in

Soil microbial properties of subalpine steppe soils at different grazing intensities in the Chinese Altai Mountains

  • 1.

    Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).

    Article  Google Scholar 

  • 2.

    Pfeiffer, M., Dulamsuren, C., Jäschke, Y. & Wesche, K. Grasslands of China and Mongolia: spatial extent, land use and conservation. In Grasslands of the World (eds Squires, V. R. et al.) 168–196 (CRC Press, Boca Raton, 2018).

    Google Scholar 

  • 3.

    Squires, V. & Limin, H. North-West China’s rangelands and peoples: facts, figures, challenges and responses. In Towards Sustainable Use of Rangelands in North-West China (eds Squires, V. et al.) 3–18 (Springer, Dordrecht, 2010).

    Google Scholar 

  • 4.

    Tsvegemed, M., Shabier, A., Schlecht, E., Jordan, G. & Wiehle, M. Evolution of rural livelihood strategies in a remote Sino-Mongolian border area: a cross-country analysis. Sustainability 10, 1011 (2018).

    Article  Google Scholar 

  • 5.

    Gruschke, A. & Breuer, I. Tibetan Pastoralists and Development: Negotiating the Future of Grassland Livelihoods (Dr. Ludwig Reichert Verlag, Wiesbaden , 2017).

    Google Scholar 

  • 6.

    Zhao, Y., Liu, Z. & Wu, J. Grassland ecosystem services: a systematic review of research advances and future directions. Landsape Ecol. 35, 793–814 (2020).

    Article  Google Scholar 

  • 7.

    Han, J. G. et al. Rangeland degradation and restoration management in China. Rangeland J. 30, 233–239 (2008).

    Article  Google Scholar 

  • 8.

    Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 74, 1–12 (2010).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Jin, G. & Zhu, J. Case study 8: Northern Xinjiang. In Rangeland Degradation and Recovery in China’s Pastoral Lands (ed. Squires, V. R.) 197–215 (CABI, Wallingford, 2009).

    Google Scholar 

  • 10.

    Rae, A. China’s agriculture, smallholders and trade: driven by the livestock revolution?. Aust. J. Agr. Resour. Econ. 52, 283–302 (2008).

    Article  Google Scholar 

  • 11.

    Waldron, S., Brown, C. & Longworth, J. An assessment of China’s approach to grassland degradation and livelihood problems in the pastoral region. In Proceedings of the 5th Annual Conference of the Consortium for Western China Development Studies, Xi’an, China, July 22–24, 2008 (2008).

  • 12.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Saccá, M. L., Caracciolo, A. B., Di Lenola, M. & Grenni, P. Ecosystem services provided by soil microorganisms. In Soil Biological Communities and Ecosystem Resilience (eds Lukac, M. et al.) 9–24 (Springer, Cham, 2017).

    Google Scholar 

  • 14.

    van Eekeren, N., Murray, P. & Smeding, F. Soil biota in Grassland, its ecosystems and the impact of management. In Permanent and Temporary Grassland Plant, Environment and Economy, Proceedings of the 14th International Symposium of the European Grassland Federation, Ghent, Belgium, September 3–5, 2007 (eds. de Vliegher, A. & Carlier, L.) 247–258 (2007).

  • 15.

    Brussaard, L. Ecosystem services provided by the soil biota. In Soil Ecology and Ecosystem Services (ed. Wall, D. H.) 45–58 (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 16.

    Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92, 296–303 (2011).

    PubMed  Article  Google Scholar 

  • 17.

    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed  Article  Google Scholar 

  • 18.

    Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Lange, M. et al. Plant diversity drives soil carbon storage by increased soil microbial activity. Nat. Commun. 6, 6707 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 44641 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Taboada, M. A., Rubio, G., Chaneton, E. J., Hatfield, J. L. & Sauer, T. J. Grazing impacts on soil physical, chemical, and ecological properties in forage production systems. In Soil Management: Building a Stable Base for Agriculture (eds Hatfield, J. L. & Sauer, T. J.) 301–320 (American Society of Agronomy, Soil Science Society of America, Madison, WI, 2011).

    Google Scholar 

  • 22.

    Yan, L., Zhou, G. & Zhang, F. Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS ONE 8, e81466b (2013).

    ADS  Article  CAS  Google Scholar 

  • 23.

    Hao, Y. & He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS ONE 14, e0215223 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).

    Article  Google Scholar 

  • 25.

    Liu, N., Zhang, Y., Chang, S., Kan, H. & Lin, L. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS ONE 7, e36434 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Qi, S. et al. Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant Soil 340, 117–126 (2011).

    MathSciNet  CAS  Article  Google Scholar 

  • 27.

