More stories

  • in

    Factors affecting the implementation of soil conservation practices among Iranian farmers

    Komarek, A. M., Thierfelder, C. & Steward, P. R. Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi. Agric. Syst. 190, 103117 (2021).Article 

    Google Scholar 
    Charles, H., Godfray, H. & Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 369, 1 (2014).Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014).Article 
    ADS 

    Google Scholar 
    Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Chang. 6, 954–958 (2016).Article 
    ADS 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 67, 1 (2022).
    Google Scholar 
    Savari, M. & Shokati Amghani, M. Factors influencing farmers’ adaptation strategies in confronting the drought in Iran. Environ. Dev. Sustain. 23, 4949–4972 (2020).Article 

    Google Scholar 
    Savari, M., Eskandari Damaneh, H. & Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 67, (2022).Savari, M. & Zhoolideh, M. The role of climate change adaptation of small-scale farmers on the households food security level in the west of Iran. Dev. Pract. 31, 650–664 (2021).Article 

    Google Scholar 
    Eder, A., Salhofer, K. & Scheichel, E. Land tenure, soil conservation, and farm performance: An eco-efficiency analysis of Austrian crop farms. Ecol. Econ. 180, 106861 (2021).Article 

    Google Scholar 
    Keesstra, S. et al. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. 7, 133 (2018).Savari, M., Naghibeiranvand, F. & Asadi, Z. Modeling environmentally responsible behaviors among rural women in the forested regions in Iran. Glob. Ecol. Conserv. 35, e02102 (2022).Article 

    Google Scholar 
    Savari, M., Damaneh, H. E. & Damaneh, H. E. Factors involved in the degradation of mangrove forests in Iran: A mixed study for the management of this ecosystem. J. Nat. Conserv. 66, 1 (2022).Article 

    Google Scholar 
    Bhan, S. & Behera, U. K. Conservation agriculture in India—Problems, prospects and policy issues. Int. Soil Water Conserv. Res. 2, 1–12 (2014).Article 

    Google Scholar 
    Savari, M., Ebrahimi-Maymand, R. & Mohammadi-Kanigolzar, F. The factors influencing the application of organic farming operations by farmers in iran. Agris On-line Pap. Econ. Informatics 5, 179–187 (2013).
    Google Scholar 
    FAO. Conservation agriculture in Central Asia: Status, Policy, Institutional Support, and Strategic Framework for its Promotion. 57 pp (2013).Eskandari Damaneh, H., Khosravi, H., Habashi, K., Eskandari Damaneh, H. & Tiefenbacher, J. P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 110, 2185–2205 (2022).Dougill, A. J. et al. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. J. Environ. Manage. 195, 25–34 (2017).PubMed 
    Article 

    Google Scholar 
    Pannell, D. J., Llewellyn, R. S. & Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 187, 52–64 (2014).Article 

    Google Scholar 
    Bajwa, A. A. Sustainable weed management in conservation agriculture. Crop Prot. 65, 105–113 (2014).Article 

    Google Scholar 
    Lalani, B., Dorward, P., Holloway, G. & Wauters, E. Smallholder farmers’ motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making. Agric. Syst. 146, 80–90 (2016).Article 

    Google Scholar 
    Faridi, A. A., Kavoosi-Kalashami, M. & Bilali, H. E. Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County. Northern Iran. Land Use Policy 99, 1 (2020).
    Google Scholar 
    Thierfelder, C. et al. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 30, 328–348 (2015).Article 

    Google Scholar 
    Eskandari Damaneh, H. et al. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province https://doi.org/10.1177/1178622121101333214 (2021).Article 

    Google Scholar 
    Ataei, P., Sadighi, H., Chizari, M. & Abbasi, E. Discriminant analysis of the participated farmers’ characteristics in the conservation agriculture project based on the learning transfer system. Environ. Dev. Sustain. 23, 291–307 (2021).Article 

    Google Scholar 
    Izadi, N., Ataei, P., Karimi-Gougheri, H. & Norouzi, A. Environmental impact assessment of construction of water pumping station in Bacheh Bazar Plain: A case from Iran. EQA – Int. J. Environ. Qual. 35, 13–32 (2019).
    Google Scholar 
    Mesgaran, M. B., Madani, K., Hashemi, H. & Azadi, P. Iran’s Land Suitability for Agriculture. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    Jia, L. et al. Regional differences in the soil and water conservation efficiency of conservation tillage in China. CATENA 175, 18–26 (2019).Article 

    Google Scholar 
    Kuyvenhoven, A., Ruben, R. & Pender, J. Development strategies for less-favoured areas. Food Policy 29, 295–302 (2004).Article 

    Google Scholar 
    Hoque, R. & Sorwar, G. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Int. J. Med. Inform. 101, 75–84 (2017).PubMed 
    Article 

    Google Scholar 
    Gupta, K. P., Manrai, R. & Goel, U. Factors influencing adoption of payments banks by Indian customers: extending UTAUT with perceived credibility. J. Asia Bus. Stud. 13, 173–195 (2019).Article 

    Google Scholar 
    Solís, D., Bravo-Ureta, B. E. & Quiroga, R. E. Technical efficiency among peasant farmers participating in natural resource management programmes in Central America. J. Agric. Econ. 60, 202–219 (2009).Article 

    Google Scholar 
    Amsalu, A. & de Graaff, J. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed. Ecol. Econ. 61, 294–302 (2007).Article 

    Google Scholar 
    Solís, D. & Bravo-Ureta, B. E. Economic and Financial Sustainability of Private Agricultural Extension in El Salvador. https://doi.org/10.1300/J064v26n02_0726,81-102 (2008).Article 

    Google Scholar 
    Bagheri, A. & Teymouri, A. Farmers’ intended and actual adoption of soil and water conservation practices. Agric. Water Manag. 259, 1 (2022).Article 

    Google Scholar 
    Rodrigo-Comino, J. et al. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. L. Degrad. Dev. 31, 1877–1889 (2020).Article 

    Google Scholar 
    Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Tillage Res. 203, 1 (2020).Article 

    Google Scholar 
    Singh, R. K., Singh, A. & Pandey, C. B. Agro-biodiversity in rice–wheat-based agroecosystems of eastern Uttar Pradesh, India: implications for conservation and sustainable management. 21, 46–59. https://doi.org/10.1080/13504509.2013.869272 (2014).Bijani, M., Ghazani, E., Valizadeh, N. & Fallah Haghighi, N. Pro-environmental analysis of farmers’ concerns and behaviors towards soil conservation in central district of Sari County, Iran. Int. Soil Water Conserv. Res. 5, 43–49 (2017).Raeisi, A., Bijani, M. & Chizari, M. The mediating role of environmental emotions in transition from knowledge to sustainable use of groundwater resources in Iran’s agriculture. Int. Soil Water Conserv. Res. 6, 143–152 (2018).Article 

    Google Scholar 
    Valizadeh, N., Bijani, M., Hayati, D. & Fallah Haghighi, N. Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol. J. 27, 1131–1142 (2019).Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F. & Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Change 80, 525–540 (2013).Article 

    Google Scholar 
    Teklewold, H., Kassie, M. & Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 64, 597–623 (2013).Article 

    Google Scholar 
    Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. https://doi.org/10.1007/S12144-021-02093-9 (2021).Article 

    Google Scholar 
    Tey, Y. S. & Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 13, 713–730 (2012).Article 

    Google Scholar 
    Savari, M., Abdeshahi, A., Gharechaee, H. & Nasrollahian, O. Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. Int. J. Disaster Risk Reduct. 60, 1 (2021).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).Article 

    Google Scholar 
    Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 13, 319–339 (1989).Article 

    Google Scholar 
    Rogers W., R. Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. in Social Psychophysiology: A Sourcebook 153–177 (1983).Bandura, A. Health promotion by social cognitive means. Heal. Educ. Behav. 31, 143–164 (2004).Article 

    Google Scholar 
    Ratten, V. & Ratten, H. Technological innovations and m-Commerce applications. Int. J. Innov. Technol. Manag. 4, 1–14 (2007).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M. & Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 39, 1009 (2021).Article 

    Google Scholar 
    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. & Burton, R. J. F. Predicting farmers’ water conservation goals and behavior in Iran: A test of social cognitive theory. Land Use Policy 47, 401–407 (2015).Article 

    Google Scholar 
    Rahimi-Feyzabad, F., Yazdanpanah, M., Burton, R. J. F., Forouzani, M. & Mohammadzadeh, S. The use of a bourdieusian “capitals” model for understanding farmer’s irrigation behavior in Iran. J. Hydrol. 591, 1 (2020).Article 

    Google Scholar 
    Schwarzer, R. & Luszczynska, A. Predicting and changing health behavior. Heal. action Process approach 252–278 (2015).Gothe, N. P. Correlates of physical activity in urban African American adults and older adults: Testing the social cognitive theory. Ann. Behav. Med. 52, 743–751 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murphy, D. A., Stein, J. A., Schlenger, W. & Maibach, E. Conceptualizing the multidimensional nature of self-efficacy: Assessment of situational context and level of behavioral challenge to maintain safer sex. Heal. Psychol. 20, 281–290 (2001).CAS 
    Article 

