More stories

  • in

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 
    Article 

    Google Scholar 
    Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species rich, tropical forests. Ecology 99, 1129–1138 (2018).PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization depend on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Sun, Y. et al. Diagnosing phosphorus limitation in natural terrestrial ecosystems in carbon cycle models. Earths Future 5, 730–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhang, Q. et al. Nitrogen and phosphorus limitations significantly reduce allowable CO2 emissions. Geophys. Lett. 41, 632–637 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystem: a meta analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Jordan, C. F. The nutrient balance of an Amazonian rainforest. Ecology 63, 647–654 (1982).CAS 
    Article 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).CAS 
    Article 
    ADS 

    Google Scholar 
    Crews, T. E. et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76, 1408–1424 (1995).Article 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).Article 

    Google Scholar 
    Dalling, J. W. et al. in Tropical Tree Physiology (Springer, 2016).Herrera, R. R. & Medina, E. Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3, 223–231 (1978).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. et al. Basin wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 
    ADS 

    Google Scholar 
    Mercado, L. et al. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3316–3329 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Yang, X. et al. The effects of phosphorus cycle dynamics carbon sources and sink in the Amazon region: a modelling study using ELM v1. J. Geophys. Res. Biogeosci. 124, 3686–3698 (2019).CAS 
    Article 

    Google Scholar 
    Sollins, P. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79, 23–30 (1998).Article 

    Google Scholar 
    Alvarez-Clare, S. et al. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94, 1540–1551 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625 (2011).PubMed 
    Article 

    Google Scholar 
    Sayer, E. J. et al. Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15, 387–400 (2012).CAS 
    Article 

    Google Scholar 
    Ganade, G. & Brown, V. Succession in old pastures of central Amazonia: role of soil fertility and plant litter. Ecology 83, 743–754 (2002).Article 

    Google Scholar 
    Markewitz, D. et al. Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biol. Fertil. Soils 48, 665–678 (2012).Article 

    Google Scholar 
    Davidson, E. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).Article 

    Google Scholar 
    Massad, T. et al. Interactions between fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172, 219–229 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Newbery, D. M. et al. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytol. 156, 297–311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mirmanto, E. et al. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1825–1829 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2020).Article 
    CAS 

    Google Scholar 
    Quesada, C. A. et al. Soils of Amazonia with particular reference to the rainfor sites. Biogeosciences 8, 1415–1440 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    Giardina, C. et al. Primary production and carbon allocation in relation to nutrient supply in a tropical experiment forest. Glob. Change Biol. 9, 1438–1450 (2003).Article 
    ADS 

    Google Scholar 
    Rowland, L. et al. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol. 214, 1064–1077 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520–526 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–826 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hinsinger, P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64, 225–265 (1998).CAS 
    Article 

    Google Scholar 
    Van Langehove, L. et al. Rapid root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana. Soil Biol. Biochem. 140, 107646 (2019).Article 
    CAS 

    Google Scholar 
    Martins, N. P. et al. Fine roots stimulate nutrient release during early stages of litter decomposition in a central Amazon rainforest. Plant Soil 469, 287–303 (2021).CAS 
    Article 

    Google Scholar 
    Cordeiro, A. L. et al. Fine root dynamics vary with soil and precipitation in a low-nutrient tropical forest in the central Amazonia. Plant Environ. Interact. 220, 3–16 (2020).Article 

    Google Scholar 
    Yavitt, J. Soil fertility and fine root dynamics in response to four years of nutrient (N,P, K) fertilization in a lowland tropical moist forest, Panamá. Austral. Ecol. 36, 433–445 (2011).Article 

    Google Scholar 
    Wurzburger, N. & Wright, S. J. Fine root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).PubMed 
    Article 

    Google Scholar 
    Waring, B. G., Aviles, D. P., Murray, J. G. & Powers, J. S. Plant community responses to stand level nutrient fertilization in a secondary tropical dry forest. Ecology 100, e02691 (2019).PubMed 
    Article 

    Google Scholar 
    Jansens, I. A. et al. Reductions of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Alvarez Claire, S. et al. Do foliar, litter, and root nitrogen and phosphorus concentration reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE 10, e0123796 (2015).Article 
    CAS 

    Google Scholar 
    Bouma, T. in Advances in Photosynthesis and Respiration Vol. 18 (eds Lambers, H. & Ribas-Carbo, M.) 177–194 (Springer, 2005).Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).Article 
    ADS 

