in

Phytoplankton morpho-functional trait dataset from French water-bodies

  • 1.

    Litchman, E. et al. Global biogeochemical impacts of phytoplankton: a trait-based perspective. J. Ecol. 103, 1384–1396 (2015).

    CAS  Article  Google Scholar 

  • 2.

    De Senerpont Domis, L. N. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 58, 463–482 (2013).

    Article  Google Scholar 

  • 3.

    Reynolds, C. Ecology of Phytoplankton. (Cambridge University Press, 2006).

  • 4.

    Phillips, G. et al. Water Framework Directive Intercalibration: Central Baltic Lake Phytoplankton Ecological Assessment Methods. 189 (Join Research Center, 2014).

  • 5.

    Ptacnik, R., Solimini, A. & Brettum, P. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633, 75–82 (2009).

    CAS  Article  Google Scholar 

  • 6.

    Pollard, A. I., Hampton, S. E. & Leech, D. M. The promise and potential of continental-scale limnology using the U.S. Environmental Protection Agency’s National Lakes. Assessment. Limnol. Oceanogr. Bull. 27, 36–41 (2018).

    Article  Google Scholar 

  • 7.

    de Hoyos, C. et al. Water Framework Directive Intercalibration: Mediterranean Lake Phytoplankton Ecological Assessment Methods. 189 (Join Research Center, 2014).

  • 8.

    Mischke, U., Riedmüller, U., Hoehn, E., Schönfelder, I. & Nixdorf, B. Description of the German System for Phytoplankton-Based Assessment of Lakes for Implementation of the EU Water Framework Directive (WFD). 31 (Univ. Cottbus, 2008).

  • 9.

    Laplace-Treyture, C. & Feret, T. Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France. Ecol. Indic. 69, 686–698 (2016).

    CAS  Article  Google Scholar 

  • 10.

    Xue, Y. et al. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 12, 2263–2277 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Barbe, J. et al. Actualisation de la Méthode de Diagnose Rapide des Plans d’Eau: Analyse Critique des Indices de Qualité des Lacs et Propositions d’Indices de Fonctionnement de l’Écosystème Lacustre. 107 (Cemagref, 2003).

  • 12.

    Marchetto, A., Padedda, B., Mariani, M., Luglie, A. & Sechi, N. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. J. Limnol. 68, 106–121 (2009).

    Article  Google Scholar 

  • 13.

    Kruk, C., Mazzeo, N., Lacerot, G. & Reynolds, C. S. Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res. 24, 901–912 (2002).

    Article  Google Scholar 

  • 14.

    Reynolds, C. S. Phytoplankton designer – or how to predict compositional responses to trophic-state change. Hydrobiologia 424, 123–132 (2000).

    Article  Google Scholar 

  • 15.

    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).

    Article  Google Scholar 

  • 16.

    Mieleitner, J. & Reichert, P. Modelling functional groups of phytoplankton in three lakes of different trophic state. Ecol. Model. 211, 279–291 (2008).

    Article  Google Scholar 

  • 17.

    Rangel, L. M., Soares, M. C. S., Paiva, R. & Silva, L. H. S. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecol. Indic. 64, 217–227 (2016).

    Article  Google Scholar 

  • 18.

    Salmaso, N., Naselli-Flores, L. & Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60, 603–619 (2015).

    Article  Google Scholar 

  • 19.

    Padisák, J., Borics, G., Grigorszky, I. & Soróczki-Pintér, É. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: The assemblage index. Hydrobiologia 553, 1–14 (2006).

    Article  Google Scholar 

  • 20.

    Borics, G. et al. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers 17, 465–486 (2007).

    Google Scholar 

  • 21.

    European Parliament. Directive 2000/60/CE du Parlement Européen et du Conseil du 23 Octobre 2000 Établissant un Cadre pour une Politique Communautaire dans le Domaine de l’Eau. 72 (Communauté Européenne, 2000).

  • 22.

    Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).

    Article  Google Scholar 

  • 23.

    Kruk, C. et al. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshw. Biol. 62, 1681–1692 (2017).

    CAS  Article  Google Scholar 

  • 24.

    Wentzky, V. C., Tittel, J., Jäger, C. G., Bruggeman, J. & Rinke, K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108, 1649–1663 (2020).

    CAS  Article  Google Scholar 

  • 25.

    Olenina, I. et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea. 144 (Baltic Marine Environnment Protection Commission, 2006).

  • 26.

    Kremer, C. T., Gillette, J. P., Rudstam, L. G., Brettum, P. & Ptacnik, R. A compendium of cell and natural unit biovolumes for>1200 freshwater phytoplankton species. Ecology 95, 2984–2984 (2014).

    Article  Google Scholar 

  • 27.

    Druart, J. C. & Rimet, F. Protocole d’Analyse du Phytoplancton de l’INRA: Prélèvement, Dénombrement et Biovolume. 96 (INRA, 2008).

