in

Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean

  • 1.

    Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.

    Article  Google Scholar 

  • 2.

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.

  • 4.

    Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on Ocean primary production. Science. 1998;281:200–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Palmer JR, Totterdell IJ. Production and export in a global ocean ecosystem model. Deep Sea Res Part Oceanogr Res Pap. 2001;48:1169–98.

    CAS  Article  Google Scholar 

  • 6.

    Legendre L, Rivkin RB. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar Ecol Prog Ser. 2002;242:95–109.

    Article  Google Scholar 

  • 7.

    Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H, Legendre L, et al. Effects of phytoplankton community on production, size, and export of large aggregates: a world-ocean analysis. Limnol Oceanogr. 2009;54:1951–63.

    Article  Google Scholar 

  • 8.

    Michaels AF, Silver MW. Primary production, sinking fluxes and the microbial food web. Deep Sea Res Part Oceanogr Res Pap. 1988;35:473–90.

    Article  Google Scholar 

  • 9.

    Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–57.

    CAS  Article  Google Scholar 

  • 10.

    Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob Biogeochem Cycles. 2006;20:GB2015.

    Article  CAS  Google Scholar 

  • 11.

    Richardson TL, Jackson GA. Small phytoplankton and carbon export from the surface ocean. Science. 2007;315:838–40.

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Uitz J, Claustre H, Griffiths FB, Ras J, Garcia N, Sandroni V. A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Res Part Oceanogr Res Pap. 2009;56:541–60.

    CAS  Article  Google Scholar 

  • 13.

    Uitz J, Claustre H, Gentili B, Stramski D. Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Glob Biogeochem Cycles. 2010;24:GB3016.

  • 14.

    Poulin FJ, Franks PJS. Size-structured planktonic ecosystems: constraints, controls and assembly instructions. J Plankton Res. 2010;32:1121–30.

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Ward BA, Dutkiewicz S, Jahn O, Follows MJ. A size-structured food-web model for the global ocean. Limnol Oceanogr. 2012;57:1877–91.

    Article  Google Scholar 

  • 16.

    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Annu Rev Mar Sci. 2017;9:311–35.

    Article  Google Scholar 

  • 17.

    Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, et al. Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci. 2018;11:27.

    Article  CAS  Google Scholar 

  • 18.

    Lancelot C, Hannon E, Becquevort S, Veth C, De, Baar HJW. Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep Sea Res Part Oceanogr Res Pap. 2000;47:1621–62.

    CAS  Article  Google Scholar 

  • 19.

    Wang S, Moore JK. Incorporating Phaeocystis into a Southern Ocean ecosystem model. J Geophys Res Oceans 2011;116:C01019.

  • 20.

    Worthen DL, Arrigo KR. A coupled ocean-ecosystem model of the Ross Sea. Part 1: Interannual variability of primary production and phytoplankton community structure. In: DiTullio GR, Dunbar RB, editors. Biogeochemistry of the Ross Sea. Antarct Res Ser. 2003;78:93–105.

  • 21.

    Li WKW. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.

    CAS  Article  Google Scholar 

  • 22.

    Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 2010;4:1180–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean: Picophytoplankton diversity and productivity in the S. Pacific. Limnol Oceanogr. 2016;61:806–24.

    Article  Google Scholar 

  • 24.

    Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci. 2008;105:17861–6.

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011;5:1484.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Olofsson M, Robertson EK, Edler L, Arneborg L, Whitehouse MJ, Ploug H. Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci Rep. 2019;9:1424.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, et al. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 2010;4:1215–23.

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Olofsson M, Kourtchenko O, Zetsche E-M, Marchant HK, Whitehouse MJ, Godhe A, et al. High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ Microbiol. 2019;21:142–51.

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Zaoli S, Giometto A, Marañón E, Escrig S, Meibom A, Ahluwalia A, et al. Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton. Proc Natl Acad Sci. 2019;116:17323–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2014;28:862–86.

    Article  Google Scholar 

  • 32.

    Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, et al. The reinvigoration of the Southern Ocean carbon sink. Science. 2015;349:1221–4.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 33.

    Martin JH. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography. 1990;5:1–13.

    Article  Google Scholar 

  • 34.

    de Baar HJW, Jong JTM, de, Bakker DCE, Löscher BM, Veth C, Bathmann U, et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature. 1995;373:412.

    Article  Google Scholar 

  • 35.

    de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Oceans. 2005;110:C09S16.

  • 36.

    Weber LH, El-Sayed SZ. Contributions of the net, nano- and picoplankton to the phytoplankton standing crop and primary productivity in the Southern Ocean. J Plankton Res. 1987;9:973–94.

    Article  Google Scholar 

  • 37.

