More stories

  • in

    Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand

    Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606. https://doi.org/10.1016/j.pt.2020.04.004 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016 (2010).Article 
    PubMed 

    Google Scholar 
    Noel, A., Le Conte, Y. & Mondet, F. Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it?. Emerg. Top. Life Sci. 4, 45–57. https://doi.org/10.1042/ETLS20190125 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boncristiani, H. et al. World honey bee health: the global distribution of western honey bee (Apis mellifera L.) pests and pathogens. Bee World 98, 2–6 (2020).Article 

    Google Scholar 
    Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. U.S.A. 116, 1792–1801. https://doi.org/10.1073/pnas.1818371116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA 113, 3203–3208. https://doi.org/10.1073/pnas.1523515113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mondet, F. et al. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 5, 10454. https://doi.org/10.1038/srep10454 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMenamin, A. J. & Genersch, E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 8, 121–129. https://doi.org/10.1016/j.cois.2015.01.015 (2015).Article 
    PubMed 

    Google Scholar 
    Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).Article 
    PubMed Central 

    Google Scholar 
    Levin, S. et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses 11, 94. https://doi.org/10.3390/v11020094 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Chen, G. et al. A new strain of virus discovered in China specific to the parasitic mite Varroa destructor poses a potential threat to honey bees. Viruses 13, 679. https://doi.org/10.3390/v13040679 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraberger, S. et al. Genome sequences of two single-stranded DNA viruses identified in Varroa destructor. Genome Announc. 6, e00107-00118. https://doi.org/10.1128/genomeA.00107-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haddad, N., Horth, L., Al-Shagour, B., Adjlane, N. & Loucif-Ayad, W. Next-generation sequence data demonstrate several pathogenic bee viruses in Middle East and African honey bee subspecies (Apis mellifera syriaca, Apis mellifera intermissa) as well as their cohabiting pathogenic mites (Varroa destructor). Virus Genes 54, 694–705. https://doi.org/10.1007/s11262-018-1593-9 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remnant, E. J., Mather, N., Gillard, T. L., Yagound, B. & Beekman, M. Direct transmission by injection affects competition among RNA viruses in honeybees. Proc. Royal Soc. B 286, 20182452. https://doi.org/10.1098/rspb.2018.2452 (2019).CAS 
    Article 

    Google Scholar 
    Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. 6, 49–69. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).CAS 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. Royal Soc. B 286, 20182499. https://doi.org/10.1098/rspb.2018.2499 (2019).CAS 
    Article 

    Google Scholar 
    McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. Royal Soc. B https://doi.org/10.1098/rspb.2016.0811 (2016).Article 

    Google Scholar 
    Grindrod, I., Kevill, J. L., Villalobos, E. M., Schroeder, D. C. & Ten Martin, S. J. years of Deformed wing virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is potentially being replaced by variants with a DWV-B coding sequence. Viruses 13, 969. https://doi.org/10.3390/v13060969 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kevill, J. L., Stainton, K. C., Schroeder, D. C. & Martin, S. J. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch. Virol. 166, 2693–2702. https://doi.org/10.1007/s00705-021-05162-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Natsopoulou, M. E. et al. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242. https://doi.org/10.1038/s41598-017-05596-3 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iwasaki, J. M., Barratt, B. I., Lord, J. M., Mercer, A. R. & Dickinson, K. J. The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio 44, 694–704. https://doi.org/10.1007/s13280-015-0679-z (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Solignac, M. et al. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc. Royal Soc. B 272, 411–419. https://doi.org/10.1098/rspb.2004.2853 (2005).Article 

    Google Scholar 
    Hall, R. J. et al. Apicultural practice and disease prevalence in Apis mellifera, New Zealand: A longitudinal study. J. Apic. Res. 60, 644–658. https://doi.org/10.1080/00218839.2021.1936422 (2021).Article 

    Google Scholar 
    Mondet, F., de Miranda, J. R., Kretzschmar, A., Le Conte, Y. & Mercer, A. R. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 10, e1004323 (2014).Article 

    Google Scholar 
    McFadden, A. M. J. et al. Israeli acute paralysis virus not detected in Apis mellifera in New Zealand in a national survey. J. Apic. Res. 53, 520–527. https://doi.org/10.3896/ibra.1.53.5.03 (2015).Article 

    Google Scholar 
    Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 358. https://doi.org/10.3390/v12030358 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Gruber, M. A. M. et al. Single-stranded RNA viruses infecting the invasive argentine ant Linepithema humile. Sci. Rep. 7, 3304. https://doi.org/10.1038/s41598-017-03508-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brenton-Rule, E. C. et al. The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biol. Invasions 20, 3445–3460. https://doi.org/10.1007/s10530-018-1786-0 (2018).Article 

    Google Scholar 
    Lester, P. J., Buick, K. H., Baty, J. W., Felden, A. & Haywood, J. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Sci. Rep. 9, 5780. https://doi.org/10.1038/s41598-019-41843-5 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS ONE 10, e0121358. https://doi.org/10.1371/journal.pone.0121358 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levin, S., Sela, N. & Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 6, 37710. https://doi.org/10.1038/srep37710 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornman, S. R. et al. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom. 11, 602. https://doi.org/10.1186/1471-2164-11-602 (2010).CAS 
    Article 

    Google Scholar 
    Gauthier, L. et al. The Apis mellifera filamentous virus genome. Viruses 7, 3798–3815. https://doi.org/10.3390/v7072798 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giuffre, C., Lubkin, S. R. & Tarpy, D. R. Does viral load alter behavior of the bee parasite Varroa destructor?. PLoS ONE 14, e0217975. https://doi.org/10.1371/journal.pone.0217975 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Runckel, C. et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6, e20656. https://doi.org/10.1371/journal.pone.0020656 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Remnant, E. J. et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 91, e00158. https://doi.org/10.1128/JVI.00158-17 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navajas, M. et al. New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41, 181–193. https://doi.org/10.1051/apido/2009068 (2010).CAS 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. https://doi.org/10.1038/nmeth.3317 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom. 20, 275. https://doi.org/10.1186/s12864-019-5642-0 (2019).Article 

    Google Scholar 
    Techer, M. A. et al. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun. Biol. 2, 357. https://doi.org/10.1038/s42003-019-0606-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using Diamond. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    National Center for Biotechnology Information (NCBI). Bethesda (MD), National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[cited 2017 Apr 06]. Available from: https://www.ncbi.nlm.nih.gov/.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).CAS 
    Article 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R: A language and environment for statistical computing v. 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria, 2020).Oksanen, J. et al. vegan: community ecology package. (R package version 2.4–0. https://CRAN.R-project.org/package=vegan., 2016).Li, D. et al. Molecular detection of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae): DNA barcoding and development of a real-time PCR assay. Sci. Rep. 8, 9623. https://doi.org/10.1038/s41598-018-27603-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, D. L. & Trueman, J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189. https://doi.org/10.1023/a:1006456720416 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradford, E. L., Christie, C. R., Campbell, E. M. & Bowman, A. S. A real-time PCR method for quantification of the total and major variant strains of the Deformed wing virus. PLoS ONE 12, e0190017. https://doi.org/10.1371/journal.pone.0190017 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dynes, T. L. et al. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48, 93–101. https://doi.org/10.1007/s13592-016-0453-7 (2017).Article 