    Google Scholar 
    Valois, R. F., Zullig, K. J. & Revels, A. A. Aggressive and violent behavior and emotional self-efficacy: Is there a relationship for adolescents?. J. Sch. Health 87, 269–277 (2017).PubMed 
    Article 

    Google Scholar 
    Ramirez, E., Kulinna, P. H. & Cothran, D. Constructs of physical activity behaviour in children: The usefulness of Social Cognitive Theory. Psychol. Sport Exerc. 13, 303–310 (2012).Article 

    Google Scholar 
    Schunk, D. H. & DiBenedetto, M. K. Motivation and social cognitive theory. Contemp. Educ. Psychol. 60, 101832 (2020).Article 

    Google Scholar 
    Raskauskas, J., Rubiano, S., Offen, I. & Wayland, A. K. Do social self-efficacy and self-esteem moderate the relationship between peer victimization and academic performance?. Soc. Psychol. Educ. 18, 297–314 (2015).Article 

    Google Scholar 
    Wang, S., Hung, K. & Huang, W.-J. Motivations for entrepreneurship in the tourism and hospitality sector: A social cognitive theory perspective. https://doi.org/10.1016/j.ijhm.2018.11.018 (2018).Article 

    Google Scholar 
    Zimmerman, B. J. Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. Am. Educ. Res. J. 45, 166–183 (2008).Article 
    ADS 

    Google Scholar 
    Steese, S. et al. Understanding Girls’ Circle as an intervention on perceived social support, body image, self-efficacy, locus of control, and self-esteem. Adolescence 41, 55–74 (2006).PubMed 

    Google Scholar 
    Komendantova, N. et al. Studying young people’ views on deployment of renewable energy sources in Iran through the lenses of Social Cognitive Theory. AIMS Energy 6, 216–228 (2018).Article 

    Google Scholar 
    Burton, R. J. F. Reconceptualising the ‘behavioural approach’ in agricultural studies: A socio-psychological perspective. J. Rural Stud. 20, 359–371 (2004).Article 

    Google Scholar 
    Plotnikoff, R. C., Lippke, S., Courneya, K. S., Birkett, N. & Sigal, R. J. Physical activity and social cognitive theory: A test in a population sample of adults with type 1 or type 2 diabetes. Appl. Psychol. AN Int. Rev. 57, 628–643 (2008).Article 

    Google Scholar 
    Thøgersen, J. & Grønhøj, A. Electricity saving in households-A social cognitive approach. Energy Policy 38, 7732–7743 (2010).Article 

    Google Scholar 
    Kaye, S. A., Lewis, I., Forward, S. & Delhomme, P. A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically-informed investigation guided by the TPB and UTAUT. Accid. Anal. Prev. 137, 5441 (2020).Article 

    Google Scholar 
    Savari, M. & Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 263, 1 (2020).Article 
    CAS 

    Google Scholar 
    Koohizadeh, M., Mohammad Akhoond-Ali, A. & Arsham, A. The Effect of Soil Moisture Levels on the Threshold Velocity of Wind Erosion in Dust Centers of South and Southeast of Khuzestan Province-Ahwaz. Iran. J. Soil Water Res. 52, 869–885 (2021).Keshavarz, M. & Karami, E. Farmers’ decision-making process under drought. J. Arid Environ. 108, 43–56 (2014).Article 
    ADS 

    Google Scholar 
    Wu, J. Urban sustainability: an inevitable goal of landscape research. Landsc. Ecol. 25, 1–4 (2009).Article 

    Google Scholar 
    Ullman, J. B. & Bentler, P. M. Structural equation modeling. Handb. Psychol. Second Ed. https://doi.org/10.1002/9781118133880.HOP202023 (2012).Article 

    Google Scholar 
    Serda, M. Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza. Uniw. śląski 343–354 (2013).Khoshmaram, M., Shiri, N., Shinnar, R. S. & Savari, M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. https://doi.org/10.1111/jsbm.1250158,1064-1088 (2020).Article 

    Google Scholar 
    Kim, T. K. T test as a parametric statistic. Korean J. Anesthesiol. 68, 540–546 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    -The T-test. Source: Adapted from Semenick, (96), p. 37. | Download Scientific Diagram. https://www.researchgate.net/figure/The-T-test-Source-Adapted-from-Semenick-96-p-37_fig2_274192999.Yadav, R. & Pathak, G. S. Intention to purchase organic food among young consumers: Evidences from a developing nation. Appetite 96, 122–128 (2016).PubMed 
    Article 

    Google Scholar 
    Akey, J. E., Rintamaki, L. S. & Kane, T. L. Health Belief Model deterrents of social support seeking among people coping with eating disorders. J. Affect. Disord. 145, 246–252 (2013).PubMed 
    Article 

    Google Scholar 
    Ahmmadi, P., Rahimian, M. & Movahed, R. G. Theory of planned behavior to predict consumer behavior in using products irrigated with purified wastewater in Iran consumer. J. Clean. Prod. 296, 6359 (2021).Article 

    Google Scholar 
    Bagheri, A., Bondori, A., Allahyari, M. S. & Damalas, C. A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manage. 248, 1 (2019).Article 

    Google Scholar 
    Sarstedt, M., Ringle, C. M. & Hair, J. F. Partial least squares structural equation modeling. Handb. Mark. Res. 1, 1–47. https://doi.org/10.1007/978-3-319-05542-8_15-2 (2021).Article 

    Google Scholar 
    Mogaka, B. O., Bett, H. K. & Nganga, S. K. Socioeconomic factors influencing the choice of climate-smart soil practices among farmers in western Kenya. J. Agric. Food Res. 5, 1 (2021).
    Google Scholar 
    Afshan, S., Sharif, A., Waseem, N. & Farooghi, R. Internet banking in Pakistan: An extended technology acceptance perspective. Int. J. Bus. Inf. Syst. 27, 383–410 (2018).
    Google Scholar 
    Pai, F. Y. & Huang, K. I. Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technol. Forecast. Soc. Change 78, 650–660 (2011).Article 

    Google Scholar 
    Venkatesh, V., Thong, J. Y. L. & Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. Manag. Inf. Syst. 36, 157–178 (2012).Article 

    Google Scholar 
    Nguru, W. M., Gachene, C. K., Onyango, C. M., Nganga, S. K. & Girvetz, E. H. Factors constraining the adoption of soil organic carbon enhancing technologies among small-scale farmers in Ethiopia. Heliyon 7, 1 (2021).Article 

    Google Scholar 
    Warner, L. A. Who conserves and who approves? Predicting water conservation intentions in urban landscapes with referent groups beyond the traditional ‘important others’. Urban For. Urban Green. 60, 1 (2021).Article 

    Google Scholar  More

  • in

    A sea change in craft brewing

    New wave: Petar Puškarić used yeast isolated from the Adriatic Sea to make a beer that he named Morski Kukumar (Sea Cucumber).Credit: Marin Ordulj

    Petar Puškarić is an engineer, ecologist and head of beer production at LAB Split, a craft brewery in Split, Croatia. He graduated with a master’s degree from the department of marine studies at the University of Split last year, after successfully making a beer from Candida famata, a yeast that can be isolated from sea water. He now hopes to brew this sea-yeast beer commercially. He speaks to Nature about some of the challenges in going from dissertation to commercialization.How did your marine-yeast beer come about?I’ve had an interest in brewing beer for a long time, and started brewing as a hobby when I was a student. During a marine-microbiology lecture as part of my undergraduate degree in ecology, my mentor Marin Ordulj and I started to talk about marine yeasts, and one question led to another. We wondered whether sea yeast could ferment beer.We researched the literature and could not find anyone who had made a beer with a yeast isolated from the sea. Perhaps we could become the first to do so? The idea stayed with me for a few years as I continued my degree and moved on to my master’s course. When I came to choose my dissertation topic, I decided it was time to put the idea to the test. I discussed things with Marin, and he agreed to help me plan an experiment. By then, I was working part-time at the LAB Split brewery, so I had some brewing experience to bring to our investigations.Our first task was to isolate yeasts from the sea. We then tested the fermentation abilities of the isolated yeasts and grew cultures from the most promising samples. Finally, we used those cultures to brew beer.How did you manage your time between brewing and your degree?I wasn’t overorganized, but I always made sure to be disciplined and to do whatever was needed as tasks came along. I kept active outside work as well, continuing to play as a mandolinist in an orchestra, for example.I didn’t think too strictly about my career, and made time to do the things I enjoyed. I’d recommend that other students also try to enjoy life and spend as much time as possible with friends. After all, life is not just about building a career. I was lucky in proposing a graduate topic that I found interesting and that my mentor liked: that helped me through the duller and more difficult moments.What was the hardest part of the process?The biggest problem was created by marine bacteria, which would outgrow the yeast colonies and thus make the isolation of yeast more difficult. We tackled this problem by using selective nutrient media, which inhibit the growth of bacteria. Eventually, this resulted in pure yeast cultures.What did the beer taste like?The first beer tasting after all that research, thinking and anticipation was really exciting. We noted clove and fruit aromas and a slightly sour tone. It didn’t carry the taste of the sea; the flavour was closest to that of sour beer.What impact do you hope this work will have?The beer is an exciting product of my graduate work, but I also hope that my thesis will encourage others to explore in more detail the yeasts in the Adriatic Sea, and to realize their potential in ecology, medicine and nutrition. Split is on the Adriatic coast and I like the idea that we’re contributing in some small way to protecting that coastline.Sea Cucumber, as we’ve named the beer, might not help much directly in that regard, but I do hope that it could raise awareness about how many useful things there are in the sea.Are you planning on taking the sea yeast further in your career?Any experience in microbiology helps in the food industry. Sea yeast might turn out to be useful in brewing, but we have to consider the finances and infrastructure we’d need to support its use commercially. For now, we’re concentrating on brewing more standard beers. In the future, I hope to brew some of my own recipes, whether Sea Cucumber or something else. I would definitely like to combine brewing with the search for new yeasts that can be used not only in beer making, but in other industries as well. More

