Markus Andrews
More stories
150 Shares179 Views
in ResourcesTransboundary cooperation a potential route to sustainable development in the Indus basin
1.
Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).
Article Google Scholar
2.
Wada, Y. et al. Co-designing Indus water–energy–land futures. One Earth 1, 185–194 (2019).
Article Google Scholar3.
AQUASTAT Transboundary River Basin Overview—Indus (FAO, 2011); https://go.nature.com/2KxKRqB4.
Aslam, M. Agricultural productivity current scenario, constraints and future prospects in Pakistan. Sarhad J. Agric. 32, 289–303 (2016).
Article Google Scholar5.
Karimi, P., Bastiaanssen, W. G. M., Molden, D. & Cheema, M. J. M. Basin-wide water accounting based on remote sensing data: an application for the Indus basin. Hydrol. Earth Syst. Sci. 17, 2473–2486 (2013).
Article Google Scholar6.
Akhter, M. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 21–33 (Springer, 2017); https://go.nature.com/3pVNgvo7.
Yu, W. et al. Indus Basin of Pakistan: Impacts of Climate Risks on Water and Agriculture (World Bank, 2013); https://go.nature.com/3kY7dxV8.
Cheema, M., Immerzeel, W. & Bastiaanssen, W. Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Groundwater 52, 25–36 (2014).
CAS Article Google Scholar9.
Syvitski, J. P. et al. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 3, 24–35 (2013).
Article Google Scholar10.
Adeel, Z. & Wirsing, R. G. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 3–20 (Springer, 2017); https://go.nature.com/3pYJHF111.
Raman, D. Damming and infrastructural development of the Indus River basin: strengthening the provisions of the indus waters treaty. Asian J. Int. Law 8, 372–402 (2018).
Article Google Scholar12.
Archer, D. R., Forsythe, N., Fowler, H. J. & Shah, S. M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 14, 1669–1680 (2010).
Article Google Scholar13.
Just, R. E. & Netanyahu, S. Conflict and Cooperation on Trans-Boundary Water Resources (Springer, 1998).14.
Qamar, M. U., Azmat, M. & Claps, P. Pitfalls in transboundary Indus Water Treaty: a perspective to prevent unattended threats to the global security. npj Clean Water 2, 22 (2019).
Article Google Scholar15.
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
CAS Article Google Scholar16.
Wu, X. & Whittington, D. Incentive compatibility and conflict resolution in international river basins: a case study of the Nile Basin. Water Resour. Res. 42, W02417 (2006).
Article Google Scholar17.
Keskinen, M. et al. The water–energy–food nexus and the transboundary context: insights from large Asian rivers. Water 8, 193 (2016).
Article Google Scholar18.
Bhaduri, A. et al. Achieving Sustainable Development Goals from a water perspective. Front. Environ. Sci. 4, 64 (2016).
Article Google Scholar19.
Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3, 621–626 (2013).
Article Google Scholar20.
Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).
Article Google Scholar21.
Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).
Article Google Scholar22.
Albrecht, T. R., Crootof, A. & Scott, C. A. The water–energy–food nexus: a systematic review of methods for Nexus assessment. Environ. Res. Lett. 13, 043002 (2018).
Article Google Scholar23.
Kaddoura, S. & El Khatib, S. Review of water–energy–food nexus tools to improve the nexus modelling approach for integrated policy making. Environ. Sci. Policy 77, 114–121 (2017).
Article Google Scholar24.
Siddiqi, A. & Wescoat, J. L. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water Int. 38, 571–586 (2013).
Article Google Scholar25.
Stewart, J. et al. Indus River System Model (IRSM)—a Planning Tool to Explore Water Management Options in Pakistan: Model Conceptualisation, Configuration and Calibration (CSIRO Land & Water, 2018); https://go.nature.com/3q4rkyz26.
Yang, Y. C. E., Ringler, C., Brown, C. & Mondal, M. A. H. Modeling the agricultural water–energy–food nexus in the Indus River basin, Pakistan. J. Water Resour. Plan. Manag. 142, 04016062 (2016).
Article Google Scholar27.
de Strasser, L., Lipponen, A., Howells, M., Stec, S. & Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 8, 59 (2016).
Article Google Scholar28.
Parrachino, I., Dinar, A. & Patrone, F. Cooperative Game Theory and its Application to Natural, Environmental, and Water Resource Issues: 3. Application to Water Resources Policy Research Working Papers (World Bank, 2006); https://go.nature.com/2UXhPCQ29.
Singh, A., Jamasb, T., Nepal, R. & Toman, M. A. Cross-Border Electricity Cooperation in South Asia Policy Research Working Paper No. 7328 (World Bank, 2015).30.
Hasson, R., Löfgren, Å. & Visser, M. Climate change in a public goods game: investment decision in mitigation versus adaptation. Ecol. Econ. 70, 331–338 (2010).
Article Google Scholar31.
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
CAS Article Google Scholar32.
Kalair, A. R. et al. Water, energy and food nexus of Indus Water Treaty: water governance. Water-Energy Nexus 2, 10–24 (2019).
Article Google Scholar33.
Vinca, A. et al. The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy-water-land system transformations. Geosci. Model Dev. 13, 1095–1121 (2020).
Article Google Scholar34.
Mir, K. A., Purohit, P. & Mehmood, S. Sectoral assessment of greenhouse gas emissions in Pakistan. Environ. Sci. Pollut. Res. 24, 27345–27355 (2017).
CAS Article Google Scholar35.
Ahmad, B. & Saqlain, S. People perception regarding possible impact of urbanization on environmental degradation in Islamabad. IAU Int. J. Soc. Sci. 8, 1–10 (2018).
Google Scholar36.
Scott, C. A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F. & Varela-Ortega, C. Irrigation efficiency and water-policy implications for river basin resilience. Hydrol. Earth Syst. Sci. 18, 1339–1348 (2014).
Article Google Scholar37.
Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).