    Google Scholar 
    Maggi, M. et al. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Exp. Appl. Acarol. 56, 309–318. https://doi.org/10.1007/s10493-012-9526-0 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hasegawa, N., Techer, M. & Mikheyev, A. S. A toolkit for studying Varroa genomics and transcriptomics: preservation, extraction, and sequencing library preparation. BMC Genom. 22, 54. https://doi.org/10.1186/s12864-020-07363-7 (2021).CAS 
    Article 

    Google Scholar 
    Gisder, S. & Genersch, E. Direct evidence for infection of Varroa destructor mites with the bee-pathogenic Deformed wing virus variant B, but not variant A, via fluorescence in situ hybridization analysis. J. Virol. 95, e01786. https://doi.org/10.1128/JVI.01786-20 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Gisder, S., Aumeier, P. & Genersch, E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467. https://doi.org/10.1099/vir.0.005579-0 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yue, C. & Genersch, E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424. https://doi.org/10.1099/vir.0.81401-0 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Posada-Florez, F. et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci. Rep. 9, 12445. https://doi.org/10.1038/s41598-019-47447-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Budge, G. E. et al. Chronic bee paralysis as a serious emerging threat to honey bees. Nat. Commun. 11, 2164. https://doi.org/10.1038/s41467-020-15919-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graystock, P. et al. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215. https://doi.org/10.1111/1365-2664.12134 (2013).Article 

    Google Scholar 
    Roberts, J. M. K., Simbiken, N., Dale, C., Armstrong, J. & Anderson, D. L. Tolerance of honey bees to Varroa mite in the absence of deformed wing virus. Viruses https://doi.org/10.3390/v12050575 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brettell, L. E. & Martin, S. J. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. 7, 45953. https://doi.org/10.1038/srep45953 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herrero, S. et al. Identification of new viral variants specific to the honey bee mite Varroa destructor. Exp. Appl. Acarol. 79, 157–168. https://doi.org/10.1007/s10493-019-00425-w (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dobelmann, J. et al. Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218. https://doi.org/10.1111/oik.04117 (2017).CAS 
    Article 

    Google Scholar 
    Shojaei, A., Nourian, A., Khanjani, M. & Mahmoodi, P. The first molecular characterization of Lake Sinai virus in honey bees (Apis mellifera) and Varroa destructor mites in Iran. J. Apic. Res. https://doi.org/10.1080/00218839.2021.1921467 (2021).Article 

    Google Scholar 
    Hartmann, U., Forsgren, E., Charriere, J. D., Neumann, P. & Gauthier, L. Dynamics of Apis mellifera filamentous Virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7, 2654–2667. https://doi.org/10.3390/v7052654 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nanetti, A., Bortolotti, L. & Cilia, G. Pathogens spillover from honey bees to other arthropods. Pathogens 10, 1044. https://doi.org/10.3390/pathogens10081044 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norton, A. M., Remnant, E. J., Buchmann, G. & Beekman, M. Accumulation and competition amongst Deformed wing virus genotypes in naive Australian honeybees provides insight into the increasing global prevalence of genotype B. Front. Microbiol. 11, 620. https://doi.org/10.3389/fmicb.2020.00620 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, G. J. et al. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 10, 1182–1191. https://doi.org/10.1038/ismej.2015.186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Dark matter-free galaxies, alarming tree deaths and the dawn of farming

    This Hubble image captures a set of galaxies that are unusual because they seem not to have dark matter.Credit: NASA/ESA/P. van Dokkum, Yale Univ.

    Galaxies without dark matter baffle astronomersScientists have long thought that galaxies cannot form without the gravitational pull of the mysterious material known as dark matter. But one group of astronomers thinks it might have observed a line of 11 galaxies that don’t contain any of the substance, and could all have been created in an ancient collision (P. van Dokkum et al. Nature 605, 435–439; 2022).This kind of system could be used to learn about how galaxies form, and about the nature of dark matter itself. However, some researchers are not convinced that the claim is much more than a hypothesis.The finding centres on two galaxies, called DF2 and DF4, that were described in 2018 and 2019. Their stars moved so slowly that the pull of dark matter was not needed to explain their orbits, so the team concluded that the galaxies contained no dark matter.In the latest research, scientists identified between three and seven new candidates for dark-matter-free galaxies in a line between DF2 and DF4, as well as strange, faint galaxies at either end.“If proven right, this could certainly be exciting for galaxy formation. However, the jury is still out,” says Chervin Laporte, an astronomer at the University of Barcelona in Spain.Northern Australian tree deaths double in 35 yearsThe rate at which trees are dying in the old-growth tropical forests of northern Australia each year has doubled since the 1980s, and researchers say climate change is probably to blame.The findings, published in Nature on 18 May, come from an extraordinary record of tree deaths catalogued at 24 sites in the tropical forests of northern Queensland over the past 49 years (D. Bauman et al. Nature https://doi.org/hv67; 2022).The research team recorded that 2,305 trees across 81 key species had died since 1971. But from the mid-1980s, tree mortality risk increased from an average of 1% a year to 2% a year (see ‘Increasing death rate’). Of the 81 tree species that the team studied, 70% showed an increase in mortality risk over the study period.The study found that the rise in death rate occurred at the same time as a long-term trend of increases in the atmospheric vapour pressure deficit, which is the difference between the amount of water vapour that the atmosphere can hold and the amount of water it does hold at a given time. The higher the deficit, the more water trees lose through their leaves, which can lead to sustained stress and eventually tree death.

    Europe’s first farming populations descend mostly from farmers in the Anatolian peninsula, in what is now Turkey.Credit: Fatih Kurt/Anadolu Agency/Getty

    Ancient DNA maps ‘dawn of farming’Sometime before 12,000 years ago, nomadic hunter-gatherers in the Middle East made one of the most important transitions in human history: they began staying put and took to farming.Two ancient-DNA studies have now homed in on the identity of the hunter-gatherers who settled down.Researchers sequenced the genomes of 15 hunter-gatherers and early farmers who lived in southwest Asia and Europe, along a key migration routes into Europe — the Danube River (N. Marchi et al. Cell https://doi.org/gp49rr; 2022).The team found that ancient farmers in Anatolia — now Turkey — descended from repeated mixing between distinct hunter-gatherer groups from Europe and the Middle East. These groups first split at the height of the last Ice Age, some 25,000 years ago. Modelling suggests that the western groups nearly died out, before rebounding as the climate warmed.Once established in Anatolia, the researchers found, early farmers moved west into Europe in a stepping-stone-like way, beginning around 8,000 years ago. They mixed occasionally — but not extensively — with local hunter-gatherers.The findings chime with those of a similar ancient-genomics study posted on the bioRxiv preprint server this month (M. E. Allentoft. et al. Preprint at bioRxiv https://doi.org/hv7g; 2022). More

  • in

    Cash and action are needed to avert a biodiversity crisis

    Ambitious new targets are needed to conserve nature by protecting parks and species.Credit: Tang Dehong/VCG/Getty