  • in

    Distribution of invasive versus native whitefly species and their pyrethroid knock-down resistance allele in a context of interspecific hybridization

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    Wilcove, D. S. & Chen, L. Y. Management costs for endangered species. Conserv. Biol. 12, 1405–1407 (1998).
    Google Scholar 
    Singer, M. C., Wee, B., Hawkins, S. & Butcher, M. Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies in The Evolutionary Biology of Herbivorous Insects: Speciation, Specialization and Radiation (ed. Tilmon, K. J.). 311–324. (University of California Press, 2008).Ruesink, J. L., Parker, I. M., Groom, M. J. & Kareiva, P. M. Reducing the risks of nonindigenous species introductions. Bioscience 45, 465–477 (1995).
    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).
    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).ADS 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 

    Google Scholar 
    Blackburn, T. M. & Jeschke, J. M. Invasion success and threat status: two sides of a different coin?. Ecography 32, 83–88 (2009).
    Google Scholar 
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).PubMed 

    Google Scholar 
    Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Natl. Acad. Sci. USA 97, 7043–7050 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhoeven, K. J. F., Macel, M., Wolfe, L. M. & Biere, A. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278, 2–8 (2011).
    Google Scholar 
    Brevik, K., Lindström, L., McKay, S. D. & Chen, Y. H. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr. Opin. Insect Sci. 26, 34–40 (2018).PubMed 

    Google Scholar 
    Kirk, W. D. J. & Terry, L. I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. Forest. Entomol. 5, 301–310 (2003).
    Google Scholar 
    Piiroinen, S., Lyytinen, A. & Lindström, L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6, 313–323 (2013).PubMed 

    Google Scholar 
    Margus, A. et al. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Vais, H., Williamson, M. S., Devonshire, A. L. & Usherwood, P. N. R. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57, 877–888 (2001).CAS 
    PubMed 

    Google Scholar 
    Smith, L. B., Kasai, S. & Scott, J. G. Voltage-sensitive sodium channel mutations S989P+ V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Manag. Sci. 74, 737–745 (2018).CAS 
    PubMed 

    Google Scholar 
    Guerrero, F. D., Jamroz, R. C., Kammlah, D. & Kunz, S. E. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: Identification of kdr and super-kdr point mutations. Insect Biochem. Mol. 27, 745–755 (1997).CAS 

    Google Scholar 
    Morin, S. et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. 32, 1781–1791 (2002).CAS 

    Google Scholar 
    Kasai, S. et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn. J. Infect. Dis. 64, 217–221 (2011).CAS 
    PubMed 

    Google Scholar 
    Brito, L. P. et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8, e60678 (2013).ADS 
    MathSciNet 

    Google Scholar 
    De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).PubMed 

    Google Scholar 
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Google Scholar 
    Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).CAS 
    PubMed 

    Google Scholar 
    Mugerwa, H. et al. African ancestry of new world, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanakala, S. & Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14, e0213946 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, J. et al. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondr. DNA Part DNA Mapp. Seq. Anal. 29, 474–484 (2018).Vyskocilova, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheek, S. & Macdonald, O. Statutory controls to prevent the establishment of Bemisia tabaci in the United Kingdom. Pestic. Sci. 42, 135–137 (1994).CAS 

    Google Scholar 
    Horowitz, A. R. et al. Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 94–98 (2003).
    Google Scholar 
    Basit, M. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47, 207–225 (2019).CAS 

    Google Scholar 
    Horowitz, A. R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58, 216–225 (2005).CAS 
    PubMed 

    Google Scholar 
    Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R. & Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 93, 893–910 (2020).
    Google Scholar 
    Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. B. Entomol. Res. 95, 29–35 (2005).CAS 

    Google Scholar 
    Peterschmitt, M. et al. First report of tomato yellow leaf curl virus in Réunion Island. Plant Dis. 83, 303 (1999).CAS 
    PubMed 

    Google Scholar 
    Delatte, H., Lett, J.-M., Lefeuvre, P., Reynaud, B. & Peterschmitt, M. An insular environment before and after TYLCV introduction in Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance (ed. Czosnek, H.). 13–23. (Springer, 2007).Delatte, H. et al. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet. Res. 87, 109–124 (2006).CAS 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms. B. Entomol. Res. 101, 487–497 (2011).CAS 

    Google Scholar 
    Thierry, M. et al. Mitochondrial, nuclear, and endosymbiotic diversity of two recently introduced populations of the invasive Bemisia tabaci MED species in La Réunion. Insect. Conserv. Divers. 8, 71–80 (2015).
    Google Scholar 
    Tsagkarakou, A. et al. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic. Biochem. Phys. 94, 49–54 (2009).CAS 

    Google Scholar 
    Delatte, H. et al. Differential invasion success among biotypes: case of Bemisia tabaci. Biol. Invasions 11, 1059–1070 (2009).
    Google Scholar 
    Chu, D., Tao, Y.-L., Zhang, Y.-J., Wan, F.-H. & Brown, J. K. Effects of host, temperature and relative humidity on competitive displacement of two invasive Bemisia tabaci biotypes [Q and B]. Insect Sci. 19, 595–603 (2012).
    Google Scholar 
    Chu, D., Wan, F. H., Zhang, Y. J. & Brown, J. K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 39, 1028–1036 (2010).PubMed 

    Google Scholar 
    Pascual, S. & Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. B. Entomol. Res. 94, 369–375 (2004).CAS 

    Google Scholar 
    Pan, H. et al. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25, 1585–1595 (2015).PubMed 

    Google Scholar 
    Shatters, R. G. et al. Population genetics of Bemisia tabaci biotypes B and Q from the Mediterranean and the U.S. inferred using microsatellite markers. in Fourth International Bemisia Workshop International Whitefly Genomics Workshop (3–8 December 2006). (Duck Key: USDA/ARS US Horticultural Research Laboratory, 2006).McKenzie, C. L. & Osborne, L. S. Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Fla. Entomol. 100, 481–484 (2017).
    Google Scholar 
    Guo, X.-J. et al. Diversity and genetic differentiation of the whitefly Bemisia tabaci species complex in China based on mtCOI and cDNA-AFLP analysis. J. Integr. Agr. 11, 206–214 (2012).CAS 

    Google Scholar 
    Prabhaker, N., Castle, S., Henneberry, T. J. & Toscano, N. C. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). B. Entomol. Res. 95, 535–543 (2005).CAS 

    Google Scholar 
    Taquet, A. et al. Insecticide resistance and fitness cost in Bemisia tabaci (Hemiptera: Aleyrodidae) invasive and resident species in La Réunion Island. Pest Manag. Sci. 76, 1235–1244 (2020).CAS 
    PubMed 

    Google Scholar 
    Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thierry, M. et al. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol. Ecol. 20, 2172–2187 (2011).CAS 
    PubMed 

    Google Scholar 
    Gauthier, N. et al. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. Pest Manag. Sci. 70, 1477–1491 (2014).CAS 
    PubMed 

    Google Scholar 
    Alon, M. et al. Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. 36, 71–79 (2006).CAS 

    Google Scholar 
    Vassiliou, V. et al. Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci. 18, 30–39 (2011).CAS 

    Google Scholar 
    Gnankiné, O., Hema, O., Namountougou, M., Mouton, L. & Vavre, F. Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Prot. 104, 86–91 (2018).
    Google Scholar 
    Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). B. Entomol. Res. 85, 181–187 (1995).CAS 

    Google Scholar 
    Weill, M. et al. Insecticide resistance: A silent base prediction. Curr. Biol. 14, 552–553 (2004).
    Google Scholar 
    Bouvier, J.-C. et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity (Edinb) 87, 456–462 (2001).CAS 