    Google Scholar 
    Aragão, L. E. O. et al. Above and below ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).Article 
    ADS 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. & Lloyd, J. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy, L. et al.) 267–299 (Springer, 2016).Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary production, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93, 223–247 (2018).PubMed 
    Article 

    Google Scholar 
    De Oliveira, A. & Mori, S. A. A central Amazonia terra firme forest. I. High tree species richness on poor soils. Biodivers. Conserv. 8, 1219–1244 (1999).Article 

    Google Scholar 
    Ferreira, S. J. F., Luizão, F. J. & Dallarosa, R. L. G. Throughfall and rainfall interception by an upland forest submitted to selective logging in Central Amazonia [Portuguese]. Acta Amaz. 35, 55–62 (2005).Article 

    Google Scholar 
    Tanaka, L. D. S., Satyamurty, P. & Machado, L. A. T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 34, 3574–3584 (2014).Article 

    Google Scholar 
    Duque, A. et al. Insights into regional patterns of Amazonian forest structure and dominance from three large terra firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).Article 

    Google Scholar 
    Martins, D. L. et al. Soil induced impacts on forest structure drive coarse wood debris stocks across central Amazonia. Plant Ecol. Divers. 8, 229–241 (2014).Article 

    Google Scholar 
    Metcalfe, D. B. et al. A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurent accuracy. New Phytol. 174, 697–703 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chave, J. et al. Improved allometric to estimate the above ground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).Article 
    ADS 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Global Wood Density Database https://doi.org/10.5061/dryad.234 (2009).Higuchi, N. & Carvalho, J. A. in Anais do Seminário: Emissão e Sequestro de CO2—Uma Nova Oportunidade de Negócios para o Brasil (CVRD, 1994).Brienen, R. J. W., Philips, O. L. & Zagt, R. J. Long term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecol. Manag. 258, 1161–1165 (2009).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bates, D., Marcher, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Moraes, A. C. M. et al. Fine Litterfall Production and Nutrient Composition Data from a Fertilized Site in Central Amazon, Brazil (NERC, 2020).Cunha, H. F. V. et al. Fine Root Biomass in Fertilised Plots in the Central Amazon, 2017–2019 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Tree Census and Diameter Increment in Fertilised Plots in the Central Amazon, 2017–2020 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Leaf Area Index (LAI) in Fertilised Plots in the Central Amazon, 2017–2018 (NERC Environmental Information Data Centre, 2021). More

  • in

    Reviewing the ecological impacts of offshore wind farms

    International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).Article 

    Google Scholar 
    Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).Article 

    Google Scholar 
    IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).Article 

    Google Scholar 
    IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).Article 

    Google Scholar 
    WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).CAS 
    Article 

    Google Scholar 
    Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).Article 

    Google Scholar 
    Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).Article 
    CAS 

    Google Scholar 
    Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).CAS 
    Article 

    Google Scholar 
    Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).Article 

    Google Scholar 
    Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).Article 

    Google Scholar 
    Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).Article 

    Google Scholar 
    Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).Article 

    Google Scholar 
    Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).Article 

    Google Scholar 
    van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).Article 

    Google Scholar 
    De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).Article 
    CAS 

    Google Scholar 
    Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).Article 

    Google Scholar 
    Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).Article 

    Google Scholar 
    Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).Article 

    Google Scholar 
    Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).Article 

    Google Scholar 
    Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).Article 

    Google Scholar 
    Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).Article 

    Google Scholar 
    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).CAS 
    Article 

    Google Scholar 
    Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).Article 
    CAS 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).Article 

    Google Scholar 
    Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).Article 

    Google Scholar 
    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).Article 

    Google Scholar 
    Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).Article 

    Google Scholar 
    Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).Article 

    Google Scholar 
    Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).Article 

    Google Scholar 
    Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).Article 

    Google Scholar 
    Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).Article 

    Google Scholar 
    Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).Article 

    Google Scholar 
    Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).Article 

    Google Scholar 
    Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).Article 

    Google Scholar 
    Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).Article 

    Google Scholar 
    Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).Article 

    Google Scholar 
    van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).Article 

    Google Scholar 
    Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).Article 

    Google Scholar 
    Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).Article 

    Google Scholar 
    Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).CAS 
    Article 

    Google Scholar 
    Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).Article 

    Google Scholar 
    Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).Article 

    Google Scholar 
    Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).Article 

    Google Scholar 
    Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).Article 

    Google Scholar 
    Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).CAS 
    Article 