    It will take ample time and money to slow the world’s catastrophic loss of plant and animal species — and right now, both are running dangerously low. This year, nations are due to agree to an action plan to protect global biodiversity at the 15th Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity. But the meeting is already two years late because of the pandemic, and China, which will host the conference in Kunming, has yet to set a new date.Now, conflicts over financing are adding to the tension. Conservation groups and advocates suggest that rich nations must donate at least US$60 billion annually to help less-affluent ones to fund projects such as protecting areas where wildlife can thrive and tackling the illegal wildlife trade that is driving hundreds of species to extinction. This is much more than the $4 billion to $10 billion that they are estimated to be spending today, and well below the amount they are giving low- and middle-income countries (LMICs) to fight climate change, which reached around $50 billion in 2019 according to one estimate. Yet limited overseas development funds are spread ever thinner as donors deal with the pandemic and now the fallout from Russia’s invasion of Ukraine. This is where COP15 is meant to deliver: as well as agreeing to the action plan, called the Global Biodiversity Framework, nations will be encouraged to pledge more money.A mix of public and private money has started to trickle in. Currently, biodiversity funding on the table ahead of COP15 amounts to roughly $5.2 billion per year, according to estimates by a group of five leading conservation organizations. Most comes from six governments, including France, the United Kingdom and Japan, and the European Union. In April, the Global Environment Facility (GEF) — a multilateral fund to support international environmental agreements — announced that, over the next four years, around $1.9 billion will go to projects dedicated to biodiversity. However, it’s unclear how much of this will come from the coffers that donor countries have already pledged.Some cash for conservation is coming from private philanthropic donors — such as $2 billion committed by entrepreneur Jeff Bezos last year. And starting in 2020, a group of financial institutions (now 89 of them) promised to annually report their financing activities and investments that affect biodiversity, and to move away from those that do harm — a form of ecological accounting that could help to shrink the budget needed to protect biodiversity. Donors will need to reach much deeper into their pockets to meet the demands of LMICs, the custodians of much of the world’s biodiversity. In March, a group of LMICs, led by Gabon, asked for $100 billion per year in new funding when officials met in Geneva, Switzerland, to discuss progress on the Global Biodiversity Framework. The LMICs want the money placed in a new multilateral fund for biodiversity, separate from, but complementary to, the GEF.Aside from cash, the fund will need to find a new home and structure — and there are a few options. A proposal from Brazil, circulated at the Geneva meeting, suggests the fund be governed by a board of 24 members, with an equal number from rich and lower-income nations. The board would be responsible for funding decisions and would prioritize projects that help to achieve the biodiversity convention’s goals. The pitch generated interest among some countries, but also concerns that it’s an attempt by Brazil to divert attention from its failure over the past few years to protect the Amazon rainforest and prevent other environmental harm.Another option is the Kunming Biodiversity Fund, which China announced in October last year to help LMICs to safeguard their ecosystems. It allocated 1.5 billion yuan (US$223 million) to seed the fund and invited other countries to contribute, but so far none has. Sources knowledgeable about the fund say that donor countries are reluctant to pitch in because China is holding on too tightly to the reins and is not involving others in its deliberations. Details of how the fund will operate are scarce, but Nature has learnt that China is floating the idea of housing it at the Asian Infrastructure Investment Bank (AIIB), based in Beijing. Set up in 2016, the AIIB has $100 billion in total capital and 105 members, including Germany, France and the United Kingdom. The AIIB has big green plans. By 2025, it wants half of all infrastructure projects it finances to focus on climate issues. With rigorous oversight and transparency, the AIIB would make a good home for the Kunming fund.As countries prepare to meet in Nairobi on 20–26 June in a last-ditch attempt to push the biodiversity framework forwards before COP15, China, as the host, must urgently provide stronger leadership on financing, including more transparency and engagement. Progress will require quick, generous contributions from donor nations — which should prioritize grants, not loans, for biodiversity projects.Holding the COP15 meeting must be a priority, too. As China tightens restrictions in the face of a COVID-19 surge, some researchers fear that delays will stretch on, stalling conservation work and leaving less time to meet biodiversity targets. China must either commit to holding the meeting this year or let it proceed elsewhere. One option being quietly discussed is moving the meeting to Canada — home of the United Nations biodiversity convention’s secretariat — and this deserves consideration. The world needs an ambitious biodiversity plan now — nature cannot wait. More

  • in

    Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014

    Literature reviewWe conducted a comprehensive review of relevant literature published since 1995. Studies were extracted from the China National Knowledge Infrastructure and Web of Science using the following keywords: “N (nitrogen) loss OR NO (nitric oxide) emission OR N2O (nitrous oxide) emission OR NH3 (ammonia volatilization) emission OR NO3− (nitric leaching) OR N (nitrogen) runoff AND wheat AND China”. We excluded the following types of experiment: experiments not covering the entire wheat growing season, experiments conducted in greenhouses or laboratories, experiments without zero-N control, and experiments including manure, controlled release fertilizer, or inhibitors. In total, we extracted 941 observations from 138 articles, consisting of 121 observations of NO emission, 383 of N2O emission, 185 of NH3 emission, 188 of NO3− leaching, and 64 of Nr runoff. We also extracted data on N application rates, and climate and soil variables (Fig. 1). Missing climate data were obtained from China Meteorological Data Network (https://data.cma.cn/), miss values of soil organic carbon (SOC) and total N content were obtained from the National Scientific Fertilizer Network (http://kxsf.soilbd.com/), and missing soil silt, clay, sand content, bulk density, cation exchange capacity (CEC), and pH data were obtained from the Harmonized World Soil Database (HWSD) v. 1.2 (http://www.fao.org/soils-portal/soil-survey/soilmaps-and-databases/harmonized-world-soildatabase-v12/en). Based on this dataset, the EFs of Nr loss pathways were calculated by the following equation:$$E{F}_{i}=left({E}_{treatment}{rm{-}}{E}_{control}right){rm{/}}N;applied$$
    (1)
    where i = 1–5, represented NO, N2O, NH3, NO3− leaching and Nr runoff, respectively. Etreatment is the loss rate of experimental treatments with applied N fertilizer, Econtrol is the loss rate of experimental control without applied N fertilizer, and N applied is the N application rate corresponding to Etreatment. The resulting data was used to develop RF models to predict EFs of the five Nr loss pathways.Fig. 1The generate framework of the Nr loss from Chinese wheat system (Nr-Wheat) 1.0 database.Full size imageRF modelsRF models outperformed empirical models in previous studies15,18,19. We employed RF models to predict the EFs of NO, N2O, NH3, NO3− leaching, and Nr runoff. Environmental factors were selected via redundancy analysis20. Redundancy analysis, a basic ordination technique for gradients analysis, produces an ordination summarizing the variation in several response variables that can be best explained by a matrix of explanatory variables based on multiple linear regression. We conducted redundancy analysis using Canoco 5 to further analyze the effects of 10 environmental factors, including 4 soil physical factors (bulk density, silt, clay, and sand content), 4 soil chemical factors (pH, SOC, CEC and total N content), and 2 weather factors (total rainfall and mean temperature during the wheat growing period) of different EFs. Ultimately, the dataset of each pathway contained an ensemble of different environmental factors (Table 1).Table 1 Environmental factors were employed to build RF model for each pathway and total explanatory rates.Full size tableWhen establishing the RF model, the first step was to select k features from a total of m (k  More

  • in

    Mulching impact of Jatropha curcas L. leaves on soil fertility and yield of wheat under water stress

