Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands
1.
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).
CAS Article Google Scholar
2.
Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).
Article Google Scholar
3.
Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).
CAS Article Google Scholar
4.
Ruppert, J. C. et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Change Biol. 21, 1258–1270 (2015).
Article Google Scholar
5.
Huntington, T. G. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319, 83–95 (2006).
Article Google Scholar
6.
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Article Google Scholar
7.
Lorenz, D. J. & DeWeaver, E. T. The response of the extratropical hydrological cycle to global warming. J. Clim. 20, 3470–3484 (2007).
Article Google Scholar
8.
Greve, P. & Seneviratne, S. I. Assessment of future changes in water availability and aridity. Geophys. Res. Lett. 42, 5493–5499 (2015).
CAS Article Google Scholar
9.
Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).
Article Google Scholar
10.
Chou, C., Neelin, J. D., Chen, C.-A. & Tu, J.-Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).
Article Google Scholar
11.
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
CAS Article Google Scholar
12.
Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2012).
Article Google Scholar
13.
Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J. & Seneviratne, S. I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 6, 6443 (2015).
CAS Article Google Scholar
14.
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).
CAS Article Google Scholar
15.
Taylor, C. M., Parker, D. J. & Harris, P. P. An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett. 34, L15801 (2007).
Article Google Scholar
16.
Ookouchi, Y., Segal, M., Kessler, R. C. & Pielke, R. A. Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Weather Rev. 112, 2281–2292 (1984).
Article Google Scholar
17.
Segal, M. & Arritt, R. W. Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Am. Meteor. Soc. 73, 1593–1604 (1992).
Article Google Scholar
18.
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P. & Dorigo, W. A. Afternoon rain more likely over drier soils. Nature 489, 423–426 (2012).
CAS Article Google Scholar
19.
Hsu, H., Lo, M.-H., Guillod, B. P., Miralles, D. G. & Kumar, S. Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns: precipitation–soil moisture coupling. J. Geophys. Res. Atmos. 122, 6319–6328 (2017).
Article Google Scholar
20.
Froidevaux, P., Schlemmer, L., Schmidli, J., Langhans, W. & Schär, C. Influence of the background wind on the local soil moisture–precipitation feedback. J. Atmos. Sci. 71, 782–799 (2013).
Article Google Scholar
21.
Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).
Article Google Scholar
22.
Byrne, M. P. & O’Gorman, P. A. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2012).
Article Google Scholar
23.
Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dyn. 30, 455–465 (2008).
Article Google Scholar
24.
Fasullo, J. T. Robust land–ocean contrasts in energy and water cycle feedbacks. J. Clim. 23, 4677–4693 (2010).
Article Google Scholar
25.
Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).
CAS Article Google Scholar
26.
Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805 (2007).
Google Scholar
27.
Karnauskas, K. B. & Ummenhofer, C. C. On the dynamics of the Hadley circulation and subtropical drying. Clim. Dyn. 42, 2259–2269 (2014).
Article Google Scholar
28.
Lau, W. K. M. & Kim, K.-M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl Acad. Sci. USA 112, 3630–3635 (2015).
CAS Article Google Scholar
29.
Seager, R. et al. Model projections of an imminent transition to a more arid climate in Southwestern North America. Science 316, 1181–1184 (2007).
CAS Article Google Scholar
30.
Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).
Article Google Scholar
31.
O’Gorman, P. A. & Schneider, T. Stochastic models for the kinematics of moisture transport and condensation in homogeneous turbulent flows. J. Atmos. Sci. 63, 2992–3005 (2006).
Article Google Scholar
32.
He, J. & Soden, B. J. A re-examination of the projected subtropical precipitation decline. Nat. Clim. Change 7, 53–57 (2017).
Article Google Scholar
33.
Chadwick, R., Ackerley, D., Ogura, T. & Dommenget, D. Separating the influences of land warming, the direct CO2 effect, the plant physiological effect, and SST warming on regional precipitation changes. J. Geophys. Res. Atmos. 124, 624–640 (2019).
CAS Article Google Scholar
34.
Findell, K. L. et al. Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation. J. Clim. 32, 7713–7726 (2019).
Article Google Scholar
35.
Krakauer, N., Book, B. I. & Puma, M. J. Contribution of soil moisture feedback to hydroclimatic variability. Hydrol. Earth Syst. Sci. 16, 505–520 (2010).
Article Google Scholar
36.
Roudier, P. et al. Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change 135, 341–355 (2016).
Article Google Scholar
37.
Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).
Article CAS Google Scholar
38.
Lorenz, R. et al. Influence of land–atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. J. Geophys. Res. Atmos. 121, 607–623 (2016).
Article Google Scholar
39.
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
Article Google Scholar
40.
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
CAS Article Google Scholar
41.
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Article Google Scholar
42.
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
CAS Article Google Scholar
43.
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Article Google Scholar
44.
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Article Google Scholar
45.
Zhou, S., Yu, B., Huang, Y. & Wang, G. The complementary relationship and generation of the Budyko functions. Geophys. Res. Lett. 42, 1781–1790 (2015).
Article Google Scholar
46.
Choudhury, B. J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 216, 99–110 (1999).
Article Google Scholar
47.
Wei, J., Dickinson, R. E. & Chen, H. A negative soil moisture–precipitation relationship and its causes. J. Hydrometeorol. 9, 1364–1376 (2008).
Article Google Scholar
48.
Zhang, J., Wang, W.-C. & Wei, J. Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res. 113, D17119 (2008).
Article Google Scholar
49.
Seneviratne, S. I. et al. Soil moisture memory in AGCM simulations: analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeorol. 7, 1090–1112 (2006).
Article Google Scholar
50.
Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986).
CAS Article Google Scholar
51.
Zhou, S. et al. Sources of uncertainty in modeled land carbon storage within and across three MIPs: diagnosis with three new techniques. J. Clim. 31, 2833–2851 (2018).
Article Google Scholar
52.
Zhou, S. et al. Response of water use efficiency to global environmental change based on output from terrestrial biosphere models: drivers of WUE variability. Glob. Biogeochem. Cycles 31, 1639–1655 (2017).
CAS Article Google Scholar More