Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017). This study describes the large extent and huge carbon stocks of the Congo Basin peatlands.Article
Google Scholar
Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011). This is a comprehensive assessment of the extent, volume and carbon stocks of peatlands across the tropics, highlighting their importance in the global carbon cycle and key uncertainties.Article
Google Scholar
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
Google Scholar
Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).Article
Google Scholar
Olsson, L. et al. Climate change and land (eds Shukla, P. R. et al.) 345–436 (IPCC, 2019).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).Article
Google Scholar
Smith, P. et al. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 811–922 (Cambridge Univ. Press, 2014).Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020). This study evaluates ecosystems on the basis of the size of carbon stocks that are vulnerable to release upon land-use conversion and not recoverable on timescales relevant to avoiding dangerous climate impacts; it emphasizes the high density of irrecoverable carbon in tropical peatlands.Article
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).Article
Google Scholar
Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).Article
Google Scholar
Intergovernmental Panel on Climate Change. Climate change and land (IPCC, 2019).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article
Google Scholar
Page, S., Wüst, R. & Banks, C. Past and present carbon accumulation and loss in Southeast Asian peatlands. PAGES News 18, 25–27 (2010).Article
Google Scholar
Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).Article
Google Scholar
Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011). This is a comprehensive assessment of peatland development in Southeast Asia, exploring regional differences in rates of peat formation and carbon accumulation.Article
Google Scholar
Ruwaimana, M., Anshari, G. Z., Silva, L. C. R. & Gavin, D. G. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47,000 years. Environ. Res. Lett. 15, 114027 (2020). This study compares the development of coastal and inland peatlands in West Kalimantan, Indonesia, and provides a description of the oldest known peat deposit in Southeast Asia.Article
Google Scholar
Anshari, G., Kershaw, A. P., Kaars, S. V. D. & Jacobsen, G. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J. Quat. Sci. 19, 637–655 (2004).Article
Google Scholar
Dommain, R., Couwenberg, J. & Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration Mires Peat 6, 1–17 2010).
Google Scholar
Jones, M. B. & Muthuri, F. M. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. J. Trop. Ecol. 13, 347–356 (1997).Article
Google Scholar
Saunders, M. J., Jones, M. B. & Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetl. Ecol. Manag. 15, 489–498 (2007).Article
Google Scholar
Burrough, S. L., Thomas, D. S. G., Orijemie, E. A. & Willis, K. J. Landscape sensitivity and ecological change in western Zambia: the long-term perspective from dambo cut-and-fill sediments. J. Quat. Sci. 30, 44–58 (2015).Article
Google Scholar
Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).Article
Google Scholar
Alsdorf, D. et al. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 54, 378–409 (2016).Article
Google Scholar
Biddulph, G. E. et al. Current knowledge on the Cuvette Centrale peatland complex and future research directions. Bois For. Trop. 350, 3–14 (2021).Article
Google Scholar
Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza–Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).Article
Google Scholar
Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).Article
Google Scholar
Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014). Using a combination of remote sensing and field data, this study provides an assessment of the distribution of above- and belowground peatland carbon stocks in the Pastaza–Marañon foreland basin in Peruvian Amazonia.Article
Google Scholar
Phillips, S., Rouse, G. E. & Bustin, R. M. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128, 301–338 (1997).Article
Google Scholar
Sjögersten, S. et al. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403, 115173 (2021).Article
Google Scholar
Joosten, H. in Tropical Peatland Ecosystems (eds Osaki, M. & Tsuji, N.) 33–48 (Springer, 2016).Anderson, J. A. R. in Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 191–199 (Elsevier, 1983).Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).Article
Google Scholar
Anderson, J. A. R. Ecology and Forest Types of The Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. Thesis, Univ. Edinburgh (1961).Freund, C. A., Harsanto, F. A., Purwanto, A., Takahashi, H. & Harrison, M. E. Microtopographic specialization and flexibility in tropical peat swamp forest tree species. Biotropica 50, 208–214 (2018).Article