    Google Scholar 
    Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).Article 

    Google Scholar 
    Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).Article 

    Google Scholar 
    Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).Article 

    Google Scholar 
    Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).Article 

    Google Scholar 
    Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).Article 

    Google Scholar 
    Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).CAS 
    Article 

    Google Scholar 
    Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).CAS 
    Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).Article 

    Google Scholar 
    Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).Article 

    Google Scholar 
    Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).Article 

    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).Article 

    Google Scholar 
    Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).Article 

    Google Scholar 
    Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).Article 

    Google Scholar 
    Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).Article 

    Google Scholar 
    Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).Article 

    Google Scholar 
    Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).Article 

    Google Scholar 
    Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).Article 

    Google Scholar 
    European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).Article 
    CAS 

    Google Scholar 
    Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).Article 

    Google Scholar 
    Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).Article 

    Google Scholar 
    Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).Article 

    Google Scholar 
    Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).Article 

    Google Scholar 
    Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).Article 

    Google Scholar 
    Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).Article 

    Google Scholar 
    Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).Article 

    Google Scholar 
    Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).Article 
    CAS 

    Google Scholar 
    Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).CAS 
    Article 

    Google Scholar 
    Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).Article 

    Google Scholar 
    Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).Article 

    Google Scholar 
    González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).Article 

    Google Scholar 
    Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).Article 

    Google Scholar 
    Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).Article 

    Google Scholar  More

  • in

    Warm springs alter timing but not total growth of temperate deciduous trees

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Finzi, A. C. et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecol. Monogr. 90, e01423 (2020).Article 

    Google Scholar 
    Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol. 17, 886–897 (2011).Article 
    ADS 

    Google Scholar 
    Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric. For. Meteorol. 226–227, 246–256 (2016).Article 
    ADS 

    Google Scholar 
    Fu, Z. et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    Savage, J. A. & Chuine, I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytol. 230, 1700–1715 (2021).PubMed 
    Article 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Xue, B.-L. et al. Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochem. Cycles 31, 821–835 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 18, 566–584 (2012).Article 
    ADS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).Article 
    ADS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 
    ADS 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).Article 
    ADS 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707 (2008).Article 

    Google Scholar 
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. New Phytol. 231, 2174–2185 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumajer, J., Scharnweber, T., Smiljanic, M. & Wilmking, M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 233, 2429–2441 (2022).PubMed 
    Article 

    Google Scholar 
    Etzold, S. et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25, 427–439 (2022).PubMed 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zohner, C. M., Renner, S. S., Sebald, V. & Crowther, T. W. How changes in spring and autumn phenology translate into growth-experimental evidence of asymmetric effects. J. Ecol. 109, 2717–2728 (2021).Article 

    Google Scholar 
    Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helcoski, R. et al. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 223, 1204–1216 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evol. 5, 243–254 (2015).PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316 (2022).PubMed 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, J. C. & Conciatori, F. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can. J. For. Res. 36, 2317–2330 (2006).Article 

    Google Scholar 
    Roibu, C.-C. et al. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).Article 

    Google Scholar 
    Kern, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293, 257–267 (2013).Article 

    Google Scholar 
    Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 14C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).Article 
    ADS 

    Google Scholar 
    Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).Article 
    CAS 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Churkina, G., Schimel, D., Braswell, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).CAS 
    Article 
    ADS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).Article 
    ADS 

    Google Scholar 
    Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    Herrmann, V. et al. Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0169020 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. LAADS DAAC https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).Anderson-Teixeira, K. et al. Forestgeo/Climate: initial release. Zenodo https://doi.org/10.5281/ZENODO.4041609 (2020).Benestad, R. E., Hanssen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1964–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5DAA17222A738C105B9FA60C4 (2021).Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/69E92642B512897032446CFE795CFFB8 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).Article 

    Google Scholar 
    Gabry, J. et al. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Stan Development Team. Stan modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).Speer, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).Article 

    Google Scholar 
    Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7, e01454 (2016).Article 

    Google Scholar 
    Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProQuest (Columbia Univ., 2005).Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (Univ. Arizona, 1985).Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).Article 
    ADS 

    Google Scholar 
    Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).Article 

    Google Scholar  More

  • in

    Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil

    Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 9750. https://doi.org/10.7717/peerj.9750 (2020).Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 6464. https://doi.org/10.1126/science.aax4851 (2019).CAS 
    Article 

    Google Scholar 
    Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).CAS 
    Article 

    Google Scholar 
    Angst, G. et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2, UNSP 441 (2019).Article 

