More stories

  • in

    Microbial functional changes mark irreversible course of Tibetan grassland degradation

    Literature studyLiterature considering the effect of pasture degradation on SOC, N, and clay content, as well as bulk density (BD), was assembled by searching (i) Web of Science V.5.22.1, (ii) ScienceDirect (Elsevier B.V.) (iii) Google Scholar, and (iv) the China Knowledge Resource Integrated Database (CNKI). Search terms were “degradation gradient”, “degradation stages”, “alpine meadow”, “Tibetan Plateau”, “soil”, “soil organic carbon”, and “soil organic matter” in different combinations. The criteria for including a study in the analysis were: (i) a clear and comprehensible classification of degradation stages was presented, (ii) data on SOC, N, and/or BD were reported, (iii) a non-degraded pasture site was included as a reference to enable an effect size analysis and the calculation of SOC and N losses, (iv) sampling depths and study location were clearly presented. (v) Studies were only considered that took samples in 10 cm depth intervals, to maintain comparability to the analyses from our own study site. The degradation stages in the literature studies were regrouped into the six successive stages (S0–S5) according to the respective degradation descriptions. In total, we compiled the results of 49 publications published between 2002 and 2020.When SOM content was presented, this was converted to SOC content using a conversion factor of 2.032. SOC and N stocks were calculated using the following equation:$${{{{{rm{Elemental; stock}}}}}}=100* {{{{{rm{content}}}}}}* {{{{{rm{BD}}}}}}* {{{{{rm{depth}}}}}}$$
    (1)
    where elemental stock is SOC or N stock [kg ha−1]; content is SOC or N content [g kg−1]; BD is soil bulk density [g cm−3] and depth is the soil sampling depth [cm].The effect sizes of individual variables (i.e., SOC and N stocks as well as BD) were quantified as follows:$${{{{{rm{ES}}}}}}=,frac{(D-R)}{R* 100 % }$$
    (2)
    where ES is the effect size in %, D is the value of the corresponding variable in the relevant degradation stage and R is the value of each variable in the non-degraded stage (reference site). When ES is positive, zero, or negative, this indicates an increase, no change, or decrease, respectively, of the parameter compared to the non-degraded stage.Experimental design of the field studyLarge areas in the study region are impacted by grassland degradation. In total, 45% of the surface area of the Kobresia pasture ecosystem on the TP is already degraded2. The experiment was designed to differentiate and quantify SOC losses by erosion vs. net decomposition and identify underlying shifts in microbial community composition and link these to changes in key microbial functions in the soil C cycle. We categorized the range of Kobresia root-mat degradation from non-degraded to bare soils into six successive degradation stages (S0–S5). Stage S0 represented non-degraded root mats, while stages S1–S4 represented increasing degrees of surface cracks, and bare soil patches without root mats defined stage S5 (Supplementary Fig. 1). All six degradation stages were selected within an area of about 4 ha to ensure equal environmental conditions and each stage was sampled in four field replicates. However, the studied degradation patterns are common for the entire Kobresia ecosystem (Supplementary Fig. 1).Site descriptionThe field study was conducted near Nagqu (Tibet, China) in the late summer 2013 and 2015. The study site of about 4 ha (NW: 31.274748°N, 92.108963°E; NE: 31.274995°N, 92.111482°E; SW: 31.273488°N, 92.108906°E; SE: 31.273421°N, 92.112025°E) was located on gentle slopes (2–5%) at 4,484 m a.s.l. in the core area of the Kobresia pygmaea ecosystem according to Miehe et al.8. The vegetation consists mainly of K. pygmaea, which covers up to 61% of the surface. Other grasses, sedges, or dwarf rosette plants (Carex ivanoviae, Carex spp., Festuca spp., Kobresia pusilla, Poa spp., Stipa purpurea, Trisetum spp.) rarely cover more than 40%. The growing season is strongly restricted by temperature and water availability. At most, it lasts from mid-May to mid-September, but varies strongly depending on the onset and duration of the summer monsoon. Mean annual precipitation is 431 mm, with roughly 80% falling as summer rains. The mean annual temperature is −1.2 °C, while the mean maximum temperature of the warmest month (July) is +9.0 °C2.A characteristic feature of Kobresia pastures is their very compact root mats, with an average thickness of 15 cm at the study site. These consist mainly of living and dead K. pygmaea roots and rhizomes, leaf bases, large amounts of plant residue, and mineral particles. Intact soil is a Stagnic Eutric Cambisol (Humic), developed on a loess layer overlying glacial sediments and containing 50% sand, 33% silt, and 17% clay in the topsoil (0–25 cm). The topsoil is free of carbonates and is of neutral pH (pH in H2O: 6.8)5. Total soil depth was on average 35 cm.The site is used as a winter pasture for yaks, sheep, and goats from January to April. Besides livestock, large numbers of plateau pikas (Ochotona) are found on the sites. These animals have a considerable impact on the plant cover through their burrowing activity, in particular the soil thrown out of their burrows, which can cover and destroy the Kobresia turf.Sampling designThe vertical and horizontal extent of the surface cracks was measured for each plot (Supplementary Table 2). Vegetation cover was measured and the aboveground biomass was collected in the cracks (Supplementary Table 2). In general, intact Kobresia turf (S0) provided high resistance to penetration as measured by a penetrologger (Eijkelkamp Soil and Water, Giesbeek, NL) in 1 cm increments and four replicates per plot.Soil sampling was conducted using soil pits (30 cm length × 30 cm width × 40 cm depth). Horizons were classified and then soil and roots were sampled for each horizon directly below the cracks. Bulk density and root biomass were determined in undisturbed soil samples, using soil cores (10 cm height and 10 cm diameter). Living roots were separated from dead roots and root debris by their bright color and soft texture using tweezers under magnification, and the roots were subsequently washed with distilled water to remove the remaining soil. Because over 95% of the roots occurred in the upper 25 cm5, we did not sample for root biomass below this depth.Additional soil samples were taken from each horizon for further analysis. Microbial community and functional characterization were performed on samples from the same pits but with a fixed depth classification (0–5 cm, 5–15 cm, 15–35 cm) to reduce the number of samples.Plant and soil analysesSoil and roots were separated by sieving (2 mm) and the roots subsequently washed with distilled water. Bulk density and root density were determined by dividing the dry soil mass (dried at 105 °C for 24 h) and the dry root biomass (60 °C) by the volume of the sampling core. To reflect the root biomass, root density was expressed per soil volume (mg cm−3). Soil and root samples were milled for subsequent analysis.Elemental concentrations and SOC characteristicsTotal SOC and total N contents and stable isotope signatures (δ13C and δ15N) were analyzed using an isotope ratio mass spectrometer (Delta plus, Conflo III, Thermo Electron Cooperation, Bremen, Germany) coupled to an elemental analyzer (NA 1500, Fisons Instruments, Milano, Italy). Measurements were conducted at the Centre for Stable Isotope Research and Analysis (KOSI) of the University of Göttingen. The δ13C and δ15N values were calculated by relating the isotope ratio of each sample (Rsample = 13C/12C or 15N/14N) to the international standards (Pee Dee Belemnite 13C/12C ratio for δ13C; the atmospheric 15N/14N composition for δ15N).Soil pH of air-dried soil was measured potentiometrically at a ratio (v/v) of 1.0:2.5 in distilled water.Lignin phenols were depolymerized using the CuO oxidation method25 and analyzed with a gas chromatography-mass spectrometry (GC–MS) system (GC 7820 A, MS 5977B, Agilent Technologies, Waldbronn, Germany). Vanillyl and syringyl units were calculated from the corresponding aldehydes, ketones, and carboxylic acids. Cinnamyl units were derived from the sum of p-coumaric acid and ferulic acid. The sum of the three structural units (VSC = V + S + C) was considered to reflect the lignin phenol content in a sample.DNA extraction and PCRSamples were directly frozen on site at −20 °C and transported to Germany for analysis of microbial community structure. Total DNA was extracted from the soil samples with the PowerSoil DNA isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions, and DNA concentration was determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The extracted DNA was amplified with forward and reverse primer sets suitable for either t-RFLP (fluorescence marked, FAM) or Illumina MiSeq sequencing (Illumina Inc., San Diego, USA): V3 (5’-CCT ACG GGN GGC WGC AG-3’) and V4 (5’-GAC TAC HVG GGT ATC TAA TCC-3’) primers were used for bacterial 16 S rRNA genes whereas ITS1 (5’-CTT GGT CAT TTA GAG GAA GTA A-3’), ITS1-F_KYO1 (5’-CTH GGT CAT TTA GAG GAA STA A-3’), ITS2 (5’-GCT GCG TTC TTC ATC GAT GC-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) were used for fungi33,34. Primers for Illumina MiSeq sequencing included adaptor sequences (forward: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-3’; reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3’)33. PCR was performed with the Phusion High-Fidelity PCR kit (New England Biolabs Inc., Ipswich, MA, USA) creating a 50 µl master mix with 28.8 µl H2Omolec, 2.5 µl DMSO, 10 µl Phusion GC buffer, 1 µl of forward and reverse primer, 0.2 µl MgCl2, 1 µl dNTPs, 0.5 µl Phusion HF DNA Polymerase, and 5 µl template DNA. PCR temperatures started with initial denaturation at 98 °C for 1 min, followed by denaturation (98 °C, 45 s), annealing (48/60 °C, 45 s), and extension (72 °C, 30 s). These steps were repeated 25 times, finalized again with a final extension (72 °C, 5 min), and cooling to 10 °C. Agarose gel electrophoresis was used to assess the success of the PCR and the amount of amplified DNA (0.8% gel:1.0 g Rotigarose, 5 µl Roti-Safe Gelstain, Carl Roth GmbH & Co. KG, Karlsruhe, Germany; and 100 ml 1× TAE-buffer). PCR product was purified after initial PCR and restriction digestion (t-RFLP) with either NucleoMag 96 PCR (16 S rRNA gene amplicons, Macherey-Nagel GmbH & Co. KG, Düren, Germany) or a modified clean-up protocol after Moreau (t-RFLP)35: 3× the volume of the reaction solution as 100% ethanol and ¼x vol. 125 mM EDTA was added and mixed by inversion or vortex. After incubation at room temperature for 15 min, the product was centrifuged at 25,000 × g for 30 min at 4 °C. Afterwards the supernatant was removed, and the inverted 96-well plate was centrifuged shortly for 2 min. Seventy microliters ethanol (70%) were added and centrifuged at 25,000 × g for 30 min at 4 °C. Again, the supernatant was removed, and the pallet was dried at room temperature for 30 min. Finally, the ethanol-free pallet was resuspended in H2Omolec.T-RFLP fingerprintingThe purified fluorescence-labeled PCR products were digested with three different restriction enzymes (MspI and BstUI, HaeIII) according to the manufacturer’s guidelines (New England Biolabs Inc., Ipswich, MA, USA) with a 20 µl master mix: 16.75 µl H2Omolec, 2 µl CutSmart buffer, 0.25 or 0.5 µl restriction enzyme, and 1 µl PCR product for 15 min at 37 °C (MspI) and 60 °C (BstUI, HaeIII), respectively. The digested PCR product was purified a second time35, dissolved in Super-DI Formamide (MCLAB, San Francisco, CA, USA) and, along with Red DNA size standard (MCLAB, San Francisco, USA), analyzed in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA). Terminal restriction fragments shorter than 50 bp and longer than 800 bp were removed from the t-RFLP fingerprints.16 S rRNA gene and internal transcribed spacer (ITS) sequencing and sequence processingThe 16 S rRNA gene and ITS paired-end raw reads for the bacterial and fungal community analyses were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) and can be found under the BioProject accession number PRJNA626504. This BioProject contains 70 samples and 139 SRA experiments (SRR11570615–SRR11570753) which were processed using CASAVA software (Illumina, San Diego, CA, USA) for demultiplexing of MiSeq raw sequences (2 × 300 bp, MiSeq Reagent Kit v3).Paired-end sequences were quality-filtered with fastp (version 0.19.4)36 using default settings with the addition of an increased per base phred score of 20, base-pair corrections by overlap (-c), as well as 5′- and 3′-end read trimming with a sliding window of 4, a mean quality of 20 and minimum sequence size of 50 bp. Paired-end sequences were merged using PEAR v0.9.1137 with default parameters. Subsequently, unclipped reverse and forward primer sequences were removed with cutadapt v1.1838 with default settings. Sequences were then processed using VSEARCH (v2.9.1)39. This included sorting and size-filtering (—sortbylength,—minseqlength) of the paired reads to ≥300 bp for bacteria and ≥140 bp for ITS1, dereplication (—derep_fulllength). Dereplicated sequences were denoised with UNOISE340 using default settings (—cluster_unoise—minsize 8) and chimeras were removed (—uchime3_denovo). An additional reference-based chimera removal was performed (—uchime_ref) against the SILVA41 SSU NR database (v132) and UNITE42 database (v7.2) resulting in the final set of amplicon sequence variants (ASVs)43. Quality-filtered and merged reads were mapped to ASVs (—usearch_global–id 0.97). Classification of ASVs was performed with BLAST 2.7.1+ against the SILVA SSU NR (v132) and UNITE (v7.2) database with an identity of at least 90%. The ITS sequences contained unidentified fungal ASVs after UNITE classification, these sequences were checked (blastn)44 against the “nt” database (Nov 2018) to remove non-fungal ASVs and only as fungi classified reads were kept. Sample comparisons were performed at the same surveying effort, utilizing the lowest number of sequences by random selection (total 15,800 bacteria, 20,500 fungi). Species richness, alpha and beta diversity estimates, and rarefaction curves were determined using the QIIME 1.9.145 script alpha_rarefaction.py.The final ASV tables were used to compute heatmaps showing the effect of degradation on the community using R (Version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria) and R packages “gplots”, “vegan”, “permute” and “RColorBrewer”. Fungal community functions were obtained from the FunGuild database46. Plant mycorrhizal association types were compiled from the literature38,39,40,41,47,48,49,50. If no direct species match was available, the mycorrhizal association was assumed to remain constant within the same genus.Enzyme activityEnzyme activity was measured to characterize the functional activity of the soil microorganisms. The following extracellular enzymes, involved in C, N, and P transformations, were considered: two hydrolases (β-glucosidase and xylanase), phenoloxidase, urease, and alkaline phosphatase. Enzyme activities were measured directly at the sampling site according to protocols after Schinner et al.51. Beta-glucosidase was incubated with saligenin for 3 h at 37 °C, xylanase with glucose for 24 h at 50 °C, phenoloxidase with L-3,4-dihydroxy phenylalanine (DOPA) for 1 h at 25 °C, urease with urea for 2 h at 37 °C and alkaline phosphatase on P-nitrophenyl phosphate for 1 h at 37 °C. Reaction products were measured photometrically at recommended wavelengths (578, 690, 475, 660, and 400 nm, respectively).SOC stocks and SOC lossThe SOC stocks (in kg C m−2) for the upper 30 cm were determined by multiplying the SOC content (g C kg−1) by the BD (g cm−3) and the thickness of the soil horizons (m). SOC losses (%) were calculated for each degradation stage and horizon and were related to the mean C stock of the reference stage (S0). The erosion-induced SOC loss of the upper horizon was estimated by considering the topsoil removal (extent of vertical soil cracks) of all degraded soil profiles (S1–S5) and the SOC content and BD of the reference (S0). To calculate the mineralization-derived SOC loss, we accounted for the effects of SOC and root mineralization on both SOC content and BD. Thus, we used the SOC content and BD from each degradation stage (S1–S5) and multiplied it by the mean thickness of each horizon (down to 30 cm) from the reference site (S0). The disentanglement of erosion-derived SOC loss from mineralization-derived SOC loss was based on explicit assumptions that (i) erosion-derived SOC losses are mainly associated with losses from the topsoil, and (ii) the decreasing SOC contents in the erosion-unaffected horizons were mainly driven by mineralization and decreasing root C input.Statistical analysesStatistical analyses were performed using PASW Statistics (IBM SPSS Statistics) and R software (Version 3.6.1). Soil and plant characteristics are presented as means and standard errors (means ± SE). The significance of treatment effects (S0–S5) and depth was tested by one-way ANOVA at p  More