CAS Article Google Scholar38.
Baum, R., Luh, J. & Bartram, J. Sanitation: A global estimate of sewerage connections without treatment and the resulting impact on MDG progress. Environ. Sci. Technol. 47, 1994–2000 (2013).
CAS Article Google Scholar39.
González-villareal, F. & Schultz, B. Final Report of IPOE for Review of Studies on Water Escapages Below Kotri Barrage Technical Report (ResearchGate, 2018); https://doi.org/10.13140/RG.2.2.28670.0288540.
Casillas, C. E. & Kammen, D. M. The energy–poverty–climate nexus. Science 26, 1181–1182 (2010).
Article Google Scholar41.
GDP (current US$)—Pakistan (World Bank, 2020); https://go.nature.com/2KCSDzB42.
Singh, A., Jamasb, T., Nepal, R. & Toman, M. Electricity cooperation in South Asia: barriers to cross-border trade. Energy Policy 120, 741–748 (2018).
Article Google Scholar43.
Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. https://doi.org/10.1080/07900627.2019.1579705 (2019).44.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B. & Bierkens, M. F. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).
CAS Article Google Scholar45.
Maurer, J. M., Schaefer, J. M., Rupper, S. & Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 5, eaav7266 (2019).
CAS Article Google Scholar46.
Immerzeel, W. W., Van Beek, L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
CAS Article Google Scholar47.
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Article Google Scholar48.
Majhi, B. & Kumar, A. Changing cropping pattern in Indian agriculture. J. Econ. Soc. Dev. 14, 37–45 (2018).
Google Scholar49.
Burek, P. et al. Development of the Community Water Model (CWatM v1.04)—a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci. Model Dev. 13, 3267–3298 (2020).
Article Google Scholar50.
Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).
Article Google Scholar51.
Messner, S. & Strubegger, M. User’s Guide for MESSAGE III IIASA Working Paper (IIASA, 1995).52.
Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).
Article Google Scholar53.
Van Vliet, O. et al. Synergies in the Asian energy system: climate change, energy security, energy access and air pollution. Energy Econ. 34, S470–S480 (2012).
Article Google Scholar54.
Kiani, B. et al. Optimal electricity system planning in a large hydro jurisdiction: will British Columbia soon become a major importer of electricity? Energy Policy 54, 311–319 (2013).
Article Google Scholar55.
Salmivaara, A. et al. Exploring the modifiable areal unit problem in spatial water assessments: a case of water shortage in monsoon Asia. Water 7, 898–917 (2015).
Article Google Scholar56.
Yang, Y.-C. E., Brown, C. M., Yu, W. H. & Savitsky, A. An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin. Water Int. 38, 632–650 (2013).
Article Google Scholar57.
Kahil, T. et al. A continental-scale hydroeconomic model for integrating water-energy-land nexus solutions. Water Resour. Res 54, 7511–7533 (2018).
Article Google Scholar58.
Kim, S. H. et al. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217–231 (2016).
Article Google Scholar59.
Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. M. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food-climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).
Article Google Scholar60.
Sridharan, V., Shivakumar, A., Niet, T., Ramos, E. P. & Howells, M. Land, energy and water resource management and its impact on GHG emissions, electricity supply and food production- Insights from a Ugandan case study. Environ. Res. Commun. 2, 085003 (2020).
Article Google Scholar61.
Saif, Y. & Almansoori, A. An optimization framework for the climate, land, energy, and water (CLEWS) nexus by a discrete optimization model. Energy Procedia 105, 3232–3238 (2017).
Article Google Scholar62.
Smakhtin, V. U., Revenga, C. & Doll, P. Taking Into Account Environmental Water Requirements in Global-scale Water Resources Assessments IWMI Research Reports (IWMI, 2004).63.
Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).
Article Google Scholar64.
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Article Google Scholar More150 Shares169 Views
in ResourcesBlue water footprint linked to national consumption and international trade is unsustainable
1.
Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).
ADS CAS PubMed Google Scholar
2.
WWAP The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).3.
Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).
Google Scholar4.
Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H. & Rozelle, S. The nature and causes of the global water crisis: syndromes from a meta-analysis of coupled human–water studies. Water Resour. Res. 48, W10516 (2012).
ADS Google Scholar5.
Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. 106, 3349–3356 (2001).
ADS Google Scholar6.
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
ADS CAS PubMed Google Scholar7.
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).
Google Scholar8.
Richter, B. Chasing Water: A Guide for Moving from Scarcity to Sustainability (Island, 2014).9.
Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).
Google Scholar10.
Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 2, 422–430 (2010).
Google Scholar11.
Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008).
ADS Google Scholar12.
Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).
ADS Google Scholar13.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).
ADS CAS PubMed PubMed Central Google Scholar14.
Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa https://doi.org/10.12952/journal.elementa.000083 (2016).15.
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
ADS PubMed PubMed Central Google Scholar16.
Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
ADS PubMed Google Scholar17.
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).
ADS CAS PubMed Google Scholar18.
Burek, P. et al. Water Futures and Solution – Fast Track Initiative (Final Report) (IIASA, 2016).19.
Alcamo, J. et al. Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol. Sci. J. 48, 339–348 (2003).
Google Scholar20.
WWAP The United Nations World Water Development Report 2019: Leaving No One Behind (UNESCO, 2019).21.
Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).
ADS PubMed Google Scholar22.
Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).23.
Hoekstra, A. Y. The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 3, 21–46 (2011).
Google Scholar24.
Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).
CAS PubMed Google Scholar25.
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
ADS CAS PubMed Google Scholar26.
Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545–546 (1998).
CAS Google Scholar27.
Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).
Google Scholar28.
Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manag. 31, 3061–3081 (2017).
Google Scholar29.
Boulay, A. M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).
ADS CAS PubMed Google Scholar30.
Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).
Google Scholar31.
Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).
PubMed PubMed Central Google Scholar32.
Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).
ADS Google Scholar33.