    Google Scholar 
    Bohlen, P. J. & Edwards, C. A. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27, 341–348 (1995).CAS 
    Article 

    Google Scholar 
    Bossuyt, H., Six, J. & Hendrix, P. F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251–258 (2005).CAS 
    Article 

    Google Scholar 
    Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, W., Gonzalez, G. & Zou, X. M. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 150, 103473. https://doi.org/10.1016/j.apsoil.2019.103473 (2020).Article 

    Google Scholar 
    Kruck, S., Joschko, M., Schultz-Sternberg, R., Kroschewski, B. & Tessmann, J. A classification scheme for earthworm populations (Lumbricidae) in cultivated agricultural soils in Brandenburg, Germany. J. Plan Nutr. Soil Sci. 169, 651–660 (2006).Article 

    Google Scholar 
    Westernacher, E. & Raff, O. Orientation behaviour of earthworms (Lumbricidae) toward different crops. Biol. Fertil. Soils 3, 131–133 (1987).
    Google Scholar 
    Coppens, F., Garnier, P., Degryze, S., Merckx, R. & Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation versus surface application of labelled residues in soil columns. Eur. J. Soil Sci. 57, 894–905 (2006).CAS 
    Article 

    Google Scholar 
    Angers, D. A. & Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189, 197–203 (1997).CAS 
    Article 

    Google Scholar 
    Iqbal, A., Garnier, P., Lashermes, G. & Recous, S. A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition. Biol. Fertil. Soils 50, 645–655 (2014).CAS 
    Article 

    Google Scholar 
    Šimek, M. & Pižl, V. Soil CO2 flux affected by Aporrectodea caliginosa earthworms. Cent. Eur. J. Biol. 5, 364–370 (2010).
    Google Scholar 
    Potthoff, M., Joergensenb, R. G. & Woltersc, V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biol. Biochem. 33, 583–591 (2001).CAS 
    Article 

    Google Scholar 
    Bernard, L. et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6, 213–122 (2012).CAS 
    Article 

    Google Scholar 
    Borken, W., Gründel, S. & Beese, F. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol. Fertil. Soils 32, 142–148 (2000).CAS 
    Article 

    Google Scholar 
    Martin, A. Short-term and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238 (1991).Article 

    Google Scholar 
    Moreau-Valancogne, P., Bertrand, M., Holmstrup, M. & Roger-Estrade, J. Integration of thermal time and hydrotime models to describe the development and growth of temperate earthworms. Soil Biol. Biochem. 63, 50–60. https://doi.org/10.1016/j.soilbio.2013.03.022 (2013).CAS 
    Article 

    Google Scholar 
    Lubbers, I. M., van Groenigen, K. J., Brussaard, L. & van Groenigen, J. W. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity. Sci. Rep. 5, 13787 (2015).ADS 
    Article 

    Google Scholar 
    Joschko, M. et al. Spatial analysis of earthworm biodiversity at the regional scale. Agric. Ecosyst. Environ. 112, 367–380 (2006).Article 

    Google Scholar 
    Kanianska, R., Jad’ud’ova, J., Makovnikova, J. & Kizekova, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8, 906 (2016).Article 

    Google Scholar 
    Chertov, O. et al. Romul_Hum model of soil organic matter formation coupled with soil biota activity. III Parameterisation of earthworm activity. Ecol. Model. 345, 140–149 (2017).CAS 
    Article 

    Google Scholar 
    Pelosi, C., Bertrand, M., Makowski, D. & Roger-Estrade, J. WORMDYN: A model of Lumbricus terrestris population dynamics in agricultural fields. Ecol. Model. 218, 219–234 (2008).Article 

    Google Scholar 
    Fisk, M. C., Fahey, T. J., Groffman, P. M. & Bohlen, P. J. Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7, 55–62 (2004).Article 

    Google Scholar 
    Rizhiya, E. et al. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol. Biochem. 39, 2058–2069 (2007).CAS 
    Article 

    Google Scholar 
    Snyder, B. A., Boots, B. & Hendrix, P. F. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native north American millipedes (Pseudopolydesmus erasus, Polydesmidae): Effects on carbon cycling and soil structure. Soil Biol. Biochem. 41, 1442–1449 (2009).CAS 
    Article 

    Google Scholar 
    Chapuis-Lardy, L. et al. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol. 45, 201–208 (2010).Article 