Google Scholar
Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. CATENA 139, 127–136 (2016).Article
Google Scholar
Miyamoto, K. et al. Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. J. Trop. Ecol. 19, 43–54 (2003).Article
Google Scholar
Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).Article
Google Scholar
Wijedasa, L. S. et al. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Glob. Change Biol. 24, 4598–4613 (2018).Article
Google Scholar
Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Phil. Trans. R. Soc. B 371, 20150176.(2016).Article
Google Scholar
Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manag. 393, 63–73 (2017).Article
Google Scholar
Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).Article
Google Scholar
Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).Article
Google Scholar
Grundling, P.-L. & Grootjans, A. P. in The Wetland Book. II: Distribution, Description, and Conservation (eds Finlayson, M., Milton, G., Prentice, R. & Davidson, N.) (Springer, 2018).Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).Article
Google Scholar
Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017). This study finds that the permeability of ombrotrophic tropical peat is higher than expected, resulting in deep water tables in ditched tropical peatlands and associated high rates of peat oxidation.Article
Google Scholar
Kelly, T. J. et al. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol. Process. 28, 3373–3387 (2014).Article
Google Scholar
Tonks, A. J. et al. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289, 36–45 (2017).Article
Google Scholar
Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article
Google Scholar
Laurén, A. et al. Nutrient balance as a tool for maintaining yield and mitigating environmental impacts of Acacia plantation in drained tropical peatland — description of plantation simulator. Forests 12, 312 (2021).Article
Google Scholar
Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article
Google Scholar
Anshari, G. Z., Gusmayanti, E. & Novita, N. The use of subsidence to estimate carbon loss from deforested and drained tropical peatlands in Indonesia. Forests 12, 732 (2021).Article
Google Scholar
Evans, C. D. et al. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. Front. Environ. Sci. 9, 33 (2021).
Google Scholar
Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).Article
Google Scholar
Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020). Using remote sensing, this study quantifies the rate of peat subsidence and carbon loss across peatlands in Southeast Asia.Article
Google Scholar
Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).Article
Google Scholar
Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in central Kalimantan, Indonesia. CATENA 114, 11–20 (2014).Article
Google Scholar
Hooijer, A., Vernimmen, R., Visser, M. & Mawdsley, N. Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia (Deltares, 2015).Sumarga, E., Hein, L., Hooijer, A. & Vernimmen, R. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecol. Soc. 21, 52 (2016).Article
Google Scholar
Evers, S., Yule, C. M., Padfield, R., O’Reilly, P. & Varkkey, H. Keep wetlands wet: the myth of sustainable development of tropical peatlands — implications for policies and management. Glob. Change Biol. 23, 534–549 (2017). This study reviews the ecosystem services provided by Southeast Asian peatlands and discusses key policy challenges for peatland management.Article
Google Scholar
Tan, Z. D., Lupascu, M. & Wijedasa, L. S. Paludiculture as a sustainable land use alternative for tropical peatlands: a review. Sci. Total Environ. 753, 142111 (2021). This study evaluates the current understanding of and opportunities for paludiculture in the context of tropical peatlands, emphasizing that tropical paludiculture will be heavily influenced by socioeconomic considerations.Article
Google Scholar
Haraguchi, A. in Tropical Peatland Ecosystems (Osaki, M. & Tsuji, N.) 297–311 (Springer, 2016).Wösten, J. H. M., Ismail, A. B. & van Wijk, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78, 25–36 (1997).Article
Google Scholar
Grealish, G. J. & Fitzpatrick, R. W. Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil. Use Manag. 29, 432–444 (2013).Article
Google Scholar
Klepper, O., Chairuddin, G. T., Iriansyah & Rijksen, H. D. Water quality and the distribution of some fishes in an area of acid sulphate soils, Kalimantan, Indonesia. Hydrobiol. Bull. 25, 217–224 (1992).Article
Google Scholar
Shamshuddin, J. & Muhrizal, S. Chemical pollution in acid sulfate soils. Proc. Geol. Soc. Malaysia Annu. Geol.Conf. 2000, 231–234 (2000).