    Khamraev, Sh. R. & Bezborodov, Yu. G. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World 2(33), 86–93 (2016).
    Google Scholar 
    Khan, A. U. et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13(1), 1–19 (2021).CAS 

    Google Scholar 
    Patil Shirish, S., Kelkar Tushar, S. & Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 1(3), 26–29 (2013).
    Google Scholar 
    Matkovic, A. et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine 35, 37–51 (2015).Article 

    Google Scholar 
    Nawaz, A., Lal, R., Shrestha, R. K. & Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 28(2), 673–681 (2016).Article 

    Google Scholar 
    Brant, V. et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 12(2), 106–116 (2017).CAS 
    Article 

    Google Scholar 
    Kumar, R. et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 8(3), 311–334 (2014).ADS 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204, 514–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193, 538–546 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chakraborty, D. et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 95(12), 1323–1334 (2008).Article 

    Google Scholar 
    Ahmad, Z. I., Ansar, M., Iqbal, M. & Minhas, N. M. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 39(4), 1189–1195 (2007).
    Google Scholar 
    Teame, G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 12(38), 2836–2843 (2017).Article 

    Google Scholar 
    Lehar, L., Wardiyati, T., Moch Dawam, M. & Suryanto, A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 24(3), 1338–1344 (2017).CAS 

    Google Scholar 
    Arash, K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2(3), 60–64 (2013).
    Google Scholar 
    Artyszak, A., Gozdowski, D. & Kucińska, K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 60(10), 464–469 (2014).Article 

    Google Scholar 
    Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.orgElbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).King, A. J. et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 60(10), 2897–2905 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).Ullah, F., Bano, A. & Nosheen, A. Sustainable measures for biodiesel. Effects 36(23), 2621–2628 (2014).CAS 

    Google Scholar 
    Irshad, M. et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Dieye, T. et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal). J. Soil Sci. Environ Manag. 7(3), 32–44 (2016).CAS 
    Article 

    Google Scholar 
    Kafi, M. & Salehi, M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 44, 257–262 (2012).
    Google Scholar 
    Yang, Y. M., Liu, X. J., Li, W. Q. & Li, C. Z. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 7(11), 858–867 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, Z. K., Wang, Y. J. & Li, F. M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 75(1), 71–83 (2005).Article 

    Google Scholar 
    Khan, R. H., Anwar-ul-Haq, K. & Sajjad, M. R. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 4(12), 85–91 (2014).
    Google Scholar 
    Weidhuner, A., Afshar, R. K., Luo, Y., Battaglia, M. & Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 111(6), 3398–3402 (2019).CAS 
    Article 

    Google Scholar 
    Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Rummana, S., Amin, A. K. M. R., Islam, M. S. & Faruk, G. M. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 21(1), 71–76 (2018).Article 

    Google Scholar 
    Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).CAS 
    Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 595–624 (Soil Sci. Society America, 1982).
    Google Scholar 
    Steel, R. G. D., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach 3rd edn, 246 (McGraw-Hill, 1997).
    Google Scholar 
    Brady, N. C. & Weil, R. R. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils 5(13), 311–358 (2008).
    Google Scholar 
    Scharenbroch, B. C. & Lloyd, J. E. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 32(4), 180–191 (2006).Article 

    Google Scholar 
    Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25(4), 239–249 (2007).Article 

    Google Scholar 
    Liu, Z., Fu, B., Zheng, X. & Liu, G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 42(3), 445–450 (2010).CAS 
    Article 

    Google Scholar 
    Bai, S. H., Blumfield, T. J. & Reverchon, F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils 50(1), 37–44 (2014).Article 

    Google Scholar 
    Yang, H. et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 197, 104485 (2020).Article 

    Google Scholar 
    Li, X. J. et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1804(4), 929–940 (2010).CAS 
    Article 

    Google Scholar 
    Fang, S., Xie, B., Liu, D. & Liu, J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 41(2), 147–162 (2011).Article 

    Google Scholar 
    Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).Johnson, D. et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 54(4), 671–678 (2003).Article 

    Google Scholar 
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).ADS 
    Article 

    Google Scholar 
    Nielsen, N. M., Winding, A. & Binnerup, S. Microorganisms as Indicators of Soil Health 15–16 (Ministry of the Environment, National Environ. Res. Inst., 2002).
    Google Scholar 
    Wilkinson, S. C. et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 34(2), 189–200 (2002).CAS 
    Article 

    Google Scholar 
    Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48(3), 424–430 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y. Y., Yao, H. Y. & Huang, C. Y. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 43, 828–834 (2006).
    Google Scholar 
    Jensen, K. D., Beier, C., Michelsen, A. & Emmett, B. A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 24(2), 165–176 (2003).Article 

    Google Scholar 
    Stoklosa, A., Hura, T., Stupnicka-Rodzynkiewicz, E., Dabkowska, T. & Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 61(2), 205–219 (2008).
    Google Scholar 
    Ohno, T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30(5), 1631–1635 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farooq, S., Shahid, M., Khan, M. B., Hussain, M. & Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 201(3), 173–188 (2015).Article 

    Google Scholar 
    Madani, A., Rad, A. S., Pazoki, A., Nourmohammadi, G. & Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 32, 145–151 (2010).CAS 
    Article 

    Google Scholar 
    Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 80(1–3), 23–40 (2006).Article 

    Google Scholar 
    Athar, H. R., Khan, A. & Ashraf, M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32, 1799–1817 (2009).CAS 
    Article 

    Google Scholar 
    Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 41(1), 1–12 (2021).Article 
    CAS 

