, G. L. Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behav. Ecol. Sociobiol. 69, 1139–1151 (2015).

    Article  Google Scholar 

  • 40.

    Gross, K., Pasinelli, G. & Kunc, H. P. Behavioral plasticity allows short-term adjustment to a novel environment. Am. Nat. 176, 456–464 (2010).

    PubMed  Article  Google Scholar 

  • 41.

    Gentry, K. E., McKenna, M. F. & Luther, D. A. Evidence of suboscine song plasticity in response to traffic noise fluctuations and temporary road closures. Bioacoustics 27, 165–181 (2018).

    Article  Google Scholar 

  • 42.

    Conomy, J. T., Dubovsky, J. A., Collazo, J. A. & Fleming, W. J. Do black ducks and wood ducks habituate to aircraft disturbance?. J. Wildl. Manag. 62, 1135–1142 (1998).

    Article  Google Scholar 

  • 43.

    Neo, Y. Y., Hubert, J., Bolle, L. J., Winter, H. V. & Slabbekoorn, H. European seabass respond more strongly to noise exposure at night and habituate over repeated trials of sound exposure. Environ. Pollut. 239, 367–374 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Halfwerk, W., Both, C. & Slabbekoorn, H. Noise affects nest-box choice of 2 competing songbird species, but not their reproduction. Behav. Ecol. 27, 1592–1600 (2016).

    Article  Google Scholar 

  • 45.

    Ware, H. E., McClure, C. J. W., Carlisle, J. D. & Barber, J. R. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc. Natl. Acad. Sci. 112, 12105–12109 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 46.

    Williams, R., Erbe, C., Ashe, E., Beerman, A. & Smith, J. Severity of killer whale behavioral responses to ship noise: A dose–response study. Mar. Pollut. Bull. 79, 254–260 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Cynx, J., Lewis, R., Tavel, B. & Tse, H. Amplitude regulation of vocalizations in noise by a songbird Taeniopygia guttata. Anim. Behav. 56, 107–113 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Rushing, C. S., Ryder, T. B. & Marra, P. P. Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle. Proc. R. Soc. B Biol. Sci. 283, 20152846 (2016).

    Article  CAS  Google Scholar 

  • 49.

    Stanley, C. Q. et al. Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv. Biol. 29, 164–174 (2015).

    PubMed  Article  Google Scholar 

  • 50.

    Kleist, N. J., Guralnick, R. P., Cruz, A. & Francis, C. D. Anthropogenic noise weakens territorial response to intruder’s songs. Ecosphere 7, e01259 (2016).

    Article  Google Scholar 

  • 51.

    Ward, S., Speakman, J. R. & Slater, P. J. B. The energy cost of song in the canary, Serinus canaria. Anim. Behav. 66, 893–902 (2003).

    Article  Google Scholar 

  • 52.

    Nemeth, E. & Brumm, H. Birds and anthropogenic noise: are urban songs adaptive?. Am. Nat. 176, 465–475 (2010).

    PubMed  Article  Google Scholar 

  • 53.

    Oberweger, K. & Goller, F. The metabolic cost of birdsong production. J. Exp. Biol. 204, 3379–3388 (2001).

    CAS  PubMed  Google Scholar 

  • 54.

    Ophir, A. G., Schrader, S. B. & Gilooly, J. F. Energetic cost of calling: general constraints and species-specific differences. J. Evol. Biol. 23, 1564–1569 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Thomas, R. et al. The trade-off between singing and mass gain in a daytime-singing bird, the European robin. Behaviour 140, 387–404 (2003).

    Article  Google Scholar 

  • 56.

    Sheikh, P. A. & Uhl, C. Airplane noise: A pervasive disturbance in Pennsylvania Parks, USA. J. Sound Vib. https://doi.org/10.1016/j.jsv.2003.09.014 (2004).

    Article  Google Scholar 

  • 57.

    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet  Article  Google Scholar 

  • 58.

    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).

    MathSciNet  MATH  Article  Google Scholar 


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92