Google Scholar
Suwardi. Utilization and improvement of marginal soils for agricultural development in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 383, 012047 (2019).Article
Google Scholar
Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).Article
Google Scholar
Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, 1996).Billett, M. F., Garnett, M. H. & Dinsmore, K. J. Should aquatic CO evasion be included in contemporary carbon budgets for peatland ecosystems? Ecosystems 18, 471–480 (2015).Article
Google Scholar
Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl. Ecol. Manag. 13, 671–684 (2005).Article
Google Scholar
Hoyos-Santillan, J. et al. Getting to the root of the problem: litter decomposition and peat formation in lowland neotropical peatlands. Biogeochemistry 126, 115–129 (2015).Article
Google Scholar
Könönen, M. et al. Land use increases the recalcitrance of tropical peat. Wetl. Ecol. Manag. 24, 717–731 (2016).Article
Google Scholar
Sangok, F. E., Maie, N., Melling, L. & Watanabe, A. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sci. Total Environ. 587–588, 381–388 (2017).Article
Google Scholar
Yule, C. M., Lim, Y. Y. & Lim, T. Y. Degradation of tropical Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa. Front. Earth Sci. 4, 1–9 (2016).Article
Google Scholar
Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).Article
Google Scholar
Lähteenoja, O., Ruokolainen, K., Schulman, L. & Oinonen, M. Amazonian peatlands: an ignored C sink and potential source. Glob. Change Biol. 15, 2311–2320 (2009).Article
Google Scholar
Garneau, M. et al. Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. Holocene 24, 1043–1053 (2014).Article
Google Scholar
Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).Article
Google Scholar
Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, GB3002 (2004).Article
Google Scholar
Yu, Z. C. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).Article
Google Scholar
Poulter, B. et al. in Wetland Carbon And Environmental Management (eds Krauss, K. W., Zhu, Z. & Stagg, C. L.) 1–20 (American Geophysical Union, 2021).Honorio Coronado, E. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).Article
Google Scholar
Sjögersten, S. et al. Tropical wetlands: a missing link in the global carbon cycle? Carbon cycling in tropical wetlands. Glob. Biogeochem. Cycles 28, 1371–1386 (2014).Article
Google Scholar
Griffis, T. J. et al. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agric. For. Meteorol. 295, 108167 (2020).Article
Google Scholar
Kiew, F. et al. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agric. For. Meteorol. 248, 494–501 (2018).Article
Google Scholar
Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Change Biol. 18, 3410–3422 (2012).Article
Google Scholar
Tang, A. C. I. et al. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere. Glob. Change Biol. 26, 6931–6944 (2020).Article
Google Scholar
Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021). This study presented measurements of CO2 and CH4 fluxes obtained using the eddy covariance method from both intact and degraded peat swamp forest in Sumatra, Indonesia, during the 2019 ENSO drought.Article
Google Scholar
Kiew, F. et al. Carbon dioxide balance of an oil palm plantation established on tropical peat. Agric. For. Meteorol. 295, 108189 (2020).Article
Google Scholar
McCalmont, J. et al. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Glob. Change Biol. 27, 2361–2376 (2021).Article
Google Scholar
Germer, J. & Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716 (2008).Article
Google Scholar
Lewis, K. et al. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods. Sci. Rep. 10, 2230 (2020).Article
Google Scholar
Wijedasa, L. S. Peat Swamp Forest Conservation in Southeast Asia. Thesis, National Univ. Singapore (2019).Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).Article
Google Scholar
Cook, S. et al. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences 15, 7435–7450 (2018).Article
Google Scholar
Waldron, S. et al. C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur. Sci. Rep. 9, 11429 (2019).Article
Google Scholar
Brady, M. A. Organic Matter Dynamics of Coastal Peat Deposits in Sumatra, Indonesia. Thesis, Univ. British Columbia (1997).Jauhiainen, J., Limin, S., Silvennoinen, H. & Vasander, H. Carbon dioxide and methane fluxes in drained tropical peat before and after hhydrological restoration. Ecology 89, 3503–3514 (2008).Article
Google Scholar
Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J. & Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Change Biol. 11, 1788–1797 (2005).Article
Google Scholar
Yule, C. M. & Gomez, L. N. Leaf litter decomposition in a tropical peat swamp forest in peninsular Malaysia. Wetl. Ecol. Manag. 17, 231–241 (2009).Article
Google Scholar
Swails, E., Hertanti, D., Hergoualc’h, K., Verchot, L. & Lawrence, D. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 142, 37–51 (2019).Article
Google Scholar
Ishikura, K. et al. Carbon dioxide and methane emissions from peat soil in an undrained tropical peat swamp forest. Ecosystems 22, 1852–1868 (2019).Article
Google Scholar
Melling, L., Tan, C. Y., Goh, K. J. & Hatano, R. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. J. Oil Palm. Res. 25, 44–57 (2013).
