in

Predicting spatial patterns of soil bacteria under current and future environmental conditions

  • 1.

    Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A. 2016;113:5970–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Singh JS, Gupta VK. Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ. 2018;634:497–500.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci U S A. 2007;104:11436–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol. 2002;17:177–83.

    Article  Google Scholar 

  • 8.

    Terrat S, Horrigue W, Dequietd S, Saby NPA, Lelièvre M, Nowak V, et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE. 2017;12:e0186766.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Ladau J, Shi Y, Jing X, He J-S, Chen L, Lin X, et al. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems. 2018;3:e00167–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat; 2019.

    Google Scholar 

  • 11.

    Guisan A, Broennimann O, Buri A, Cianfrani C, D’Amen M, Di Cola V, et al. Climate change impacts on mountain biodiversity. In: Lovejoy TE, Hannah L, editors. Biodiversity and climate change. Yale, USA: Yale University Press; 2019. p. 221–33.

  • 12.

    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Local environmental factors drive divergent grassland soil bacterial communities in the western Swiss Alps. Appl Environ Microbiol. 2016;82:6303–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Karimi B, Terrat S, Dequiedt S, Saby NPA, Horrigue W, Lelièvre M, et al. Biogeography of soil bacteria and archaea across France. Sci Adv. 2018;4:eaat1808.

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, et al. Biogeography and habitat modelling of high-alpine bacteria. Nat Commun. 2010;1:53.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Trumbore SE, Czimczik CI. An uncertain future for soil carbon. Science. 2008;321:1455–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Hettelingh JP, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L. Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. In: Brimblecombe P, Hara H, Houle D, Novak M, editors. Acid rain—deposition to recovery. Dordrecht: Springer; 2007. p. 379–84.

    Google Scholar 

  • 18.

    IPCC (2014). Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva, Switzerland: IPCC. p. 151.

  • 19.

    Hagedorn F, Gavazov K, Alexander JM. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science. 2019;365:1119–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Monteith DT, Evans CD. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environ Pollut. 2005;137:3–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Augustin S, Achermann B. Deposition von Luftschadstoffen in der Schweiz: Entwicklung, aktueller Stand und Bewertung. Schweizerische Z fur Forstwes. 2012;163:323–30.

    Article  Google Scholar 

  • 22.

    Blaser P, Zysset M, Zimmermann S, Luster J. Soil acidification in southern Switzerland between 1987 and 1997: A case study based on the critical load concept. Environ Sci Technol. 1999;33:2383–9.

    CAS  Article  Google Scholar 

  • 23.

    McGovern ST, Evans CD, Dennis P, Walmsley CA, Turner A, McDonald MA. Resilience of upland soils to long term environmental changes. Geoderma. 2013;197-198:36–42.

    CAS  Article  Google Scholar 

  • 24.

    Kirk GJD, Bellamy PH, Lark RM. Changes in soil pH across England and Wales in response to decreased acid deposition. Glob Change Biol. 2010;16:3111–9.

    Google Scholar 

  • 25.

    Kosonen Z, Schnyder E, Hiltbrunner E, Thimonier A, Schmitt M, Seitler E, et al. Current atmospheric nitrogen deposition still exceeds critical loads for sensitive, semi-natural ecosystems in Switzerland. Atmos Environ. 2019;211:214–25.

    CAS  Article  Google Scholar 

  • 26.

    Tipping E, Davies JAC, Henrys PA, Kirk GJD, Lilly A, Dragosits U, et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci Rep. 2017;7:1890.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature. 2018;560:80–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change. 2018;8:885–9.

    CAS  Article  Google Scholar 

  • 29.

    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.

    CAS  Article  Google Scholar 

  • 30.

    Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, et al. Soil warming alters microbial substrate use in alpine soils. Glob Change Biol. 2014;20:1327–38.

    Article  Google Scholar 

  • 31.

    Lettens S, Van Orshoven J, Van Wesemael B, Muys B, Perrin D. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol. 2005;11:2128–40.

    Article  Google Scholar 

  • 32.

    Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Change Biol. 2009;15:2723–9.

    Article  Google Scholar 

  • 33.

    Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, et al. Increased topsoil carbon stock across China’s forests. Glob Change Biol. 2014;20:2687–96.

    Article  Google Scholar 

  • 34.