  • 28.

    Rimet, F. & Druart, J.-C. A trait database for phytoplankton of temperate lakes. Ann. Limnol. – Int. J. Limnol. 54, 18 (2018).

    Article  Google Scholar 

  • 29.

    John, D. M., Whitton, B. A. & Brook, A. J. The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae. Second Edition. (Cambridge University Press, 2011).

  • 30.

    Wehr, J. D., Sheath, R. G. & Kociolek, P. Freshwater Algae of North America: Ecology and Classification. (Academic press, 2015).

  • 31.

    Laplace-Treyture, C., Hadoux, E., Plaire, M., Dubertrand, A. & Esmieu, P. PHYTOBS v3.0: Outil de Comptage du Phytoplancton en Laboratoire et de Calcul de l’IPLAC. Version 3.0. Application JAVA. https://hydrobio-dce.inrae.fr/phytobs-software/ (2017).

  • 32.

    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollinger, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Article  Google Scholar 

  • 33.

    Hutorowicz, A. Opracowanie Standardowych Objętości Komórek do Szacowania Biomasy w Wybranych Taksonów Glonów Planktonowych Wraz z Określeniem Sposobu Pomiarów i Szacowania. 42 (Instytutu Rybactwa Śródlądowego, 2005).

  • 34.

    Padisak, J. & Adrian, R. In Methoden der Biologischen Wasseruntersuchung 2. Biologische Gewässeruntersuchung (ed. Friedrich, W. und G.) Biovolumen und Biomasse (Gustav Fischer Verlag, 1999).

  • 35.

    NF EN 16695. Qualité de l’eau – Lignes Directrices pour l’Estimation du Biovolume des Microalgues. 106 (2015).

  • 36.

    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Sieburth, J. M., Smetacek, V. & Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256–1263 (1978).

    ADS  Article  Google Scholar 

  • 38.

    Ignatiades, L. Redefinition of cell size classification of phytoplankton – a potential tool for improving the quality and assurance of data interpretation. Mediterr. Mar. Sci. 17, 56 (2015).

    Article  Google Scholar 

  • 39.

    Whitton, B. A. Ecology of Cyanobacteria II. Their Diversity in Space and Time. (Springer Verlag, 2012).

  • 40.

    Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the Cyanobacteria. Trends Microbiol. 23, 642–652 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Sanseverino, I., Conduto, D., Pozzoli, L., Dobricic, S. & Lettieri, T. Algal Bloom and its Economic Impact. 48 (Join Research Center, 2016).

  • 42.

    Sanseverino, I., Conduto Antonio, D., Loos, R. & Lettieri, T. Cyanotoxins: Methods and Approaches for their Analysis and Detection. 64 (Join Research Center, 2017).

  • 43.

    Meriluoto, J., Spoof, L. & Codd, G. A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. (John Wiley & Sons, 2017).

  • 44.

    Lwoff, A., Van Niel, C. B., Ryan, P. J. & Tatum, E. L. Nomenclature of Nutritional Types of Microorganisms. In Cold Spring Harbor Symposia on Quantitative Biology. XI (5th ed.) 302–303 (1946).

  • 45.

    Morris, J. Biology: How Life Works. (W. H. Freeman/Macmillan Learning, 2018).

  • 46.

    Laplace-Treyture, C. et al. Phytoplankton morpho-functional trait dataset from French water-bodies. Portail Data INRAE https://doi.org/10.15454/GJGIAH (2020).

  • 47.

    Morabito, G., Oggioni, A., Caravati, E. & Panzani, P. Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578, 47–57 (2007).

    Article  Google Scholar 

  • 48.

    Naselli-Flores, L., Padisák, J. & Albay, M. Shape and size in phytoplankton ecology: Do they matter? Hydrobiologia 578, 157–161 (2007).

    Article  Google Scholar 

  • 49.

    Strathmann, R. R. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411–418 (1967).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Chaffin, J. D., Stanislawczyk, K., Kane, D. D. & Lambrix, M. M. Nutrient addition effects on chlorophyll a, phytoplankton biomass, and heterocyte formation in Lake Erie’s central basin during 2014–2017: Insights into diazotrophic blooms in high nitrogen water. Freshw. Biol. 00, 1–15 (2020).

    Google Scholar 

  • 51.

    Hadoux, E. & Laplace-Treyture, C. PHYTOBS: Phytoplankton Counting Tool in Laboratory. Version 1.0. JAVA Application. https://hydrobio-dce.inrae.fr/phytobs-software/ (2009).

  • 52.

    Huber Pestalozzi, G. & Thienemann, A. Das Phytoplankton des Susswassers Systematik und Biologie: 5 Teil Chlorophyceae (Grünalgen) Ordnung: Volvocales. (E. Schweizerbart’sche verlagsbuchhandlung, 1974).

  • 53.