Dolganova, I. et al. The water footprint of European agricultural imports: hotspots in the context of water scarcity. Resources 8, 141 (2019).
Google Scholar34.
Finogenova, N. et al. Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci. Total Environ. 662, 521–529 (2019).
ADS CAS PubMed Google Scholar35.
Feng, K., Hubacek, K., Pfister, S., Yu, Y. & Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 48, 7704–7713 (2014).
ADS CAS PubMed Google Scholar36.
Yano, S., Hanasaki, N., Itsubo, N. & Oki, T. Water scarcity footprints by considering the differences in water sources. Sustainability 7, 9753 (2015).
Google Scholar37.
Hoekstra, A. Y. & Chapagain, A. K. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour. Manag. 21, 35–48 (2007).
Google Scholar38.
Fader, M. et al. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15, 1641–1660 (2011).
ADS Google Scholar39.
Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).
Google Scholar40.
Wang, R. & Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 50, 5143–5153 (2016).
ADS CAS PubMed Google Scholar41.
Vanham, D. The water footprint of the EU: quantification, sustainability and relevance. Water Int. 43, 731–745 (2018).
Google Scholar42.
Galli, A. et al. Integrating ecological, carbon and water footprint into a ‘Footprint Family’ of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16, 100–112 (2012).
Google Scholar43.
Ercin, E., Chico, D. & Chapagain, A. K. Vulnerabilities of the European Union’s economy to hydrological extremes outside its borders. Atmosphere 10, 593 (2019).
ADS Google Scholar44.
Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).
Google Scholar45.
Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: a study for China (1978–2008). Water Res. 94, 73–85 (2016).
CAS PubMed Google Scholar46.
Rushforth, R. R. & Ruddell, B. L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 22, 3007–3032 (2018).
ADS Google Scholar47.
Hou, S. et al. Blue and green water footprint assessment for China—a multi-region input–output approach. Sustainability 10, 2822 (2018).
Google Scholar48.
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
ADS CAS PubMed PubMed Central Google Scholar49.
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
ADS CAS PubMed Google Scholar50.
Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).
ADS CAS PubMed Google Scholar51.
Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7, 3977–4021 (2010).
ADS Google Scholar52.
Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).
ADS CAS Google Scholar53.
Qu, S. et al. Virtual water scarcity risk to the global trade system. Environ. Sci. Technol. 52, 673–683 (2018).
ADS CAS PubMed Google Scholar54.
Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).
Google Scholar55.
Han, M. Y., Chen, G. Q. & Li, Y. L. Global water transfers embodied in international trade: tracking imbalanced and inefficient flows. J. Clean. Prod. 184, 50–64 (2018).
Google Scholar56.
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).
ADS CAS PubMed PubMed Central Google Scholar57.
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).
ADS Google Scholar58.
Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).
ADS Google Scholar59.
Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).
ADS Google Scholar60.
Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).
Google Scholar61.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).62.
Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).
ADS CAS PubMed Google Scholar63.
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).
Google Scholar64.
Tessmann, S. A. in Environmental Use Sector: Reconnaissance Elements of the Western Dakotas Region of South Dakota Study (Water Resources Institute, South Dakota State Univ., 1980).65.
Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).
ADS CAS PubMed Google Scholar66.
Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).
ADS Google Scholar67.
Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. 234, 106122 (2020).
Google Scholar68.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
ADS CAS PubMed Google Scholar69.
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
ADS CAS PubMed PubMed Central Google Scholar70.
Hoekstra, A. Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett. 9, 091003 (2014).
ADS Google Scholar71.
Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).
Google Scholar72.
Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).
ADS CAS PubMed Google Scholar73.
Rockström, J. et al. Managing water in rainfed agriculture—the need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).
Google Scholar74.
Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19, 4877–4891 (2015).
ADS CAS Google Scholar75.
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
ADS CAS PubMed Google Scholar76.
Mekonnen, M. M. & Hoekstra, A. Y. Water footprint benchmarks for crop production: a first global assessment. Ecol. Indic. 46, 214–223 (2014).
Google Scholar77.
Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indic. 32, 1–8 (2013).
Google Scholar78.
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).
ADS CAS PubMed Google Scholar79.
Mekonnen, M. & Hoekstra, A. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).
CAS Google Scholar80.
Mekonnen, M. M. et al. Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environ. Sci. Technol. 52, 14508–14518 (2018).
ADS CAS PubMed Google Scholar More75 Shares169 Views
in ResourcesClean water to prevent kidney disease
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More
138 Shares179 Views
in ResourcesOrganic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2
1.
Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018).
CAS Article Google Scholar
2.
Chuang, Y.-H., Chen, S., Chinn, C. J. & Mitch, W. A. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ. Sci. Technol. 51, 13859–13868 (2017).
CAS Article Google Scholar3.
Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).
CAS Article Google Scholar4.
Glaze, W. H., Kang, J.-W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987).
CAS Article Google Scholar5.
Katsoyiannis, I. A., Canonica, S. & von Gunten, U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res. 45, 3811–3822 (2011).6.
Neyens, E. & Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50 (2003).
CAS Article Google Scholar7.
Nidheesh, P. V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv. 5, 40552–40577 (2015).
CAS Article Google Scholar8.
Pham, A. L.-T., Lee, C., Doyle, F. M. & Sedlak, D. L. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 43, 8930–8935 (2009).
CAS Article Google Scholar9.
Lyu, L., Zhang, L., Wang, Q., Nie, Y. & Hu, C. Enhanced Fenton catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes from aromatic pollutant degradation. Environ. Sci. Technol. 49, 8639–8647 (2015).
Article Google Scholar10.
Costa, R. C. C. et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J. Hazard. Mater. 129, 171–178 (2006).
CAS Article Google Scholar11.
Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).
CAS Article Google Scholar12.
Navalon, S., Alvaro, M. & Garcia, H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl. Catal. B 99, 1–26 (2010).
CAS Article Google Scholar13.
Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Heterogeneous fenton catalysts based on activated carbon and related materials. ChemSusChem 4, 1712–1730 (2011).
CAS Article Google Scholar14.
Bataineh, H., Pestovsky, O. & Bakac, A. pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci. 3, 1594–1599 (2012).
CAS Article Google Scholar15.
Lin, S.-S. & Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 32, 1417–1423 (1998).
CAS Article Google Scholar16.
Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. Engl. 45, 6962–6984 (2006).
CAS Article Google Scholar17.
Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).
CAS Article Google Scholar18.
Kim, H. W. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018).
Article Google Scholar19.
Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).
CAS Article Google Scholar20.
Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).
CAS Article Google Scholar21.
Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).
CAS Article Google Scholar22.
Chen, Z. et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017).
Article Google Scholar23.
Murayama, T. & Yamanaka, I. Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell. J. Phys. Chem. C. 115, 5792–5799 (2011).
CAS Article Google Scholar24.
Yamanaka, I. & Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. Engl. 47, 1900–1902 (2008).
CAS Article Google Scholar25.
Bojdys, M. J., Müller, J.-O., Antonietti, M. & Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry 14, 8177–8182 (2008).
CAS Article Google Scholar26.
Liu, J., Zhang, T., Wang, Z., Dawson, G. & Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011).
CAS Article Google Scholar27.
Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C. & Tayade, R. J. Study on UV-LED/TiO2 process for degradation of rhodamine B dye. Chem. Eng. J. 169, 126–134 (2011).
CAS Article Google Scholar28.
He, Z. et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J. Hazard. Mater. 162, 1477–1486 (2009).
CAS Article Google Scholar29.
Fu, H., Pan, C., Yao, W. & Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432–22439 (2005).
CAS Article Google Scholar30.
Yamanaka, K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 28, 632 (1989).31.
Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. Engl. 51, 10307–10310 (2012).
CAS Article Google Scholar More225 Shares109 Views
in ResourcesImproved forecasts of atmospheric rivers through systematic reconnaissance, better modelling, and insights on conversion of rain to flooding
1.
Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).
Article Google Scholar
2.
Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J. & Eylander, J. Defining “Atmospheric River”: how the glossary of meteorology helped resolve a debate. Bull. Am. Meteor. Soc 99, 837–839 (2018). This article provides the definition of an atmospheric river.
Article Google Scholar3.
Ralph, F. M. et al. (eds) In Atmospheric Rivers p. 286 (Springer, 2020).4.
Ralph, F. M., Neiman, P. J. & Rotunno, R. Dropsonde observations in low‐level jets over the Northeastern Pacific Ocean from CALJET‐1998 and PACJET‐2001: mean vertical‐profile and atmospheric‐river characteristics. Mon. Weather Rev. 133, 889–910 (2005).
Article Google Scholar5.
Browning, K. A. & Pardoe, C. W. Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc. 99, 619–638 (1973).
Article Google Scholar6.
Sodemann, H. & Stohl, A. Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Monthly Weather Rev. 141, 2850–2868 (2013).
Article Google Scholar7.
Ralph, F. M. et al. Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor. 18, 2577–2596 (2017).
Article Google Scholar8.
Browning, K. A. Conceptual models of precipitation systems. Weather Forecasting 1, 23–41 (1986).
Article Google Scholar9.
Wernli, H. & Davies, H. C. A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Quart. J. Roy. Meteor. Soc. 123, 467–489 (1997).
Article Google Scholar10.
Madonna, E., Wernli, H., Joos, H. & Martius, O. Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: climatology and potential vorticity evolution. J. Climate 27, 3–26 (2014).
Article Google Scholar11.
Sodemann, H. et al. (eds) In Atmospheric Rivers p. 286 (Springer, 2020).12.
Doyle, J. D., Amerault, C., Reynolds, C. A. & Reinecke, P. A. Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Monthly Weather Rev. 142, 320–342 (2014).
Article Google Scholar13.
Schäfler, A. & Harnisch, F. Impact of the inflow moisture on the evolution of a warm conveyor belt. Quart. J. Roy. Meteor. Soc. 141, 299–310 (2015).
Article Google Scholar14.
Rodwell, M. J., Richardson, D. S., Parsons, D. B. & Wernli, H. Flow-dependent reliability: a path to more skillful ensemble forecasts. Bull. Am. Meteor. Soc. 99, 1015–1026 (2018).
Article Google Scholar15.
Lavers, D. A. et al. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 38, L23803 (2011).
Article Google Scholar16.
Lavers, D. A. & Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 40, 3259–3264 (2013).
Article Google Scholar17.
Ramos, A. M., Trigo, R. M., Liberato, M. L. & Tomé, R. Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor. 16, 579–597 (2015).
Article Google Scholar18.
Ralph, F. M. et al. Flooding on California’s Russian River: role of atmospheric rivers. Geophys. Res. Lett. 33, L13801 (2006).
Article Google Scholar19.
Neiman, P. J., Schick, L. J., Ralph, F. M., Hughes, M. & Wick, G. A. Flooding in western Washington: the connection to atmospheric rivers. J. Hydrometeor. 12, 1337–1358 (2011).
Article Google Scholar20.
Viale, M. & Nunez, M. N. Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor. 12, 481–507 (2011).
Article Google Scholar21.
Kingston, D. G., Lavers, D. A. & Hannah, D. M. Floods in the Southern Alps of New Zealand: the importance of atmospheric rivers. Hydrol. Process. 30, 5063–5070 (2016).
Article Google Scholar22.
Pasquier, J. T., Pfahl, S. & Grams, C. M. Modulation of atmospheric river occurrence and associated precipitation extremes in the North Atlantic Region by European weather regimes. Geophys. Res. Lett. 46, 1014–1023 (2019).
Article Google Scholar23.
UK Met Office. Record Breaking Rainfall. https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/storm-dennis (UK Met Office, 2020).24.