  • in

    Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales

    Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS 
    Article 

    Google Scholar 
    Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS 
    Article 

    Google Scholar 
    Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article 

    Google Scholar 
    McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS 
    Article 

    Google Scholar 
    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article 

    Google Scholar 
    Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS 
    Article 

    Google Scholar 
    Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article 

    Google Scholar 
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article 

    Google Scholar 
    Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
    Google Scholar 
    Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article 
    PubMed 

    Google Scholar 
    Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article 

    Google Scholar 
    Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article 

    Google Scholar 
    Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
    Google Scholar 
    Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS 
    Article 

    Google Scholar 
    Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article 

    Google Scholar 
    Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article 

    Google Scholar 
    Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article 

    Google Scholar 
    Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article 

    Google Scholar 
    Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS 
    Article 

    Google Scholar 
    Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS 
    Article 

    Google Scholar 
    Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article 

    Google Scholar  More

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More

  • in

    Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Tauber, E. & Kyriacou, C. P. Review: Genomic approaches for studying biological clocks. Funct. Ecol. 22, 19–29 (2008).
    Google Scholar 
    White, E. R. & Hastings, A. Seasonality in ecology: Progress and prospects in theory. Ecol. Complex. 44, 100867 (2020).Article 

    Google Scholar 
    Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cassone, V. M. Avian circadian organization: A chorus of clocks. Front. Neuroendocrinol. 35, 76–88 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Peixoto, A. A., Sandrelli, F., Costa, R. & Tauber, E. Clines in clock genes: Fine-tuning circadian rhythms to the environment. Trends Genet. 24, 124–132 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).Article 