    Google Scholar 
    Bertora, C., van Vliet, P. C. J., Hummelink, E. W. J. & van Groenigen, J. W. Do earthworms increase N2O emissions in ploughed grassland?. Soil Biol. Biochem. 39, 632–640 (2007).CAS 
    Article 

    Google Scholar 
    Binet, F., Fayolle, L. & Pussard, M. Significance of earthworms in stimulating soil microbial activity. Biol. Fertil. Soils 27, 79–84 (1998).Article 

    Google Scholar 
    Butenschoen, O. et al. Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biol. Biochem. 39, 2854–2864 (2007).CAS 
    Article 

    Google Scholar 
    Cortez, J., Hameed, R. & Bouche, M. B. C-transfer and N-transfer in soil with or without earthworms fed with C-14 labelled and N-15 labelled wheat straw. Soil Biol. Biochem. 21, 491–497 (1989).Article 

    Google Scholar 
    Marhan, S., Langel, R., Kandeler, E. & Scheu, S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). Eur. J. Soil Biol. 43, S201–S208 (2007).CAS 
    Article 

    Google Scholar 
    Scheu, S. Effects of litter (beech and stinging nettle) and earthworms (Octolasion lacteum) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: A laboratory experiment. Biol. Fertil. Soils 24, 384–393 (1997).CAS 
    Article 

    Google Scholar 
    Wolters, V. & Schaefer, M. Effects of burrowing by the earthworm Aporrectodea caliginosa (Savigny) on beech litter decomposition in an agricultural and in a forest soil. Geoderma 56, 627–632 (1993).ADS 
    Article 

    Google Scholar  More

  • in

    A sustainable ocean for all

    Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Lisbon, PortugalCatarina Frazão SantosMARE–Marine and Environmental Sciences Center / ARNET–Aquatic Research Network, University of Lisbon, Lisbon, PortugalCatarina Frazão Santos & Carina Vieira da SilvaEnvironmental Economics Knowledge Center, NOVA-SBE, Carcavelos, PortugalCatarina Frazão Santos & Carina Vieira da SilvaSound Seas, Bethesda, MD, USATundi AgardyWorldFish, Batu Maung, Penang, MalaysiaEdward H. AllisonThe Peopled Seas Initiative, Vancouver, CanadaNathan J. BennettEqualSea Lab, University of Santiago de Compostela, A Coruña, SpainNathan J. Bennett & Sebastián VillasanteEnvironmental Sustainability Research Centre, Brock University, St. Catharines, ON, CanadaJessica L. BlytheMarine and Environmental Sciences Center, University of the Azores – FCT, Ponta Delgada, PortugalHelena CaladoHopkins Marine Station, Stanford University, Stanford, CA, USALarry B. Crowder & Elena GissiARC Centre of Excellence for Coral Reef Studies, Townsville, AustraliaJon C. DayQueen’s University Belfast, Belfast, Northern Ireland, UKWesley FlanneryNational Research Council, Institute of Marine Sciences, Venice, ItalyElena GissiInternational Union for Conservation of Nature and World Commission on Protected Areas, Cambridge, MA, USAKristina M. GjerdeMiddlebury Institute of International Studies at Monterey, Monterey, MA, USAKristina M. GjerdeThe University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoJudith F. GobinPermanent Mission of the Federated States of Micronesia to the United Nations, New York, USAClement Yow MulalapDuke University Marine Laboratory, Duke University, Durham, NC, USAMichael OrbachCentre for Marine Socioecology, University of Tasmania, Hobart, AustraliaGretta PeclInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, AustraliaGretta PeclFederal University of Santa Catarina, Florianópolis, SC, BrazilMarinez SchererCenter for Island Sustainability and Sea Grant, University of Guam, Mangilao, USAAustin J. SheltonSchool of Geography and the Environment, University of Oxford, Oxford, UKLisa Wedding More

  • in

    Correction to: Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Authors and AffiliationsDepartment of Agronomy, Universidade Federal do Espírito Santo, Alegre, BrazilAléxia Gonçalves Pereira, Marcia Flores da Silva Ferreira, Thamyres Cardoso da Silveira, José Henrique Soler-Guilhen, Guilherme Bravim Canal, Luziane Brandão Alves, Francine Alves Nogueira de Almeida & Adésio FerreiraDepartment of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrazilFernanda Amato GaiottoAuthorsAléxia Gonçalves PereiraMarcia Flores da Silva FerreiraThamyres Cardoso da SilveiraJosé Henrique Soler-GuilhenGuilherme Bravim CanalLuziane Brandão AlvesFrancine Alves Nogueira de AlmeidaFernanda Amato GaiottoAdésio FerreiraCorresponding authorCorrespondence to
    Marcia Flores da Silva Ferreira. More