Insured losses from Europe’s Storm Victoria (aka Dennis) estimated at €286M: PERILS. Insurance J. https://www.insurancejournal.com/news/international/2020/03/30/562719.htm (2020).25.
Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R. & Talbot, C. A. Atmospheric rivers drive flood damages in the western United States. Sci. Adv. 5, eaax4631 (2019).
Article Google Scholar26.
Waliser, D. & Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10, 179–183 (2017).
CAS Article Google Scholar27.
Khouakhi, A. & Villarini, G. On the relationship between atmospheric rivers and high sea water levels along the US West Coast. Geophys. Res. Lett. 43, 8815–8822 (2016).
Article Google Scholar28.
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. Atmospheric rivers, floods, and the water resources of California. Water 3, 445–478 (2011).
Article Google Scholar29.
Baggett, C. F., Barnes, E. A., Maloney, E. D. & Mundhenk, B. D. Advancing atmospheric river forecasts into subseasonal‐to‐seasonal time scales. Geophys. Res. Lett. 44, 7528–7536 (2017).
Article Google Scholar30.
DeFlorio, M. J. et al. Global assessment of atmospheric river prediction skill. J. Hydrometeor. 19, 409–426 (2018).
Article Google Scholar31.
Lavers, D. A., Pappenberger, F., Richardson, D. S. & Zsoter, E. ECMWF Extreme Forecast Index for water vapor transport: a forecast tool for atmospheric rivers and extreme precipitation. Geophys. Res. Lett. 43, 11,852–11,858 (2016).
Google Scholar32.
Lavers, D. A., Zsoter, E., Richardson, D. S. & Pappenberger, F. An assessment of the ECMWF extreme forecast index for water vapor transport during boreal winter. Weather Forecast. 32, 1667–1674 (2017). This paper describes the ECMWF Extreme Forecast Index product for integrated vapour transport and highlights the increased possible awareness of atmospheric rivers and extreme precipitation.
Article Google Scholar33.
Nayak, M. A., Villarini, G. & Lavers, D. A. On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett. 41, 4354–4362 (2014).
Article Google Scholar34.
Wick, G. A., Neiman, P. J., Ralph, F. M. & Hamill, T. M. Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Weather Forecast. 28, 1337–1352 (2013).
Article Google Scholar35.
Leutbecher, M. & Palmer, T. N. Ensemble forecasting. J. Comput. Phys. 227, 3515–3539 (2008).
Article Google Scholar36.
Lavers, D. A. et al. The gauging and modeling of rivers in the sky. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079019 (2018).37.
Rutz, J. J. et al. The atmospheric river tracking method intercomparison project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. 2019, 13777–13802 (2019).
Article Google Scholar38.
Martin, A. C., Ralph, F. M., Wilson, A., DeHaan, L. & Kawzenuk, B. Rapid cyclogenesis from a mesoscale frontal wave on an atmospheric river: impacts on forecast skill and predictability during atmospheric river landfall. J. Hydrometeor. 20, 1779–1794 (2019).
Article Google Scholar39.
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
CAS Article Google Scholar40.
Lavers, D. A. et al. Earlier awareness of extreme winter precipitation across the western Iberian Peninsula. Meteorol. Appl. 25, 622–628 (2018).41.
Lavers, D., Tsonevsky, I., Richardson, D. & Pappenberger, F. The Extreme Forecast Index for water vapour flux, ECMWF Newslett. 160, https://www.ecmwf.int/en/newsletter/160/news/extreme-forecast-index-water-vapour-flux (2019).42.
Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteor. Soc. 100, 269–289 (2019).
Article Google Scholar43.
Ralph, F. M. et al. West Coast forecast challenges and development of atmospheric river reconnaissance. Bull. Am. Meteor. Soc., 101, E1357–E1377, https://doi.org/10.1175/BAMS-D-19-0183.1 (2020). This paper provides an overview of Atmospheric River Reconnaissance in the northeast Pacific which is key to the ideas proposed for AR Recon Atlantic.44.
Stone, R. E. et al. Atmospheric river reconnaissance observation impact in the navy global forecast system. Monthly Weather Rev. 148, 763–782 (2020).
Article Google Scholar45.
Lavers, D. A. et al. Forecast errors and uncertainties in Atmospheric Rivers. Weather Forecast. https://doi.org/10.1175/WAF-D-20-0049.1 (2020).46.
National Winter Season Operations Plan. Winter Season Reconnaissance https://www.ofcm.gov/publications/nwsop/nwsop2.htm (2019).47.
Schäfler, A. et al. The North Atlantic Waveguide and Downstream Impact Experiment. Bull. Amer. Meteor. Soc. 99, 1607–1637 (2018). This paper describes the NAWDEX observational campaign in the North Atlantic and AR Recon Atlantic would build on these findings.
Article Google Scholar48.
Grams, C. M., Magnusson, L. & Madonna, E. An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: a case study. Quart. J. R. Meteor. Soc. 144, 2577–2591 (2018).
Article Google Scholar49.
Schäfler, A. et al. Observation of jet stream winds during NAWDEX and characterization of systematic meteorological analysis errors. Monthly Weather Rev. https://doi.org/10.1175/MWR-D-19-0229.1 (2020).50.
Rennie, M. & Isaksen, L. Use of Aeolus observations at ECMWF. ECMWF Newslett. 163, https://www.ecmwf.int/en/newsletter/163/news/use-aeolus-observations-ecmwf (2020).51.
Guan, B., Waliser, D. E., Molotch, N. P., Fetzer, E. J. & Neiman, P. J. Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Monthly Weather Rev. 140, 325–342 (2012).
Article Google Scholar52.
Ralph, F. M. et al. The impact of a prominent rain shadow on flooding in California’s Santa Cruz mountains: a CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor. 4, 1243–1264 (2003).
Article Google Scholar53.
Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F. & Wade, A. J. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. 117, D20106 (2012).
Google Scholar54.