    Google Scholar 
    Kalmbach, D. A. et al. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep https://doi.org/10.1093/sleep/zsw048 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, J. S., Shimomura, K. & Kumar, V. Searching for genes underlying behavior: Lessons from circadian rhythms. Science 322, 909–912 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Yoshimura, T. et al. Molecular analysis of avian circadian clock genes11Published on the World Wide Web on 23 May 2000. Mol. Brain Res. 78, 207–215 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gekakis, N. et al. Role of the CLOCK Protein in the Mammalian circadian mechanism. Science 280, 1564–1569 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Saleem, Q., Anand, A., Jain, S. & Brahmachari, S. K. The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum. Genet. 109, 136–142 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Follett, B. Rhythms and photoperiodism in birds. Biological rhythms and photoperiodism in plants (1998).Hazlerigg, D. G. & Wagner, G. C. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol. Metab. 17, 83–91 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stirland, J. A., Mohammad, Y. N. & Loudon, A. S. I. A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc. R Soc. London Ser. B Biol. Sci. 263, 345–350 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).Article 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).Article 

    Google Scholar 
    Rittenhouse, J. L., Robart, A. R. & Watts, H. E. Variation in chronotype is associated with migratory timing in a songbird. Biol. Lett. 15, 20190453 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: Evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B Biol. Sci. 277, 3703–3714 (2010).Article 
    CAS 

    Google Scholar 
    O’Malley, K. G. & Banks, M. A. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: Evidence for selection on PolyQ length variants. Proc. R. Soc. B Biol. Sci. 275, 2813–2821 (2008).Article 
    CAS 

    Google Scholar 
    Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2, 115 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saino, N. et al. Timing of molt of barn swallows is delayed in a rare Clock genotype. PeerJ 1, e17 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Johnsen, A. et al. Avian Clock gene polymorphism: Evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867–4880 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: Evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).PubMed 
    Article 

    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Dor, R. et al. Clock gene variation in Tachycineta swallows. Ecol. Evol. 2, 95–105 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dor, R. et al. Low variation in the polymorphic Clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLoS ONE 6, e28843 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B Biol. Sci. 278, 2848–2856 (2011).CAS 
    Article 

    Google Scholar 
    Liedvogel, M. & Sheldon, B. C. Low variability and absence of phenotypic correlates of Clock gene variation in a great tit Parus major population. J. Avian Biol. 41, 543–550 (2010).Article 

    Google Scholar 
    Lugo-Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. A 203, 383–397 (2017).CAS 
    Article 

    Google Scholar 
    Majoy, S. B. & Heideman, P. D. Tau differences between short-day responsive and short-day nonresponsive white-footed mice (Peromyscus leucopus) do not affect reproductive photoresponsiveness. J. Biol. Rhythms 15, 501–513 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Brien, C. et al. Geography of the circadian gene clock and photoperiodic response in western North American populations of the threespine stickleback Gasterosteus aculeatus. J. Fish Biol. 82, 827–839 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Ross, J. D., Shipley, J. R. & Kelly, J. F. Examination of clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS ONE 13, e0190859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8, 790–802 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chahad-Ehlers, S. et al. Expanding the view of clock and cycle gene evolution in Diptera. Insect Mol. Biol. 26, 317–331 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: What can the insect clock teach us about seasonal adaptation?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160257 (2017).Article 

    Google Scholar 
    van Noordwijk, A. J. et al. A framework for the study of genetic variation in migratory behaviour. J .Ornithol. 147, 221–233 (2006).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
    Google Scholar 
    Gohli, J., Lifjeld, J. T. & Albrecht, T. Migration distance is positively associated with sex-linked genetic diversity in passerine birds. Ethol. Ecol. Evol. 28, 42–52 (2016).Article 

    Google Scholar 
    Bazzi, G. et al. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan migratory birds. Mol. Ecol. 25, 6077–6091 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doren, B. M. V., Liedvogel, M. & Helm, B. Programmed and flexible: Long-term Zugunruhe data highlight the many axes of variation in avian migratory behaviour. J. Avian Biol. 48, 155–172 (2017).Article 

    Google Scholar 
    Helm, B., Gwinner, E. & Trost, L. Flexible seasonal timing and migratory behavior: Results from stonechat breeding programs. Ann. N. Y. Acad. Sci. 1046, 216–227 (2005).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Helm, B. Geographically distinct reproductive schedules in a changing world: Costly implications in captive Stonechats. Integr Comp Biol 49, 563–579 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhondt, A. A. Variations in the number of overwintering stonechats possibly caused by natural selection. Ringing Migr. 4, 155–158 (1983).Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47, 339–345 (2000).Article 

    Google Scholar 
    GOUDET, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Doren, B. M. et al. Correlated patterns of genetic diversity and differentiation across an avian family. Mol. Ecol. 26, 3982–3997 (2017).PubMed 
    Article 

    Google Scholar 
    Illera, J. C., Richardson, D. S., Helm, B., Atienza, J. C. & Emerson, B. C. Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola. Mol. Phylogenet. Evol. 48, 1145–1154 (2008).PubMed 
    Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Reproduction in an endemic bird of a semiarid island: A food-mediated process. J. Avian Biol. 37, 447–456 (2006).Article 

    Google Scholar 
    Illera, J. C. & Díaz, M. Site fidelity in the Canary Islands stonechat Saxicola dacotiae in relation to spatial and temporal patterns of habitat suitability. Acta Oecol. 34, 1–8 (2008).Article 
    ADS 

    Google Scholar 
    Gwinner, E. & Dittami, J. Endogenous reproductive rhythms in a tropical bird. Science 249, 906–908 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Dittami, J. & Gwinner, E. Annual cycles in the African stonechat Saxicola torquata axillaris and their relationship to environmental factors. J. Zool. 207, 357–370 (1985).Article 

    Google Scholar 
    Gwinner, E. Circannual rhythms in tropical and temperate-zone stonechats: A comparison of properties under constant conditions. Ökologie der Vögel 13, 5–14 (1991).
    Google Scholar 
    Gwinner, E. Circannual Rhythms: Endogenous Annual Clocks in the Organization of Seasonal Processes (Springer, 2012).
    Google Scholar 
    Helm, B., Fiedler, W. & Callion, J. Movements of European stonechats Saxicola torquata according to ringing recoveries. ARDEA-WAGENINGEN- 94, 33 (2006).
    Google Scholar 
    Opaev, A., Red’kin, Y., Kalinin, E. & Golovina, M. Species limits in Northern Eurasian taxa of the common stonechats, Saxicola torquatus complex (Aves: Passeriformes, Muscicapidae). Vertebr.ate Zool. 68, 199 (2018).
    Google Scholar 
    Gwinner, E. & Czeschlik, D. On the significance of spring migratory restlessness in caged birds. Oikos 30, 364–372 (1978).Article 

    Google Scholar 
    Krist, M., Munclinger, P., Briedis, M. & Adamík, P. The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia https://doi.org/10.1007/s00442-021-04930-x (2021).Article 
    PubMed 

    Google Scholar 
    Berthold, P. & Pulido, F. Heritability of migratory activity in a natural bird population. Proc. R. Soc. London Ser. B Biol. Sci. 257, 311–315 (1994).Article 
    ADS 

    Google Scholar 
    Pulido, F. & Berthold, P. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. 107, 7341–7346 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Liedvogel, M. & Lundberg, M. The Genetics of Migration. In Animal Movement Across Scales (eds Hansson, L.-A. & Åkesson, S.) 219–231 (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199677184.003.0012.Chapter 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).Article 

    Google Scholar 
    Stevenson, T. J. & Kumar, V. Neural control of daily and seasonal timing of songbird migration. J. Comp. Physiol. A 203, 399–409 (2017).Article 

    Google Scholar 
    Verhagen, I. et al. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct. Ecol. 33, 1708–1721 (2019).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of Postjuvenal molt in African (Saxicola Torquata Axillaris) and European (Saxicola Torquata Rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Zink, R. M., Pavlova, A., Drovetski, S., Wink, M. & Rohwer, S. Taxonomic status and evolutionary history of the Saxicola torquata complex. Mol. Phylogenet. Evol. 52, 769–773 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flinks, H. & Pfeifer, F. Brutzeit, Gelegegröße und Bruterfolg beim Schwarzkehlchen (Saxicola torquata). Charadrius 23, 128–140 (1987).
    Google Scholar 
    Urquhart, E. Stonechats (Christopher Helm, 2002).
    Google Scholar 
    Glutz von Blotzheim, U. Bauer Handbuch der Vögel Mitteleuropas KM: Bd. 11. Aula, Wiesbaden (1988).Yamaura, Y. et al. Tracking the Stejneger’s stonechat Saxicola stejnegeri along the East Asian-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197–202 (2017).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefiederte Welt 111, 118–120 (1987).
    Google Scholar 
    Flinks, H., Helm, B. & Rothery, P. Plasticity of moult and breeding schedules in migratory European Stonechats Saxicola rubicola. Ibis 150, 687–697 (2008).Article 

    Google Scholar 
    Humphrey, P. S. & Parkes, K. C. An approach to the study of molts and plumages. Auk 76, 1–31 (1959).Article 

    Google Scholar 
    Berthold, P. Bird Migration: A General Survey (Oxford University Press, 2001).
    Google Scholar 
    RStudio | Open source & professional software for data science teams. https://rstudio.com/.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014).Lüdecke, D. & Lüdecke, M. D. Package ‘sjPlot’. (2015).del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018).
    Google Scholar  More

  • in

    Physiological and morphological effects of a marine heatwave on the seagrass Cymodocea nodosa

    IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O. et al.] In press (2019).Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibble, C. et al. Investigation of a largescale Common Murre (Uria aalge) mortality event in California, USA, in 2015. J. Wildl. Dis. 54, 569–574 (2018).PubMed 
    Article 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Genevier, L. G., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Change Biol. 25, 2338–2351 (2019).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723–2730 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).Article 

    Google Scholar 
    Alongi, D. M. Blue Carbon: Coastal Sequestration for Climate Change Mitigation (Springer, Berlin, 2018).Book 

    Google Scholar 
    Blandon, A. & ZuErmgassen, P. S. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coast. Shelf Sci. 141, 1–8 (2014).ADS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Carr, J., D’odorico, P., McGlathery, K. & Wiberg, P. L. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001103 (2010).Article 

    Google Scholar 
    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett. 3, 58–71. https://doi.org/10.1046/j.1461-0248.2000.00111.x (2000).Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003793 (2010).Article 

    Google Scholar 
    Cabaço, S. & Santos, R. Human-induced changes of the seagrass Cymodocea nodosa in Ria Formosa lagoon (Southern Portugal) after a decade. Cah. Biol. Mar. 55, 101–108 (2014).
    Google Scholar 
    Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Bañolas, G., Fernández, S., Espino, F., Haroun, R. & Tuya, F. Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean Coast. Manag. 187, 105112 (2020).Article 

    Google Scholar 
    Duarte, C. M. & Krause-Jensen, D. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4, 13 (2017).
    Google Scholar 
    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosci. 2, 1–8 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003848 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Collier, C. J. et al. Optimum temperatures for net primary productivity of three tropical seagrass species. Front. Plant Sci. 8, 1446 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, R., Gullström, M., Mangora, M. M., Mtolera, M. S. & Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: a mesocosm experiment on four tropical seagrass species. Ecol. Evol. 8, 4508–4517 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savva, I., Bennett, S., Roca, G., Jordà, G. & Marbà, N. Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol. Evol. 8, 12032–12043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massa, S. I., Arnaud-Haond, S., Pearson, G. A. & Serrão, E. A. Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619, 195–201 (2009).Article 

    Google Scholar 
    Bergmann, N. et al. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol. Ecol. 19, 2870–2883 (2010).PubMed 
    Article 

    Google Scholar 
    Franssen, S. U. et al. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar. Genomics 15, 65–73 (2014).PubMed 
    Article 

    Google Scholar 
    Qin, L. Z. et al. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the seagrass Zostera marina in Korean coastal waters. Estuaries Coasts 43, 449–462 (2020).CAS 
    Article 

    Google Scholar 
    Gao, Y. et al. Photosynthetic and metabolic responses of eelgrass Zostera marina L. to short-term high-temperature exposure. J. Oceanol. Limnol. 37, 199–209 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Costa, M. M., Silva, J., Barrote, I. & Santos, R. Heatwave effects on the photosynthesis and antioxidant activity of the seagrass Cymodocea nodosa under contrasting light regimes. Oceans 2, 448–460 (2021).Article 

    Google Scholar 
    de los Santos, C. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).Cunha, A. H., Assis, J. F. & Serrão, E. A. Reprint of “Seagrasses in Portugal: A most endangered marine habitat”. Aquat. Bot. 115, 3–13 (2014).Article 

    Google Scholar 
    Olsen, Y. S., Sánchez-Camacho, M., Marbà, N. & Duarte, C. M. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries Coasts 35, 1205–1213 (2012).Article 

    Google Scholar 
    Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Lüning, K. Seaweeds. Their Environment, Biogeography, and Ecophysiology (Wiley-Interscience, New York, 1990).Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175 (2007).Article 

    Google Scholar 
    Franssen, S. U. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. 108, 19276–19281 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winters, G., Nelle, P., Fricke, B., Rauch, G. & Reusch, T. B. H. Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar. Ecol. Prog. Ser. 435, 83–95 (2011).ADS 
    Article 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schubert, N. et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Sci. Rep. 8, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Miyake, C., Yonekura, K., Kobayashi, Y. & Yokota, A. Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol. 43, 951–957 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmusson, L. M., Gullström, M., Gunnarsson, P. C. B., George, R. & Björk, M. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Buapet, P. & Björk, M. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Photosynth. Res. 129, 59–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehler, A. H. Studies on reactions of illuminated chloroplasts. II Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys. 34, 339–51 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalanika De Silva, H. C. & Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 12, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    Beer, S., Björk, M., Gademann, R. & Ralph, P. Measurements of photosynthetic rates in seagrasses. In Global Seagrass Research Methods pp. 183–198 (Elsevier Science, 2001).Brodersen, K. E., Kühl, M., Nielsen, D. A., Pedersen, O. & Larkum, A. W. Rhizome, root/sediment interactions, aerenchyma and internal pressure changes in seagrasses. In Seagrasses of Australia pp. 393–418; https://doi.org/10.1007/978-3-319-71354-0_13 (Springer, Cham, 2018).Purnama, P. R., Purnama, E. R., Manuhara, Y. S. W., Hariyanto, S. & Purnobasuki, H. Effect of high temperature stress on changes in morphology, anatomy and chlorophyll content in tropical seagrass Thalassia hemprichii. AACL Bioflux 11, 1825–1833 (2018).
    Google Scholar 
    Rosalina, D., Herawati, E. Y., Musa, M., Sofarini, D. & Risjani, Y. Anatomical changes in the roots, rhizomes and leaves of seagrass (Cymodocea serrulata) in response to lead. Biodiversitas 20, 2583–2588; https://doi.org/10.13057/biodiv/d200921 (2019).Beca-Carretero, P., Olesen, B., Marbà, N. & Krause-Jensen, D. Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Mar. Ecol. Progr. Ser. 589, 59–72; https://doi.org/10.3354/meps12439 (2018).Beca-Carretero, P., Guihéneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Env. Res. 161, 105075; https://doi.org/10.1016/j.marenvres.2020.105075 (2020).Pérez, M. & Romero, J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot. 43, 51–62; https://doi.org/10.1016/0304-3770(92)90013-9 (1992).Saha, M. et al. Response of foundation macrophytes to near‐natural simulated marine heatwaves. Global Change Biol. 26, 417–430; https://doi.org/10.1111/gcb.14801 (2020).Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102; https://doi.org/10.1016/j.marenvres.2017.10.011 (2017).Moreno‐Marín, F., Brun, F. G. & Pedersen, M. F. Additive response to multiple environmental stressors in the seagrass Zostera marina L. Limnol. Oceanogr. 63, 1528–1544; https://doi.org/10.1002/lno.10789 (2018).Kim, M. et al. Influence of water temperature anomalies on the growth of Zostera marina plants held under high and low irradiance levels. Estuaries Coasts 43, 463–476; https://doi.org/10.1007/s12237-019-00578-2 (2020).Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26; https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine Coastal Shelf Sci. 57, 73–85; https://doi.org/10.1016/S0272-7714(02)00332-3 (2003).Instituto Hidrográfico. Marés 81/82 Ria de Faro. Estudo das marés de oito estacões da Ria de Faro pp. 13 (Lisbon: Instituto Hidrográfico, 1986).Andrade, J. P. Aspectos Geomorfológicos, Ecológicos e Socioeconómicos da Ria Formosa pp. 91 (Faro: Universidade do Algarve, 1985).Hobday, A.J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238; https://doi.org/10.1016/j.pocean.2015.12.014 (2016).Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr. 31, 162–173; https://doi.org/10.5670/oceanog.2018.205 (2018).Cunha, A. H., Paulo, D. S., Sousa, I. & Serrão, E. The rediscovery of Caulerpa prolifera in Ria Formosa, Portugal, 60 years after the previous record. Cah. Biol. Mar. 54, 359–364 (2013).
    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2020).ADS 
    Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modelling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker; 10.5281/zenodo.3787872 (2020).Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (Eds.). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (IPCC) (Cambridge University Press, 2012).Silva, J., Barrote, I., Costa, M. M., Albano, S. & Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8, e81058 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silva, J. & Santos, R. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii?. J. Exp. Mar. Biol. Ecol. 307, 207–216 (2004).CAS 
    Article 

    Google Scholar 
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Henley, W. J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).Article 

    Google Scholar 
    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    Folin, O. & Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927).CAS 
    Article 

    Google Scholar 
    Booker, F. L. & Miller, J. E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L) Merr] leaves following exposure to ozone. J. Exp. Bot. 49, 1191–1202 (1998).CAS 
    Article 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26, 1231–1237 (1999).CAS 
    Article 

    Google Scholar 
    Gillespie, K. M., Chae, J. M. & Ainsworth, E. A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2, 867–870 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. & Prior, R. L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 50, 4437–4444 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Rasband, W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018. https://imagej.nih.gov/ij/ (1997).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2014).Devore, J. & Farnum, N. Applied Statistics for Engineers and Scientists (ed. Brooks/Cole) pp. 656 (Pacific Grove, CA, USA, 1999). More

  • in

    Want to prevent pandemics? Stop spillovers

    Spillover events, in which a pathogen that originates in animals jumps into people, have probably triggered every viral pandemic that’s occurred since the start of the twentieth century1. What’s more, an August 2021 analysis of disease outbreaks over the past four centuries indicates that the yearly probability of pandemics could increase several-fold in the coming decades, largely because of human-induced environmental changes2.Fortunately, for around US$20 billion per year, the likelihood of spillover could be greatly reduced3. This is the amount needed to halve global deforestation in hotspots for emerging infectious diseases; drastically curtail and regulate trade in wildlife; and greatly improve the ability to detect and control infectious diseases in farmed animals.That is a small investment compared with the millions of lives lost and trillions of dollars spent in the COVID-19 pandemic. The cost is also one-twentieth of the statistical value of the lives lost each year to viral diseases that have spilled over from animals since 1918 (see ‘Spillovers: a growing threat’), and less than one-tenth of the economic productivity erased per year1.