    Google Scholar  More

  • in

    Enhanced silica export in a future ocean triggers global diatom decline

    Mesocosm experimentsSi:Nexport measurementsBetween 2010 and 2014, we conducted five in situ mesocosm experiments to assess impacts of OA on natural plankton communities. Study sites covered a large latitudinal gradient (28 °N–79 °N) and diverse oceanic environments/ecosystems (Extended Data Fig. 1 and Extended Data Table 1). Sample collection and processing was conducted every 1 or 2 days throughout the experiments. Sinking particulate matter was obtained from sediment traps attached to the bottom of each mesocosm, thereby collecting the entire material sinking down in the enclosed water column36. Processing of sediment trap samples followed a previous protocol37. Samples for particulate matter suspended in the water column were collected with depth-integrating water samplers (HYDRO-BIOS) and filtered following standard procedures. Biogenic silica was leached from the sediment trap samples and filters by alkaline pulping (0.1 M NaOH at 85 °C). After 135 min the leaching process was terminated with 0.05 M H2SO4 and dissolved silica was measured spectrophotometrically38. Carbon and nitrogen content were determined using an elemental CN analyser (EuroEA)39.Analysis of OA impactsTo test for a systemic influence of OA on Si:Nexport, we synthesized the datasets from the different experiments and (i) conducted a meta-analysis to quantify effect sizes, and (ii) computed probability density estimates. Because the experimental design, the range of CO2 treatments, and the time periods for our analysis of Si:Nexport varied to some extent among experiments (Extended Data Table 1), we pooled mesocosms for ambient conditions and in the ({{p}}_{{{rm{CO}}}_{2}}) range of ~700–1,000 μatm (‘OA treatment’), corresponding to end-of-century values according to RCP 6.0 and 8.5 emission scenarios15. Effect sizes were calculated as log-transformed response ratios lnRR, an approach commonly used in meta-analysis40:$${rm{l}}{rm{n}}{rm{R}}{rm{R}}={rm{l}}{rm{n}}{X}_{{rm{O}}{rm{A}}}-{rm{l}}{rm{n}}{X}_{{rm{c}}{rm{o}}{rm{n}}{rm{t}}{rm{r}}{rm{o}}{rm{l}}},$$where X is the arithmetic mean of Si:Nexport ratios under OA and ambient conditions (Extended Data Table 1). Effect sizes 0 indicate that the effect was positive. Effects are considered statistically significant when 95% confidence intervals (calculated from pooled standard deviations) do not overlap with zero. The overall effect size across all studies was computed by weighing individual effect sizes according to their variance, following the common methodology for meta-analyses40. In addition, we computed probability densities of Si:Nexport based on kernel density estimation, which better accounts for data with skewed or multimodal distributions41. Another advantage of this approach is that it does not require the calculation of temporal means. Instead, the entire data timeseries can be incorporated into the analysis, thus retaining information about temporal variability. Confidence intervals of the density estimates were calculated with a bootstrapping approach using data resampling (1,000 permutations)41. The resulting probability density plots can be interpreted analogously to histograms. Differences among ambient and OA conditions are considered statistically significant when confidence intervals of the probability density distributions do not overlap. Numbers for suspended and sinking Si, C and N (and their respective ratios) for the analysis period are given in Extended Data Table 2.Analysis of pH effects on Si:N in global sediment trap dataWe analysed a recent compilation of global sediment trap data (674 locations collected between 1976 and 2012)35. The aim of this analysis was to assess the influence of pH on opal dissolution in the world ocean. In contrast to the mesocosm experiments, where export fluxes were measured only at one depth, the global dataset provides depth-resolved information, enabling us to examine the vertical change in the Si:N ratio of sinking particulate matter and how this correlates with pH. It has long been known that the silica content of sinking particles increases with depth, as opal dissolution is less efficient than organic matter remineralization25,42. The resulting accumulation of Si relative to N can be quantified as the change in Si:N with increasing depth, that is, the slope of the relationship of depth versus Si:N (ΔSi:N, in units of m−1). Our approach is analogous to previous studies, which used vertical profiles of Si:C as a proxy for differential dissolution/remineralization of opal and organic matter, and its regional variability in the ocean24,42. We extracted all data that (I) included simultaneous measurements of Si and N, and (II) contained vertical profiles with at least three depth levels (so that ΔSi:N [m−1] can be calculated). We then calculated linear regressions for individual Si:N profiles and subsequently extracted those for which Si:N displayed a statistically significant relationship with depth (p  More

  • in

    Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. A. et al. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 10, 20–28 (2012).Article 

    Google Scholar 
    Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, Berlin, 2007).Chapter 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed 
    Article 

    Google Scholar 
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article 

    Google Scholar 
    Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: Ecological drivers of biogeographic patterns. New Phytol. 196, 383–396 (2012).PubMed 
    Article 

    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V. & Pergl, J. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10, e0123634 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. Soil Seed Banks of NW Europe: Methodology, Density and Longevity (Cambridge University Press, Cambridge, 1997).
    Google Scholar 
    Walck, J. L., Baskin, J. M., Baskin, C. C. & Hidayati, S. N. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15, 189–196 (2005).Article 

    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Gioria, M. et al. Persistent soil seed banks promote naturalization and invasiveness in flowering plants. Ecol. Lett. 24, 1655–1667 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).PubMed 
    Article 

    Google Scholar 
    Venable, D. L. & Brown, J. S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131, 360–384 (1988).Article 

    Google Scholar 
    Adams, V. M., Marsh, D. M. & Knox, J. S. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol. Conserv. 124, 425–436 (2005).Article 

    Google Scholar 
    Harper, J. The Population Biology of Plants (Academic Press, London, 1977).
    Google Scholar 
    Warr, S. J., Thompson, K. & Kent, M. Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progr. Phys. Geogr. 17, 329–347 (1993).Article 

    Google Scholar 
    Thompson, K., Bakker, J. P., Bekker, R. M. & Hodgson, J. Ecological correlates of seed persistence in soil in the north-west European flora. J. Ecol. 86, 163–169 (1998).Article 

    Google Scholar 
    Gioria, M., Pyšek, P., Baskin, C. & Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 108, 2121–2131 (2020).Article 

    Google Scholar 
    Pyšek, P. et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).Article 

    Google Scholar 
    Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29, 360–369 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).MathSciNet 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11, 4–16 (2018).
    Google Scholar 
    Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 1–21 (2014).Article 

    Google Scholar 
    D’Antonio, C. M., Dudley, T. L. & Mack, M. C. Disturbance and biological invasions: Direct effects and feedbacks. In Ecosystems of Disturbed Ground (ed. Walker, L.) 413–452 (Elsevier, Oxford, 1999).
    Google Scholar 
    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88, 528–534 (2000).Article 

    Google Scholar 
    Hierro, J. L., Villarreal, D., Eren, Ö., Graham, J. M. & Callaway, R. M. Disturbance facilitates invasion: The effects are stronger abroad than at home. Am. Nat. 168, 144–156 (2006).PubMed 
    Article 

    Google Scholar 
    Chytrý, M. et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).Article 

    Google Scholar 
    Templeton, A. & Levin, D. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).Article 

    Google Scholar 
    Honnay, O., Bossuyt, B., Jacquemyn, H., Shimono, A. & Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population?. Oikos 117, 1–5 (2008).Article 

    Google Scholar 
    Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, post-germination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article 

    Google Scholar 
    Gioria, M., Osborne, B. & Pyšek, P. Soil seed banks under a warming climate. In Plant Regeneration from Seeds: A global Warming Perspective (eds Baskin, C. & Baskin, J.) 285–298 (Academic Press, London, 2022).Chapter 

    Google Scholar 
    Blossey, B., Nuzzo, V. & Davalos, A. Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. J. Ecol. 105, 1485–1495 (2017).Article 

    Google Scholar 
    Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).Article 

    Google Scholar 
    Richardson, D. M. & Kluge, R. L. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Persp. Plant Ecol. Evol. Syst. 10, 161–177 (2008).Article 

    Google Scholar 
    Hartzler, R. G., Buhler, D. D. & Stoltenberg, D. E. Emergence characteristics of four annual weed species. Weed Sci. 47, 578–584 (1999).CAS 
    Article 

    Google Scholar 
    Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota 50, 75–95 (2019).Article 

    Google Scholar 
    Moravcová, L. et al. Seed germination, dispersal and seed bank in Heracleum mantegazzianum. In Ecology and Management of Giant Hogweed (Heracleum mantegazzianum) (eds Pyšek, P. et al.) 74–91 (CAB International, Wallingford, 2007).Chapter 

    Google Scholar 
    Gioria, M. & Osborne, B. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556 (2009).Article 

    Google Scholar 
    Long, R. L. et al. Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci. 56, 523–528 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Carta, A., Bottega, S. & Spanò, C. Aerobic environment ensures viability and antioxidant capacity when seeds are wet with negative effect when moist: Implications for persistence in the soil. Seed Sci. Res. 28, 16–23 (2018).CAS 
    Article 