    Google Scholar 
    Calvert, L. A. et al. Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Ann. Entomol. Soc. Am. 94, 512–519 (2001).CAS 

    Google Scholar 
    Tocko-Marabena, B. K. et al. Genetic diversity of Bemisia tabaci species colonizing cassava in Central African Republic characterized by analysis of cytochrome c oxidase subunit I. PLoS ONE 12, e0182749 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2020).Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed 

    Google Scholar 
    Vähä, J.-P. & Primmer, C. R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63–72 (2006).PubMed 

    Google Scholar  More

  • in

    Harnessing agricultural microbiomes for human pathogen control

    Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018;67:1.PubMed Central 
    Article 

    Google Scholar 
    CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated With Consumption of Fresh Spinach – United States. JAMA. 2006;296:2195–6.Article 

    Google Scholar 
    Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis. 2007;13:1908.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS One. 2007;2:e1159.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee A, Mammel MK, LeClerc JE, Cebula TA. Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak. J Bacteriol. 2008;190:1710–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macarisin D, Patel J, Bauchan G, Giron JA, Sharma VK. Role of Curli and Cellulose Expression in Adherence of Escherichia coli O157:H7 to Spinach Leaves. Foodborne Pathog Dis. 2012;9:160–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol. 2014;44:108–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage. Appl Environ Microbiol. 2014;80:2504–15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    CDC. Investigation Details. 2021 [updated 2021; cited]; Available from: https://www.cdc.gov/ecoli/2021/o157h7-02-21/details.html.Karp DS, Gennet S, Kilonzo C, Partyka M, Chaumont N, Atwill ER, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones MS, Fu Z, Reganold JP, Karp DS, Besser TE, Tylianakis JM, et al. Organic farming promotes biotic resistance to foodborne human pathogens. J Appl Ecol. 2019;56:1117–27.Article 

    Google Scholar 
    Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMs Microbiol Rev. 2009;33:689–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holden N. You are what you can find to eat: bacterial metabolism in the rhizosphere. Curr Issues Mol Biol. 2019;30:1–16.Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165:503–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liao H, Li X, Bai Y, Cui P, Wen C, Liu C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evolut. 2021;38:2337–50.CAS 
    Article 

    Google Scholar 
    Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014;7:496–516.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology. 2013;103:333–40.PubMed 
    Article 

    Google Scholar 
    Dinu L-D, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol. 2011;77:8295–302.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, et al. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology. 2021;167:1–12.Franz E, Semenov AV, Van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol. 2008;105:1569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. Internal colonization of salmonella enterica serovar typhimurium in tomato plants. PLoS One. 2011;6:e27340.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, et al. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;12:1088. 7
    Google Scholar 
    Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front Plant Sci. 2020;30:10.
    Google Scholar 
    Launders N, Locking ME, Hanson M, Willshaw G, Charlett A, Salmon R, et al. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes. Epidemiol Infect. 2016;144:171–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenkel D, Deveau A, Niimi J, Mariotte P, Vitra A, Meisser M, et al. Linking soil’s volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environ Microbiol. 2019;21:3313–27.Article 

    Google Scholar 
    Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlison J, Mogren L, Rosberg A-K, Grudén M, Minet A, Liné C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett. 2013;346:146–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet J-Y, et al. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes. 2020;11:1207.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, et al. Global soil biodiversity atlas. European Commission; 2016.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Scientific Reports. 2016;6:23584.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol. 2016;38:137–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME Journal. 2016;10:265–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schikora A, Jackson RW, Van Overbeek L, Holden N. Editorial: plants as alternative hosts for human and animal pathogens – second edition. Front Microbiol. [Editorial] 2020;14:11.
    Google Scholar 
    Lebeis SL. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol. 2015;24:82–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, et al. A conceptual framework for invasion in microbial communities. ISME J. 2016;10:2773–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf. 2015;14:336–56.Article 

    Google Scholar 
    Litchman E. Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13:1560–72.PubMed 
    Article 

    Google Scholar 
    Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24:1942–53.PubMed 
    Article 

    Google Scholar 
    Hawkes CV, Connor EW. Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes. Journal. 2017;1:57–69.
    Google Scholar 
    Meyer KM, Leveau JH. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621–9.PubMed 
    Article 

    Google Scholar 
    Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 2011;5:1108–14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ. 2014;29:123–35.Alegbeleye OO, Singleton I, Sant’Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol. 2018;73:177–208.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johannessen GS, Bengtsson GB, Heier BT, Bredholt S, Wasteson Y, Rørvik LM. Potential uptake of Escherichia coli O157: H7 from organic manure into crisphead lettuce. Appl Environ Microbiol. 2005;71:2221–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fett WF. Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot. 2006;69:719–28.PubMed 
    Article 

    Google Scholar 
    Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. Phytopathology. 2013;103:316–25.PubMed 
    Article 

    Google Scholar 
    Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol. 2019;84:103241.PubMed 
    Article 

    Google Scholar 
    Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, et al. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol. 2021;131:1564–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TR, Moyne A-L, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8:e68642.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, et al. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. 2018;94:fiy135.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015;15:1–13.CAS 
    Article 

    Google Scholar 
    Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J, Chattopadhyay S, et al. Creek to rable: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci Total Environ. 2019;666:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Yin H-B, Ottesen A, Bolten S, Patel J, Rideout S, et al. Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes J. 2019;3:137–47.Article 

    Google Scholar 
    Obayomi O, Edelstein M, Safi J, Mihiret M, Ghazaryan L, Vonshak A, et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology Fertility Soils. 2020;56:729–42.CAS 
    Article 

    Google Scholar 
    Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One. 2018;13:e0199291.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Optimal strategies and cost-benefit analysis of the $${varvec{n}}$$ n -player weightlifting game

    PreliminariesTo unify all the five classes of two-by-two games, Yamamoto et al.35 introduced the weightlifting game. In this game, each player either cooperates or defects in carrying a weight. Players who carry the weight pay a cost, (cge 0). The weight is successfully lifted with probability ({p}_{i}), where (i=mathrm{0,1},2) is the total number of cooperators and ({p}_{i}) increases with the number of cooperators (i). If the cooperators succeed, both players receive a benefit (b >0). However, in case of failure, both players gain nothing. The pay-off of the cooperators is (b{p}_{i}-c), and the pay-off of the defectors is (b{p}_{i}) (Table 2). In terms of the parameters (Delta {p}_{1}={p}_{1}-{p}_{0}) and (Delta {p}_{2}={p}_{2}-{p}_{1}), which represents the increase in the probability of success due to an additional cooperator, the following inequalities are obtained for the pay-offs (R, T, S), and (P) (Table 1):

    (i)

    (Delta {p}_{1} >c/b) for (S >P),

    (ii)

    (Delta {p}_{2} >c/b) for (R >T), and

    (iii)

    (Delta {p}_{1}+Delta {p}_{2} >c/b) for (R >P).

    Table 2 Pay-off table of two-person weightlifting game.Full size tablePD satisfies only (iii), CH satisfies (i) and (iii), SH satisfies (ii) and (iii), DT satisfies none of the three conditions, and CT satisfies all three. In 2021, Chiba et al.1 studied the evolution of cooperation in society by incorporating environmental value in the weightlifting game. They found that the evolution of cooperation seems to follow a DT to DT trajectory, which can explain the rise and fall of human societies.The ({varvec{n}})-player weightlifting gameIn this study, we generalize the weightlifting game to (n)-players. Suppose (n) self-interested and rational individuals selected from a population of infinite size. The (n) players are asked to lift a weight. Each individual (or player) can decide to either carry the weight (cooperate, (C)) or not carry/pretend to carry the weight (defect, (D)). Players who decide to carry the weight can either succeed or fail. The probability of successful weightlifting is denoted by ({p}_{i}), (i=mathrm{0,1},dots ,n), where (i) indicates the number of cooperators (henceforth, (i) always represents the number of cooperators). The probability of success increases with the number of individuals cooperating, and it may remain less than unity even if all (n) individuals cooperate. Players who decide to carry the weight pay a cost, (cge 0), regardless of the outcome, while those who defect need not pay anything. If the cooperators succeed, all (n) individuals receive a benefit (bge 0). There is no penalty for failure. We use the expected gains/losses of the players as the pay-off. If there are (i-1) cooperative players, then the pay-off of (j) is ({B}_{C}left(iright)=b{p}_{i}-c) when (j) cooperates and ({B}_{D}left(i-1right)=b{p}_{i-1}) when (j) defects. The number of cooperators differs by one, since in ({B}_{C}left(iright)), there is an additional cooperator, which is (j) him- or herself. To decide whether to cooperate or defect, all players weigh their expected gain and rationally choose the option with the highest expected gain. The graphical outline of this game is illustrated in Fig. 1 (see also Supplementary Figure S1 for the flow of the game). The pay-off table for a four-player game is shown as an example in Table 3. Here, player (1) is the innermost row (strategies are listed in the second column of the table), player (2) is the innermost column (strategies are listed in the second row of the table), and the succeeding players take the succeeding rows or columns (we enter the first player as a row player and the following player as a column player and continue in this order). Each cell represents players’ pay-offs, with the first component being the pay-off for the first player, the second for the second player, and so on. For instance, consider the entry in the first row and third column, where players (1, 2) and (3) cooperate but player (4) defects. The pay-offs of players (1) to (3) are ({B}_{C}(3)), while the pay-off of player (4) is ({B}_{D}left(3right)). In the above example, there are as many row players as column players because the number of players is even. However, we can have one more player in the rows than in the columns if there is an odd number of players.Figure 1A schematic diagram of the n-player weightlifting game. In this game, players decide whether to cooperate or defect in carrying the weight. Cooperators need to pay a cost. The weightlifting can either succeed or fail. In case of success, all players receive a benefit. In case of failure, all players receive nothing. The player’s pay-off depends on the benefit, cost and probability of success. Each player decides whether to cooperate or defect so as to maximize the expected gain.Full size imageTable 3 Pay-off table of four-player weightlifting game.Full size tableNash equilibrium and pareto optimal strategiesHere we present the Nash equilibrium and Pareto optimal strategies of the (n)-player weightlifting game in terms of the cost-to-benefit ratio (c/b) and probability of success ({p}_{i}). The Nash equilibrium consists of the best responses of each player. Players have no incentive to deviate from this strategy profile since deviation will not increase an individual’s pay-off if the other players maintain the same strategy. If ({B}_{C}(i)ge {B}_{D}(i-1)), the best response of player (j) is to cooperate, but if ({B}_{C}(i)le {B}_{D}(i-1)), the best response is to defect.We have (Delta {p}_{i}={p}_{i}-{p}_{i-1}ge 0) for the increase in the probability of success because the probability ({p}_{i}) increases with the number of cooperators (i). It is convenient to divide cases depending on whether (Delta {p}_{i} >c/b) or (Delta {p}_{i} More

