Safeguarding the microbial water quality from source to tap
1.Prest, E. I., Hammes, F., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45 (2016).ArticleÂ
Google ScholarÂ
2.de Moel, P. J., Verberk, J. Q. J. C. & van Dijk, J. C. Drinking water: Principles and practices. Drinking water: Principles and practices. (World Scientific Publishing Co., 2006). https://doi.org/10.1142/6135.3.Nescerecka, A., Rubulis, J., Vital, M., Juhna, T. & Hammes, F. Biological instability in a chlorinated drinking water distribution network. PLoS ONE 9, e96354 (2014).ArticleÂ
CASÂ
Google ScholarÂ
4.Skjevrak, I., Lund, V., Ormerod, K., Due, A. & Herikstad, H. Biofilm in water pipelines; a potential source for off-flavours in the drinking water. Water Sci. Technol. 49, 211â217 (2004).CASÂ
ArticleÂ
Google ScholarÂ
5.Zhang, Y., Love, N. & Edwards, M. Nitrification in drinking water systems. Crit. Rev. Envi Sci. Tech. 39, 153â208 (2009).CASÂ
ArticleÂ
Google ScholarÂ
6.Liu, S. et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ. Sci. Technol. 50, 8954â8976 (2016).CASÂ
ArticleÂ
Google ScholarÂ
7.Litke, D. W. Review of phosphorus control measures in the United States and their effects on water quality. U.S. Geological Survey Water-Resources Investigations Report 99â4007. http://pubs.usgs.gov/wri/wri994007/pdf/wri99-4007.pdf (1999).8.EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJEC https://doi.org/10.1039/ap9842100196 (2000).9.European Environmental Agency. European waters Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (2018).10.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate Change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).CASÂ
ArticleÂ
Google ScholarÂ
11.Grillakis, M. G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245â1255 (2019).CASÂ
ArticleÂ
Google ScholarÂ
12.Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 012131 (2019).ArticleÂ
CASÂ
Google ScholarÂ
13.Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217â5237 (2015).ArticleÂ
Google ScholarÂ
14.Lace, I., Krauklis, K., SpalviĆĆĄ, A. & Laicans, J. Implementations of Riga city water supply system founded on groundwater sources. IOP Conf. Ser. Mater. Sci. Eng. 251, 012131 (2017).ArticleÂ
Google ScholarÂ
15.Oron, G. et al. Greywater use in Israel and worldwide: standards and prospects. Water Res. 58, 92â101 (2014).CASÂ
ArticleÂ
Google ScholarÂ
16.Lahnsteiner, J. & Lempert, G. Water management in Windhoek, Namibia. Water Sci. Technol. 55, 441â448 (2007).CASÂ
ArticleÂ
Google ScholarÂ
17.Vandenbohede, A., Houtte, E. Van & Lebbe, L. Water quality changes in the dunes of the western Belgian coastal plain due to artificial recharge of tertiary treated wastewater. Appl. Geochem. 24, 370â382 (2009).CASÂ
ArticleÂ
Google ScholarÂ
18.Fish, K. E., Osborn, A. M. & Boxall, J. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environ. Sci. Water Res. Technol. 2, 614â630 (2016).ArticleÂ
Google ScholarÂ
19.Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623â633 (2010).CASÂ
ArticleÂ
Google ScholarÂ
20.Tsao, H. F. et al. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. Water Res. 159, 464â479 (2019).CASÂ
ArticleÂ
Google ScholarÂ
21.van der Wielen, P. W. J. J. & van der Kooij, D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the Netherlands. Appl. Environ. Microbiol. 79, 825â834 (2013).CASÂ
ArticleÂ
Google ScholarÂ
22.Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P. & Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 141, 671â686 (2013).CASÂ
ArticleÂ
Google ScholarÂ