    Google Scholar 
    Pyšek, P. et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155–255 (2012).
    Google Scholar 
    Thompson, K., Band, S. & Hodgson, J. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236–241 (1993).Article 

    Google Scholar 
    Moles, A. T., Hodson, D. W. & Webb, C. J. Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89, 541–545 (2000).Article 

    Google Scholar 
    Leon, R. G. & Owen, M. D. K. Artificial and natural seed banks differ in seedling emergence patterns. Weed Sci. 52, 531–537 (2004).CAS 
    Article 

    Google Scholar 
    Thompson, K. & Grime, P. J. Seasonal variation in seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921 (1979).Article 

    Google Scholar 
    Lambrinos, J. G. Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147, 327–334 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wainwright, C. E., Wolkovich, E. M. & Cleland, E. E. Seasonal priority effects: Implications for invasion and restoration in a semi-arid system. J. Appl. Ecol. 49, 234–241 (2012).Article 

    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390 (2010).
    Google Scholar 
    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties 2nd edn. (John Wiley & Sons, Oxford, 2001).
    Google Scholar 
    Mihulka, S., Pyšek, P. & Pyšek, A. Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after two centuries. Preslia 75, 263–270 (2003).
    Google Scholar 
    Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge University Press, Cambridge, 2005).Book 

    Google Scholar 
    Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species 2nd edn. (Castlepoint Press, Colvend, Dalbeattie, Kirkcudrightshire, Scotland, 2007).
    Google Scholar 
    Gioria, M. & Osborne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683 (2010).Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).Article 

    Google Scholar 
    Carta, A., Hanson, S. & Müller, J. V. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol. Evol. 6, 4166–4178 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arène, F., Affre, L., Doxa, A. & Saatkamp, A. Temperature but not moisture response of germination shows phylogenetic constraints while both interact with seed mass and lifespan. Seed Sci. Res. 27, 110–120 (2017).Article 

    Google Scholar 
    Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).Article 

    Google Scholar 
    Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, K., Ceriani, R. M., Bakker, J. P. & Bekker, R. M. Are seed dormancy and persistence in soil related?. Seed Sci. Res. 13, 97–100 (2003).Article 

    Google Scholar 
    Long, R. L. et al. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 90, 31–59 (2015).PubMed 
    Article 

    Google Scholar 
    Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pyšek, P., Sádlo, J. & Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 74, 97–186 (2002).
    Google Scholar 
    Pyšek, P. et al. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon 53, 131–143 (2004).Article 

    Google Scholar 
    WFO World Flora Online. http://www.worldfloraonline.org (2021).Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30 (1980).Article 

    Google Scholar 
    Butler, L. H., Hay, F. R., Ellis, R. H., Smith, R. D. & Murray, T. B. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot. 103, 1261–1270 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?. Plant Divers. 43, 255–263 (2021).PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    de Villemereuil, P. & Nakagawa, S. General quantitative genetic methods for comparative biology. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–303 (Springer-Verlag, Berlin, 2014).Chapter 

    Google Scholar 
    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022). Available online at: https://www.R-project.org More

  • in

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).ADS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a tropical western atlantic reef ecosystem. Ecosystems https://doi.org/10.1007/s10021-021-00691-z (2021).Article 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Mar. Policy 88, 295–302 (2018).Article 

    Google Scholar 
    Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441–456 (2018).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).ADS 
    Article 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    Bryan, D. R., Kilfoyle, K., Gilmore, R. G. Jr. & Spieler, R. E. Characterization of the mesophotic reef fish community in south Florida, USA. J. Appl. Ichthyol. 29, 108–117 (2013).Article 

    Google Scholar 
    Fukunaga, A., Kosaki, R. K., Wagner, D. & Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoS One 11, e0157861 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kahng, S., Copus, J. M. & Wagner, D. Mesophotic coral ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–22 (Springer International Publishing, Paris, 2016). https://doi.org/10.1007/978-3-319-17001-5_4-1.Chapter 

    Google Scholar 
    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosa, M. R. et al. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35, 113–123 (2016).ADS 
    Article 

    Google Scholar 
    Medeiros, A. P. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, D. G. SEFOS—Shelf edge fisheries and oceanography studies: An overview. Fish. Res. 50, 1–15 (2001).Article 

    Google Scholar 
    Heyman, W. D. & Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull. Mar. Sci. 83, 531–551 (2008).
    Google Scholar 
    Paxton, A. B. et al. Four decades of reef observations illuminate deep-water grouper hotspots. Fish Fish. 22, 749–761. https://doi.org/10.1111/faf.12548 (2021).Article 

    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48, 787–800 (2005).Article 

    Google Scholar 
    Longhurst, A. R. & Pauly, D. Ecologia dos oceanos tropicais (Edusp, 2007).
    Google Scholar 
    Olavo, G., Costa, P. A., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Silva, M. B., Rosa, R. S., Menezes, R. & Francini-Filho, R. B. Changes in reef fish assemblages in a cross-shelf euphotic-mesophotic gradient in tropical SW Atlantic. Estuar. Coast. Shelf Sci. 259, 107465 (2021).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Letessier, T. B. et al. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol. 17, e3000366 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heywood, K. J., Barton, E. D. & Simpson, J. H. The effects of flow disturbance by an oceanic island. J. Mar. Res. 48, 55–73 (1990).Article 

    Google Scholar 
    Signorini, S. R., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).ADS 
    Article 

    Google Scholar 
    Henry, G. W. & Lyle, J. M. National recreational and indigenous fishing survey (2003).Coutis, P. F. & Middleton, J. H. Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 1633–1652 (1999).ADS 
    Article 

    Google Scholar 
    Cardoso, C., Caldeira, R. M. A., Relvas, P. & Stegner, A. Islands as eddy transformation and generation hotspots: Cabo Verde case study. Prog. Oceanogr. 184, 102271 (2020).Article 

    Google Scholar 
    Tchamabi, C. C., Araujo, M., Silva, M. & Bourlès, B. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Model 111, 9–18 (2017).ADS 
    Article 

    Google Scholar 
    Motta, F. S. et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg. Stud. Mar. Sci. 47, 101951 (2021).Article 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Shucksmith, R. J. & Kelly, C. Data collection and mapping—Principles, processes and application in marine spatial planning. Mar. Policy 50, 27–33 (2014).Article 

    Google Scholar 
    Queffelec, B. et al. Marine spatial planning and the risk of ocean grabbing in the tropical Atlantic. ICES J. Mar. Sci. 78, 1196–1208 (2021).Article 

    Google Scholar 
    Rubio-Cisneros, N. T. et al. Poor fisheries data, many fishers, and increasing tourism development: Interdisciplinary views on past and current small-scale fisheries exploitation on Holbox Island. Mar. Policy 100, 8–20 (2019).Article 

    Google Scholar 
    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Hewitt, J. E., Anderson, M. J. & Thrush, S. F. Assessing and monitoring ecological community health in marine systems. Ecol. Appl. 15, 942–953 (2005).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Díaz-Pérez, L. et al. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea. PLoS One 11, e0161812 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Pennino, M. G. et al. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302–2310 (2016).Article 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer Science and Business Media, 2013).
    Google Scholar 
    Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (1986).Jones, R. S. & Thompson, M. J. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28, 159–172 (1978).
    Google Scholar 
    Kimmel, J. J. A new species-time method for visual assessment of fishes and its comparison with established methods. Environ. Biol. Fishes 12, 23–32 (1985).Article 