    Froneman PW, Laubscher RK, Mcquaid CD. Size-fractionated primary production in the South Atlantic and Atlantic Sectors of the Southern Ocean. J Plankton Res. 2001;23:611–22.

    CAS  Article  Google Scholar 

  • 38.

    Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070–4.

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Pollard R, Sanders R, Lucas M, Statham P. The Crozet Natural Iron Bloom and Export Experiment (CROZEX). Deep Sea Res Part II Top Stud Oceanogr. 2007;54:1905–14.

    CAS  Article  Google Scholar 

  • 40.

    Korb RE, Whitehouse MJ, Atkinson A, Thorpe SE. Magnitude and maintenance of the phytoplankton bloom at South Georgia: a naturally iron-replete environment. Mar Ecol Prog Ser. 2008;368:75–91.

    CAS  Article  Google Scholar 

  • 41.

    Kopczyńska EE, Fiala M, Jeandel C. Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean. Polar Biol. 1998;20:342–51.

    Article  Google Scholar 

  • 42.

    Mosseri J, Quéguiner B, Armand L, Cornet-Barthaux V. Impact of iron on silicon utilization by diatoms in the Southern Ocean: a case study of Si/N cycle decoupling in a naturally iron-enriched area. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:801–19.

    Article  Google Scholar 

  • 43.

    Park Y-H, Roquet F, Durand I, Fuda J-L. Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:566–81.

    Article  Google Scholar 

  • 44.

    Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999;56:1801–8.

    CAS  Article  Google Scholar 

  • 45.

    Aminot A, Kérouel R. Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Editions Versailles, France: Quae; 2007.

  • 46.

    Ras J, Claustre H, Uitz J. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences. 2008;5:353–69.

    CAS  Article  Google Scholar 

  • 47.

    Mackey MD, Mackey DJ, Higgins HW, Wright SW. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser. 1996;144:265–83.

    CAS  Article  Google Scholar 

  • 48.

    Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ. Phytoplankton community structure and stocks in the Southern Ocean (30–80 E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II Top Stud Oceanogr. 2010;57:758–78.

    CAS  Article  Google Scholar 

  • 49.

    van Leeuwe MA, Visser RJW, Stefels J. The pigment composition of Phaeocystis antarctica (Haptophyceae) under various conditions of light, temperature, salinity, and iron. J Phycol. 2014;50:1070–80.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 50.

    Szymczak-Żyla M, Kowalewska G, Louda JW. The influence of microorganisms on chlorophyll a degradation in the marine environment. Limnol Oceanogr. 2008;53:851–62.

    Article  Google Scholar 

  • 51.

    Strom SL. Production of pheopigments by marine protozoa: results of laboratory experiments analysed by HPLC. Deep Sea Res Part Oceanogr Res Pap. 1993;40:57–80.

    CAS  Article  Google Scholar 

  • 52.

    Roca-Martí M, Puigcorbé V, Iversen MH, van der Loeff MR, Klaas C, Cheah W, et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2017;138:102–15.

    Article  CAS  Google Scholar 

  • 53.

    Bower SM, Carnegie RB, Goh B, Jones SR, Lowe GJ, Mak MW. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol. 2004;51:325–32.

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. https://doi.org/https://www.biorxiv.org/content/10.1101/299537v1.article-info. 2018;299537.

  • 57.

    Not F, Simon N, Biegala IC, Vaulot D. Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH TSA) to assess eukaryotic picoplankton composition. Aquat Micro Ecol. 2002;28:157–66.

    Article  Google Scholar 

  • 58.

    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.

    Article  Google Scholar 

  • 59.

    Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr. 1992;37:1434–46.

    CAS  Article  Google Scholar 

  • 60.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

  • 61.

    Lafond A, Leblanc K, Legras J, Cornet V, Quéguiner B. The structure of diatom communities constrains biogeochemical properties in surface waters of the Southern Ocean (Kerguelen Plateau). J Mar Syst. 2020;212:103458.

    Article  Google Scholar 

  • 62.

    Chisholm SW. Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K, editors. Primary productivity and biogeochemical cycles in the sea. US, Boston, MA: Springer; 1992. p. 213–37.

  • 63.

    Marchetti A, Cassar N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Geobiology. 2009;7:419–31.

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Alderkamp A-C, Kulk G, Buma AGJ, Visser RJW, Van Dijken GL, Mills MM, et al. The effect of iron limitation on the photophysiology of Phaeocystis antarctica (prymnesiophyceae) and Fragilariopsis cylindrus (bacillariophyceae) under dynamic irradiance. J Phycol. 2012;48:45–59.

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Marañón E. Inter-specific scaling of phytoplankton production and cell size in the field. J Plankton Res. 2008;30:157–63.