Jasperse J. et al. Preliminary viability assessment of Lake Mendocino forecast informed reservoir operations. Technical report. http://pubs.er.usgs.gov/publication/70192184 (USGS, 2017). More113 Shares189 Views
in ResourcesMoist heat stress extremes in India enhanced by irrigation
1.
Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).
Article Google Scholar
2.
Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, 1–6 (2017).
Article Google Scholar3.
Mishra, V., Mukherjee, S., Kumar, R. & Stone, D. A. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9388 (2017).4.
Coffel, E. D., Horton, R. M. & de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2017).
Article Google Scholar5.
King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).
Article Google Scholar6.
Knutson, T. R. & Ploshay, J. J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Change 138, 25–39 (2016).
Article Google Scholar7.
Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).
Article Google Scholar8.
Kjellstrom, T. et al. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37, 97–112 (2016).
Article Google Scholar9.
Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res. Atmos. 123, 11808–11810 (2018).
Article Google Scholar10.
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).
Article Google Scholar11.
Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).
Article Google Scholar12.
Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).
Article Google Scholar13.
Shankar, P. V., Kulkarni, H. & Krishnan, S. India’s groundwater challenge and the way forward. Econ. Political Wkly 46, 37–45 (2011).
Google Scholar14.
Amarasinghe, U. A., Shah, T. & Anand, B. K. India’s water supply and demand from 2025-2050: business-as-usual scenario and issues. In Proc. Workshop on Analyses of Hydrological, Social and Ecological Issues of the National River Linking Project (eds Amarasinghe, U. A. & Sharma, B. R.) 23–61 (IWMI, 2007).15.
Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 3, 160118 (2016).
Article Google Scholar16.
Cook, B. I., Puma, M. J. & Krakauer, N. Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 37, 1587–1600 (2011).
Article Google Scholar17.
Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).
Article Google Scholar18.
Boucher, O., Myhre, G. & Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 22, 597–603 (2004).
Article Google Scholar19.
Lobell, D. et al. Regional differences in the influence of irrigation on climate. J. Clim. 22, 2248–2255 (2009).
Article Google Scholar20.
Kumar, R. et al. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7, 14054 (2017).
Article Google Scholar21.
Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2015).
Article Google Scholar22.
Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).
Article Google Scholar23.
Azhar, G. S. et al. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS ONE 9, e91831 (2014).
Article Google Scholar24.
Marcella, M. P. & Eltahir, E. A. B. Introducing an irrigation scheme to a regional climate model: a case study over West Africa. J. Clim. 27, 5708–5723 (2014).
Article Google Scholar25.
Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).
Article Google Scholar26.
Willett, K. M. & Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. https://doi.org/10.1002/joc.2257 (2012).27.
Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).
Article Google Scholar28.
Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).
Article Google Scholar29.
Willett, K. M., Gillett, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–712 (2007).
Article Google Scholar30.
Bollasina, M. & Nigam, S. The summertime ‘heat’ low over Pakistan/northwestern India: evolution and origin. Clim. Dyn. 37, 957–970 (2011).
Article Google Scholar31.
Gentine, P., Holtslag, A. A. M., D’Andrea, F. & Ek, M. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14, 1443–1462 (2013).
Article Google Scholar32.
Kang, S. & Eltahir, E. A. B. Impact of irrigation on regional climate over eastern China. Geophys. Res. Lett. 46, 5499–5505 (2019).
Article Google Scholar33.
Kueppers, L. M., Snyder, M. A. & Sloan, L. C. Irrigation cooling effect: regional climate forcing by land-use change. Geophys. Res. Lett. 34, L03703 (2007).
Article Google Scholar34.
Alter, R. E., Im, E. S. & Eltahir, E. A. B. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8, 763–767 (2015).
Article Google Scholar35.
Im, E. S. & Kang, S. & Eltahir, E. A. B. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2018.02.01 (2018).36.
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S. & Helkowski, J. H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 33, 159–175 (2009).
Article Google Scholar37.
Dileepkumar, R., Achutarao, K. & Arulalan, T. Human influence on sub-regional surface air temperature change over India. Sci. Rep. 8, 8967 (2018).
Article Google Scholar38.
Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
Article Google Scholar39.
Sharma, A. et al. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 11, 064004 (2016).
Article Google Scholar40.
Georgescu, M., Moustaoui, M., Mahalov, A. & Dudhia, J. An alternative explanation of the semiarid urban area ‘oasis effect’. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016720 (2011).41.
Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. https://doi.org/10.1002/2016GL072190 (2017).42.
Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5 (FAO, 2013); https://doi.org/10.13140/2.1.2660.672843.
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Article Google Scholar44.
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Article Google Scholar45.
Srivastava, A. K., Rajeevan, M. & Kshirsagar, S. R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 10, 249–254.46.
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Article Google Scholar47.
Haldane, J. S. The influence of high air temperatures No. I. J. Hyg. (Lond.) 5, 494–513 (1905).
Google Scholar48.
Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).
Article Google Scholar49.
Steadman, R. G. The assessment of sultriness. Part I. A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).
Article Google Scholar50.
Brooke Anderson, G., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).
Article Google Scholar51.
Skamarock, C. et al. A Description of the Advanced Research WRF Model Version 4 (NCAR, 2019); https://doi.org/10.5065/1DFH-6P9752.
Mitchell, K. et al. Noah Land Surface Model (LSM) User’s Guide (NCAR, 2005).53.
Iacono, M. J. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD009944 (2008).54.
Janzic, Z. I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994).
Article Google Scholar55.
Kain, J. S. & Kain, J. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).
Article Google Scholar56.
Qian, Y., Huang, M., Yang, B. & Berg, L. K. A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the Southern Great Plains. J. Hydrometeorol. 14, 700–721 (2013).
Article Google Scholar57.
Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).
Article Google Scholar58.
Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).
Article Google Scholar59.
Durre, I. & Yin, X. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc. 89, 1257–1262 (2008).
Article Google Scholar60.
Seidel, D. J., Ao, C. O. & Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 115, D16113 (2010).
