Transboundary cooperation a potential route to sustainable development in the Indus basin
1.
Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).
Article Google Scholar
2.
Wada, Y. et al. Co-designing Indus water–energy–land futures. One Earth 1, 185–194 (2019).
Article Google Scholar
3.
AQUASTAT Transboundary River Basin Overview—Indus (FAO, 2011); https://go.nature.com/2KxKRqB
4.
Aslam, M. Agricultural productivity current scenario, constraints and future prospects in Pakistan. Sarhad J. Agric. 32, 289–303 (2016).
Article Google Scholar
5.
Karimi, P., Bastiaanssen, W. G. M., Molden, D. & Cheema, M. J. M. Basin-wide water accounting based on remote sensing data: an application for the Indus basin. Hydrol. Earth Syst. Sci. 17, 2473–2486 (2013).
Article Google Scholar
6.
Akhter, M. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 21–33 (Springer, 2017); https://go.nature.com/3pVNgvo
7.
Yu, W. et al. Indus Basin of Pakistan: Impacts of Climate Risks on Water and Agriculture (World Bank, 2013); https://go.nature.com/3kY7dxV
8.
Cheema, M., Immerzeel, W. & Bastiaanssen, W. Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Groundwater 52, 25–36 (2014).
CAS Article Google Scholar
9.
Syvitski, J. P. et al. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 3, 24–35 (2013).
Article Google Scholar
10.
Adeel, Z. & Wirsing, R. G. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 3–20 (Springer, 2017); https://go.nature.com/3pYJHF1
11.
Raman, D. Damming and infrastructural development of the Indus River basin: strengthening the provisions of the indus waters treaty. Asian J. Int. Law 8, 372–402 (2018).
Article Google Scholar
12.
Archer, D. R., Forsythe, N., Fowler, H. J. & Shah, S. M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 14, 1669–1680 (2010).
Article Google Scholar
13.
Just, R. E. & Netanyahu, S. Conflict and Cooperation on Trans-Boundary Water Resources (Springer, 1998).
14.
Qamar, M. U., Azmat, M. & Claps, P. Pitfalls in transboundary Indus Water Treaty: a perspective to prevent unattended threats to the global security. npj Clean Water 2, 22 (2019).
Article Google Scholar
15.
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
CAS Article Google Scholar
16.
Wu, X. & Whittington, D. Incentive compatibility and conflict resolution in international river basins: a case study of the Nile Basin. Water Resour. Res. 42, W02417 (2006).
Article Google Scholar
17.
Keskinen, M. et al. The water–energy–food nexus and the transboundary context: insights from large Asian rivers. Water 8, 193 (2016).
Article Google Scholar
18.
Bhaduri, A. et al. Achieving Sustainable Development Goals from a water perspective. Front. Environ. Sci. 4, 64 (2016).
Article Google Scholar
19.
Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3, 621–626 (2013).
Article Google Scholar
20.
Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).
Article Google Scholar
21.
Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).
Article Google Scholar
22.
Albrecht, T. R., Crootof, A. & Scott, C. A. The water–energy–food nexus: a systematic review of methods for Nexus assessment. Environ. Res. Lett. 13, 043002 (2018).
Article Google Scholar
23.
Kaddoura, S. & El Khatib, S. Review of water–energy–food nexus tools to improve the nexus modelling approach for integrated policy making. Environ. Sci. Policy 77, 114–121 (2017).
Article Google Scholar
24.
Siddiqi, A. & Wescoat, J. L. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water Int. 38, 571–586 (2013).
Article Google Scholar
25.
Stewart, J. et al. Indus River System Model (IRSM)—a Planning Tool to Explore Water Management Options in Pakistan: Model Conceptualisation, Configuration and Calibration (CSIRO Land & Water, 2018); https://go.nature.com/3q4rkyz
26.
Yang, Y. C. E., Ringler, C., Brown, C. & Mondal, M. A. H. Modeling the agricultural water–energy–food nexus in the Indus River basin, Pakistan. J. Water Resour. Plan. Manag. 142, 04016062 (2016).
Article Google Scholar
27.
de Strasser, L., Lipponen, A., Howells, M., Stec, S. & Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 8, 59 (2016).
Article Google Scholar
28.
Parrachino, I., Dinar, A. & Patrone, F. Cooperative Game Theory and its Application to Natural, Environmental, and Water Resource Issues: 3. Application to Water Resources Policy Research Working Papers (World Bank, 2006); https://go.nature.com/2UXhPCQ
29.
Singh, A., Jamasb, T., Nepal, R. & Toman, M. A. Cross-Border Electricity Cooperation in South Asia Policy Research Working Paper No. 7328 (World Bank, 2015).
30.
Hasson, R., Löfgren, Å. & Visser, M. Climate change in a public goods game: investment decision in mitigation versus adaptation. Ecol. Econ. 70, 331–338 (2010).
Article Google Scholar
31.
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
CAS Article Google Scholar
32.