  • in

    Searching the web builds fuller picture of arachnid trade

    Our online sampling methods largely follow protocols detailed in3,4, though we limited our online searches to online shops and did not extend to social media. Large portions of code are directly re-used from those papers, although we provide modified code with this paper additionally. For keyword searches and data review we used R v.4.1.149 via RStudio v.1.4.110350, and made wide use of functions supplied by the anytime v.0.3.951, assertthat v.0.2.152, dplyr v.1.0.753, glue v.1.4.254, lazyeval v.0.2.255, lubridate v.1.7.1056, magrittr v.2.0.157, 17urr v.0.3.458, reshape2 v.1.4.459, stringr v.1.4.060, and tidyr v.1.1.361 other specific package uses are listed during the methods description. We used the grateful v.0.0.362 package to generate citations for all R packages. Code and data used to produce figures and summary data are also available at: 10.5281/zenodo.5758541.Website sampling and searchWe searched for contemporary arachnid selling websites using the Google search engine and targeted nine languages (English, French, Spanish, German, Portuguese, Japanese, Czech, Polish, Russian). Terms were created to be inclusive, so only spiders and scorpions were on the initial search string as specialist groups may exist for either, but are unlikely for smaller arachnid groups, which were often listed under “other” in online shops. Terms were selected to be encompassing so that any sites listing variants of “spider” or mentioning arachnid in the chosen language were selected. Whilst some groups such as tarantulas are more popular as pets such sites will not omit translations of spider and should also be captured in the search, hence Terraristika (as was shown in previous analysis of amphibians and reptiles) listed the greatest number of species, despite not being a specialist site. We used the localised versions of each of these languages with the following Boolean search strings:

    English: (Spider OR scorpion OR arachnid) AND for sale

    French: (Araignée OR scorpion OR arachnide) AND à vendre

    Spanish: (Araña OR escorpión OR arácnido) AND en venta

    German: (Arachnoid OR Spinne OR Skorpion OR Spinnentier) AND zum Verkauf

    Portuguese: (Aranha OR escorpião OR aracnídeo) AND à venda

    Japanese: (クモ OR サソリ OR クモ型類) AND (中村彰宏 OR 販売)