23.Sedlak, D. L. & Von Gunten, U. The chlorine dilemma. Science 331, 42â43 (2011).CASÂ
ArticleÂ
Google ScholarÂ
24.Nystrom, A., Grimvall, A., Krantz-Rulcker, C., Savenhed, R. & Akerstrand, K. Drinking water off-flavour caused by 2,4,6-trichloroanisole. Water Sci. Technol. 25, 241â249 (1992).ArticleÂ
Google ScholarÂ
25.van der Kooij, D. Assimilable organic carbon as an indicator of bacterial regrowth. J. Am. Water Work. Assoc. 84, 57â65 (1992).ArticleÂ
Google ScholarÂ
26.Rosario-Ortiz, F., Rose, J., Speight, V., Gunten, U. V. & Schnoor, J. How do you like your tap water? Science 351, 912â914 (2016).CASÂ
ArticleÂ
Google ScholarÂ
27.Hammes, F., Berger, C., Köster, O. & Egli, T. Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. J. Water Supply Res. T 59, 31â40 (2010).CASÂ
ArticleÂ
Google ScholarÂ
28.Baghoth, S. A., Dignum, M., Grefte, A., Kroesbergen, J. & Amy, G. L. Characterization of NOM in a drinking water treatment process train with no disinfectant residual. Water Sci. Tech.-W. Sup 9, 379â386 (2009).CASÂ
ArticleÂ
Google ScholarÂ
29.Hambsch, B. Distributing groundwater without a disinfectant residual. J. Am. Water Work. Assoc. 91, 81â85 (1999).CASÂ
ArticleÂ
Google ScholarÂ
30.Sousi, M. et al. Measuring Bacterial Growth Potential of Ultra-Low Nutrient Drinking Water Produced by Reverse Osmosis: Effect of Sample Pre-treatment and Bacterial Inoculum. Front. Microbiol. 11, 791 (2020).ArticleÂ
Google ScholarÂ
31.Lechevallier, M. W., Welch, N. J. & Smith, D. B. Full-scale studies of factors related to coliform regrowth in drinking water. Appl. Environ. Microbiol. 62, 2201â2211 (1996).CASÂ
ArticleÂ
Google ScholarÂ
32.Servais, P., Barillier, A. & Garnier, J. Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters. Ann. Limnol. – Int. J. Lim 31, 75â80 (1995).ArticleÂ
Google ScholarÂ
33.Van Nevel, S., De Roy, K. & Boon, N. Bacterial invasion potential in water is determined by nutrient availability and the indigenous community. FEMS Microbiol. Ecol. 85, 593â603 (2013).ArticleÂ
CASÂ
Google ScholarÂ
34.Vital, M., Stucki, D., Egli, T. & Hammes, F. Evaluating the growth potential of pathogenic bacteria in water. Appl. Environ. Microbiol. 76, 6477â6484 (2010).CASÂ
ArticleÂ
Google ScholarÂ
35.Lehtola, M. J., Miettinen, I. T., Vartiainen, T., Myllykangas, T. & Martikainen, P. J. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Res. 35, 1635â1640 (2001).CASÂ
ArticleÂ
Google ScholarÂ
36.WHO. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. (World Health Organization, 2017).37.Sathasivan, A., Fisher, I. & Tam, T. Onset of severe nitrification in mildly nitrifying chloraminated bulk waters and its relation to biostability. Water Res. 42, 3623â3632 (2008).CASÂ
ArticleÂ
Google ScholarÂ
38.Rittmann, B. E. & Snoeyink, V. L. Achieving biologically stable drinking water. J. Am. Water Work. Assoc. 76, 106â110 (1984).CASÂ
ArticleÂ
Google ScholarÂ
39.Favere, J., Buysschaert, B., Boon, N. & De Gusseme, B. Online microbial fingerprinting for quality management of drinking water: Full-scale event detection. Water Res. 170, 115353 (2020).CASÂ
ArticleÂ
Google ScholarÂ
40.Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res. 47, 7131â7142 (2013).CASÂ
ArticleÂ
Google ScholarÂ
41.Prest, E. I. et al. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Res. 63, 179â189 (2014).CASÂ
ArticleÂ
Google ScholarÂ
42.Chatzigiannidou, I., Props, R. & Boon, N. Drinking water bacterial communities exhibit specific and selective necrotrophic growth. npj Clean Water 1, 22 (2018).ArticleÂ