    Google Scholar 
    Michalopoulos, C., Auster, P. J. & Malatesta, R. J. A comparison of transect and species-time counts for assessing faunal abundance from video surveys. Mar. Technol. Soc. J. 26, 27–31 (1992).
    Google Scholar 
    Gray, J. S., Ugland, K. I. & Lambshead, J. Species accumulation and species area curves: A comment on Scheiner (2003). Glob. Ecol. Biogeogr. 13, 473–476 (2004).Article 

    Google Scholar 
    Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014).Article 

    Google Scholar 
    Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155–168 (2010).Article 

    Google Scholar 
    Logan, J. M., Young, M. A., Harvey, E. S., Schimel, A. C. G. & Ierodiaconou, D. Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Mar. Ecol. Prog. Ser. 582, 181–200 (2017).ADS 
    Article 

    Google Scholar 
    Koslow, J. A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66, 966–973 (2009).Article 

    Google Scholar 
    Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).ADS 
    Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83, 1508–1527 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fish. Res. 47, 173–191 (2000).Article 

    Google Scholar 
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).Article 

    Google Scholar 
    Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245–254 (2007).ADS 
    Article 

    Google Scholar 
    Fitzpatrick, B. M., Harvey, E. S., Heyward, A. J., Twiggs, E. J. & Colquhoun, J. Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS One 7, e39634 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooper, C. N., Hoff, G. R. & De Robertis, A. Assessing habitat utilization and rockfish (Sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis. Can. J. Fish. Aquat. Sci. 67, 1658–1670 (2010).Article 

    Google Scholar 
    Jones, D. et al. Evaluation of rockfish abundance in untrawlable habitat: Combining acoustic and complementary sampling tools (2012).O’Driscoll, R. L. et al. Species identification in seamount fish aggregations using moored underwater video. ICES J. Mar. Sci. 69, 648–659 (2012).Article 

    Google Scholar 
    Fernandes, P. G., Copland, P., Garcia, R., Nicosevici, T. & Scoulding, B. Additional evidence for fisheries acoustics: Small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. 73, 2009–2019 (2016).Article 

    Google Scholar 
    Gastauer, S., Scoulding, B. & Parsons, M. An unsupervised acoustic description of fish schools and the seabed in three fishing regions within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust. Aust. 45, 363–380 (2017).Article 

    Google Scholar 
    Blanluet, A. et al. Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoS One 14, e0223618 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campanella, F. & Taylor, J. C. Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016).Article 

    Google Scholar 
    Domokos, R. On the development of acoustic descriptors for semi-demersal fish identification to support monitoring stocks. ICES J. Mar. Sci. 78, 1117–1130 (2021).Article 

    Google Scholar 
    Villalobos, H. et al. A practical approach to monitoring marine protected areas: An application to El Bajo Espíritu Santo Seamount near La Paz, Mexico. Oceanography 34, 32–43 (2021).Article 

    Google Scholar 
    Hazin, F. H., Zagaglia, J. R., Broadhurst, M. K., Travassos, P. E. P. & Bezerra, T. R. Q. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1–8 (1998).
    Google Scholar 
    Lessa, R. P. et al. Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Arch. Fish. Mar. Res. 47, 239–252 (1999).
    Google Scholar 
    Dominguez, P. S., Zeineddine, G. C., Rotundo, M. M., Barrella, W. & Ramires, M. A pesca artesanal no arquipélago de Fernando de Noronha (PE). Bol. Inst. Pesca 42, 241–251 (2014).Article 

    Google Scholar 
    Lopes, P. F. M., Mendes, L., Fonseca, V. & Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 200, 123–134 (2017).CAS 
    Article 

    Google Scholar 
    Outeiro, L., Rodrigues, J. G., Damásio, L. M. A. & Lopes, P. F. M. Is it just about the money? A spatial-economic approach to assess ecosystem service tradeoffs in a marine protected area in Brazil. Ecosyst. Serv. 38, 100959 (2019).Article 

    Google Scholar 
    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: The potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).Article 

    Google Scholar 
    Bertrand, A. FAROFA 1 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001399 (2017).Article 

    Google Scholar 
    Bertrand, A. FAROFA 2 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001411 (2018).Article 

    Google Scholar 
    Bertrand, A. FAROFA 3 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001381 (2019).Article 

    Google Scholar 
    Bertrand, A. et al. Acoustic data from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/71024 (2020).Salvetat, J. et al. Underwater video observations from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/76019 (2020).Pawlowicz, R. M_Map: A mapping package for MATLAB, version 1.4 m (computer software) (2020).Péter, A. Solomon Coder: The Concept of Behavioral Elements, Categories and the Representation of Data in Solomon Coder (2019).Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).Article 

    Google Scholar 
    McQuinn, I. H. et al. Description of the ICES HAC standard data exchange format, version 1.60 (Conseil international pour l’exploration de la mer, 2005).
    Google Scholar 
    Trenkel, V. M. et al. Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 433–445 (2009).Article 

    Google Scholar 
    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).Article 

    Google Scholar 
    Salvetat, J. et al. In situ target strength measurement of the black triggerfish Melichthys niger and the ocean triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 71, 1118–1127 (2020).Article 

    Google Scholar 
    Lavery, A. C. et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122, 3304–3326 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Barros, M. J. G. Analises da Ictiofauna marinha e habitats associados atraves de videos subaquatica. (Universidade Federal de Pernambuco, 2020).
    Google Scholar 
    Sazima, C., Bonaldo, R. M., Krajewski, J. P. & Sazima, I. The Noronha wrasse: A jack-of-all-trades follower. Aqua J. Ichthyol. Aquat. Biol. 9, 97–108 (2005).
    Google Scholar 
    Soto, J. M. R. Peixes do arquipélago Fernando de Noronha. Mare Magnum 1, 147–169 (2001).
    Google Scholar 
    Krajewski, J. P. & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): The influence of exposure and benthic composition. Environ. Biol. Fishes 92, 25 (2011).Article 

    Google Scholar 
    Sazima, I., Sazima, C. & da Silva-Jr, J. M. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: An update and overview. Neotropical Ichthyol. 4, 451–455 (2006).Article 

    Google Scholar 
    Petitgas, P. Use of a disjunctive kriging to model areas of high pelagic fish density in acoustic fisheries surveys. Aquat. Living Resour. 6, 201–209 (1993).Article 

    Google Scholar 
    Chiles, J.-P. & Delfiner, P. Geostatistics: Modeling Spatial Uncertainty Vol. 497 (Wiley, 2009).MATH 

    Google Scholar 
    Bez, N. & Braham, C.-B. Indicator variables for a robust estimation of an acoustic index of abundance. Can. J. Fish. Aquat. Sci. 71, 709–718 (2014).Article 

    Google Scholar 
    Switzer, P. Min/max autocorrelation factors for multivariate spatial imagery. Comput. Sci. Stat. (1985).Bez, N. Global estimation based on indicators factorization (2021).Assunção, R. V., Silva, A. C., Martins, J. & Montes, M. F. Spatial-temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. J. Coast. Res. 75, 512–517 (2016).Article 

