Empirical estimate of forestation-induced precipitation changes in Europe
1.Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitude. Nature 479, 384–387 (2011).Article
Google Scholar
2.Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. https://doi.org/10.1038/ncomms7603 (2015).3.Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. https://doi.org/10.5194/essd-2018-24 (2018).4.Jia, G. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 2 (IPCC, 2019).5.Lejeune, Q., Seneviratne, S. I. & Davin, E. L. Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments. J. Clim. 30, 1439–1459 (2017).Article
Google Scholar
6.Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).Article
Google Scholar
7.Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).Article
Google Scholar
8.Meier, R. et al. Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences 15, 4731–4757 (2018).Article
Google Scholar
9.Meier, R., Davin, E. L., Swenson, S. C., Lawrence, D. M. & Schwaab, J. Biomass heat storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 14, 084026 (2019).Article
Google Scholar
10.Spracklen, D., Arnold, S. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).Article
Google Scholar
11.Lejeune, Q., Davin, E. L., Guillod, B. P. & Seneviratne, S. I. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 44, 2769–2786 (2015).Article
Google Scholar
12.Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article
Google Scholar
13.Yosef, G. et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. https://doi.org/10.1038/s41598-018-19265-6 (2018).14.Belušić, D., Fuentes-Franco, R., Strandberg, G. & Jukimenko, A. Afforestation reduces cyclone intensity and precipitation extremes over Europe. Environ. Res. Lett. 14, 074009 (2019).Article
Google Scholar
15.Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).Article
Google Scholar
16.Sandel, B. & Svenning, J. Human impacts drive a global topographic signature in tree cover. Nat. Commun. https://doi.org/10.1038/ncomms3474 (2013).17.Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).Article
Google Scholar
18.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article
Google Scholar
19.Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob. Change Biol. 21, 299–313 (2014).Article
Google Scholar
20.McGrath, M. J. et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 12, 4291–4316 (2015).Article
Google Scholar
21.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).Article
Google Scholar
22.Navarro, L. M. & Pereira, H. M. Rewilding Abandoned Landscapes in Europe (Springer, 2015).23.Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).Article
Google Scholar
24.Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).Article
Google Scholar
25.Menne, M. J. et al. Global Historical Climatology Network—Daily (GHCN-Daily) Version 3.20 (NOAA, 2012); https://doi.org/10.7289/V5D21VHZ26.Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/3/034002 (2014).27.Liu, H., Randerson, J. T., Lindfors, J. & Chapin, F. S. III Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J. Geophys. Res. https://doi.org/10.1029/2004JD005158 (2005).28.Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031296 (2007).29.Vanden Broucke, S., Luyssaert, S., Davin, E. L., Janssens, I. & van Lipzig, N. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. Atmos. 120, 5417–5436 (2015).Article
Google Scholar
30.Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).Article
Google Scholar
31.Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153 (2020).Article
Google Scholar
32.Cohn, A. S. et al. Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett. 14, 084047 (2019).Article
Google Scholar
33.Houze, R. A. Jr Orographic effects on precipitating clouds. Rev. Geophys. https://doi.org/10.1029/2011RG000365 (2012).34.C3S ERA5-Land Reanalysis (Copernicus Climate Change Service, 2019).35.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).Article
Google Scholar
36.Sprenger, M. & Wernli, H. The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev. 8, 2569–2586 (2015).Article
Google Scholar
37.Kosztra, B., Büttner, G., Hazeu, G. & Arnold, S. Updated CLC Illustrated Nomenclature Guidelines (European Environment Agency, 2019).38.Duveiller, G., Fasbender, D. & Meroni, M. Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci. Rep. 6, 19401 (2016).Article
Google Scholar
39.Griscom, B. W. et al. Global Reforestation Potential Map (Zenodo, 2017); https://doi.org/10.5281/zenodo.88344440.Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 31, 79–105 (2008).Article
Google Scholar
41.Kotlarski, S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7, 1297–1333 (2014).Article
Google Scholar
42.Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).Article
Google Scholar
43.Liu, J. & Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. https://doi.org/10.1038/s41598-019-42494-2 (2019).44.Van der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).Article
Google Scholar
45.Rüdisühli, S., Sprenger, M., Leutwyler, D., Schär, C. & Wernli, H. Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation. Weather Clim. Dyn. 1, 675–699 (2020).Article
Google Scholar
46.Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).Article
Google Scholar
47.Pollock, M. D. et al. Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Resour. Res. 54, 3863–3875 (2018).Article
Google Scholar
48.Trabucco, A., Zomer, R. J., Bossio, D. A., Straaten], O. V. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agr. Ecosyst. Environ. 126, 81–97 (2008).Article
Google Scholar
49.Padrón, R. S., Gudmundsson, L., Greve, P. & Seneviratne, S. I. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis. Water Resour. Res. 53, 9659–9678 (2017).Article
Google Scholar
50.Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).Article
Google Scholar
51.Beck, H. E. et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217 (2017).Article
Google Scholar
52.Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).Article
Google Scholar
53.Lu, N. Scale effects of topographic ruggedness on precipitation over Qinghai-Tibet Plateau. Atmos. Sci. Lett. 20, e904 (2019).Article
Google Scholar
54.EU-DEM Statistical Validation (EEA, 2014).55.Siebert, S., Henrich, V., Frenken, K. & Burke, J. Global Map of Irrigation Areas Version 5 (Rheinische Friedrich-Wilhelms-University and FAO, 2013).56.DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010JD013892 (2010).57.Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. 122, 1403–1422 (2017).Article
Google Scholar
58.Wernli, B. H. & Davies, H. C. A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q. J. R. Meteorol. Soc. 123, 467–489 (1997).Article
Google Scholar
59.Smith, A., Lott, N. & Vose, R. The integrated surface database: recent developments and partnerships. Bull. Am. Meteorol. Soc. 92, 704–708 (2011).Article
Google Scholar
60.Blenkinsop, S., Lewis, E., Chan, S. C. & Fowler, H. J. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK. Int. J. Climatol. 37, 722–740 (2017).Article
Google Scholar
61.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).62.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).Article
Google Scholar
63.Wood, S. N., Li, Z., Shaddick, G. & Augustin, N. H. Generalized additive models for gigadata: modeling the UK black smoke network daily data. J. Am. Stat. Assoc. 112, 1199–1210 (2017).Article
Google Scholar
64.Li, Z. & Wood, S. N. Faster model matrix crossproducts for large generalized linear models with discretized covariates. Stat. Comput. 30, 19–25 (2020).Article
Google Scholar
65.Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article
Google Scholar
66.CH2018. 2018 Climate Scenarios for Switzerland (National Centre for Climate Services, 2018).67.Prein, A. F. et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim. Dyn. 46, 383–412 (2016).Article
Google Scholar
68.Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).Article
Google Scholar
69.Digital Chart of the World (DMA and USGS, 1992). More