    Czech: (Pavouk OR Štír OR pavoukovec) AND prodej

    Polish: (Pająk OR Skorpion OR pajęczak) AND sprzedaż

    Russian: Продажа пауков OR скорпионов

    We undertook these searches in a private window in the Firefox v.92.0.1 browser63 to limit the impacts of search history. These keywords were used to identify sites which may be selling arachnids, which could then be checked before a comprehensive scrape.For each language, we downloaded the first 15 pages of results between 2021-06-06 and 2021-07-07 (or fewer in the result that the search returned fewer than 15 pages: German 8 pages and Spanish 14 pages). This resulted in ~1270 sites that could potentially be selling arachnids. After removing duplicates and simplifying the URLs (so all ended in.com,.org,. co.uk etc.; Code S1), we reviewed each site for the following criteria (2021-07-31 to 2021-08-02): whether they sell arachnids, the type of site (trade or classified ads), the order arachnids were listed in (e.g., date or alphabetical), the best search method for gather species appearances (see below for hierarchical search methods), a refined target URL listing species inventory, the number of pages within the website potentially required to cycle through, and if the search method required a crawl, whether the site explicitly forbade crawling data collection and whether we could limit the crawl’s scope with a filter on downstream URLs. Finally, we assigned all suitable sites with a unique ID. We have made a censored version of the website review results available in Data S1. In addition to the systematic search for arachnid trade, we added 43 websites discovered ad hoc from links on previously discovered sites (many listed online shops), those listed in other journal articles on invertebrate trade (i.e.,6) or from discussion with informed colleagues (between 2021-08-07 and 2021-09-15). After reviewing these ad hoc sites (2021-08-07 to 2021-09-15), we had a combined total of 111 sites to attempt to search for the appearance of arachnid species.Our searches of websites took one of five forms (Code S2), designed to minimise server load and limit the number of irrelevant pages searched, while ensuring we captured the pages listing species. We prioritised using the lowest/simplest search method possible for each site.Single page or PDFFor websites that listed their entire arachnid stock on a single page, we retrieved that single page using the downloader v.0.4 package64. In cases where the inventory was listed in a PDF, we manually downloaded the PDF and used pdftools v.3.0.165 to assess the text.CycleSome websites had large stocklists split across multiple pages that could be accessed sequentially. In these cases, we used the downloader v.0.4 package64 to retrieve each page, as we cycled from page 1 to the terminal page identified during the website review stage. Two sites required a slight modification to the page cycling process: as the sequential pages were not defined by pages, but by the number of adverts displayed. In these instances, we cycled through all adverts 20 adverts at a time (i.e., matching the default number displayed at a time by the site). For all cycling we implemented a 10 s cooldown between requests to limit server load.Level 1 crawlFor websites that split their stock between multiple pages, but with no sequential ordering, we used a level 1 crawl, via the Rcrawler v.0.1.9.1 package66 to access them all. For example, where a site had an “arachnid for sale” page, but full species names existed only in linked pages (e.g., “tarantulas”, “scorpions”).Cycle and level 1 crawlSome websites required a combined approach, where stock was split sequentially across pages, and the species identities (i.e., scientific names) required accessing the pages linked to from the sequential pages. In these cases, we ran the initial sequential sampling followed by a level 1 crawl.Level 2 crawlWhere level 1 crawls were insufficient to cover all species sold on a site, we used a level 2 crawl to reach all pages listing species. This tended to be the case on websites with multiple categories to classify and split their stock (e.g., “arachnid”—“spider”—“tarantula”).For all crawls, we used a cooldown of 20 s between requests to limit server load, and where possible we limited the scope of the crawl (i.e., linked pages to be retrieved) using a key phrase common to all stock listing pages (e.g., “/category=arachnid/”).In addition to the sampling of contemporary sites, we explored the archived pages available for https://www.terraristik.com via the Internet Archive (2002–201967). Terraristika had been previously shown as a major contributor to traded species lists4, and the website’s age and accessibility via the internet archive meant it was one of the few websites where temporal sampling was feasible. We used pages retrieved via the Internet Archive’s Wayback machine API68, via code created for3,4. The code used was based on the wayback v.0.4.0 package69, but additionally made httr v.1.4.270, jsonlite v.1.7.271, downloader v.0.464, lubridate v.1.7.1056, and tibble v.3.1.3 packages72 (Code S3).Keyword generationWe relied on multiple sources to build a list of arachnid species (spiders, scorpions and uropygi). For spiders we used the WSC (ref. 18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18). We filtered the WSC dataset to remove subspecies, then used a combination of rvest v.1.0.173, dplyr v.1.0.753, and stringr v.1.4.0 packages60 (see Code S4) to query the online version of the WSC database to retrieve all synonyms for each species. Where the synonyms were listed with an abbreviated genus, we replace the abbreviation with the first instance of a genus that matched the first letter of the abbreviation.We combined the WSC data with a list manually retrieved from the Scorpion Files74 (https://www.ntnu.no/ub/scorpion-files/index.php; accessed 2021-09-19). For the uropygi species, we combined species listings from Integrated Taxonomic Information System (ITIS75; https://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=source&search_id=source_id&search_id_value=1209 and https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&anchorLocation=SubordinateTaxa&credibilitySort=TWG%20standards%20met&rankName=ALL&search_value=82710&print_version=SCR&source=from_print#SubordinateTaxa; accessed 2021-09-19) and the Western Australian Museum76 (http://www.museum.wa.gov.au/catalogues-beta/browse/uropygi; accessed 2021-09-19). We were unable to source reliable data on all scorpion and uropygi synonyms; therefore, we used all names listed from all sources, but made note of those names considered nomen dubium. Our final keyword list contained 52,111 species, 94,184 different species names, with mean of 1.81 SE ± 0.01 terms per species (range 1–61). For summaries of total species, we relied on the species classed as accepted by the species databases (WSC, Scorpion Files, ITIS and the Western Australian Museum).Keyword searchWe successfully retrieved 3020 pages from 103 websites (mean = 28.78 SE ± 11.42, range: 1–1077), and used a further 4668 previously archived pages. To prepare each of the retrieved web pages for keyword searching, we removed all double spaces, html elements, and non-alpha-numeric characters, replacing them with single spaces (Code S5). For this process we used rvest v.1.0.173, XML v.3.99.0.877, and xml2 v.1.3.278 packages. This process increased the chances that genus and species epithets would appear in a compatible format when compared to our keyword list. The process was not able to repair abbreviated genera, or aid detection where genus and species epithet were not reported side-by-side.Due to the large number of species we were forced to adapt previous searching methods, instead implementing a hierarchical genus-species search (Code S6). We searched each retrieved page for any mention of genera, then only searched for species that were contained within that genus. We did not differentiate whether the genus was currently accepted or old, so if a species had ever belonged to a genus it was included in the second stage of the search. The specifics of the keyword search used case-insensitive fixed string matching (via the stringr v.1.4.0 package60). While collation string matching would have helped detect species with differently coded ligatures or diacritic marks, the occurrence of ligature and diacritic marks are infrequent in scientific names and did not warrant the considerably increased computational costs.Via the keyword search we recorded all instances of genus matches, species matches, the website ID, and the page number. We also collected the words surrounding a genus match (3 prior and four after) as a means of exploring common terms that may be used to describe the genera.We provide the compiled outputs from searching contemporary and historic pages in Data S2–S4. Prior to combining these two datasets into a final list of traded species, and summarising the overall patterns, we cleaned out instances of spurious genera and species detections. Predominantly this included short genera names that could appear at the start of longer words (e.g., terms such as: “rufus”, “Dia”, “Diana”, “Mala”, “Inca”, “Pero”, “May”, “Janus”, “Yukon”, “Lucia”, “Zora”, “Beata”, “Neon”, “Prima”, “Meta”, “Patri”, “Enna”, “Maso”, “Mica”, “Perro”; we already implemented a filter that required genera to be preceded by a space and thus these were not part of the species name). We are confident these genera should be excluded, as none had species detected within them.Trade database and third-party dataWe downloaded United States Fish and Wildlife Service’s LEMIS data compiled by79,80 from https://doi.org/10.5281/zenodo.3565869 (Data S5). We filtered the LEMIS data to records where the class was listed as Arachnida (Code S6).We downloaded the Gross imports data from the CITES trade database from the website and filtered to Class Arachnid, years 1975–202181 (accessed 2021-09-15; Data S6), and downloaded the CITES appendices filtered to arachnids82 (Data S7).We downloaded the IUCN Redlist assessments for arachnids from https://www.iucnredlist.org83 (accessed 2021-09-15; Data S8).Species summary and visualisationWe compiled all sources of trade data (online, LEMIS, CITES) into a single dataset detailing which genera/species had been detected in each source (Data S9 and Code S7). We used two criteria to determine detection, whether there was an exact match with an accepted genus/species or whether there was a match to any historically used genera/species name. Because of splits in genera, the “ANY genera” matching is likely overly generous. For broad summaries we rely on the “ANY species” name matching.We used cowplot v.1.1.184, ggplot2 v.3.3.585, ggpubr v.0.4.086, ggtext v.0.1.187, scales v.1.1.188, scico v.1.2.089, and UpSetR v.1.4.090 to generate summary visuals (Code S8; Code S9). We added additional details to the upset plot and modified the position of plot labels using Affinity Designer v.1.10.391. We also used Affinity Designer to create the Uropygid silhouette for Fig. 1. We obtained public domain licensed spider and scorpion silhouettes from http://phylopic.org/ (https://phylopic.org/image/d7a80fdc0-311f-4bc5-b4fc-1a45f4206d27/; http://phylopic.org/image/4133ae32-753e-49eb-bd31-50c67634aca1/).Descriptions and coloursWe explored the lag time between species descriptions, and their detection in LEMIS or online trade (Code S10). We relied on the description dates provided alongside the lists of species names. Unlike the broader summaries, we restricted explorations of lag times to species detected only via exact matches (operating under the assumption that newly described species traded swiftly after description would be using the modern accepted name). We distinguished between those species detected only in the complementary data, as the earliest trade date was not known; therefore, our summaries of lag time are based on those species detected in a particular year either via LEMIS or temporal online trade.Following a visual inspection of sites where we often noticed listings with either colour or localities (e.g., “Chilobrachys spp. “Electric Blue” 0.1.3. Chilobrachys sp. “Kaeng Krachan” 0.1.0. Chilobrachys spp. “Prachuap Khiri Khan”: Data S9). We explored the words that surrounded detected genera. After using the forcats v.0.5.192, stringr v.1.4.060, and tidytext v.0.3.193 package to compile common terms and remove English stop words, we determine colour was frequently mentioned (Code S11). To filter out non-colour words, we used wikipedia’s list of colours (https://en.wikipedia.org/wiki/List_of_colors:_N%E2%80%93Z). Once cleaned, we further removed terms that are ambiguously colour related (e.g., “space”, “racing”, “photo”, “boy”, “bean”, “blaze”, “jungle”, “mountain”, “dune”, “web”, “colour”, “rainforest”, “tree”, “sea”). We then summarised this data as the counts of instances where a genus appeared alongside a given colour term (n.b., counts are therefore impacted by any underlying imbalances in how many times a site mentioned a genus). We plotted all colours using the same hex codes listed on the wikipedia page, with the exception of “cobalt”, “grey”, “metallic”, “slate”, “electric”, “dark”, “sheen”, and “chocolate” that required manual linking to a hex code.Summary of trade numbersWe summarised LEMIS data using a number of filters (Code S12). Following3,4,94, we limited our summaries to items that feasibly can be considered to represent whole individuals (LEMIS code = Dead animal BOD, live eggs (EGL), dead specimen (DEA), live specimen (LIV), specimen (SPE), whole skin (SKI), entire animal trophy (TRO)). We describe the portion of trade that is prevented (i.e., seized, where disposition == “S”). We classed non-commercial trade as anything listed as for Biomedical research (M), Scientific (S), or Reintroduction/introduction into the wild (Y). For captive vs. wild summaries, we treated all Animals bred in captivity (C and F), Commercially bred (D), and Specimens originating from a ranching operation (R) as originating from captivity. We only included animals listed as Specimens taken from the wild (W) in wild counts. The few instances that fell outside of our defined captive vs. wild categorisation are treated as other. For summaries of wild capture per genus, we relied entirely on LEMIS’s listings of genera, making no effort to determine synonymisations. We did filter out those listed only as “Non-CITES entry” or NA. We used the countrycode v.1.3.095 package to help plot the LEMIS countries of origin. Taxonomy represents an ongoing challenge, we were limited to recognising the species listed in the aforementioned databases, generating synonym lists from these sources, and attempting to reconcile these lists. Rapid rates of species description means that compiling comprehensive lists can be challenging, and species may be traded under junior synonyms or old names, and newer descriptions may not have been added to sites96. We were also limited to platforms that advertised using text not images, as images can be challenging to identify accurately.MappingMapping species is challenging due to the lack of standardised data on species distributions. Spider distributions were mapped based on the data in the World Spider Catalogue (Data S12). Firstly, the localities associated with each species were collated into four spreadsheets based on the data provided in the WSC (WSC18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18), these listed (1) country, (2) region, (3) “to” (where the range was given as one country to another) and (4) Island.Before processing any “introduced” localities were removed, the four sheets were then checked for any simple spelling errors (in islands file) or mislistings (i.e., regions in the islands file). Country data were cross-referenced with the names of country provided by Thematic Mapper to standardise them (https://thematicmapping.org/; Data S11). This was done by uploading data into Arcmap and using joins and connects to connect it to the standard country name file, and any which could not be paired were corrected to ensure all could be successfully digitised.Regions were digitised based on accepted names of different regions and included 33 different regions (see supplements) for each of these the standard accepted area within each of these regions was searched online to determine the accepted boundaries. These were then selected from the Thematic mapper, exported and labelled with the corresponding region. Once this was completed for all 33 regions they were merged and exported to a geodatabase. The spreadsheet listing regional preferences of each species was also uploaded to Arcmap 10.3, then exported into the geodatabase, then connected to a regional map using joins and relates to connect the regional preferences from the spreadsheet to the shapefiles. The new dbf was then exported to provide a listing of each species and each country in the region it was connected to, and then copied into the same csv as the corrected country listings.For preferences listed as “to” we first separated each country listed in the “to” listings into a separate column, then developed a list of species and each of the countries listed in the “to” list (which was frequently between 5–6). These were then corrected to the standard names from thematic mapper for both countries and the regions used in the previous section. We then merged the countries and regions file and added fields of geometry in ArcMap to provide a centroid for each designated area. This table was then exported and joined and connected to the species in the “to” file. This data was then converted to point form and turned to a point file, then a minimum convex polygon (convex hulls) developed for each species to connect the regions between all those listed. These species specific minimum convex polygons were then intersected with the countries from Thematic mapper, and then dissolve was used to form a shapefile that just listed species and all the countries between those ranges. This was then exported and merged with the listings from countries and regions.The islands file included both independent islands (which needed names corrected, or archipelago names given) and those that fall within a national designation. For those islands we replaced the island name with that of the country, as listings of species may be particularly poor, and tiny non-independent islands are not visible in the global-scale analysis.This forth database table was then merged with the former three, and remove duplicates used to remove any duplicate entries, as species often had individual countries listed in additions to regions or “to”. This was then uploaded into Arcmap and exported to a geodatabase file then connected to the original Thematic mapper file and exported to the geodatabase to yield 134,187 connections between species and countries. This was then connected to our main analysis to include the trade status, and CITES and IUCN Redlist status for each species for further analysis.Scorpion data was considerably messier than that on the world spider catalogue. Firstly, we downloaded all scorpion data from iNaturalist and GBIF97,98 (search; scorpions), removed duplicates, then cross-referenced these with the thematic mapper file within Quantum GIS. Species listed in regions where they were clearly not native (i.e., a species listed in the UK when the rest of that species or genus were in Australia) were removed, and all extinct species were excluded.In addition, all the “update files” were downloaded from the “Scorpion files”, the PDFs collated then using smallpdf tools the tables were extracted into excel form and cleaned to include just species and country listing. This was added to the countries listed for species within99 and100 though this was restricted to a subset of species. The data were all collated into an excel file with the species name, and country listing. This was then added to all the data from https://scorpiones.pl/maps/. These maps have a good coverage of species countries, but are apparently no longer being updated (Jan Ove Rein pers comm 2021) hence the need for further data to provide complete and updated and comprehensive coverage for all species. Country names were then standardised based on the Thematic Mapper standards (Data S13 and Data S11). Species names were then cross-referenced to those listed in the Scorpion files, any not matching were checked as synonyms and converted to the accepted name (though the only collated data for Scorpion synonyms was on French-language Wikipedia, i.e., see https://fr.wikipedia.org/wiki/Bothriurus). Once all country and species names were corrected this provided a listing of 4059 species-country associations. These were then associated with country files in the same way as spiders. We plotted spider and scorpion species/genera, as well as LEMIS origins, using ggplot285, combining Thematic world border data (https://thematicmapping.org/) with summaries of species/genera/and trade levels. Species listed in a single-country (and thus more likely to be country endemic) were also counted using summary statistics, so that species most vulnerable to trade could be noted separately.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B: Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. & Lirman, D. Genotype by environment interactions in coral bleaching. Proc. R. Soc. B Biol. Sci., https://doi.org/10.1098/rspb.2021.0177 (2021).Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).PubMed 
    Article 