  • in

    Low phosphorus levels limit carbon capture by Amazonian forests

    Pan, Y. et al. Science 333, 988–993 (2011).PubMed 
    Article 

    Google Scholar 
    Bonan, G. B. Science 320, 1444–1449 (2008).PubMed 
    Article 

    Google Scholar 
    Craine, J. M. et al. Nature Ecol. Evol. 2, 1735–1744 (2018).PubMed 
    Article 

    Google Scholar 
    Cunha, H. F. V. et al. Nature 608, 558–562 (2022).Article 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Jr Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Ostertag, R. & DiManno, N. M. Front. Earth Sci. 4, 23 (2016).Article 

    Google Scholar 
    Wright, S. J. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Lugli, L. F. et al. New Phytol. 230, 116–128 (2021).PubMed 
    Article 

    Google Scholar 
    Muller-Landau, H. C. et al. New Phytol. 229, 3065–3087 (2021).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Earth Syst. Sci. Data 13, 5831–5846 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Arora, V. K. et al. Biogeosciences 17, 4173–4222 (2020).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
    Google Scholar  More

  • in

    Global dataset of species-specific inland recreational fisheries harvest for consumption

    Arlinghaus, R., Tillner, R. & Bork, M. Explaining participation rates in recreational fishing across industrialised countries. Fisheries Management and Ecology 22, 45–55 (2015).Article 

    Google Scholar 
    Cooke, S. J. & Cowx, I. G. The Role of Recreational Fishing in Global Fish Crises. BioScience 54, 857 (2004).Article 

    Google Scholar 
    World Bank. Hidden harvest: The global contribution of capture fisheries (World Bank, Washington, DC), Report 66469-GLB (2012).Nyboer, E. A. et al. Overturning stereotypes: the fuzzy boundary between recreation and subsistence in inland fisheries. Fish and Fisheries https://doi.org/10.1111/faf.12688 (2022).Article 

    Google Scholar 
    Gupta, N. et al. Catch-and-release angling as a management tool for freshwater fish conservation in India. Oryx 50, 250–256 (2016).Article 

    Google Scholar 
    Bower, S. D. et al. Knowledge Gaps and Management Priorities for Recreational Fisheries in the Developing World. Reviews in Fisheries Science & Aquaculture 1–18, https://doi.org/10.1080/23308249.2020.1770689 (2020).FAO. The State of World Fisheries and Aquaculture – 2016 (SOFIA). Rome, Italy (2016).Golden, C. D. et al. Aquatic foods to nourish nations. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 
    PubMed 

    Google Scholar 
    Cooke, S. J. et al. The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries 19, 201–224 (2018).Article 

    Google Scholar 
    Joosse, S., Hensle, L., Boonstra, W. J., Ponzelar, C. & Olsson, J. Fishing in the city for food—a paradigmatic case of sustainability in urban blue space. npj Urban Sustain 1, 41, https://doi.org/10.1038/s42949-021-00043-9 (2021).Article 

    Google Scholar 
    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National Academy of Sciences 115, 7623–7628 (2018).CAS 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture – 2020 (SOFIA). Rome, Italy. (2020).IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.3831674 (2019).Arlinghaus, R. et al. Global Participation in and Public Attitudes Toward Recreational Fishing: International Perspectives and Developments. Reviews in Fisheries Science & Aquaculture 29, 58–95 (2021).Article 

    Google Scholar 
    Chan, N. “Large Ocean States”: Sovereignty, Small Islands, and Marine Protected Areas in Global Oceans Governance. Global Governance: A Review of Multilateralism and International Organizations 24, 537–555 (2018).Article 

    Google Scholar 
    Arlinghaus, R. & Cooke, S. J. Recreational Fisheries: Socioeconomic Importance, Conservation Issues and Management Challenges. in Recreational Hunting, Conservation and Rural Livelihoods (eds. Dickson, B., Hutton, J. & Adams, W. M.) 39–58, https://doi.org/10.1002/9781444303179.ch3 (Wiley-Blackwell, 2009).Arlinghaus, R. et al. Opinion: Governing the recreational dimension of global fisheries. Proceedings of the National Academy of Sciences 116, 5209–5213 (2019).CAS 
    Article 