Google ScholarÂ
43.MacArthur, R. H. & Wilson, E. O. The Theory of Island biogeography (MPB-1). (Princeton University Press, 2015).44.De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360â2368 (2014).ArticleÂ
Google ScholarÂ
45.Brzeszcz, J., Steliga, T., Kapusta, P., Turkiewicz, A. & Kaszycki, P. r-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. T Biodeterior. Biodegrad. Int. Biodeter. 106, 41â52 (2016).CASÂ
ArticleÂ
Google ScholarÂ
46.De Vrieze, J., Christiaens, M. E. R. & Verstraete, W. The microbiome as engineering tool: manufacturing and trading between microorganisms. N. Biotechnol. 39, 206â214 (2017).ArticleÂ
CASÂ
Google ScholarÂ
47.Tilman, D. Resources: a Graphical-Mechanistic Approach to Competition and Predation. Am. Nat. 116, 362â393 (1980).ArticleÂ
Google ScholarÂ
48.Jia, M., Winkler, M. K. H. & Volcke, E. I. P. Elucidating the Competition between Heterotrophic Denitrification and DNRA Using the Resource-Ratio Theory. Environ. Sci. Technol. 54, 13953â13962 (2020).ArticleÂ
CASÂ
Google ScholarÂ
49.Ho, A. et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. Rep. 5, 335â345 (2013).CASÂ
ArticleÂ
Google ScholarÂ
50.Vadstein, O., Attramadal, K. J. K., Bakke, I. & Olsen, Y. K-selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front. Microbiol. 9, 1â17 (2018).ArticleÂ
Google ScholarÂ
51.Liu, G., Verberk, J. Q. J. C. & Van Dijk, J. C. Bacteriology of drinking water distribution systems: an integral and multidimensional review. Appl. Microbiol. Biotechnol. 97, 9265â9276 (2013).CASÂ
ArticleÂ
Google ScholarÂ
52.Lehtola, M. J., Miettinen, I. T. & Martikainen, P. J. Biofilm formation in drinking water affected by low concentrations of phosphorus. Can. J. Microbiol. 48, 494â499 (2002).CASÂ
ArticleÂ
Google ScholarÂ
53.Odum, E. P. & Barrett, G. W. Fundamentals of Ecology. Third Edition. Thomson, Brooks/Cole (W.B. Saunders Co., 1971).54.Andrews, J. H. & Harris, R. F. r- and K-Selection and Microbial Ecology. Advances in Microbial Ecology (Springer, Boston, MA, 1986). https://doi.org/10.1007/978-1-4757-0611-6_3.55.O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313â334 (2012).CASÂ
ArticleÂ
Google ScholarÂ
56.Temmerman, R., Vervaeren, H., Noseda, B., Boon, N. & Verstraete, W. Necrotrophic growth of Legionella pneumophila. Appl. Environ. Microbiol. 72, 4323â4328 (2006).CASÂ
ArticleÂ
Google ScholarÂ
57.Besmer, M. D. et al. Laboratory-scale simulation and real-time tracking of a microbial contamination event and subsequent shock-chlorination in drinking water. Front. Microbiol. 8, 1900 (2017).ArticleÂ
Google ScholarÂ
58.Props, R., Monsieurs, P., Mysara, M., Clement, L. & Boon, N. Measuring the biodiversity of microbial communities by flow cytometry. Methods Ecol. Evol. 7, 1376e1385 (2016).ArticleÂ
Google ScholarÂ
59.Howell, D., Rogier, M., Yzerbyt, V. & Bestgen, Y. MĂ©thodes statistiques en sciences humaines. (De Boeck UniversitĂ©, 1998).60.Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D. & Verstraete, W. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 10, 1571â1581 (2008).CASÂ
ArticleÂ
Google ScholarÂ
61.Wittebolle, L. et al. Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities. J. Appl. Microbiol. 99, 997â1066 (2005).CASÂ
ArticleÂ
Google ScholarÂ
62.Boon, N., Pycke, B. F. G., Marzorati, M. & Hammes, F. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Res. 45, 6355â6361 (2011).CASÂ
ArticleÂ
Google ScholarÂ
63.European Union. 98/83/EC on the quality of water intented for human consumption. OJEC 41, 32â54 (1998).