Google Scholar
Cooper, H. V. et al. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nat. Commun. 11, 407 (2020).Article
Google Scholar
Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Root-derived CO2 flux from a tropical peatland. Wetl. Ecol. Manag. 26, 985–991 (2018).Article
Google Scholar
Dhandapani, S., Ritz, K., Evers, S., Yule, C. M. & Sjögersten, S. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in peninsular Malaysia. Sci. Total Environ. 655, 220–231 (2019).Article
Google Scholar
Dhandapani, S. et al. Land-use changes associated with oil palm plantations impact PLFA microbial phenotypic community structure throughout the depth of tropical peats. Wetlands 40, 2351–2366 (2020).Article
Google Scholar
Mishra, S. et al. Microbial and metabolic profiling reveal strong influence of water table and land-use patterns on classification of degraded tropical peatlands. Biogeosciences 11, 1727–1741 (2014).Article
Google Scholar
Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021). This paper reviews current understanding of intact and degraded peatlands in Southeast Asia and proposes an approach for peatland management and restoration involving explicit consideration of interacting ecological factors and the involvement of local communities.Article
Google Scholar
Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).Article
Google Scholar
Carlson, K. M. et al. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl Acad. Sci. USA 109, 7559–7564 (2012).Article
Google Scholar
Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).Article
Google Scholar
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021). Using data for CO2 and CH4 fluxes from all major peatland biomes, this paper demonstrates that greenhouse gas emissions from drained agricultural peatlands could be greatly reduced by raising water levels closer to the peat surface while maintaining productive agricultural use.
Google Scholar
Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).Article
Google Scholar
Hiraishi, T. et al. (eds) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature — a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).Article
Google Scholar
Manning, F. C., Kho, L. K., Hill, T. C., Cornulier, T. & Teh, Y. A. Carbon emissions from oil palm plantations on peat soil. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00037 (2019).Article
Google Scholar
Deshmukh, C. S. et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Change Biol. 26, 2477–2495 (2020).Article
Google Scholar
Wong, G. X. et al. How do land use practices affect methane emissions from tropical peat ecosystems? Agric. For. Meteorol. 282–283, 107869 (2020).Article
Google Scholar
Pangala, S. R. et al. Large emissions from floodplain trees close the Amazon methane budget. Nature 552, 230–234 (2017).Article
Google Scholar
Pangala, S. R., Moore, S., Hornibrook, E. R. C. & Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. N. Phytol. 197, 524–531 (2013).Article
Google Scholar
Hergoualc’h, K. et al. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Glob. Change Biol. 26, 7198–7216 (2020).Article
Google Scholar
Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).Article
Google Scholar
Hoyos-Santillan, J. et al. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 688, 1193–1204 (2019).Article
Google Scholar
van Haren, J. et al. A versatile gas flux chamber reveals high tree stem CH4 emissions in Amazonian peatland. Agric. For. Meteorol. 307, 108504 (2021).Article
Google Scholar
Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).Article
Google Scholar
Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).Article
Google Scholar
Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil. Biol. Biochem. 127, 280–285 (2018).Article
Google Scholar
Girkin, N. T., Vane, C. H., Turner, B. L., Ostle, N. J. & Sjögersten, S. Root oxygen mitigates methane fluxes in tropical peatlands. Environ. Res. Lett. 15, 064013 (2020).Article
Google Scholar
Jauhiainen, J., Silvennoinen, H., Könönen, M., Limin, S. & Vasander, H. Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry 129, 115–132 (2016).Article
Google Scholar
Wright, E. L. et al. Contribution of subsurface peat to CO2 and CH fluxes in a neotropical peatland. Glob. Change Biol. 17, 2867–2881 (2011).Article
Google Scholar
Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).Article
Google Scholar
Peacock, M. et al. Global importance of methane emissions from drainage ditches and canals. Environ. Res. Lett. 16, 044010 (2021).Article
Google Scholar
Chuang, P.-C. et al. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. J. Geophys. Res. Biogeosci. 122, 1156–1174 (2017).Article
Google Scholar
Jauhiainen, J. & Silvennoinen, H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suoseura 63, 93–105 (2012).