    Google Scholar 
    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci., https://doi.org/10.3389/fmars.2017.00434 (2018).Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol. Ecol. 28, 3371–3382 (2019).PubMed 
    Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & van Oppen, M. J. Genome‐wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowan, R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430, 742 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. USA 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, J. et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J., 15, 2028–2042 (2021).Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 369 (2020).Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jin, Y. K. et al. Genetic markers for antioxidant capacity in a reef-building coral. Sci. Adv. 2, e1500842 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cooke, I. et al. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Sci. Adv. 6, eabc6318 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. Resilience in reef-building corals: the ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 00, 1–18 (2019).CAS 

    Google Scholar 
    Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508 (2013).Article 
    CAS 

    Google Scholar 
    Quigley, K. M., Warner, P. A., Bay, L. K. & Willis, B. L. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity, 121, 524–536 (2018).Cunning, R., Ritson-Williams, R. & Gates, R. D. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).CAS 
    Article 

    Google Scholar 
    Dilworth, J., Caruso, C., Kahkejian, V. A., Baker, A. C. & Drury, C. Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs, https://doi.org/10.1007/s00338-020-02024-3 (2020).Rocha de Souza, M. et al. Community composition of coral-associated Symbiodiniaceae is driven by fine-scale environmental gradients. bioRxiv https://doi.org/10.1101/2021.11.10.468165 (2021).Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Coral Reefs 37, 423–430 (2018).Article 

    Google Scholar 
    Shore-Maggio, A., Runyon, C. M., Ushijima, B., Aeby, G. S. & Callahan, S. M. Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Appl. Environ. Microbiol. 81, 7312–7318 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roach, T. N., Dilworth, J., Jones, A. D., Quinn, R. A. & Drury, C. Metabolomic signatures of coral bleaching history. Nat. Ecol. Evol., 5, 495–503 (2021).Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol., Evolution, Syst. 40, 551–571 (2009).Article 

    Google Scholar 
    Caruso, C. et al. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne’ohe Bay. bioRxiv https://doi.org/10.1101/2021.10.07.463582 (2021).Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution 72, 82–94 (2017).PubMed 
    Article 

    Google Scholar 
    Rose, N. H. et al. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc. R. Soc. B 288, 20210678 (2021).PubMed 
    Article 

    Google Scholar 
    Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS ONE 5, e15021 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon, G., Abbott, E. & Matz, M. Meta‐analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, S., Kim, D. G. & Kim, S. ERK-dependent phosphorylation of the linker and substrate-binding domain of HSP70 increases folding activity and cell proliferation. Exp. Mol. Med. 51, 1–14 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yancey, P. H. et al. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol. Biochem. Zool. 83, 167–173 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, R., Li, C., Jones, A., Gunn, J. & Frade, P. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs 29, 869–880 (2010).Article 

    Google Scholar 
    Ngugi, D. K., Ziegler, M., Duarte, C. M. & Voolstra, C. R. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience 23, 101120 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. et al. Metabolome shift associated with thermal stress in coral holobionts. bioRxiv https://doi.org/10.1101/2020.06.04.134619 (2021).Sakamoto, A. & Murata, N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ. 25, 163–171 (2002).CAS 
    Article 

    Google Scholar 
    Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34, 1–20 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petronini, P., De Angelis, E., Borghetti, A. & Wheeler, K. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. Biochem. J. 293, 553–558 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7, e38440 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayfield, A. B. & Gates, R. D. Osmoregulation in anthozoan–dinoflagellate symbiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 1–10 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).Article 

    Google Scholar 
    Rose, N. H., Seneca, F. O. & Palumbi, S. R. Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol. Evolution 8, 243–252 (2016).CAS 
    Article 

    Google Scholar 
    Ruiz-Jones, L. J. & Palumbi, S. R. Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Sci. Adv. 3, e1601298 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reef‐building corals. Glob. Change Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quigley, K., Randall, C., van Oppen, M. & Bay, L. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00178 (2020).Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kane ‘ohe Bay, Hawai ‘i. Coral Reefs. 39, 757–769 (2020).Hancock, J. et al. Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth and resilience in juvenile Montipora capitata. Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps13534 (2020).Falconer, D. S. Introduction To Quantitative Genetics (Pearson, 1960).Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2012).Article 

    Google Scholar 
    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).Article 

    Google Scholar 
    Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 1–17 (2019).Article 

    Google Scholar 
    Shumaker, A. et al. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9, 2571 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article 

    Google Scholar 
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.17-2. R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2010).
    Google Scholar 
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hivert, V., Leblois, R., Petit, E. J., Gautier, M. & Vitalis, R. Measuring genetic differentiation from Pool-seq data. Genetics 210, 315–330 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 1–11 (2010).Article 
    CAS 

    Google Scholar 
    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. methods 16, 299–302 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ludwig, M., Fleischauer, M., Dührkop, K., Hoffmann, M. A. & Böcker, S. in Computational Methods and Data Analysis for Metabolomics 185–207 (Springer, 2020).Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 1–13 (2008).Article 
    CAS 