Google ScholarÂ
64.Liu, G. et al. Potential impacts of changing supply-water quality on drinking water distribution: a review. Water Res. 116, 135â148 (2017).CASÂ
ArticleÂ
Google ScholarÂ
65.White, S. A. & Cousins, M. M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol. Eng. 127, 468â479 (2013).
Google ScholarÂ
66.Chang, N. Bin, Islam, K., Marimon, Z. & Wanielista, M. P. Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms. Chemosphere 88, 736â743 (2012).CASÂ
ArticleÂ
Google ScholarÂ
67.Wu, Q., Hu, Y., Li, S., Peng, S. & Zhao, H. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour. Technol. 211, 451â456 (2016).CASÂ
ArticleÂ
Google ScholarÂ
68.Lin, J. L., Tu, Y. T., Chiang, P. C., Chen, S. H. & Kao, C. M. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: a case study in Taiwan. J. Hydrol. 525, 400â408 (2015).CASÂ
ArticleÂ
Google ScholarÂ
69.Benndorf, J. & PĂŒtz, K. Control of eutrophication of lakes and reservoirs by means of pre-dams-I. Mode of operation and calculation of the nutrient elimination capacity. Water Res. 21, 829â838 (1987).CASÂ
ArticleÂ
Google ScholarÂ
70.Haghseresht, F., Wang, S. & Do, D. D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl. Clay Sci. 46, 369â375 (2009).CASÂ
ArticleÂ
Google ScholarÂ
71.Kumar, P., Korving, L., van Loosdrecht, M. C. M. & Witkamp, G. J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res. X 4, 100029 (2019).CASÂ
ArticleÂ
Google ScholarÂ
72.Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181â186 (2000).CASÂ
ArticleÂ
Google ScholarÂ
73.Barbosa, R. G., Sleutels, T., Verstraete, W. & Boon, N. Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. Bioresour. Technol. 311, 123494 (2020).CASÂ
ArticleÂ
Google ScholarÂ
74.Jiang, Q., Song, X., Liu, J., Shao, Y. & Feng, Y. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC). Water Res. 167, 115097 (2019).CASÂ
ArticleÂ
Google ScholarÂ
75.Nescerecka, A., Juhna, T. & Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 135, 11â21 (2018).CASÂ
ArticleÂ
Google ScholarÂ
76.Pinto, A. J., Schroeder, J., Lunn, M., Sloan, W. & Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiomez. mBio 5, e01135â14 (2014).ArticleÂ
CASÂ
Google ScholarÂ
77.Fritzmann, C., Löwenberg, J., Wintgens, T. & Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 216, 1â76 (2007).CASÂ
ArticleÂ
Google ScholarÂ
78.Grefte, A., Dignum, M., Baghoth, S. A., Cornelissen, E. R. & Rietveld, L. C. Improving the biological stability of drinking water by ion exchange. Water Sci. Tech.-W Sup. 11, 107â112 (2011).CASÂ
ArticleÂ
Google ScholarÂ
79.Park, S. K. & Hu, J. Y. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. J. Environ. Sci. Health A. 45, 968â977 (2010).CASÂ
ArticleÂ
Google ScholarÂ
80.Kirisits, M. J., Emelko, M. B. & Pinto, A. J. Applying biotechnology for drinking water biofiltration: advancing science and practice. Curr. Opin. Biotechnol. 57, 197â204 (2019).CASÂ
ArticleÂ
Google ScholarÂ
81.Pinto, A. J., Xi, C. & Raskin, L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ. Sci. Technol. 46, 8851â8859 (2012).CASÂ
ArticleÂ
Google ScholarÂ
82.Douterelo, I., Husband, S., Loza, V. & Boxall, J. Dynamics of biofilm regrowth in drinking water distribution systems. Appl. Environ. Microbiol. 82, 4155â4168 (2016).CASÂ
ArticleÂ
Google ScholarÂ
83.Van Nevel, S. et al. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res. 113, 191â206 (2017).ArticleÂ
CASÂ
Google Scholar More