Google Scholar
Yupi, H. M., Inoue, T. & Bathgate, J. Concentrations, loads and yields of organic carbon from two tropical peat swamp forest streams in Riau Province, Sumatra, Indonesia. Mires Peat 18, 1–15 (2016).
Google Scholar
Zhou, Y., Evans, C. D., Chen, Y., Chang, K. Y. W. & Martin, P. Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia. J. Geophys. Res. Ocean. 126, e2021JC017292 (2021).
Google Scholar
Alkhatib, M., Jennerjahn, T. C. & Samiaji, J. Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical black-water river. Limnol. Oceanogr. 52, 2410–2417 (2007).Article
Google Scholar
Gandois, L. et al. From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia. Biogeosciences 17, 1897–1909 (2020).Article
Google Scholar
Rixen, T. et al. The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochemistry 90, 129–140 (2008).Article
Google Scholar
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).Article
Google Scholar
Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021).Article
Google Scholar
Boysen, L. R. et al. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst. Dyn. 5, 309–319 (2014).Article
Google Scholar
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article
Google Scholar
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).Article
Google Scholar
Naidu, D. G. T. & Bagchi, S. Greening of the Earth does not compensate for rising soil heterotrophic respiration under climate change. Glob. Change Biol. 27, 2029–2038 (2021).Article
Google Scholar
Li, W. et al. Future precipitation changes and their implications for tropical peatlands. Geophys. Res. Lett. 34, 01403 (2007).Article
Google Scholar
Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).Article
Google Scholar
Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. 6, 228 (2018).Article
Google Scholar
Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).Article
Google Scholar
Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).Article
Google Scholar
Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).Article
Google Scholar
Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2020).Article
Google Scholar
Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 103, 16–30 (2015).Article
Google Scholar
Weiss, D. et al. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim. Cosmochim. Acta 66, 2307–2323 (2002).Article
Google Scholar
Lähteenoja, O. & Page, S. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. 116, G02025 (2011).
Google Scholar
Roucoux, K. H. et al. Vegetation development in an Amazonian peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 242–255 (2013).Article
Google Scholar
Lampela, M., Jauhiainen, J. & Vasander, H. Surface peat structure and chemistry in a tropical peat swamp forest. Plant. Soil. 382, 329–347 (2014).Article
Google Scholar
Page, S. E., Rieley, J. O., Shotyk, Ø. W. & Weiss, D. Interdependence of peat and vegetation in a tropical peat swamp forest. Phil. Trans. R. Soc. Lond. B 354, 1885–1897 (1999).Article
Google Scholar
Sjögersten, S., Cheesman, A. W., Lopez, O. & Turner, B. L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011).Article
Google Scholar
Yule, C. M. Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodivers. Conserv. 19, 393–409 (2010).Article
Google Scholar
Basilier, K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia 5, 84–88 (1979).
