Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).
Pfeiffer, M., Dulamsuren, C., Jäschke, Y. & Wesche, K. Grasslands of China and Mongolia: spatial extent, land use and conservation. In Grasslands of the World (eds Squires, V. R. et al.) 168–196 (CRC Press, Boca Raton, 2018).
Squires, V. & Limin, H. North-West China’s rangelands and peoples: facts, figures, challenges and responses. In Towards Sustainable Use of Rangelands in North-West China (eds Squires, V. et al.) 3–18 (Springer, Dordrecht, 2010).
Tsvegemed, M., Shabier, A., Schlecht, E., Jordan, G. & Wiehle, M. Evolution of rural livelihood strategies in a remote Sino-Mongolian border area: a cross-country analysis. Sustainability 10, 1011 (2018).
Gruschke, A. & Breuer, I. Tibetan Pastoralists and Development: Negotiating the Future of Grassland Livelihoods (Dr. Ludwig Reichert Verlag, Wiesbaden , 2017).
Zhao, Y., Liu, Z. & Wu, J. Grassland ecosystem services: a systematic review of research advances and future directions. Landsape Ecol. 35, 793–814 (2020).
Han, J. G. et al. Rangeland degradation and restoration management in China. Rangeland J. 30, 233–239 (2008).
Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 74, 1–12 (2010).
Jin, G. & Zhu, J. Case study 8: Northern Xinjiang. In Rangeland Degradation and Recovery in China’s Pastoral Lands (ed. Squires, V. R.) 197–215 (CABI, Wallingford, 2009).
Rae, A. China’s agriculture, smallholders and trade: driven by the livestock revolution?. Aust. J. Agr. Resour. Econ. 52, 283–302 (2008).
Waldron, S., Brown, C. & Longworth, J. An assessment of China’s approach to grassland degradation and livelihood problems in the pastoral region. In Proceedings of the 5th Annual Conference of the Consortium for Western China Development Studies, Xi’an, China, July 22–24, 2008 (2008).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Saccá, M. L., Caracciolo, A. B., Di Lenola, M. & Grenni, P. Ecosystem services provided by soil microorganisms. In Soil Biological Communities and Ecosystem Resilience (eds Lukac, M. et al.) 9–24 (Springer, Cham, 2017).
van Eekeren, N., Murray, P. & Smeding, F. Soil biota in Grassland, its ecosystems and the impact of management. In Permanent and Temporary Grassland Plant, Environment and Economy, Proceedings of the 14th International Symposium of the European Grassland Federation, Ghent, Belgium, September 3–5, 2007 (eds. de Vliegher, A. & Carlier, L.) 247–258 (2007).
Brussaard, L. Ecosystem services provided by the soil biota. In Soil Ecology and Ecosystem Services (ed. Wall, D. H.) 45–58 (Oxford University Press, Oxford, 2012).
Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92, 296–303 (2011).
van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).
Lange, M. et al. Plant diversity drives soil carbon storage by increased soil microbial activity. Nat. Commun. 6, 6707 (2015).
Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 44641 (2017).
Taboada, M. A., Rubio, G., Chaneton, E. J., Hatfield, J. L. & Sauer, T. J. Grazing impacts on soil physical, chemical, and ecological properties in forage production systems. In Soil Management: Building a Stable Base for Agriculture (eds Hatfield, J. L. & Sauer, T. J.) 301–320 (American Society of Agronomy, Soil Science Society of America, Madison, WI, 2011).
Yan, L., Zhou, G. & Zhang, F. Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS ONE 8, e81466b (2013).
Hao, Y. & He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS ONE 14, e0215223 (2019).
Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).
Liu, N., Zhang, Y., Chang, S., Kan, H. & Lin, L. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS ONE 7, e36434 (2012).
Qi, S. et al. Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant Soil 340, 117–126 (2011).
Bardgett, R. D., Keiller, S., Cook, R. & Gilburn, A. S. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol. Biochem. 30, 531–539 (1998).
Hiltbrunner, D., Schulze, S., Hagedorn, F., Schmidt, M. W. I. & Zimmmermann, S. Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma 170, 369–377 (2012).
Xun, W. et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 6, 170 (2018).
Zornoza, R. et al. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1, 173–185 (2015).
Lv, C. et al. Vegetation responses to fixed stocking densities in highly variable montane pastures in the Chinese Altay. Range Ecol. Manag. 72, 812–821 (2019).
Fu, Q., Li, B., Yang, L., Wu, Z. & Zhang, X. Ecosystem services evaluation and its spatial characteristics in Central Asia’s arid regions: a case study in Altay prefecture, China. Sustainability 7, 8335–8353 (2015).
Jordan, G. et al. Spatio-temporal patterns of herbage availability and livestock movements: a cross-border analysis in the Chinese–Mongolian Altay. Pastoralism 6, 1–17 (2016).
Gee, G. W. & Or, D. Particle-size analysis. In Methods of Soil Analysis (eds Dane, J. H. & Topp, C. G.) 255–294 (Soil Science Society of America, SSSA Book Series, Madison, WI, 2002).
Blume, H.-P., Stahr, K. & Leinweber, P. Bodenkundliches Praktikum (Spektrum Akademischer Verlag, Heidelberg, 2011).
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
Mueller, T., Joergensen, R. G. & Meyer, B. Estimation of soil microbial biomass C in the presence of living roots by fumigation-extraction. Soil Biol. Biochem. 24, 179–181 (1992).
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
Djajakirana, G., Joergensen, R. G. & Meyer, B. Ergosterol and microbial biomass relationship in soil. Biol. Fertil. Soils. 22, 299–304 (1996).
Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).
Sun, J. et al. Verification of the biomass transfer hypothesis under moderate grazing across the Tibetan plateau: a meta-analysis. Plant Soil 20, 634 (2019).
Zhou, G. et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Chang. Biol. 23, 1167–1179 (2017).
Sun, G. et al. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: an implication for pasture management. Plant Soil 416, 515–525 (2017).
Joergensen, R. G. & Wichern, F. Alive and kicking: why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).
Anderson, T.-H. & Domsch, K. H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 22, 251–255 (1990).
Anderson, T.-H. & Domsch, K. H. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils. 1, 81–89 (1985).
Ingram, L. J. et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 72, 939–948 (2008).
Wu, J. Change in soil microbial biomass and regulating factors in an alpine meadow site on the Qinghai–Tibetan Plateau. Soil Sci. Plant Nutr. 66, 177–194 (2020).
Goenster-Jordan, S., Jannoura, R., Jordan, G., Buerkert, A. & Joergensen, R. G. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma 330, 99–106 (2018).
Aarons, S. R., O’Connor, C. R., Hosseini, H. M. & Gourley, C. J. P. Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutr. Cycl. Agroecosyst. 84, 81–92 (2009).
Wachendorf, C. & Joergensen, R. G. Mid-term tracing of 15N derived from urine and dung in soil microbial biomass. Biol. Fertil. Soils. 47, 147–155 (2011).
Zhao, Y. et al. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecol. Model. 205, 241–254 (2007).
Goenster, S., Gründler, C., Buerkert, A. & Joergensen, R. G. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia. Ecol. Indic. 76, 111–118 (2017).
Hamilton, E. W., Frank, D. A., Hinchey, P. M. & Murray, T. R. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biol. Biochem. 40, 2865–2873 (2008).
Hupe, A. et al. Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant Soil 443, 449–462 (2019).
Source: Ecology - nature.com