Article Google Scholar61.
Basha, G. & Ratnam, M. V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: comparison with GPS radio occupation measurements. J. Geophys. Res. Atmos. 114, D161010 (2009).
Article Google Scholar More175 Shares179 Views
in ResourcesUnderstanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam
1.
Sutcliffe, J. & Parks, Y. The hydrology of the Nile. (IAHS Press, 1999).
2.
Abu‐Zeid, M. A. & Biswas, A. K. Some major implications of climatic fluctuations on water management. Int. J. Water Resour. Dev. 7, 74–81 (1991).
Article Google Scholar3.
van der Krogt, W. & Ogink, H. Development of the Eastern Nile Water Simulation Model. Report No. 1206020-000-VEB-0010 (Deltares, Delft, 2013).4.
Sudan MoIWR. Gage Flows at Dongola Station (Sudan Ministry of Irrigation and Water Resources, 2019).5.
Hurst, H. E., Black, R. P. & Simaika, Y. S. M. A long-term plan for the Nile basin. Nature 160, 611–612 (1947).
ADS MathSciNet Article Google Scholar6.
Tvedt, T. The River Nile in the Age of the British: Political Ecology and the Quest for Economic Power. (I.B.Tauris & Co. Ltd., 2004).7.
Mekonnen, D. Z. The Nile Basin Cooperative framework agreement negotiations and the adoption of a ‘Water Security’ paradigm: flight into obscurity or a logical Cul-de-sac? Eur. J. Int. Law 21, 421–440 (2010).
Article Google Scholar8.
Moussa, A. M. A. Dynamic operation rules of multi-purpose reservoir for better flood management. Alex. Eng. J. 57, 1665–1679 (2018).
Article Google Scholar9.
USBR. Land and Water Resources of the Blue Nile Basin: Ethiopia: Main Report and Appendices I–V. (United States Department of the Interior, Washington DC, 1964).10.
Awulachew, S. B. The Nile River Basin: water, agriculture, governance and livelihoods. (Routledge, 2012).11.
Government of Ethiopia. Vol. S/2020/409 (United Nations Security Council, United Nations Digital Library, 2020).12.
Arjoon, D., Mohamed, Y., Goor, Q. & Tilmant, A. Hydro-economic risk assessment in the eastern Nile River basin. Water Resour. Econ. 8, 16–31 (2014).
Article Google Scholar13.
Block, P. J. & Strzepek, K. Economic analysis of large-scale upstream river basin development on the Blue Nile in Ethiopia considering transient conditions, climate variability, and climate change. J. Water Resour. Plan. Manag. 136, 156–166 (2010).
Article Google Scholar14.
Digna, R. F. et al. Impact of water resources development on water availability for hydropower production and irrigated agriculture of the Eastern Nile Basin. J. Water Resour. Plan. Manag. 144, 05018007 (2018).
Article Google Scholar15.
Geressu, R. T. & Harou, J. J. Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile. Environ. Res. Lett. 10, 125008 (2015).
ADS Article Google Scholar16.
Jeuland, M. & Whittington, D. Water resources planning under climate change: assessing the robustness of real options for the Blue Nile. Water Resour. Res. 50, 2086–2107 (2014).
ADS Article Google Scholar17.
Kahsay, T. N., Kuik, O., Brouwer, R. & van der Zaag, P. Estimation of the transboundary economic impacts of the Grand Ethiopia Renaissance Dam: a computable general equilibrium analysis. Water Resour. Econ. 10, 14–30 (2015).
Article Google Scholar18.
Mulat, A. G. & Moges, S. A. Assessment of the impact of the Grand Ethiopian Renaissance Dam on tHe Performance Of The High Aswan Dam. J. Water Resour. Prot. 06, 583–598 (2014).
Article Google Scholar19.
Strzepek, K. M., Yohe, G. W., Tol, R. S. J. & Rosegrant, M. W. The value of the high Aswan Dam to the Egyptian economy. Ecol. Econ. 66, 117–126 (2008).
Article Google Scholar20.
Wheeler, K. G. et al. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water Int. 41, 611–634 (2016).
Article Google Scholar21.
Wheeler, K. G. et al. Exploring cooperative transboundary river management strategies for the Eastern Nile Basin. Water Resour. Res. 54, 9224–9254 (2018).
ADS PubMed PubMed Central Article Google Scholar22.
Nigatu, G. & Dinar, A. Economic and hydrological impacts of the Grand Ethiopian Renaissance Dam on the Eastern Nile River Basin. Environ. Dev. Econ. 21, 532–555 (2015).
Article Google Scholar23.
Sangiorgio, M. & Guariso, G. NN-based implicit stochastic optimization of multi-reservoir systems management. Water 10, 303 (2018).
Article Google Scholar24.
Taye, M. T., Willems, P. & Block, P. Implications of climate change on hydrological extremes in the Blue Nile basin: a review. J. Hydrol.: Regional Stud. 4, 280–293 (2015).
Google Scholar25.
Brown, C. M. et al. The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resour. Res. 51, 6110–6124 (2015).
ADS Article Google Scholar26.
Loucks, D. P. From Analyses to Implementation and Innovation. Water 12, 974 (2020).
Article Google Scholar27.
Basheer, M. et al. Filling Africa’s largest hydropower dam should consider engineering realities. One Earth. 3, 277–281 (2020).
Article Google Scholar28.
Roussi, A. Gigantic Nile dam prompts clash between Egypt and Ethiopia. Nature 574, 159 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar29.
Jeuland, M., Wu, X. & Whittington, D. Infrastructure development and the economics of cooperation in the Eastern Nile. Water Int. 42, 121–141 (2017).
Article Google Scholar30.
Basheer, M. et al. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the Water-Energy-Food nexus: the Blue Nile Basin. Sci. Total Environ. 630, 1309–1323 (2018).
ADS CAS PubMed Article Google Scholar31.
