Addressing the contribution of indirect potable reuse to inland freshwater salinization
1.Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. Lond. B 374, 20180002 (2018).Article
CAS
Google Scholar
2.Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).Article
Google Scholar
3.Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).CAS
Article
Google Scholar
4.Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).CAS
Article
Google Scholar
5.Stets, E. G. et al. Landscape drivers of dynamic change in water quality of US rivers. Environ. Sci. Technol. 54, 4336–4343 (2020).CAS
Article
Google Scholar
6.Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).CAS
Article
Google Scholar
7.Bird, D. L., Groffman, P. M., Salice, C. J. & Moore, J. Steady-state land cover but non-steady-state major ion chemistry in urban streams. Environ. Sci. Technol. 52, 13015–13026 (2018).CAS
Article
Google Scholar
8.Godwin, K., Hafner, S. & Buff, M. Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ. Pollut. 124, 273–281 (2003).CAS
Article
Google Scholar
9.Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 42, 410–415 (2008).CAS
Article
Google Scholar
10.Overbo, A., Heger, S. & Gulliver, J. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. Sci. Total Environ. 764, 144179 (2021).CAS
Article
Google Scholar
11.Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. Lond. B 374, 20180005 (2018).Article
CAS
Google Scholar
12.Corsi, S. R., Cicco, L. A. D., Lutz, M. A. & Hirsch, R. M. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci. Total Environ. 508, 488–497 (2015).CAS
Article
Google Scholar
13.Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Philos. Trans. R. Soc. Lond. B 374, 20180017 (2018).Article
CAS
Google Scholar
14.Moore, J., Fanelli, R. M. & Sekellick, A. J. High-frequency data reveal deicing salts drive elevated specific conductance and chloride along with pervasive and frequent exceedances of the US Environmental Protection Agency aquatic life criteria for chloride in urban streams. Environ. Sci. Technol. 54, 778–789 (2019).Article
CAS
Google Scholar
15.Löfgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).Article
Google Scholar
16.Daley, M. L., Potter, J. D. & McDowell, W. H. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J. North Am. Benthol Soc. 28, 929–940 (2009).Article
Google Scholar
17.Cooper, C. A., Mayer, P. M. & Faulkner, B. R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 121, 149–166 (2014).CAS
Article
Google Scholar
18.Snodgrass, J. W. et al. Influence of modern stormwater management practices on transport of road salt to surface waters. Environ. Sci. Technol. 51, 4165–4172 (2017).CAS
Article
Google Scholar
19.International Stormwater BMP Database: 2020 Summary Statistics Project No. 4968 (The Water Research Foundation, 2020).20.Venkatesan, A. K., Ahmad, S., Johnson, W. & Batista, J. R. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley. Sci. Total Environ. 409, 2616–2625 (2011).CAS
Article
Google Scholar
21.Steele, M. & Aitkenhead-Peterson, J. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Sci. Total Environ. 409, 3021–3032 (2011).CAS
Article
Google Scholar
22.Davies, P. J., Wright, I. A., Jonasson, O. J. & Findlay, S. J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 7, 233–241 (2010).CAS
Article
Google Scholar
23.Wright, I. A., Davies, P. J., Findlay, S. J. & Jonasson, O. J. A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters. Mar. Freshw. Res. 62, 1355–1361 (2011).CAS
Article
Google Scholar
24.Moore, J., Bird, D. L., Dobbis, S. K. & Woodward, G. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ. Sci. Technol. Lett. 4, 198–204 (2017).CAS
Article
Google Scholar
25.Tippler, C., Wright, I. A., Davies, P. J. & Hanlon, A. The influence of concrete on the geochemical qualities of urban streams. Mar. Freshw. Res. 65, 1009–1017 (2014).CAS
Article
Google Scholar
26.McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).Article
Google Scholar
27.Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164 (2005).Article
Google Scholar
28.Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. Lond. B 374, 20180019 (2018).Article
CAS
Google Scholar
29.Haq, S., Kaushal, S. S. & Duan, S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 141, 463–486 (2018).CAS
Article
Google Scholar
30.Shanley, J. B. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts. J. Environ. Qual. 23, 977–986 (1994).CAS
Article
Google Scholar
31.Hong, P. K. A. & Macauley, Y. Corrosion and leaching of copper tubing exposed to chlorinated drinking water. Water Air Soil Pollut. 108, 457–471 (1998).CAS
Article
Google Scholar
32.Nguyen, C. K., Stone, K. R. & Edwards, M. A. Chloride-to-sulfate mass ratio: practical studies in galvanic corrosion of lead solder. J. Am. Water Works Assoc. 103, 81–92 (2011).CAS
Article
Google Scholar
33.Stets, E., Lee, C., Lytle, D. & Schock, M. Increasing chloride in rivers of the conterminous US and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci. Total Environ. 613-614, 1498–1509 (2018).CAS
Article
Google Scholar
34.Dietrich, A. M. & Burlingame, G. A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 49, 708–720 (2015).CAS