    Smith P. Soils and climate change. Curr Opin Environ Sustain. 2012;4:539–44.

    Article  Google Scholar 

  • 35.

    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Glenn AR, Dilworth MJ. Soil acidity and the microbial population: survival and growth of bacteria in low pH. In: Wright RJ, Baligar VC, Murrmann RP, editors. Developments in plant and soil sciences. Dordrecht: Springer; 1991. p. 567–79.

    Google Scholar 

  • 37.

    Xue P-P, Carrillo Y, Pino V, Minasny B, McBratney AB. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci Rep. 2018;8:11725.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76:999–1007.

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science. 2013;342:621–4.

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.

    PubMed  Article  Google Scholar 

  • 41.

    Zhang X, Zhang G, Chen Q, Han X. Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE. 2013;8:e78616.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and distribution models: with applications in R. Cambridge, UK: Cambridge University Press; 2017.

  • 43.

    D’Amen M, Rahbek C, Zimmermann NE, Guisan A. Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev Camb Philos Soc. 2017;92:169–87.

    PubMed  Article  Google Scholar 

  • 44.

    Guisan A, Rahbek C. SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr. 2011;38:1433–44.

    Article  Google Scholar 

  • 45.

    Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J-P, Guisan A. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib. 2011;17:1122–31.

    Article  Google Scholar 

  • 46.

    Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A. Are niche-based species distribution models transferable in space? J Biogeogr. 2006;33:1689–703.

    Article  Google Scholar 

  • 47.

    Buri A, Grand S, Yashiro E, Adatte T, Spangenberg JE, Pinto‐Figueroa E, et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J Biogeogr. 2020;47:1143–53.

    Article  Google Scholar 

  • 48.

    Bouët M. Climat et météorologie de la Suisse romande. Lausanne: Payot edn; 1985.

    Google Scholar 

  • 49.

    Zingg B. Modélisation de la réserve hydrique des sols dans les Alpes vaudoises méridionales. Master thesis. Lausanne, Switzerland: University of Lausanne; 2015.

    Google Scholar 

  • 50.

    Swisstopo. Geological map of Switzerland. 2019.

  • 51.

    Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model. 2002;157:331–41.

    Article  Google Scholar 

  • 52.

    Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods. 2009;79:266–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Sci Rep. 2018;8:5758.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–5.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Myers EW, Miller W. Optimal alignments in linear space. Bioinformatics. 1988;4:11–17.

    CAS  Article  Google Scholar 

  • 56.

    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.

    CAS  Article  Google Scholar 

  • 57.

    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.

    CAS  Article  Google Scholar 

  • 58.

    McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22.

    CAS  Article  Google Scholar 

  • 63.

    Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci. 2013;24:593–606.

    Article  Google Scholar 

  • 64.

    Zubler EM, Fischer AM, Liniger MA, Croci-Maspoli M, Scherrer SC, Appenzeller C. Localized climate change scenarios of mean temperature and precipitation over Switzerland. Clim Change. 2014;125:237–52.

    Article  Google Scholar 

  • 65.

    Buri A. Above- and belowground biogeography: spatial modelling of a hidden system. PhD thesis. Lausanne: University of Lausanne; 2019.

    Google Scholar 

  • 66.

    Guisan A, Theurillat J-P. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess. 2000;1:307–20.

    Article  Google Scholar 

  • 67.

    Wood SN. Generalized additive models: an introduction with R. Boca Raton, USA: Chapman and Hall/CRC; 2017.

  • 68.

    Greenwell B, Boehmke B, Cunningham J, Developers G. gbm: Generalized boosted regression models, 2.1.5. edn. 2019.

  • 69.

    Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology. 2007;88:2766–72.

    PubMed  Article  Google Scholar 

  • 70.

    Hartig F. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) regression models. R package, 0.2.4 edn. 2019.

  • 71.

    Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.

    Article  Google Scholar 

  • 72.

    Scherrer D, D’Amen M, Fernandes RF, Mateo RG, Guisan A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol Evol. 2018;9:2155–66.

    Article  Google Scholar 

  • 73.

    Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove, USA: Thomson Brooks/Cole Publishing Co; 1996.

  • 74.

    Elith J, Ferrier S, Huettmann F, Leathwick J. The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model. 2005;186:280–9.

    Article  Google Scholar 

  • 75.

    Bradie J, Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr. 2017;44:1344–61.