Basheer, M. & Ahmed Elagib, N. Temporal analysis of water-energy nexus indicators for hydropower generation and water pumping in the Lower Blue Nile Basin. J. Hydrol. 578, 124085 (2019).
Article Google Scholar32.
Siam, M. S. & Eltahir, E. A. B. Climate change enhances interannual variability of the Nile river flow. Nat. Clim. Change 7, 350 (2017).
ADS Article Google Scholar33.
Lund, J. R. & Guzman, J. Derived operating rules for reservoirs in series or in parallel. J. Water Resour. Plan. Manag. 125, 143–153 (1999).
Article Google Scholar34.
Lazer, D. M. J. et al. The science of fake news. Science 359, 1094–1096 (2018).
ADS CAS PubMed Article Google Scholar35.
Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146–1151 (2018).
ADS CAS PubMed Article Google Scholar36.
Whittington, D., Hanemann, W. M., Sadoff, C. & Jeuland, M. The challenge of improving water and sanitation services in less developed countries. Found. Trends® Microecon. 4, 469–609 (2009).
Article Google Scholar37.
Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).
MathSciNet MATH Article Google Scholar38.
Whittington, D. Policy note: ancient instincts—implications for water policy in the 21st century. Water Econ. Policy 02, 1671002 (2016).
Article Google Scholar39.
Zagona, E. A., Fulp, T. J., Shane, R., Magee, T. & Goranflo, H. M. RiverWare: a generalized tool for complex reservoir systems modeling. J. Am. Water Resour. Assoc. 37, 913 (2001).
ADS Article Google Scholar40.
NBI. State of the River Nile Basin 2012. (Entebbe, 2012).41.
Belissa, A. Establishing optimal reservoir operation of Fincha’a – Amerty Reservoirs MSc Civil Engineering thesis, Addis Ababa University, (2016).42.
Mondal, M. A. H., Bryan, E., Ringler, C., Mekonnen, D. & Rosegrant, M. Ethiopian energy status and demand scenarios: prospects to improve energy efficiency and mitigate GHG emissions. Energy 149, 161–172 (2018).
Article Google Scholar43.
Conway, D. Water resources: future Nile river flows. Nat. Clim. Change 7, 319–320 (2017).
ADS Article Google Scholar44.
Harding, B. L., Sangoyomi, T. B. & Payton, E. A. Impacts of a severe sustained drought on Colorado River water resources. JAWRA J. Am. Water Resour. Assoc. 31, 815–824 (1995).
ADS Article Google Scholar45.
Georgakakos, A. P. et al. Value of adaptive water resources management in Northern California under climatic variability and change: Reservoir management. J. Hydrol. 412-413, 34–46 (2012).
ADS Article Google Scholar46.
Maass, A. Design of water-resource systems: new techniques for relating economic objectives, engineering analysis, and governmental planning. (Harvard University Press., 1962).47.
Hurst, H. E., Black, R. P. & Simaika, Y. M. Long-term storage: an experimental study. (Constable, 1965).48.
Conway, D. From headwater tributaries to international river: observing and adapting to climate variability and change in the Nile basin. Glob. Environ. Change 15, 99–114 (2005).
Article Google Scholar49.
Ward, N. & Conway, D. Applications of interannual-to-decadal climate prediction: an exploratory discussion on rainfall in the Sahel region of Africa. Clim. Serv. 18, 100170 (2020).
Article Google Scholar50.
Sutcliffe, J., Hurst, S., Awadallah, A. G., Brown, E. & Hamed, K. Harold Edwin Hurst: the Nile and Egypt, past and future. Hydrological Sci. J. 61, 1557–1570 (2016).
Article Google Scholar51.
Koutsoyiannis, D. Hydrology and change. Hydrological Sci. J. 58, 1177–1197 (2013).
Article Google Scholar52.
Koutsoyiannis, D., Yao, H. & Georgakakos, A. Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen terme: une comparaison de méthodes stochastiques et déterministes. Hydrol. Sci. J. 53, 142–164 (2008).
Article Google Scholar53.
Sandoval-Solis, S., Teasley, R. L., McKinney, D. C., Thomas, G. A. & Patiño-Gomez, C. Collaborative modeling to evaluate water management scenarios in the Rio Grande Basin. JAWRA J. Am. Water Resour. Assoc. 49, 639–653 (2013).
ADS Article Google Scholar54.
USBR. Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead Final Environmental Impact Statement. (U.S. Department of the Interior, Washington DC, 2007).55.
Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).
CAS PubMed Article PubMed Central Google Scholar56.
Rayner, S., Lach, D. & Ingram, H. Weather forecasts are for wimps: why water resource managers do not use climate forecasts. Climatic Change 69, 197–227 (2005).
ADS Article Google Scholar57.
Gober, P., Kirkwood, C. W., Balling, R. C., Ellis, A. W. & Deitrick, S. Water planning under climatic uncertainty in phoenix: why we need a new paradigm. Ann. Assoc. Am. Geographers 100, 356–372 (2010).
Article Google Scholar58.
Olsson, J. A. & Andersson, L. Possibilities and problems with the use of models as a communication tool in water resource management. Water Resour. Manag. 21, 97–110 (2007).
Article Google Scholar59.
Strzepek, K. & McCluskey, A. The impacts of climate change on regional water resources and agriculture in Africa. World Bank Policy Research Working Paper (2007).60.
Beyene, T., Lettenmaier, D. P. & Kabat, P. Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Climatic Change 100, 433–461 (2010).
ADS Article Google Scholar61.
Eltahir, E. A. B. & Wang, G. Nilometers, El Niño, and climate variability. Geophys. Res. Lett. 26, 489–492 (1999).
ADS Article Google Scholar62.
Denning, S. Effective storytelling: strategic business narrative techniques. Strategy Leadersh. 34, 42–48 (2006).
Article Google Scholar63.
Roe, E. Narrative policy analysis: Theory and practice. (Duke University Press, 1994). More