    Google Scholar 
    Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781–2800 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pei, G., Chen, L. & Zhang, W. in Methods in enzymology 585 135–158 (Elsevier, 2017).Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats

    Hoffman P. Stromatolite morphogenesis in Shark Bay, Western Australia. In: Developments in sedimentology. Elsevier; 1976.261–71.Golubic S, Hofmann HJ. Comparison of Holocene and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation. J Paleontol. 1976;50:1074–82.
    Google Scholar 
    Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES, Benzerara K, et al. Characterization of pustular mats and related Rivularia-rich laminations in oncoids from the Laguna Negra lake (Argentina). Front Microbiol. 2018;9:1–23.Article 

    Google Scholar 
    St Kendall C, Skipwith A. Recent algal mats of a Persian Gulf lagoon. SEPM J Sediment Res. 1968;38:1040–58.
    Google Scholar 
    Golubic S, Abed R. Entophysalis mats as environmental regulators. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.237–51.Logan BW, Hoffman P, Gebelien CD. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Pet Geol. 1974;22:140–94.
    Google Scholar 
    Jahnert RJ, Collins LB. Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology. 2013;60:1071–99.Article 

    Google Scholar 
    Moore KR, Pajusalu M, Gong J, Sojo V, Matreux T, Braun D, et al. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology. 2020;48:862–6.CAS 
    Article 

    Google Scholar 
    Decho AW, Visscher PT, Reid RP. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Geobiology: objectives, concepts, perspectives. 2005;71–86.Visscher PT, Dupont CL, Braissant O, Gallagher KL, Glunk C, Casillas L, et al. Biogeochemistry of carbon cycling in hypersaline mats: Linking the present to the past through biosignatures. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.443–68.Ruvindy R, White RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 2016;10:183–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart RK, Mayali X, Lee JZ, Craig Everroad R, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 2018;12:2619–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell MA, Coolen MJL, Visscher PT, Morris T, Grice K. Structure and function of Shark Bay microbial communities following tropical cyclone Olwyn: a metatranscriptomic and organic geochemical perspective. Geobiology. 2021;19:642–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, et al. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol. 2009;67:293–307.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cutts EM, Baldes MJ, Skoog EJ, Hall J, Gong J, Moore KR, et al. Using molecular tools to understand microbial carbonates. Geosciences 2022;12:185.Moore KR, Gong J, Pajusalu M, Skoog EJ, Xu M, Soto Feliz T, et al. A new model for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology. 2021;19:438–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33:917–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances. In: Microbial extracellular polymeric substances. Berlin, Heidelberg: Springer; 1999.1–19.Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Or Y, Shilo M. Characterization of macromolecular flocculants produced by Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol. 1987;53:2226–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Curr Microbiol. 1995;30:219–22.CAS 
    Article 

    Google Scholar 
    Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol: The Vasc Syst. 1997;29:497–511.CAS 
    Article 

    Google Scholar 
    De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev. 1998;22:151–75.Article 

    Google Scholar 
    Chen L, Li T, Guan L, Zhou Y, Li P. Flocculating activities of polysaccharides released from the marine mat-forming cyanobacteria Microcoleus and Lyngbya. Aquat Biol. 2011;11:243–8.CAS 
    Article 

    Google Scholar 
    Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs. 2014;12:4984–5020.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep. 2021;13:100623.2020.PubMed 
    Article 

    Google Scholar 
    Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 2007;5:401–11.CAS 
    Article 

    Google Scholar 
    Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:1–33.Article 

    Google Scholar 
    Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology. 2009;7:82–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW, Burns BP, et al. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 2009;3:383–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brody SS. New excited state of chlorophyll. Science. 1958;128:838–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lamb JJ, Røkke G, Hohmann-Marriott MF. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica. 2018;56:105–24.CAS 
    Article 

    Google Scholar 
    Hahn T, Schulz M, Stadtmüller R, Zayed A, Muffler K, Lang S, et al. Cationic dye for the specific determination of sulfated polysaccharides. Anal Lett. 2016;49:1948–62.CAS 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3(e1165).Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Standards in Genomic. Sciences. 2015;10:4–9.
    Google Scholar 
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 2007;36:534–8.SUPPL.1Article 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc National Acad Sci USA 2011;108:12776–81.CAS 
    Article 

    Google Scholar 
    Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: Structure, function, and pathophysiology. J Biol Chem. 2001;276:47747–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 2006;103:81–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Genicot SM, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front Chem. 2014;2:1–15.CAS 
    Article 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Kim EA, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32:75–86.CAS 
    Article 

    Google Scholar 
    Papineau D, Walker JJ, Mojzsis SJ, Pace NR. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol. 2005;71:4822–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep. 2015;5:1–17. 15607
    Google Scholar 
    Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep. 2015;5:1–16.CAS 

    Google Scholar 
    Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life. 2015;5:1218–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCandless EL, Craigie JS. Sulfated polysaccharides in red and brown algae. Ann Rev Plant Physiol. 1979;30:41–53.CAS 
    Article 

    Google Scholar 
    Usov AI, Bilan MI. Fucoidans-sulfated polysaccharides of brown algae. Russ Chem Rev. 2009;78:785–99.CAS 
    Article 

    Google Scholar 
    Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–233.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Al Disi ZA, Zouari N, Dittrich M, Jaoua S, Al-Kuwari HAS, Bontognali TRR. Characterization of the extracellular polymeric substances (EPS) of Virgibacillus strains capable of mediating the formation of high Mg-calcite and protodolomite. Mar Chem. 2019;216:103693.CAS 
    Article 

    Google Scholar 
    Diloreto ZA, Garg S, Bontognali TRR, Dittrich M. Modern dolomite formation caused by seasonal cycling of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Sci Rep. 2021;11:1–13.Article 

    Google Scholar 
    Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol. 2005;51:379–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raguénès G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol. 2004;49:145–51.PubMed 
    Article 

    Google Scholar 
    Moppert X, Le Costaouec T, Raguenes G, Courtois A, Simon-Colin C, Crassous P, et al. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. J Ind Microbiol Biotechnol. 2009;36:599–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    González-Hourcade M, del Campo EM, Braga MR, Salgado A, Casano LM. Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environ Microbiol. 2020;22:3096–111.PubMed 
    Article 

    Google Scholar 
    De Souza MCR, Marques CT, Dore CMG, Da Silva FRF, Rocha HAO, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol. 2007;19:153–60.Article 

    Google Scholar 
    Jayawardena TU, Wang L, Asanka Sanjeewa KK, In Kang S, Lee JS, Jeon YJ. Antioxidant potential of sulfated polysaccharides from Padina boryana; protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar Drugs. 2020;18:1–14.
    Google Scholar 
    Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32:1742–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology. 2009;19:2–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakunina IY, Nedashkovskaya OI, Alekseeva SA, Ivanova EP, Romanenko LA, Gorshkova NM, et al. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Mikrobiologiya. 2002;71:49–55.
    Google Scholar 
    Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, et al. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol. 2006;8:27–39.CAS 
    Article 

    Google Scholar 
    Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hehemann JH, Boraston AB, Czjzek M. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol. 2014;28:77–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas F, Bordron P, Eveillard D, Michel G. Gene expression analysis of Zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Front Microbiol. 2017;8:1–14.CAS 
    Article 

    Google Scholar 
    Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE. 2012;7:1–11.
    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bengtsson MM, Øvreås L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. 2010;10:1–12.Article 

    Google Scholar 
    Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, et al. Genome analysis of Planctomycetes inhabiting blades of the red alga Porphyra umbilicalis. PLoS ONE. 2016;11:1–22.
    Google Scholar 
    Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 2003;100:8298–303.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: Genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:1–19.Article 

    Google Scholar 
    Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salyers AA, O’Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980;143:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, et al. Functional gene expression in Shark Bay hypersaline microbial mats: adaptive responses. Front Microbiol. 2020;11:1–16.Article 

    Google Scholar 
    Van Vliet DM, Ayudthaya SPN, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic degradation of sulfated polysaccharides by two novel Kiritimatiellales strains isolated from black sea sediment. Front Microbiol. 2019;10:1–16.Article 

    Google Scholar 
    Bäumgen M, Dutschei T, Bornscheuer UT. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem. 2021;22:2247–56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4:1–10.Article 

    Google Scholar 
    Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1–7.CAS 
    Article 

    Google Scholar 
    McLean MW, Williamson FB. Glycosulphatase from Pseudomonas carrageenovora, purification and some properties. Eur J Biochem. 1979;101:497–505.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mclean MW, Williamson FB Neocarratetraose 4-O-Monosulphate B-Hydrolase from Pseudomonas carrageenovora. 1981;456:447–56.Suarez-Gonzalez P, Reitner J. Ooids forming in situ within microbial mats (Kiritimati atoll, central Pacific). PalZ. 2021;95:809–21.Article 

    Google Scholar 
    Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, central Pacific. Geomicrobiol J. 2012;29:29–65.CAS 
    Article 

    Google Scholar  More