Google Scholar
Ong, C. S. P., Juan, J. C. & Yule, C. M. Litterfall production and chemistry of Koompassia malaccensis and Shorea uliginosa in a tropical peat swamp forest: plant nutrient regulation and climate relationships. Trees 29, 527–537 (2015).Article
Google Scholar
Wüst, R. A. J. & Bustin, R. M. Opaline and Al–Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chem. Geol. 200, 267–292 (2003).Article
Google Scholar
Neuzil, S. G., Cecil, C. B., Kane, J. S. & Soedjono, K. in Modern and Ancient Coal-Forming Environments Vol. 286 (Geological Society of America, 1993).Too, C. C., Keller, A., Sickel, W., Lee, S. M. & Yule, C. M. Microbial community structure in a Malaysian tropical peat swamp forest: the influence of tree species and depth. Front. Microbiol. 9, 2859 (2018).Article
Google Scholar
Sulistiyanto, Y. Nutrient Dynamics in Different Sub-types of Peat Swamp Forest in Central Kalimantan, Indonesia. Thesis, Univ. Nottingham (2005).Hoyos Santillán, J. Controls of Carbon Turnover in Tropical Peatlands. Thesis, Univ. Nottingham (2014).Damman, A. W. H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30, 480–495 (1978).Article
Google Scholar
Laiho, R. & Laine, J. Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand. J. For. Res. 9, 251–260 (1994).Article
Google Scholar
Wang, M., Moore, T. R., Talbot, J. & Riley, J. L. The stoichiometry of carbon and nutrients in peat formation. Glob. Biogeochem. Cycles 29, 113–121 (2015).Article
Google Scholar
Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).Article
Google Scholar
Jackson, C. R., Liew, K. C. & Yule, C. M. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb. Ecol. 57, 402–412 (2009).Article
Google Scholar
Kolb, S. & Horn, M. A. Microbial CH4 and NO consumption in acidic wetlands. Front. Microbiol. 3, 78 (2012).Article
Google Scholar
Golovchenko, A. V., Tikhonova, E. Y. & Zvyagintsev, D. G. Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands. Microbiology 76, 630–637 (2007).Article
Google Scholar
Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993).Article
Google Scholar
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50, 667 (2000).Article
Google Scholar
Rubol, S., Silver, W. L. & Bellin, A. Hydrologic control on redox and nitrogen dynamics in a peatland soil. Sci. Total Environ. 432, 37–46 (2012).Article
Google Scholar
Jauhiainen, J. et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 9, 1337–1350 (2012).Article
Google Scholar
Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. & Vasander, H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16, 1–13 (2015).
Google Scholar
Chotimah, H., Jaya, A., Suparto, H., Saraswati, D. & Nawansyah, W. Utilizing organic fertilizers on two types of soil to improve growth and yield of Bawang Dayak (Eleutherine americana Merr). Agrivita J. Agric. Sci. 43, 164–173 (2021).
Google Scholar
Mohidin, H. et al. Optimum levels of N, P, and K nutrition for oil palm seedlings grown in tropical peat soil. J. Plant. Nutr. 42, 1461–1471 (2019).Article
Google Scholar
Mutert, E., Fairhurst, T. H. & Von Uexküll, H. R. Agronomic management of oil palms on deep peat. Better. Crop. Int. 13, 22–27 (1999).
Google Scholar
Hashim, S. A., Teh, C. B. S. & Ahmed, O. H. Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malays. J. Soil. Sci. 23, 13–30 (2019).
Google Scholar
Oktarita, S., Hergoualc’h, K., Anwar, S. & Verchot, L. V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 12, 104007 (2017).Article
Google Scholar
Hoyos-Santillan, J. et al. Root oxygen loss from Raphia taedigera palms mediates greenhouse gas emissions in lowland neotropical peatlands. Plant. Soil. 404, 47–60 (2016).Article
Google Scholar
Hatano, R. Impact of land use change on greenhouse gases emissions in peatland: a review. Int. Agrophys. 33, 167–173 (2019). This study reviews the impacts of changes in water-table level and nitrogen inputs on greenhouse gas emissions in tropical and northern peatlands and evaluates the optimal water-table level for minimizing emissions.Article
Google Scholar
Zawawi, N. Z. et al. The effect of nitrogen fertiliser on nitrous oxide emission in oil palm plantation. Proc. 15th Int. Peat Congress 355, 515–518 (2016).