    Komarek, J., Fott, B. & Huber Pestalozzi, G. Das Phytoplankton des Susswassers Systematik und Biologie: 7 Teil 1 Halfte Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. (E. Schweizerbart’sche verlagsbuchhandlung, 1983).

  • 54.

    Coesel, P. F. M. & Meesters, K. J. Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands. (KNNV Publishing, 2007).

  • 55.

    Coesel, P. F. M. & Meesters, K. European Flora of the Desmid Genera Staurastrum and Staurodesmus. (KNNV Publishing, 2013).

  • 56.

    Starmach, K. Chrysophyceae und Haptophyceae. (VEB Gustav Fischer Verlag, 1985).

  • 57.

    Komarek, J. & Anagnostidis, K. Cyanoprokaryota 1.Teil: Chroococcales. (Gustav Fischer, 1999).

  • 58.

    Komarek, J. & Anagnostidis, K. Cyanoprokaryota 2.Teil: Oscillatoriales. (Elsevier, 2005).

  • 59.

    Komarek, J. Cyanoprokaryota: 3. Teil/Part 3: Heterocytous Genera. (Springer Spektrum Verlag, 2013).

  • 60.

    Anses. Evaluation des Risques Liés aux Cyanobactéries et leurs Toxines dans les Eaux Douces. Avis de l’Anses. 438 (Anses, 2020).

  • 61.

    Bey, M.-Y. & Ector, L. Atlas des Diatomées des Cours d’Eau de la Région Rhône-Alpes. (DREAL Rhône-Alpes, 2013).

  • 62.

    Cox, E. J. Identification of Freshwater Diatoms from Live Material. (Chapman & Hall, 1996).

  • 63.

    Druart, J. C. & Straub, F. Description de deux nouvelles Cyclotelles (Bacillariophyceae) de milieux alcalins et eutrophes: Cyclotella costei nov. sp. et Cyclotella wuethrichiana nov. sp. Swiss J. Hydrol. 50, 182–188 (1988).

    Article  Google Scholar 

  • 64.

    Houk, V. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part I Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. vol. 1 (Czech Phycological Society, Prague & Palacký University Olomouc, 2003).

  • 65.

    Houk, V. & Klee, R. Atlas of freshwater centric diatoms with a brief key and descriptions Part II Melosiraceae and Aulacoseiraceae (Supplement to Part I). Fottea J. Czech Phycol. Soc. 7, 85–255 (2007).

    Google Scholar 

  • 66.

    Houk, V., Klee, R. & Tanaka, H. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part IV Stephanodiscaceae B. vol. 14 (Czech Phycological Society, Prague & Palacký University Olomouc, 2014).

  • 67.

    Houk, V., Klee, R. & Tanaka, H. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part III Steogabiduscaceae A Cyclotella, Tertiarius, Discostella. vol. 10 (Czech Phycological Society, Prague & Palacký University Olomouc, 2010).

  • 68.

    Houk, V., Klee, R. & Tanaka, H. Atlas of freshwater centric diatoms with a brief key and descriptions: second emended edition of Part I and II Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Fottea J. Czech Phycol. Soc. 17, 1–615 (2017).

    Google Scholar 

  • 69.

    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 1. Teil: Naviculaceae. (Specktrum Akademischer Verlag GmbH Heidelberg, 1999).

  • 70.

    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 4. Teil: Achnanthaceae Kritische Ergänzungen zu Achnanthes s.l., Bavicula s. str., Gomphonema. (Spektrum, 2004).

  • 71.

    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. (Elsevier, 2007).

  • 72.

    Krammer, K. & Lange-Bertalot, H. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. (Gustav Fischer Verlag, 2004).

  • 73.

    Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment. (Koeltz Botanical Books, 2017).

  • 74.

    Siver, P. A. et al. Observations on Fragilaria longifusiformis comb. nov. et nom. nov. (Bacillariophyceae), a widespread planktic diatom documented from North America and Europe. Phycol. Res. 54, 183–192 (2006).

    Article  Google Scholar 

  • 75.

    Popovsky, J. & Pfiester, L. A. Dinophyceae (Dinoflagellida). (Gustav Fischer Verlag, 1990).

  • 76.

    Moestrup, Ø. & Calado, A. J. Dinophyceae. vol. 6 (Spektrum Akademischer Verlag, 2018).

  • 77.

    Huber Pestalozzi, G. Das Phytoplankton des Susswassers Systematik und Biologie: 4 Teil Euglenophyceen. (E. Schweizerbart’sche verlagsbuchhandlung, 1969).

  • 78.

    Ettl, H. Xanthophyceae: 1. Teil. (Gustav Fischer Verlag, 1978).

  • 79.

    Rieth, A. Xanthophyceae: 2. Teil. (Gustav Fischer Verlag, 1980).


  • Source: Ecology - nature.com

    Geologists produce new timeline of Earth’s Paleozoic climate changes

    Sludge amendment accelerating reclamation process of reconstructed mining substrates