    Source: Ref. 1

    Yet many of the international efforts to better defend the world from future outbreaks, prompted by the COVID-19 pandemic, still fail to prioritize the prevention of spillover. Take, for example, the Independent Panel for Pandemic Preparedness and Response, established by the World Health Organization (WHO). The panel was convened in September 2020, in part to ensure that any future infectious-disease outbreak does not become another pandemic. In its 86-page report released last May, wildlife is mentioned twice; deforestation once.We urge the decision-makers currently developing three landmark international endeavours to make the prevention of spillover central to each.First, the G20 group of the world’s 20 largest economies provisionally agreed last month to create a global fund for pandemics. If realized, this could provide funding at levels that infectious-disease experts have been recommending for decades — around $5 per person per year globally (see go.nature.com/3yjitwx). Second, an agreement to improve global approaches to pandemics is under discussion by the World Health Assembly (WHA), the decision-making body of the WHO. Third, a draft framework for biodiversity conservation — the post-2020 global biodiversity framework — is being negotiated by parties to the Convention on Biological Diversity.Designed in the right way, these three international endeavours could foster a more proactive global approach to infectious diseases. This opportunity — to finally address the factors that drive major disease outbreaks, many of which also contribute to climate change and biodiversity loss — might not present itself again until the world faces another pandemic.Four actions The risk of spillover is greater when there are more opportunities for animals and humans to make contact, for instance in the trade of wildlife, in animal farming or when forests are cleared for mining, farming or roads. It is also more likely to happen under conditions that increase the likelihood of infected animals shedding viruses – when they are housed in cramped conditions, say, or not fed properly.Decades of research from epidemiology, ecology and genetics suggest that an effective global strategy to reduce the risk of spillover should focus on four actions1,3.First, tropical and subtropical forests must be protected. Various studies show that changes in the way land is used, particularly tropical and subtropical forests, might be the largest driver of emerging infectious diseases of zoonotic origin globally4. Wildlife that survives forest clearance or degradation tends to include species that can live alongside people, and that often host pathogens capable of infecting humans5. For example, in Bangladesh, bats that carry Nipah virus — which can kill 40–75% of people infected — now roost in areas of high human population density because their forest habitat has been almost entirely cleared6.Furthermore, the loss of forests is driving climate change. This could in itself aid spillover by pushing animals, such as bats, out of regions that have become inhospitable and into areas where many people live7.Yet forests can be protected even while agricultural productivity is increased — as long as there is enough political will and resources8. This was demonstrated by the 70% reduction in deforestation in the Amazon during 2004–12, largely through better monitoring, law enforcement and the provision of financial incentives to farmers. (Deforestation rates began increasing in 2013 due to changes in environmental legislation, and have risen sharply since 2019 during Jair Bolsonaro’s presidency.)Second, commercial markets and trade of live wild animals that pose a public-health risk must be banned or strictly regulated, both domestically and internationally.Doing this would be consistent with the call made by the WHO and other organizations in 2021 for countries to temporarily suspend the trade in live caught wild mammals, and to close sections of markets selling such animals. Several countries have already acted along these lines. In China, the trade and consumption of most terrestrial wildlife has been banned in response to COVID-19. Similarly, Gabon has prohibited the sale of certain mammal species as food in markets.

    A worker in a crowded chicken farm in Anhui province, China.Credit: Jianan Yu/Reuters

    Restrictions on urban and peri-urban commercial markets and trade must not infringe on the rights and needs of Indigenous peoples and local communities, who often rely on wildlife for food security, livelihoods and cultural practices. There are already different rules for hunting depending on the community in many countries, including Brazil, Canada and the United States.Third, biosecurity must be improved when dealing with farmed animals. Among other measures, this could be achieved through better veterinary care, enhanced surveillance for animal disease, improvements to feeding and housing animals, and quarantines to limit pathogen spread.Poor health among farmed animals increases their risk of becoming infected with pathogens — and of spreading them. And nearly 80% of livestock pathogens can infect multiple host species, including wildlife and humans9.Fourth, particularly in hotspots for the emergence of infectious diseases, people’s health and economic security should be improved.People in poor health — such as those who have malnutrition or uncontrolled HIV infection — can be more susceptible to zoonotic pathogens. And, particularly in immunosuppressed individuals such as these, pathogens can mutate before being passed on to others10.What’s more, some communities — especially those in rural areas — use natural resources to produce commodities or generate income in a way that brings them into contact with wildlife or wildlife by-products. In Bangladesh, for example, date palm sap, which is consumed as a drink in various forms, is often collected in pots attached to palm trees. These can become contaminated with bodily substances from bats. A 2016 investigation linked this practice to 14 Nipah virus infections in humans that caused 8 deaths11.Providing communities with both education and tools to reduce the risk of harm is crucial. Tools can be something as simple as pot covers to prevent contamination of date palm sap, in the case of the Bangladesh example.In fact, providing educational opportunities alongside health-care services and training in alternative livelihood skills, such as organic agriculture, can help both people and the environment. For instance, the non-governmental organization Health in Harmony in Portland, Oregon, has invested in community-designed interventions in Indonesian Borneo. During 2007–17, these contributed to a 90% reduction in the number of households that were reliant on illegal logging for their main livelihood. This, in turn, reduced local rainforest loss by 70%. Infant mortality also fell by 67% in the programme’s catchment area12.Systems-oriented interventions of this type need to be better understood, and the most effective ones scaled up.Wise investmentSuch strategies to prevent spillover would reduce our dependence on containment measures, such as human disease surveillance, contact tracing, lockdowns, vaccines and therapeutics. These interventions are crucial, but are often expensive and implemented too late — in short, they are insufficient when used alone to deal with emerging infectious diseases.The COVID-19 pandemic has exposed the real-world limitations of these reactive measures — particularly in an age of disinformation and rising populism. For example, despite the US federal government spending more than $3.7 trillion on its pandemic response as of the end of March, nearly one million people in the United States — or around one in 330 — have died from COVID-19 (see go.nature.com/39jtdfh and go.nature.com/38urqvc). Globally, between 15 million and 21 million lives are estimated to have been lost during the COVID-19 pandemic beyond what would be expected under non-pandemic conditions (known as excess deaths; see Nature https://doi.org/htd6; 2022). And a 2021 model indicates that, by 2025, $157 billion will have been spent on COVID-19 vaccines alone (see go.nature.com/3jqds76).

    A farmer in Myanmar gathers sap from a palm tree to make wine. Contamination of the collection pots with excretions from bats can spread diseases to humans.Credit: Wolfgang Kaehler/LightRocket via Getty