    Article  Google Scholar 

  • 76.

    Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Change. 2015;5:215.

    Article  Google Scholar 

  • 77.

    Fierer N, Schimel JP, Holden PA. Influence of drying–rewetting frequency on soil bacterial community structure. Micro Ecol. 2003;45:63–71.

    CAS  Article  Google Scholar 

  • 78.

    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.

    Article  Google Scholar 

  • 79.

    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.

    PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.

    PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett. 2010;13:1310–24.

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Pearman PB, Guisan A, Broennimann O, Randin CF. Niche dynamics in space and time. Trends Ecol Evol. 2008;23:149–58.

    PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Bååth E, Anderson TH. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 2003;35:955–63.

    Article  CAS  Google Scholar 

  • 85.

    Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Change Biol. 2019;25:827–38.

    Article  Google Scholar 

  • 86.

    Li L, Xu M, Eyakub Ali M, Zhang W, Duan Y, Li D. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE. 2018;13:e0203812.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 87.

    Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.

    CAS  Article  Google Scholar 

  • 88.

    Galloway JN. Acid deposition: perspectives in time and space. Water Air Soil Pollut. 1995;85:15–24.

    CAS  Article  Google Scholar 

  • 89.

    Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:024019.

    Article  CAS  Google Scholar 

  • 90.

    Falkengren-Grerup U, Brink D-Jt, Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage. 2006;225:74–81.

    Article  Google Scholar 

  • 91.

    Saby NPA, Arrouays D, Antoni V, Lemercier B, Follain S, Walter C, et al. Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manage. 2008;24:254–62.

    Article  Google Scholar 

  • 92.

    Cianfrani C, Buri A, Verrecchia E, Guisan A. Generalizing soil properties in geographic space: approaches used and ways forward. PLoS ONE. 2018;13:e0208823.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, et al. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep. 2018;8:5619.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 94.

    Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–79.

    Article  Google Scholar 

  • 95.

    Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81:257–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci U S A. 2015;112:7033–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Schröder B. Challenges of species distribution modeling belowground. J Plant Nutr Soil Sci. 2008;171:325–37.

    Article  CAS  Google Scholar 

  • 98.

    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2012;109:21390–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, et al. Standards for distribution models in biodiversity assessments. Sci Adv. 2019;5:eaat4858.

    PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Pinto-Figueroa EA, Seddon E, Yashiro E, Buri A, Niculita-Hirzel H, van der Meer JR, et al. Archaeorhizomycetes spatial distribution in soils along wide elevational and environmental gradients reveal co-abundance patterns with other fungal saprobes and potential weathering capacities. Front Microbiol. 2019;10:656.

    PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren D. Niche estimation above and below the species level. Trends Ecol Evol. 2019;34:260–73.

    PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Hadly EA, Spaeth PA, Li C. Niche conservatism above the species level. Proc Natl Acad Sci U S A. 2009;106 Suppl 2:19707–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 103.

    Peterson AT. Ecological niche conservatism: a time-structured review of evidence. J Biogeogr. 2011;38:817–27.

    Article  Google Scholar 

  • 104.

    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N, et al. is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 105.

    Gardner W, Mulvey EP, Shaw EC. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol Bull. 1995;118:392–404.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, et al. Making better biogeographical predictions of species’ distributions. J Appl Ecol. 2006;43:386–92.

    Article  Google Scholar 

  • 107.

    Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;32:66–77.

    Article  Google Scholar 

  • 108.

    Sites JW, Marshall JC. Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol. 2003;18:462–70.

    Article  Google Scholar 

  • 109.

    Ward DM. A macrobiological perspective on microbial species. Microbe. 2006;1:269.

    Google Scholar 

  • 110.

    Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A. Genomics, environmental genomics and the issue of microbial species. Heredity. 2008;100:207–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Vandermeer J. Niche theory. Annu Rev Ecol Syst. 1972;3:107–32.

    Article  Google Scholar 

  • 112.

    Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A. 2008;105:2504–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Song H-K, Shi Y, Yang T, Chu H, He J-S, Kim H, et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci Rep. 2019;9:866.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 114.

    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    Lenoir J, Svenning J-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography. 2015;38:15–28.

    Article  Google Scholar 

  • 116.

    Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Visualizing a climate-resilient MIT

    Ants modulate stridulatory signals depending on the behavioural context