    Article  CAS  Google Scholar 

  • 66.

    Huete-Ortega M, Cermeño P, Calvo-Díaz A, Marañón E. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc R Soc B Biol Sci. 2012;279:1815–23.

    Article  Google Scholar 

  • 67.

    Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, et al. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci. 2018;115:13300–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457:467–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, Brzezinski MA, et al. Different iron storage strategies among bloom-forming diatoms. Proc Natl Acad Sci. 2018;115:E12275–E12284.

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Litchman E, Klausmeier CA. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst. 2008;39:615–39.

    Article  Google Scholar 

  • 71.

    Luxem KE, Ellwood MJ, Strzepek RF. Intraspecific variability in Phaeocystis antarctica’s response to iron and light stress. PLOS One. 2017;12:e0179751.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Closset I, Lasbleiz M, Leblanc K, Quéguiner B, Cavagna A-J, Elskens M, et al. Seasonal evolution of net and regenerated silica production around a natural Fe-fertilized area in the Southern Ocean estimated with Si isotopic approaches. Biogeosciences. 2014;11:5827–46.

    Article  Google Scholar 

  • 73.

    Egge J, Aksnes D. Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser. 1992;83:281–9.

    CAS  Article  Google Scholar 

  • 74.

    Lam PJ, Bishop JKB. High biomass, low export regimes in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2007;54:601–38.

    Article  Google Scholar 

  • 75.

    Maiti K, Charette MA, Buesseler KO, Kahru M. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys Res Lett. 2013;40:1557–61.

    Article  Google Scholar 

  • 76.

    Le Moigne FAC, Henson SA, Cavan E, Georges C, Pabortsava K, Achterberg EP, et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean? Geophys Res Lett. 2016;43:4457–66.

    Article  CAS  Google Scholar 

  • 77.

    Christaki U, Lefèvre D, Georges C, Colombet J, Catala P, Courties C, et al. Microbial food web dynamics during spring phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). Biogeosciences. 2014;11:6739–53.

    Article  Google Scholar 

  • 78.

    Christaki U, Gueneugues A, Liu Y, Blain S, Catala P, Colombet J, et al. Seasonal microbial food web dynamics in contrasting Southern Ocean productivity regimes. Limnol Oceanogr. 2021;66:108–22.

  • 79.

    Planchon F, Ballas D, Cavagna A-J, Bowie AR, Davies D, Trull T, et al. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences. 2015;12:3831–48.

    Article  Google Scholar 

  • 80.

    Cassar N, Wright SW, Thomson PG, Trull TW, Westwood KJ, Salas Mde, et al. The relation of mixed-layer net community production to phytoplankton community composition in the Southern Ocean. Glob Biogeochem Cycles. 2015;29:446–62.

    CAS  Article  Google Scholar 

  • 81.

    Sassenhagen I, Irion S, Jardillier L, Moreira D, Christaki U. Protist interactions and community structure during early autumn in the Kerguelen Region (Southern Ocean). Protist. 2020;171:125709.

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Henschke N, Blain S, Cherel Y, Cotte C, Espinasse B, Hunt BPV, et al. Population demographics and growth rate of Salpa thompsoni on the Kerguelen Plateau. J Marine Systems. 2021;214:103489.

    Article  Google Scholar 

  • 83.

    Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol. 2004;10:1973–80.

    Article  Google Scholar 

  • 84.

    Iversen MH, Pakhomov EA, Hunt BPV, van der Jagt H, Wolf-Gladrow D, Klaas C. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2017;138:116–25.

    CAS  Article  Google Scholar 

  • 85.

    Irion S, Jardillier L, Sassenhagen I, Christaki U. Marked spatiotemporal variations in small phytoplankton structure in contrasted waters of the Southern Ocean (Kerguelen area). Limnol Oceanogr. 2020;65:2835–52.

  • 86.

    Le Moigne FAC, Poulton AJ, Henson SA, Daniels CJ, Fragoso GM, Mitchell E, et al. Carbon export efficiency and phytoplankton community composition in the Atlantic sector of the Arctic Ocean. J Geophys Res Oceans. 2015;120:3896–912.

    Article  Google Scholar 

  • 87.

    DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature. 2000;404:595–8.

    CAS  PubMed  Article  Google Scholar 

  • 88.

    Pauthenet E, Roquet F, Madec G, Guinet C, Hindell M, McMahon CR, et al. Seasonal meandering of the Polar Front upstream of the Kerguelen Plateau. Geophys Res Lett. 2018;45:9774–81.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Visualizing a climate-resilient MIT

    Ants modulate stridulatory signals depending on the behavioural context