    Google Scholar 
    Cisneros-Montemayor, A. M. & Sumaila, U. R. A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. Journal of Bioeconomics 12, 245–268 (2010).Article 

    Google Scholar 
    Czarkowski, T., Wołos, A. & Kapusta, A. Socio-economic portrait of Polish anglers and its implications for recreational fisheries management in freshwater bodies. Aquatic Living Resources 19, 14, https://doi.org/10.1051/alr/2021018 (2021).Article 

    Google Scholar 
    Dill, W. A. Inland Fisheries of Europe. Italy: Food and Agriculture Organization of the United Nations. (1993).Baigún, C., Oldani, N., Madirolas, A. & Colombo, G. A. Assessment of Fish Yield in Patagonian Lakes (Argentina): Development and Application of Empirical Models. Transactions of the American Fisheries Society 136, 846–857 (2007).Article 

    Google Scholar 
    Vigliano, P. H., Bechara, J., & Quiros, R. Allocation policies and its implications for recreational fisheries management in inland waters of Argentina. Sharing the Fish ‘06, 210 (2006).Henry, G. W., & Lyle, J. M. National recreational and indigenous fishing survey. (2003).Murphy J. J. et al. Survey of recreational fishing in NSW, 2019/20 – Key Results. Fisheries Final Report Series No. 161. Department of Primary Industries, New South Wales. 180 pp. (2022).Aas, Øystein, ed. Global challenges in recreational fisheries. (John Wiley & Sons, 2008).DoF. Yearbook of Fisheries Statistics of Bangladesh, 2017-18. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries. 35: p. 129 (2018).Mozumder, M., Uddin, M., Schneider, P., Islam, M. & Shamsuzzaman, M. Fisheries-Based Ecotourism in Bangladesh: Potentials and Challenges. Resources 7, 61 (2018).Article 

    Google Scholar 
    Craig, John F., ed. Freshwater fisheries ecology. (John Wiley & Sons, 2016).Barkhuizen, L. M., Weyl, O. L. F. & Van As, J. G. An assessment of recreational bank angling in the Free State Province, South Africa, using licence sale and tournament data. WSA 43, 442 (2017).Article 

    Google Scholar 
    Treer, T. & Kubatov, I. The co-existence of recreational and artisanal fisheries in the central parts of the Danube and Sava rivers. Croatian Journal of Fisheries 75(3), 116–127 (2017).
    Google Scholar 
    Freire, K. M. F., Machado, M. L. & Crepaldi, D. Overview of Inland Recreational Fisheries in Brazil. Fisheries 37, 484–494 (2012).Article 

    Google Scholar 
    Freire, K. M. F. et al. Brazilian recreational fisheries: current status, challenges and future direction. Fish Manag Ecol 23, 276–290, https://doi.org/10.1111/fme.12171 (2016).Article 

    Google Scholar 
    Fisheries and Oceans Canada. Survey of Recreational Fishing in Canada, 2015. 26 (2019).Arismendi, I. & Nahuelhual, L. Non-native Salmon and Trout Recreational Fishing in Lake Llanquihue, Southern Chile: Economic Benefits and Management Implications. Reviews in Fisheries Science 15, 311–325 (2007).Article 

    Google Scholar 
    Lyach, R., & Čech, M. Differences in fish harvest, fishing effort, and angling guard activities between urban and natural fishing grounds. Urban Ecosystems, 1–13 (2019).Lyach, R. The effect of fishing effort, fish stocking, and population density of overwintering cormorants on the harvest and recapture rates of three rheophilic fish species in central Europe. Fisheries Research 223, 105440 (2020).Article 

    Google Scholar 
    Lyach, R. The effect of a large-scale angling restriction in minimum angling size on harvest rates, recapture rates, and average body weight of harvested common carps Cyprinus carpio. Fisheries Research 223, 105438 (2020).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. Journal of Applied Ichthyology 35(5), 1094:1104 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Does harvest of the European grayling, Thymallus thymallus (Actinopterygii: Salmoniformes: Salmonidae), change over time with different intensity of fish stocking and fishing effort? Acta Ichthyol. Piscat. 50(1), 53–62 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. The effects of environmental factors and fisheries management on recreational catches of perch Perca fluviatilis in the Czech Republic. Aquatic Living Resources 32, 15, https://doi.org/10.1051/alr/2019013 (2019).Article 