    Google Scholar 
    da Silva, A. C. et al. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha archipelago and Rocas atoll during spring 2015 and fall 2017. Front. Mar. Sci. 8, 598101 (2021).Article 

    Google Scholar 
    Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees. Wadsworth Int. Group 37, 237–251 (1984).MATH 

    Google Scholar 
    Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. Package ‘rpart’. Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016 (2015).Kuhnert, P. M., Duffy, L. M., Young, J. W. & Olson, R. J. Predicting fish diet composition using a bagged classification tree approach: A case study using yellowfin tuna (Thunnus albacares). Mar. Biol. 159, 87–100 (2012).CAS 
    Article 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Kuhnert, P. M., Henderson, A.-K., Bartley, R. & Herr, A. Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21, 493–509 (2010).MathSciNet 

    Google Scholar 
    Kuhnert, P. M. & Mengersen, K. Reliability measures for local nodes assessment in classification trees. J. Comput. Graph. Stat. 12, 398–416 (2003).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2020).ParisTech, M. ARMINES: RGeostats: The Geostatistical R Package (2020).Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5, 144 (2013).Article 

    Google Scholar 
    Pimentel, C. R. et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotropical Ichthyol. 18 (2020).Ilarri, M. I., Souza, A. T. & Rosa, R. S. Community structure of reef fishes in shallow waters of the Fernando de Noronha archipelago: Effects of different levels of environmental protection. Mar. Freshw. Res. 68, 1303–1316 (2017).Article 

    Google Scholar 
    Schmid, K. et al. First fish fauna assessment in the Fernando de Noronha Archipelago with BRUVS: Species catalog with underwater imagery. Biota Neotropica 20 (2020).de Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krajewski, J. P., Floeter, S. R., Jones, G. P. & Leite, F. P. Patterns of variation in behaviour within and among reef fish species on an isolated tropical island: Influence of exposure and substratum. J. Mar. Biol. Assoc. U. K. 91, 1359–1368 (2011).Article 

    Google Scholar 
    Mendes, T. C., Quimbayo, J. P., Bouth, H. F., Silva, L. P. & Ferreira, C. E. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish Biol. 95, 812–819 (2019).PubMed 

    Google Scholar 
    Petitgas, P. & Levenez, J. J. Spatial organization of pelagic fish: Echogram structure, spatio-temporal condition, and biomass in Senegalese waters. ICES J. Mar. Sci. 53, 147–153 (1996).Article 

    Google Scholar 
    Burgos, J. M. & Horne, J. K. Characterization and classification of acoustically detected fish spatial distributions. ICES J. Mar. Sci. 65, 1235–1247 (2008).Article 

    Google Scholar 
    Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22, 63–67 (2003).Article 

    Google Scholar 
    Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).Article 

    Google Scholar 
    Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105–116 (2002).ADS 
    Article 

    Google Scholar 
    Martins, K. et al. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 99, 1576–1590 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, B., Taylor, J. C., Kracker, L., Battista, T. & Pittman, S. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PLoS One 9, e85555 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kavanagh, K. D. & Olney, J. E. Ecological correlates of population density and behavior in the circumtropical black triggerfish Melichthys niger (Balistidae). Environ. Biol. Fishes 76, 387–398 (2006).Article 

    Google Scholar 
    Lubbock, R. The shore fishes of Ascension Island. J. Fish Biol. 17, 283–303 (1980).Article 

    Google Scholar 
    Price, J. H. & John, D. M. Ascension Island, South Atlantic: A survey of inshore benthic macroorganisms, communities and interactions. Aquat. Bot. 9, 251–278 (1980).Article 

    Google Scholar 
    Robertson, D. R. & Allen, G. R. Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15, 121–131 (1996).ADS 
    Article 

    Google Scholar 
    Gasparini, J. L. & Floeter, S. R. The shore fishes of Trindade Island, western south Atlantic. J. Nat. Hist. 35, 1639–1656 (2001).Article 

    Google Scholar 
    Lubbock, R. & Edwards, A. The fishes of Saint Paul’s rocks. J. Fish Biol. 18, 135–157 (1981).Article 

    Google Scholar 
    Feitoza, B. M., Rocha, L. A., Luiz-Júnior, O. J., Floeter, S. R. & Gasparini, J. L. Reef fishes of St. Paul’s Rocks: New records and notes on biology and zoogeography. Aqua 7, 61–82 (2003).
    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106 (2004).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fishes 18, 257–276 (1987).Article 

    Google Scholar 
    Walsh, W. J. Aspects of Nocturnal Shelter, Habitat Space, and Juvenile Recruitment in Hawaiian Coral Reef Fishes (University of Hawaii, 1984).
    Google Scholar 
    Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D. & Nezlin, N. P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 80, 336–360 (2002).ADS 
    Article 

    Google Scholar 
    Martinez, E. & Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 31, 18 (2004).Article 

    Google Scholar 
    Messié, M. et al. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).ADS 
    Article 

    Google Scholar 
    de Souza, C. S., da Luz, J. A. G., Macedo, S., de Montes, M. J. F. & Mafalda, P. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Mar. Freshw. Res. 64, 168–184 (2013).Article 
    CAS 

    Google Scholar 
    Travassos, P., Hazin, F. H., Zagaglia, J. R., Advíncula, R. & Schober, J. Thermohaline structure around seamounts and islands off North-Eastern Brazil. Arch. Fish. Mar. Res. 47, 211–222 (1999).
    Google Scholar 
    Bakun, A. Ocean triads and radical interdecadal variation: Bane and boon to scientific fisheries management. in Reinventing fisheries management 331–358 (Springer, 1998).Agostini, V. N. & Bakun, A. ‘Ocean triads’ in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).Article 

    Google Scholar 
    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    Valenzuela, J., Bellwood, D. & Morais, R. Ontogenetic habitat shifts in fusiliers (Lutjanidae): Evidence from Caesio cuning at Lizard Island, Great Barrier Reef. Coral Reefs 40, 1687–1696 (2021).Article 

    Google Scholar 
    Curley, B. G., Kingsford, M. J. & Gillanders, B. M. Spatial and habitat-related patterns of temperate reef fish assemblages: Implications for the design of Marine Protected Areas. Mar. Freshw. Res. 53, 1197–1210 (2002).Article 

    Google Scholar 
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2018).Article 

    Google Scholar 
    Maida, M. & Ferreira, B. P. Coral reefs of Brazil: An overview. in Proceedings of the 8th International Coral Reef Symposium Vol. 1 74 (Smithsonian Tropical Research Institute Panamá, 1997).Pittman, S. J., Costa, B. M. & Battista, T. A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009, 27–38 (2009).Article 

    Google Scholar 
    Costa, T. Análise comportamental e distribuição da atividade pesqueira no Arquipelágo de Fernando de Noronha (Nordeste, BR) baseada em dados de GPS. (Universidade Federal Rural de Pernambuco, 2019).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Claudet, J., Pelletier, D., Jouvenel, J.-Y., Bachet, F. & Galzin, R. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130, 349–369 (2006).Article 

    Google Scholar 
    Caveen, A. J., Gray, T. S., Stead, S. M. & Polunin, N. V. C. MPA policy: What lies behind the science?. Mar. Policy 37, 3–10 (2013).Article 

    Google Scholar 
    Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).
    Google Scholar  More