    Preventing spillover also protects people, domesticated animals and wildlife in the places that can least afford harm — making it more equitable than containment. For example, almost 18 months since COVID-19 vaccines first became publicly available, only 21% of the total population of Africa has received at least one dose. In the United States and Canada, the figure is nearly 80% (see go.nature.com/3vrdpfo). Meanwhile, Pfizer’s total drug sales rose from $43 billion in 2020 to $72 billion in 2021, largely because of the company’s COVID-19 vaccine, the best-selling drug of 202113.Lastly, unlike containment measures, actions to prevent spillover also help to stop spillback, in which zoonotic pathogens move back from humans to animals and then jump again into people. Selection pressures can differ across species, making such jumps a potential source of new variants that can evade existing immunity. Some researchers have suggested that spillback was possibly responsible for the emergence of the Omicron variant of SARS-CoV-2 (see Nature 602, 26–28; 2022).Seize the dayOver the past year, the administration of US President Joe Biden and two international panels (one established in 2020 by the WHO and the other in 2021 by the G20) have released guidance on how to improve approaches to pandemics. All recommendations released so far acknowledge spillover as the predominant cause of emerging infectious diseases. None adequately discusses how that risk might be mitigated. Likewise, a PubMed search for the spike protein of SARS-CoV-2 yields thousands of papers, yet only a handful of studies investigate coronavirus dynamics in bats, from which SARS-CoV-2 is likely to have originated14.Spillover prevention is probably being overlooked for several reasons. Upstream animal and environmental sources of pathogens might be being neglected by biomedical researchers and their funders because they are part of complex systems — research into which does not tend to lead to tangible, profitable outputs. Also, most people working in public health and biomedical sciences have limited training in ecology, wildlife biology, conservation and anthropology.There is growing recognition of the importance of cross-sectoral collaboration, including soaring advocacy for the ‘One Health’ approach — an integrated view of health that recognizes links between the environment, animals and humans. But, in general, this has yet to translate into action to prevent pandemics.Another challenge is that it can take decades to realize the benefits of preventing spillover, instead of weeks or months for containment measures. Benefits can be harder to quantify for spillover prevention, no matter how much time passes, because, if measures are successful, no outbreak occurs. Prevention also runs counter to individual, societal and political tendencies to wait for a catastrophe before taking action.The global pandemic fund, the WHA pandemic agreement and the post-2020 global biodiversity framework all present fresh chances to shift this mindset and put in place a coordinated global effort to reduce the risk of spillover alongside crucial pandemic preparedness efforts.Global fund for pandemicsFirst and foremost, a global fund for pandemics will be key to ensuring that the wealth of evidence on spillover prevention is translated into action. Funding for spillover prevention should not be folded into existing conservation funds, nor draw on any other existing funding streams.Investments must be targeted to those regions and practices where the risk of spillover is greatest, from southeast Asia and Central Africa to the Amazon Basin and beyond. Actions to prevent spillover in these areas, particularly by reducing deforestation, would also help to mitigate climate change and reduce loss of biodiversity. But conservation is itself drastically underfunded. As an example, natural solutions (such as conservation, restoration and improved management of forests, wetlands and grasslands) represent more than one-third of the climate mitigation needed by 2030 to stabilize warming to well below 2 °C15. Yet these approaches receive less than 2% of global funds for climate mitigation16. (Energy systems receive more than half.)In short, the decision-makers backing the global fund for pandemics must not assume that existing funds are dealing with the threat of spillover — they are not. The loss of primary tropical forest was 12% higher in 2020 than in 2019, despite the economic downturn triggered by COVID-19. This underscores the continuing threat to forests.Funding must be sustained for decades to ensure that efforts to reduce the risk of spillover are in place long enough to yield results.WHA pandemic agreementIn 2020, the president of the European Council, Charles Michel, called for a treaty to enable a more coordinated global response to major epidemics and pandemics. Last year, more than 20 world leaders began echoing this call, and the WHA launched the negotiation of an agreement (potentially, a treaty or other international instrument) to “strengthen pandemic prevention, preparedness, and response” at the end of 2021.Such a multilateral agreement could help to ensure more-equitable international action around the transfer of scientific knowledge, medical supplies, vaccines and therapeutics. It could also address some of the constraints currently imposed on the WHO, and define more clearly the conditions under which governments must notify others of a potential disease threat. The COVID-19 pandemic exposed the shortcomings of the International Health Regulations on many of these fronts17. (This legal framework defines countries’ rights and obligations in the handling of public-health events and emergencies that could cross borders.)We urge negotiators to ensure that the four actions to prevent spillover outlined here are prioritized in the WHA pandemic agreement. For instance, it could require countries to create national action plans for pandemics that include reducing deforestation and closing or strictly regulating live wildlife markets. A reporting mechanism should also be developed to evaluate progress in implementing the agreement. This could build on experience from existing schemes, such as the WHO Joint External Evaluation process (used to assess countries’ capacities to handle public-health risks) and the verification regime of the Chemical Weapons Convention.Commitments to expand pathogen surveillance at interfaces between humans, domesticated animals and wildlife — from US mink farms and Asian wet markets to areas of high deforestation in South America — should also be wrapped into the WHA agreement. Surveillance will not prevent spillover, but it could enable earlier detection and better control of zoonotic outbreaks, and provide a better understanding of the conditions that cause them. Disease surveillance would improve simply through investing in clinical care for both people and animals in emerging infectious-disease hotspots.Convention on Biological DiversityWe are in the midst of the sixth mass extinction, and activities that drive the loss of biodiversity, such as deforestation, also contribute to the emergence of infectious disease. Meanwhile, epidemics and pandemics resulting from the exploitation of nature can lead to further conservation setbacks — because of economic damage from lost tourism and staff shortages affecting management of protected areas, among other factors18. Also, pathogens that infect people can be transmitted to other animals and decimate those populations. For instance, an Ebola outbreak in the Republic of Congo in 2002–03 is thought to have killed 5,000 gorillas19.Yet the global biodiversity framework currently being negotiated by the Convention on Biological Diversity fails to explicitly address the negative feedback cycle between environmental degradation, wildlife exploitation and the emergence of pathogens. The first draft made no mention of pandemics. Text about spillover prevention was proposed in March, but it has yet to be agreed on.Again, this omission stems largely from the siloing of disciplines and expertise. Just as the specialists relied on for the WHA pandemic agreement tend to be those in the health sector, those informing the Convention on Biological Diversity tend to be specialists in environmental science and conservation.The global biodiversity framework, scheduled to be agreed at the Conference of the Parties later this year, must strongly reflect the environment–health connection. This means explicitly including spillover prevention in any text relating to the exploitation of wildlife and nature’s contributions to people. Failing to connect these dots weakens the ability of the convention to achieve its own objectives around conservation and the sustainable use of resources.Preventive health careA reactive response to catastrophe need not be the norm. In many countries, preventive health care for chronic diseases is widely embraced because of its obvious health and economic benefits. For instance, dozens of colorectal cancer deaths are averted for every 1,000 people screened using colonoscopies or other methods20. A preventive approach does not detract from the importance of treating diseases when they occur.With all the stressors now being placed on the biosphere — and the negative implications this has for human health — leaders urgently need to apply this way of thinking to pandemics. More

  • in

    Age-based spatial distribution of workers is resilient to worker loss in a subterranean termite

    Gordon, D. M. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 70, 1101–1108 (2016).PubMed 
    Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).CAS 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 1565–1569 (1996).Article 

    Google Scholar 
    Pankiw, T. & Page, R. E. Jr. The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 185, 207–213 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Sobkowski, A., Theraulaz, G. & Deneubourg, J.-L. Adaptive task allocation inspired by a model of division of labor in social insects. In BCEC 36–45 (1997).Robinson, G. E. & Page, R. E. J. Genetic basis for division of labor in an insect society. In The Genetics of Social Evolution (ed. Breed, R. P.) 61–80 (Westview Press, 1989).
    Google Scholar 
    Hogeweg, P. & Hesper, B. The ontogeny of the interaction structure in bumble bee colonies: A MIRROR model. Behav. Ecol. Sociobiol. 12, 271–283 (1983).Article 

    Google Scholar 
    Theraulaz, G., Bonabeau, E. & Denuebourg, J. N. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    Robinson, G. E. Labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (WW Norton & Company, 2009).
    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Complexity 8, 43–46 (2002).Article 

    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Robinson, E. J. H., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B Biol. Sci. 276, 4373–4380 (2009).Article 

    Google Scholar 
    Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants?. Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    Ishii, Y. & Hasgeawa, E. The mechanism underlying the regulation of work-related behaviors in the monomorphic ant, Myrmica kotokui. J. Ethol. 31, 61–69 (2013).Article 

    Google Scholar 
    Baudier, K. M. et al. Changing of the guard: Mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav. Ecol. 30, 1041–1049 (2019).Article 

    Google Scholar 
    Schmid-Hempel, P. & Schmid-Hempel, R. Life duration and turnover of foragers in the antcataglyphis bicolor (hymenoptera, formicidae). Insectes Soc. 31, 345–360 (1984).Article 

    Google Scholar 
    O’Donnell, S. & Jeanne, R. L. Lifelong patterns of forager behaviour in a tropical swarm-founding wasp: Effects of specialization and activity level on longevity. Anim. Behav. 44, 1021–1027 (1992).Article 

    Google Scholar 
    Calabi, P. Behavioral flexibility in Hymenoptera: a re-examination of the concept of caste. In Advances in Myrmecology (ed. J. C. Trager) 237–258 (Leiden,1988).Gordon, D. M. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).Article 

    Google Scholar 
    Giray, T. & Robinson, G. E. Effects of intracolony variability in behavioral development on plasticity of division of labor in honey bee colonies. Behav. Ecol. Sociobiol. 35, 13–20 (1994).Article 

    Google Scholar 
    Cartar, R. V. Adjustment of foraging effort and task switching in energy-manipulated wild bumblebee colonies. Anim. Behav. 44, 75–87 (1992).Article 

    Google Scholar 
    Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article 

    Google Scholar 
    Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article 

    Google Scholar 
    Wilson, E. O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 47–54 (1983).Article 

    Google Scholar 
    Middleton, E. J. T. & Latty, T. Resilience in social insect infrastructure systems. J. R. Soc. Interface 13, 20151022 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    McMahan, E. A. Mound repair and foraging polyethism in workers of Nasutitermes exitiosus (Hill):(Isoptera: Termitidae). Insectes Soc. 24, 225–232 (1977).Article 

    Google Scholar 
    Watson, J. A. L. & McMahan, E. A. Polyethism in the Australian harvester Termite Drepanotermes (Isoptera, Termitinae). Insectes Soc. 25, 53–62 (1978).Article 

    Google Scholar 
    Du, H., Chouvenc, T. & Su, N.-Y. Development of age polyethism with colony maturity in Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ. Entomol. 46, 311–318 (2017).PubMed 

    Google Scholar 
    Gerber, C., Badertscher, S. & Leuthold, R. H. Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc. 35, 226–240 (1988).Article 

    Google Scholar 
    Rosengaus, R. B. & Traniello, J. F. A. Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: A single multiage caste. J. Insect Behav. 6, 237–252 (1993).Article 