Google Scholar
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015). This paper reviews peatland vulnerability to burning, fire-driven carbon emissions and current and future risks of peatland fires.Article
Google Scholar
Hu, Y. et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).Article
Google Scholar
Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).Article
Google Scholar
Smith, T. E. L., Evers, S., Yule, C. M. & Gan, J. Y. In situ tropical peatland fire emission factors and their variability, as determined by field measurements in peninsula Malaysia. Glob. Biogeochem. Cycles 32, 18–31 (2018).Article
Google Scholar
Stockwell, C. E. et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 16, 11711–11732 (2016).Article
Google Scholar
Betha, R. et al. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 122, 571–578 (2013).Article
Google Scholar
Breulmann, G. et al. Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia. Sci. Total Environ. 285, 107–115 (2002).Article
Google Scholar
Othman, M. & Latif, M. T. Dust and gas emissions from small-scale peat combustion. Aerosol Air Qual. Res. 13, 1045–1059 (2013).Article
Google Scholar
See, S. W., Balasubramanian, R. & Wang, W. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J. Geophys. Res. 111, D10S08 (2006).
Google Scholar
Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Env. 1, 65 (2020).Article
Google Scholar
Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).Article
Google Scholar
Astiani, D., Taherzadeh, M. J., Gusmayanti, E., Widiastuti, T. & Burhanuddin, B. Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in west Kalimantan peatland, Indonesia. Biodiversiitas J. Biol. Divers. 20, 725–731 (2019).Article
Google Scholar
Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Change 39, 205–219 (2016).Article
Google Scholar
Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article
Google Scholar
Field, R. D. & Shen, S. S. P. Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113, G04024 (2008).Article
Google Scholar
Sloan, S., Locatelli, B., Wooster, M. J. & Gaveau, D. L. A. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47, 95–109 (2017).Article
Google Scholar
Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).Article
Google Scholar
World Bank. The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis (World Bank, 2016).Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article
Google Scholar
Lupascu, M., Akhtar, H., Smith, T. E. L. & Sukri, R. S. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH4 flux. Glob. Change Biol. 26, 5125–5145 (2020).Article
Google Scholar
Milner, L. E. Influence of Fire on Peat Organic Matter from Indonesian Tropical Peatlands. Thesis, Univ. Leicester (2013).Saharjo, B. H. & Nurhayati, A. D. Changes in chemical and physical properties of hemic peat under fire-based shifting cultivation. Tropics 14, 263–269 (2005).Article
Google Scholar
Dhandapani, S. & Evers, S. Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Sci. Total Environ. 742, 140648 (2020).Article
Google Scholar
Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Change Biol. 22, 1469–1480 (2016).Article
Google Scholar
Akhtar, H. et al. Significant sedge-mediated methane emissions from degraded tropical peatlands. Environ. Res. Lett. 16, 014002 (2020).
Google Scholar
Rein, G. in Fire Phenomena and the Earth System (ed. Belcher, C. M.) 15–33 (Wiley, 2013).Graham, L. L. B. & Page, S. E. A limited seed bank in both natural and degraded tropical peat swamp forest: the implications for restoration. Mires Peat 22, 02 (2018).
Google Scholar
Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
Google Scholar
Page, S. et al. Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12, 888–905 (2009).Article
Google Scholar
Sazawa, K. et al. Impact of peat fire on the soil and export of dissolved organic carbon in tropical peat soil, Central Kalimantan, Indonesia. ACS Earth Space Chem. 2, 692–701 (2018).Article
Google Scholar
Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).Article
Google Scholar
Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Env. 1, 590–605 (2020).Article
Google Scholar
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article
Google Scholar
Giesen, W. & Sari, E. N. N. Tropical peatland restoration report: the Indonesian case. MCA Indonesia https://doi.org/10.13140/RG.2.2.30049.40808 (2018).Article
Google Scholar
Dohong, A., Abdul Aziz, A. & Dargusch, P. A review of techniques for effective tropical peatland restoration. Wetlands 38, 275–292 (2018).Article
Google Scholar
Shell. Redd+ Katingan Mentaya, Indonesia. Shell https://www.shell.co.uk/motorist/make-the-change-drive-carbon-neutral/redd-plus-katingan-mentaya-indonesia.html (2021).Uda, S. K., Hein, L. & Sumarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 25, 683–701 (2017).Article
Google Scholar
Wichtmann, W., Tanneberger, F., Wichmann, S. & Joosten, H. Paludiculture is paludifuture: climate, biodiversity and economic benefits from agriculture and forestry on rewetted peatland. Peatl. Int. 1, 48–51 (2010).