    Google Scholar 
    Rasmussen, G. & Geertz‐Hansen, P. Fisheries management in inland and coastal waters in Denmark from 1987 to 1999. Fisheries Management and Ecology 8(4‐5), 311–322 (2001).
    Google Scholar 
    Armulik, T. & Sirp, S. Estonian Fishery 2018. (2019).Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries. FAO Fisheries and Aquaculture Circular No. 942, Rev. 2. Rome, FAO. 97 pp. (2011).West Greenland Commission, 2020 Report on the Salmon Fishery in Greenland. 8 (2020).Guðbergsson, G. Catch statistics for Atlantic salmon, Arctic char and brown trout in Icelandic rivers and lakes 2013. Institute of Freshwater Fisheries, Iceland Report VMST/14045 (2014).Inland Fisheries Ireland. Wild Salmon and Sea Trout Statistics Report. IFI/2020/1-4513 (2019).Vycius, J. & Radzevicius, A. Fishery and Fishculture Challenges in Lithuania. International Journal of Water Resources Development 25(1), 81–94, https://doi.org/10.1080/07900620802576240 (2009).Article 

    Google Scholar 
    Bacal, P., Jeleapov, A., Burduja, V. D., & Moroz, I. State and use of lakes from central region of the Republic of Moldova. Present Environment and Sustainable Development, (2), 141–156 (2019).Moroccan Ministry of Fisheries, Annual Report of Fisheries and Fish Farming in Inland Waters, Season 2020/2021 (2021).Centre for Fisheries Research. Recreational fisheries in the Netherlands: Analyses of the 2017 screening survey and the 2016–2017 logbook survey. CVO report: 18.025 (2019).Dedual, M. & Rohan, M. Long‐term trends in the catch characteristics of rainbow trout Oncorhynchus mykiss, in a self‐sustained recreational fishery, Tongariro River, New Zealand. Fisheries Management and Ecology 23(3-4), 234–242 (2016).Article 

    Google Scholar 
    Unwin, M.J. Angler usage of New Zealand lake and river fisheries. National Institute of Water and Atmospheric Research (2016).Ipinmoroti, M. O. & Ayanboye, O. Biological and socioeconomic viability of recreational fisheries of two Nigerian lakes. IIFET 2012 Tanzania Proceedings (2012).Amaral, S., Ferreira, M.T., Cravo, M.T. Resultado do ‘Inquérito aos Pescadores Desportivos de Áquas Intenores” realizado pela Direcção Geral das Florestas em 1998 a 1999. Pesca Desportivos em Albufeiras do Centro e Sul de Portugal: Contribuição para a reduçao da eutrofização. Instituto Superior de Agronomia. Autoridade Florestal Nacional. Lisboa: III.1-III.53. (2010).Povž, M., Šumer, S. & Leiner, S. Sport fishing catch as an indicator of population size of the Danube roach Rutilus pigus virgo in Slovenia (Cyprinidae). Italian Journal of Zoology 65(S1), 545–548 (1998).Article 

    Google Scholar 
    Embke, H. S., Beard, T. D., Lynch, A. J. & Vander Zanden, M. J. Fishing for Food: Quantifying Recreational Fisheries Harvest in Wisconsin Lakes. Fisheries fsh.10486, https://doi.org/10.1002/fsh.10486 (2020).Karimov, B. et al. Inland capture fisheries and aquaculture in the Republic of Uzbekistan: current status and planning. FAO Fisheries and Aquaculture Circular. No. 1030/1. Rome, FAO. 124 p. (2009).Magqina, T., Nhiwatiwa, T., Dalu, M. T., Mhlanga, L. & Dalu, T. Challenges and possible impacts of artisanal and recreational fisheries on tigerfish Hydrocynus vittatus Castelnau 1861 populations in Lake Kariba, Zimbabwe. Scientific African 10, e00613 (2020).Article 

    Google Scholar 
    Embke, H. S. Global dataset of species-specific inland recreational fisheries harvest for consumption. U.S. Geological Survey https://doi.org/10.5066/P9904C3R (2022).Amano, T., González-Varo, J. P. & Sutherland, W. J. Languages are still a major barrier to global science. PLoS biology 14(12), e2000933 (2016).Article 

    Google Scholar 
    Cooke, S. J. et al. Recreational fisheries in inland waters. In J. F. Craig (Ed.) Freshwater Fisheries Ecology. John Wiley and Sons Ltd. (2016). More