    Google Scholar 
    Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, T. & Matsumoto, T. Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Soc. 45, 17–32 (1998).Article 

    Google Scholar 
    Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc. 46, 392–397 (1999).Article 

    Google Scholar 
    Konate, S., Leuthold, R., Hari, M. & Veivers, P. Colour variation and polyethism of the soldier caste in the termite Macrotermes bellicosus. Entomol. Exp. Appl. 94, 51–55 (2000).Article 

    Google Scholar 
    Yang, R.-L., Su, N.-Y. & Bardunias, P. Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102, 906–910 (2009).Article 

    Google Scholar 
    Yanagihara, S., Suehiro, W., Mitaka, Y. & Matsuura, K. Age-based soldier polyethism: Old termite soldiers take more risks than young soldiers. Biol. Lett. 14, 20180025 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Su, N. & Scheffrahn, R. H. Foraging population and territory of the Formosan subterranean termite (Isoptera, Rhinotermitidae) in an urban-environment. Sociobiology 14, 353–360 (1988).
    Google Scholar 
    King, E. G. & Spink, W. T. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann. Entomol. Soc. Am. 62, 536–542 (1969).Article 

    Google Scholar 
    Abe, T. Evolution of life types in termites. In Evolution and Coadaptation in Biotic Communities (eds. J.H. Connell and J. Hidaka) 125-148 (University of Tokyo Press, 1987)Shellman-Reeve, J. S. The Spectrum of Eusociality in Termites. The Evolution of Social Behavior in Insects and Arachnids (Cambridge University Press, 1997).
    Google Scholar 
    Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48, 615–627 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N. Y. Heterogeneous distribution of castes/instars and behaviors in the nest of Coptotermes formosanus Shiraki. Insectes Soc. 64, 103–112 (2017).Article 

    Google Scholar 
    Su, N. Y., Osbrink, W., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).PubMed 
    Article 

    Google Scholar 
    Osbrink, W. L. A., Cornelius, M. L. & Lax, A. R. Effects of flooding on field populations of Formosan subterranean termites (Isoptera: Rhinotermitidae) in New Orleans, Louisiana. J. Econ. Entomol. 101, 1367–1372 (2008).PubMed 
    Article 

    Google Scholar 
    Tuma, J., Eggleton, P. & Fayle, T. M. Ant-termite interactions: An important but under-explored ecological linkage. Biol. Rev. 95, 555–572 (2020).PubMed 
    Article 

    Google Scholar 
    Rust, M. K. & Su, N.-Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beverly, B. D., McLendon, H., Nacu, S., Holmes, S. & Gordon, D. M. How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav. Ecol. 20, 633–638 (2009).Article 

    Google Scholar 
    Tenczar, P., Lutz, C. C., Rao, V. D., Goldenfeld, N. & Robinson, G. E. Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim. Behav. 95, 41–48 (2014).Article 

    Google Scholar 
    O’Donnell, S. Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135, 173–193 (1998).Article 

    Google Scholar 
    Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1–13 (2018).Article 

    Google Scholar 
    Charbonneau, D. & Dornhaus, A. When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J. Bioeconomics 17, 217–242 (2015).Article 

    Google Scholar 
    Gordon, D. M. The regulation of foraging activity in red harvester ant colonies. Am. Nat. 159, 509–518 (2002).PubMed 
    Article 

    Google Scholar 
    O’Donnell, S. Polybia wasp biting interactions recruit foragers following experimental worker removals. Anim. Behav. 71, 709–715 (2006).Article 

    Google Scholar 
    Gentry, J. B. Response to predation by colonies of the Florida harvester ant, Pogonomyrmex badius. Ecology 55, 1328–1338 (1974).Article 

    Google Scholar 
    Schafer, R. J., Holmes, S. & Gordon, D. M. Forager activation and food availability in harvester ants. Anim. Behav. 71, 815–822 (2006).Article 

    Google Scholar 
    Tschinkel, W. R. Biomantling and bioturbation by colonies of the Florida harvester ant, Pogonomyrmex badius. PLoS ONE 10, e0120407 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwapich, C. L. & Tschinkel, W. R. Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 67, 2011–2027 (2013).Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl. Acad. Sci. 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vance, J. T., Williams, J. B., Elekonich, M. M. & Roberts, S. P. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J. Exp. Biol. 212, 2604–2611 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).Article 

    Google Scholar 
    Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).Article 

    Google Scholar 
    Robinson, G. E., Page, R. E. Jr. & Huang, Z. Y. Temporal polyethism in social insects is a developmental process. Anim. Behav. 48, 467–469 (1994).Article 

    Google Scholar 
    Kakkar, G., Chouvenc, T., Osbrink, W. & Su, N. Y. Temporal assessment of molting in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 2175–2181 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kakkar, G., Osbrink, W., Mullins, A. & Su, N. Y. Molting site fidelity in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. https://doi.org/10.1093/jee/tox246 (2017).Article 
    PubMed 

    Google Scholar 
    Raina, A., Park, Y. I. & Gelman, D. Molting in workers of the Formosan subterranean termite Coptotermes formosanus. J. Insect Physiol. 54, 155–161 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. Differential time allocation of foraging workers in the subterranean termite. Front. Zool. 18, 1–8 (2021).Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. A reproductives excluder for subterranean termites in laboratory experiments. J. Econ. Entomol. 112, 2882–2887 (2019).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2022). More