Google Scholar
Giesen, W. in Tropical Peatland Eco-Management (eds Osaki, M., Tsuji, N., Foead, N. & Rieley, J.) 411–441 (Springer, 2021).Shurpali, N. J. et al. Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2, 130–138 (2010).
Google Scholar
Lawson, I. T. et al. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl. Ecol. Manag. 23, 327–346 (2015).Article
Google Scholar
Anda, M. et al. Revisiting tropical peatlands in Indonesia: semi-detailed mapping, extent and depth distribution assessment. Geoderma 402, 115235 (2021).Article
Google Scholar
Saxon, E. C., Neuzil, S. G., Biladi, D. B. C., Kinser, J. & Sheppard, S. M. 3D mapping of lowland coastal peat domes in Indonesia. Mires Peat 27, 1–18 (2021).
Google Scholar
Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).Article
Google Scholar
Vernimmen, R. et al. Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Manag. 15, 4 (2020).Article
Google Scholar
Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: a review. Soil. Biol. Biochem. 57, 979–994 (2013).Article
Google Scholar
Morrison, E. S. et al. Characterization of bacterial and fungal communities reveals novel consortia in tropical oligotrophic peatlands. Microb. Ecol. 82, 188–201 (2020).Article
Google Scholar
Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza–Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).Article
Google Scholar
Troxler, T. G. et al. Patterns of soil bacteria and canopy community structure related to tropical peatland development. Wetlands 32, 769–782 (2012).Article
Google Scholar
Tripathi, B. M. et al. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front. Microbiol. 7, 376 (2016).Article
Google Scholar
Kwon, M. J., Haraguchi, A. & Kang, H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil. Biol. Biochem. 60, 33–44 (2013).Article
Google Scholar
Hadi, A. et al. Effects of land-use change in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes Env. 16, 79–86 (2001).Article
Google Scholar
Kusai, N. A., Ayob, Z., Maidin, M. S. T., Safari, S. & Ahmad Ali, S. R. Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. Rendiconti Lincei Sci. Fis. E 29, 469–482 (2018).Article
Google Scholar
Shuhada, S. N., Salim, S., Nobilly, F., Zubaid, A. & Azhar, B. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. Ecol. Evol. 7, 7187–7200 (2017).Article
Google Scholar
Liu, B. et al. The microbial diversity and structure in peatland forest in Indonesia. Soil. Use Manag. 36, 123–138 (2020).Article
Google Scholar
Moyersoen, B., Becker, P. & Alexander, I. J. Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? N. Phytol. 150, 591–599 (2001).Article
Google Scholar
Muliyani, R. B., Sastrahidayat, I. R., Abdai, A. L. & Djauhari, S. Exploring ectomycorrhiza in peat swamp forest of Nyaru Menteng Palangka Raya Central Borneo. J. Biodivers. Environ. Sci. 5, 133–145 (2014).
Google Scholar
Turjaman, M. et al. Improvement of early growth of two tropical peat-swamp forest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungi under greenhouse conditions. New Forests 36, 1–12 (2008).Article
Google Scholar
Tawaraya, K. et al. Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For. Ecol. Manag. 182, 381–386 (2003).Article
Google Scholar
Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).Article
Google Scholar
Yuwati, T. W. & Putri, W. S. Diversity of arbuscular mycorrhiza spores under Shorea balangeran (Korth.) Burck. plantation as bioindicator for the revegetation success. J. Galam 1, 15–26 (2020).Article
Google Scholar
Graham, L. L. B., Turjaman, M. & Page, S. E. Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: effects of mycorrhizae and level of disturbance. Wetl. Ecol. Manag. 21, 307–321 (2013).Article
Google Scholar More