    Bardgett, R. D., Keiller, S., Cook, R. & Gilburn, A. S. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol. Biochem. 30, 531–539 (1998).

    CAS  Article  Google Scholar 

  • 28.

    Hiltbrunner, D., Schulze, S., Hagedorn, F., Schmidt, M. W. I. & Zimmmermann, S. Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma 170, 369–377 (2012).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Xun, W. et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 6, 170 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Zornoza, R. et al. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1, 173–185 (2015).

    Article  Google Scholar 

  • 31.

    Lv, C. et al. Vegetation responses to fixed stocking densities in highly variable montane pastures in the Chinese Altay. Range Ecol. Manag. 72, 812–821 (2019).

    Article  Google Scholar 

  • 32.

    Fu, Q., Li, B., Yang, L., Wu, Z. & Zhang, X. Ecosystem services evaluation and its spatial characteristics in Central Asia’s arid regions: a case study in Altay prefecture, China. Sustainability 7, 8335–8353 (2015).

    Article  Google Scholar 

  • 33.

    Jordan, G. et al. Spatio-temporal patterns of herbage availability and livestock movements: a cross-border analysis in the Chinese–Mongolian Altay. Pastoralism 6, 1–17 (2016).

    Article  Google Scholar 

  • 34.

    Gee, G. W. & Or, D. Particle-size analysis. In Methods of Soil Analysis (eds Dane, J. H. & Topp, C. G.) 255–294 (Soil Science Society of America, SSSA Book Series, Madison, WI, 2002).

    Google Scholar 

  • 35.

    Blume, H.-P., Stahr, K. & Leinweber, P. Bodenkundliches Praktikum (Spektrum Akademischer Verlag, Heidelberg, 2011).

    Google Scholar 

  • 36.

    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS  Article  Google Scholar 

  • 37.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Article  Google Scholar 

  • 38.

    Mueller, T., Joergensen, R. G. & Meyer, B. Estimation of soil microbial biomass C in the presence of living roots by fumigation-extraction. Soil Biol. Biochem. 24, 179–181 (1992).

    Article  Google Scholar 

  • 39.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS  Article  Google Scholar 

  • 40.

    Djajakirana, G., Joergensen, R. G. & Meyer, B. Ergosterol and microbial biomass relationship in soil. Biol. Fertil. Soils. 22, 299–304 (1996).

    CAS  Article  Google Scholar 

  • 41.

    Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).

    Article  Google Scholar 

  • 42.

    Sun, J. et al. Verification of the biomass transfer hypothesis under moderate grazing across the Tibetan plateau: a meta-analysis. Plant Soil 20, 634 (2019).

    Google Scholar 

  • 43.

    Zhou, G. et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Chang. Biol. 23, 1167–1179 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Sun, G. et al. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: an implication for pasture management. Plant Soil 416, 515–525 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Joergensen, R. G. & Wichern, F. Alive and kicking: why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).

    CAS  Article  Google Scholar 

  • 46.

    Anderson, T.-H. & Domsch, K. H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 22, 251–255 (1990).

    Article  Google Scholar 

  • 47.

    Anderson, T.-H. & Domsch, K. H. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils. 1, 81–89 (1985).

    CAS  Article  Google Scholar 

  • 48.

    Ingram, L. J. et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 72, 939–948 (2008).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Wu, J. Change in soil microbial biomass and regulating factors in an alpine meadow site on the Qinghai–Tibetan Plateau. Soil Sci. Plant Nutr. 66, 177–194 (2020).

    CAS  Article  Google Scholar 

  • 50.

    Goenster-Jordan, S., Jannoura, R., Jordan, G., Buerkert, A. & Joergensen, R. G. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma 330, 99–106 (2018).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Aarons, S. R., O’Connor, C. R., Hosseini, H. M. & Gourley, C. J. P. Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutr. Cycl. Agroecosyst. 84, 81–92 (2009).

    CAS  Article  Google Scholar 

  • 52.

    Wachendorf, C. & Joergensen, R. G. Mid-term tracing of 15N derived from urine and dung in soil microbial biomass. Biol. Fertil. Soils. 47, 147–155 (2011).

    CAS  Article  Google Scholar 

  • 53.

    Zhao, Y. et al. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecol. Model. 205, 241–254 (2007).

    Article  Google Scholar 

  • 54.

    Goenster, S., Gründler, C., Buerkert, A. & Joergensen, R. G. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia. Ecol. Indic. 76, 111–118 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Hamilton, E. W., Frank, D. A., Hinchey, P. M. & Murray, T. R. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biol. Biochem. 40, 2865–2873 (2008).

    CAS  Article  Google Scholar 

  • 56.

    Hupe, A. et al. Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant Soil 443, 449–462 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web