Kalair, A. R. et al. Water, energy and food nexus of Indus Water Treaty: water governance. Water-Energy Nexus 2, 10–24 (2019).
Article Google Scholar
33.
Vinca, A. et al. The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy-water-land system transformations. Geosci. Model Dev. 13, 1095–1121 (2020).
Article Google Scholar
34.
Mir, K. A., Purohit, P. & Mehmood, S. Sectoral assessment of greenhouse gas emissions in Pakistan. Environ. Sci. Pollut. Res. 24, 27345–27355 (2017).
CAS Article Google Scholar
35.
Ahmad, B. & Saqlain, S. People perception regarding possible impact of urbanization on environmental degradation in Islamabad. IAU Int. J. Soc. Sci. 8, 1–10 (2018).
Google Scholar
36.
Scott, C. A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F. & Varela-Ortega, C. Irrigation efficiency and water-policy implications for river basin resilience. Hydrol. Earth Syst. Sci. 18, 1339–1348 (2014).
Article Google Scholar
37.
Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).
CAS Article Google Scholar
38.
Baum, R., Luh, J. & Bartram, J. Sanitation: A global estimate of sewerage connections without treatment and the resulting impact on MDG progress. Environ. Sci. Technol. 47, 1994–2000 (2013).
CAS Article Google Scholar
39.
González-villareal, F. & Schultz, B. Final Report of IPOE for Review of Studies on Water Escapages Below Kotri Barrage Technical Report (ResearchGate, 2018); https://doi.org/10.13140/RG.2.2.28670.02885
40.
Casillas, C. E. & Kammen, D. M. The energy–poverty–climate nexus. Science 26, 1181–1182 (2010).
Article Google Scholar
41.
GDP (current US$)—Pakistan (World Bank, 2020); https://go.nature.com/2KCSDzB
42.
Singh, A., Jamasb, T., Nepal, R. & Toman, M. Electricity cooperation in South Asia: barriers to cross-border trade. Energy Policy 120, 741–748 (2018).
Article Google Scholar
43.
Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. https://doi.org/10.1080/07900627.2019.1579705 (2019).
44.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B. & Bierkens, M. F. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).
CAS Article Google Scholar
45.
Maurer, J. M., Schaefer, J. M., Rupper, S. & Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 5, eaav7266 (2019).
CAS Article Google Scholar
46.
Immerzeel, W. W., Van Beek, L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
CAS Article Google Scholar
47.
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Article Google Scholar
48.
Majhi, B. & Kumar, A. Changing cropping pattern in Indian agriculture. J. Econ. Soc. Dev. 14, 37–45 (2018).
Google Scholar
49.
Burek, P. et al. Development of the Community Water Model (CWatM v1.04)—a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci. Model Dev. 13, 3267–3298 (2020).
Article Google Scholar
50.
Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).
Article Google Scholar
51.
Messner, S. & Strubegger, M. User’s Guide for MESSAGE III IIASA Working Paper (IIASA, 1995).
52.
Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).
Article Google Scholar
53.
Van Vliet, O. et al. Synergies in the Asian energy system: climate change, energy security, energy access and air pollution. Energy Econ. 34, S470–S480 (2012).
Article Google Scholar
54.
Kiani, B. et al. Optimal electricity system planning in a large hydro jurisdiction: will British Columbia soon become a major importer of electricity? Energy Policy 54, 311–319 (2013).
Article Google Scholar
55.
Salmivaara, A. et al. Exploring the modifiable areal unit problem in spatial water assessments: a case of water shortage in monsoon Asia. Water 7, 898–917 (2015).
Article Google Scholar
56.
Yang, Y.-C. E., Brown, C. M., Yu, W. H. & Savitsky, A. An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin. Water Int. 38, 632–650 (2013).
Article Google Scholar
57.
Kahil, T. et al. A continental-scale hydroeconomic model for integrating water-energy-land nexus solutions. Water Resour. Res 54, 7511–7533 (2018).
Article Google Scholar
58.
Kim, S. H. et al. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217–231 (2016).
Article Google Scholar
59.
Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. M. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food-climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).
Article Google Scholar
60.
Sridharan, V., Shivakumar, A., Niet, T., Ramos, E. P. & Howells, M. Land, energy and water resource management and its impact on GHG emissions, electricity supply and food production- Insights from a Ugandan case study. Environ. Res. Commun. 2, 085003 (2020).
Article Google Scholar
61.
Saif, Y. & Almansoori, A. An optimization framework for the climate, land, energy, and water (CLEWS) nexus by a discrete optimization model. Energy Procedia 105, 3232–3238 (2017).
Article Google Scholar
62.
Smakhtin, V. U., Revenga, C. & Doll, P. Taking Into Account Environmental Water Requirements in Global-scale Water Resources Assessments IWMI Research Reports (IWMI, 2004).
63.
Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).
Article Google Scholar
64.
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Article Google Scholar More