Article
Google Scholar
35.Sodium in drinking water. In Guidelines for Drinking-Water Quality 2nd edn, Vol. 2, Health Criteria and Other Supporting Information (World Health Organization, 1996).36.Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sodium EPA 822-R-03-006 (EPA, 2003).37.National Research Council Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (National Academies Press, 2012).38.Mukherjee, M. & Jensen, O. Making water reuse safe: a comparative analysis of the development of regulation and technology uptake in the US and Australia. Saf. Sci. 121, 5–14 (2020).Article
Google Scholar
39.EPA & CDM Smith 2017 Potable Reuse Compendium (EPA, 2017); https://www.epa.gov/sites/production/files/2018-01/documents/potablereusecompendium_3.pdf40.Draft National Water Reuse Action Plan (EPA, 2019); https://www.epa.gov/waterreuse/draft-national-water-reuse-action-plan41.Martin, B. & Via, S. Integrating water reuse into the US water supply portfolio. J. Am. Water Works Assoc. 112, 8–14 (2020).Article
Google Scholar
42.Freshwater: Supply Concerns Continue, and Uncertainties Complicate Planning Technical Report GAO-14-43 (GAO, 2014); https://www.gao.gov/assets/670/663343.pdf43.Rice, J. & Westerhoff, P. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nat. Geosci. 10, 587–591 (2017).CAS
Article
Google Scholar
44.Wiener, M. J., Moreno, S., Jafvert, C. T. & Nies, L. F. Time series analysis of water use and indirect reuse within a HUC-4 basin (Wabash) over a nine year period. Sci. Total Environ. 738, 140221 (2020).CAS
Article
Google Scholar
45.Harris-Lovett, S. & Sedlak, D. Protecting the sewershed. Science 369, 1429–1430 (2020).CAS
Article
Google Scholar
46.Falconer, I. R., Chapman, H. F., Moore, M. R. & Ranmuthugala, G. Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21, 181–191 (2006).CAS
Article
Google Scholar
47.Novotny, E. V., Sander, A. R., Mohseni, O. & Stefan, H. G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 45, W12410 (2009).Article
Google Scholar
48.Potter, J. D., McDowell, W. H., Helton, A. M. & Daley, M. L. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry 121, 271–286 (2013).Article
CAS
Google Scholar
49.Kaushal, S. S. et al. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121, 23–44 (2014).CAS
Article
Google Scholar
50.Ambient Water Quality Criteria for Chloride Technical Report EPA 440/5-88-001 (EPA, 1998).51.Nelsen, R. B. An Introduction to Copulas (Springer-Verlag, 2007).52.Comprehensive Annual Financial Report (Upper Occoquan Service Authority, 2017); https://www.uosa.org/Documents/0450_012759.pdf53.Tjandraatmadja, G. et al. Sources of Priority Contaminants in Domestic Wastewater: Contaminant Contribution from Household Products (CSIRO, 2008).54.Schwabe, K., Nemati, M., Amin, R., Tran, Q. & Jassby, D. Unintended consequences of water conservation on the use of treated municipal wastewater. Nat. Sustain. 3, 628–635 (2020).Article
Google Scholar
55.Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209–1220 (2018).CAS
Article
Google Scholar
56.Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).CAS
Article
Google Scholar
57.Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).CAS
Article
Google Scholar
58.Liu, C. et al. Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl. Mater. Interfaces 12, 25471–25477 (2020).CAS
Article
Google Scholar
59.Baldassarre, G. D. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).Article
Google Scholar
60.Su, J. G. et al. Factors influencing whether children walk to school. Health Place 22, 153–161 (2013).Article
Google Scholar
61.Micron Announces Investment in Its Semiconductor Manufacturing Plant in Manassas, Virginia (Micron Technology, 2018); https://investors.micron.com/node/37386/pdf62.Lazarova, V., Savoye, P., Janex, M. L., Blatchley, E. R. & Pommepuy, M. Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci. Technol. 40, 203–213 (1999).CAS
Article
Google Scholar
63.Davis, M. L. Water and Wastewater Engineering: Design Principles and Practice (McGraw-Hill, 2010).
Google Scholar
64.Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere 93, 1268–1287 (2013).CAS
Article
Google Scholar
65.Rauch, W. & Kleidorfer, M. Replace contamination, not the pipes. Science 345, 734–735 (2014).CAS
Article
Google Scholar
66.Potts, J. The innovation deficit in public services: the curious problem of too much efficiency and not enough waste and failure. Innovation 11, 34–43 (2009).Article
Google Scholar
67.McKenzie-Mohr, D., Lee, N. R. & Schultz, P. W. Social Marketing to Protect the Environment: What Works (Sage, 2011).68.Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).Article
Google Scholar
69.Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).Article
Google Scholar
70.Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).Article
Google Scholar
71.Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799–7807 (2017).Article
Google Scholar
72.Sadegh, M., Ragno, E. & AghaKouchak, A. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 53, 5166–5183 (2017).Article
Google Scholar
73.Racine, J. & Hyndman, R. Using R to teach econometrics. J. Appl. Econom. 17, 175–189 (2002).Article
Google Scholar More