  • in

    Rapid evolution of an adaptive taste polymorphism disrupts courtship behavior

    Cockroach strainsAll cockroaches were maintained on rodent diet (Purina 5001, PMI Nutrition International, St. Louis, MO) and distilled water at 27 °C, ~40% RH, and a 12:12 h L:D cycle. The WT colony (Orlando Normal) was collected in Florida in 1947 and has served as a standard insecticide-susceptible strain. The GA colony (T-164) was collected in 1989, also in Florida, and shown to be aversive to glucose; continued artificial selection with glucose-containing toxic bait fixed the homozygous GA trait in this population (approximately 150 generations as of 2020).Generating recombinant lines and life history dataTo homogenize the genetic backgrounds of the WT and GA strains, two recombinant colonies were initiated in 2013 by crossing 10 pairs of WT♂ × GA♀ and 10 pairs of GA♂ × WT♀ (Fig. 3a). At the F8 generation (free bulk mating without selection), 400 cockroaches were tested in two-choice feeding assays (see below) that assessed their initial response to tastants, as described in previous studies11,26. The cockroaches were separated into glucose-accepting and glucose-rejecting groups by the rapid Acceptance-Rejection assay (described in Feeding Bioassays). These colonies were bred for three more generations, and 200 cockroaches from each group were assayed in the F11 generation and backcrossed to obtain homozygous glucose-accepting (aa) and glucose-averse (AA) lines. Similar results were obtained in both directions of the cross, confirming previous findings of no sex linkage of the GA trait27. These two lines were defined as WT_aa (homozygotes, glucose-accepting) and GA_AA (homozygotes, glucose-averse). To obtain heterozygous GA cockroaches, GA_Aa, a single intercross group was generated from crosses of 10 pairs of WT_aa♂ × GA_AA♀ and 10 pairs of GA_AA♂ × WT_aa♀.The GA trait follows Mendelian inheritance. Therefore, we used backcrosses, guided by two-choice feeding assays and feeding responses in Acceptance-rejection assays, to determine the homozygosity of WT and GA cockroaches. The cross of WT♂ × WT♀ produced homozygous F1 cockroaches showing maximal glucose-acceptance. The cross of GA♂ × GA♀ produced homozygous F1 cockroaches showing maximal glucose-aversion. The cross of WT × GA produced F1 heterozygotes with intermediate glucose-aversion. When the F1 heterozygotes were backcrossed with WT cockroaches, they produced F2 cockroaches with a 1:1 ratio of WT and GA phenotypes.The two-choice feeding assay assessed whether cockroaches accepted or rejected glucose (binary: yes-no). Insects were held for 24 h without water, or starved without food and water. Either 10 adults or 2 day-old first instar siblings (30–40) were placed in a Petri dish (either 90 mm or 60 mm diameter × 15 mm height). Each Petri dish contained two agar discs: one disc contained 1% agar and 1 mmol l−1 red food dye (Allura Red AC), and the second disc contained 1% agar, 0.5 mmol l−1 blue food dye (Erioglaucine disodium salt) and either 1000 mmol l−1 or 3000 mmol l−1 glucose. The assay duration was 2 h during the dark phase of the insects’ L:D cycle. After each assay, the color of the abdomen of each cockroach was visually inspected under a microscope to infer the genotype.We assessed whether the recombinant colonies had different traits from the parental WT and GA lines. We paired single newly eclosed females (day 0) with single 10–12 days-old males of the same line in a Petri dish (90 mm diameter, 15 mm height) with fresh distilled water in a 1.5 ml microcentrifuge tube and a pellet of rodent food, and monitored when they mated. When females formed egg cases, each gravid female was placed individually in a container (95 × 95 × 80 mm) with food and water until the eggs hatched. After removing the female, her offspring were monitored until adult emergence. We recorded the time to egg hatch, first appearance of each nymphal stage, first appearance of adults and the end of adult emergence. The first instar nymphs and adults in each cohort were counted to obtain measures of survivorship. Although there were significant differences in some of these parameters across all four strains, we found no significant differences between the two recombinant lines, except mating success, which was significantly lower in GA_AA♀ than WT_aa♀ (Supplementary Table 11).Mating bioassaysAll mating sequences were recorded using an infra-red-sensitive camera (Polestar II EQ610, Everfocus Electronics, New Taipei City, Taiwan) coupled to a data acquisition board and analyzed by searchable and frame-by-frame capable software (NV3000, AverMedia Information) at 27 °C, ~40% RH and a 12:12 h L:D cycle. For behavioral analysis, tested pairs were classified into two groups: mated (successful courtship) and not-mated (failed courtship). Four distinct behavioral events (Fig. 1c, Contact, Wing raising, Nuptial feeding, and Copulation) were analyzed using seven behavioral parameters as shown in Supplementary Table 2.We extracted behavioral data from successful courtship sequences, defined as courtship that led to Copulation. For failed courtship sequences, we extracted the behavioral data from the first courtship of both mated and not-mated groups, because most pairs in both groups failed to copulate in their first encounter, and there were no significant differences in behavioral parameters between the two groups.To assay female choice, we conducted two-choice mating assays (Fig. 1a). A single focal WT♀ or GA♀ and two males, one WT and one GA, were placed in a Petri dish (90 mm diameter, 15 mm height) with fresh distilled water in a 1.5 ml microcentrifuge tube and a pellet of rodent food (n = 25 WT♀ and 27 GA♀). To assay male choice, a single focal WT♂ or GA♂ was given a choice of two females, one WT♀ and one GA♀ (n = 27 WT♂ and 18 GA♂). Experiments were started using 0 day-old sexually unreceptive females and 10–12 days-old sexually mature males. Newly emerged (0 day-old) females were used to avoid the disruption of introducing a sexually mature female into the bioassay. B. germanica females become sexually receptive at 5–7 days of age, so the mating behavior of the focal insect was video-recorded for several days until they mated. Fertility of mated females was evaluated by the number of offspring produced. We assessed the gustatory phenotype of nymphs (either WT-type or GA-type) to determine which of the two adult cockroaches mated with the focal insect. Each gravid female was maintained individually in a container (95 × 95 × 80 mm) with food and water until the eggs hatched. Two day-old first instar nymphs were starved for one day without water and food, and then they were tested in Two-choice feeding assays using 1000 mmol l−1 glucose-containing agar with 0.5 mmol l−1 blue food dye vs. plain sugar-free agar with 1 mmol l−1 red food dye. If all the nymphs chose the glucose-containing agar, their parents were considered WT♂ and WT♀. When all the nymphs showed glucose-aversion, they were raised to the adult stage. Newly emerged adults were backcrossed with WT cockroaches, and their offspring were tested in the Two-choice assay. When the parents were both GA, 100% of the offspring exhibited glucose-aversion. When the parents were WT and GA, the offspring showed a 1:1 ratio of glucose-accepting and glucose-aversive behavior. Mate choice, mating success ratio and the number of offspring were analyzed statistically.We conducted no-choice mating assay using the WT and GA strains (Fig. 1b, d). A female and a male were placed in a Petri dish with fresh water and a piece of rodent food and video-recorded for 24 h. The females were 5–7 days-old and males were 10–12 days-old. Four treatment pairs were tested: WT♂ × WT♀ (n = 20, 18 and 14 pairs for 5, 6 and 7 day-old females, respectively); GA♂ × GA♀ (n = 23, 22 and 35 pairs); GA♂ × WT♀ (n = 21, 14 and 17 pairs); and WT♂ × GA♀ (n = 33, 19 and 15 pairs).To confirm that gustatory stimuli guide nuptial feeding, we artificially augmented the male nuptial secretion and assessed whether the duration of nuptial feeding and mating success of GA♀ were affected (Fig. 2c). Before starting the mating assay with 5 day-old GA♀, 10–12 days-old WT♂ were separated into three groups: A control group did not receive any augmentation; A water control group received distilled water with 1 mmol l−1 blue dye (+Blue); A fructose group received 3000 mmol l−1 fructose solution with blue dye (+Blue+Fru). Approximately 50 nl of the test solution was placed into the tergal gland reservoirs using a glass microcapillary. No-choice mating assays were carried out for 24 h. n = 20–25 pairs for each treatment.We evaluated the association of short nuptial feeding (Fig. 1c) and the GA trait we conducted no-choice mating assays using females from the recombinant lines (Fig. 3c). Before starting each mating assay with 4 day-old females from the WT, GA and recombinant lines (WT_aa, GA_AA and GA_Aa), the EC50 for glucose was obtained by the instantaneous Acceptance-Rejection assay using 0, 10, 30, 100, 300, 1000 and 3000 mmol l−1 glucose (WT♀ and WT_aa♀, non-starved; GA♀, GA_AA♀ and GA_Aa♀, 1-day starved). After the Acceptance-Rejection assay, GA_Aa♀ were separated into two groups according to their sensitivity for rejecting glucose; the GA_Aa_high sensitivity group rejected glucose at 100 and 300 mmol l−1, whereas the GA_Aa_low sensitivity group rejected glucose at 1000 and 3000 mmol l−1. We paired these females with 10–12 days-old WT♂ (n = 15 WT_aa♀, n = 20 GA_AA♀, n = 20 GA_Aa_high♀ and n = 17 GA_Aa_low♀).Feeding bioassayWe conducted two feeding assays: Acceptance-Rejection assay and Consumption assay. The Acceptance-Rejection assay assessed the instantaneous initial responses (binary: yes-no) of cockroaches to tastants, as previously described7,22,27. Briefly, acceptance means that the cockroach started drinking. Rejection means that the cockroach never initiated drinking. The percentage of positive responders was defined as the Number of insects accepting tastants/Total number of insects tested. The effective concentration (EC50) for each tastant was obtained from dose-response curves using this assay. The Consumption assay was previously described27. Briefly, we quantified the amount of test solution females ingested after they started drinking. Females were observed until they stopped drinking, and we considered this a single feeding bout.We used the Acceptance-Rejection assay and Consumption assay, respectively, to assess the sensitivity of 5 day-old WT♀ and GA♀ for accepting and consuming the WT♂ nuptial secretion (Fig. 2a, b). The secretion was diluted with HPLC-grade water to 0.001, 0.01, 0.03, 0.1, 0.3 and 1 male-equivalents/µl (n = 20 non-starved females each). The amount of nuptial secretion consumed was tested at 0.1 male-equivalents/µl in the Consumption assay (n = 10 each).The Acceptance-Rejection assay was used to calculate the effective concentration (EC50) of glucose for females in the WT, GA and recombinant lines (Fig. 3a, b). A glucose concentration series of 0.1, 1, 10, 100 and 1000 mmol l−1 was tested with one-day starved 4-day old females (n = 65 GA_Aa♀, n = 50 GA_AA♀ and n = 50 GA♀) and non-starved females (n = 50 WT_aa♀ and n = 16 WT♀).The effects of female saliva on feeding responses of 5 day-old WT♀ and GA♀ were tested using the Acceptance-Rejection assay (Fig. 4a). Freshly collected saliva of WT♀ and GA♀ was immediately used in experiments. Assays were prepared as follows: 3 µl of 200 mmol l−1 maltose or maltotriose were mixed with 3 µl of either HPLC-grade water or saliva of WT♀ or GA♀. The final concentration of each sugar was 100 mmol l−1 in a total volume of 6 µl. This concentration represented approximately the acceptance EC70 for WT♀ and GA♀27. Nuptial secretion (1 µl representing 10 male-equivalents) was mixed with 1 µl of either HPLC-grade water or saliva from WT♀ or GA♀, and 8 µl of HPLC-grade water was added to the mix. The final concentration of the nuptial secretion was 1 male-equivalent/µl in a total volume of 10 µl. This concentration also represented approximately the acceptance EC70 for WT♀ and GA♀ (Fig. 2a). The mix of saliva and either sugar or nuptial secretion was incubated for 300 s at 25 °C. Additionally, we tested the effect of only saliva in the Acceptance-Rejection assay. Either 1-day starved or non-starved females were tested with water only and then a 1:1 mixture of saliva and water. Saliva alone did not affect acceptance or rejection of stimuli. n = 20–33 females from each strain.To evaluate whether salivary enzymes are involved in the hydrolysis of oligosaccharides, the contribution of salivary glucosidases was tested using the glucosidase inhibitor acarbose in the Acceptance-Rejection assay (Fig. 4b), as previously described27. We first confirmed that the range of 0–125 mmol l−1 acarbose in HPLC-grade water did not disrupt the acceptance and rejection of tastants. Test solutions were prepared as follows: 2 µl of either HPLC-grade water or saliva of GA♀ was mixed with 1 µl of either 250 µmol l−1 of acarbose or HPLC-grade water, then the mixture was added to 1 µl of 400 mmol l−1 of either maltose or maltotriose solution. The total volume was 4 µl, with the final concentration of sugar being 100 mmol l−1. For assays with nuptial secretion, 1 µl of either HPLC-grade water or saliva from 5 day-old GA♀ was mixed with 0.5 µl of either 250 µmol l−1 of acarbose or HPLC-grade water. This mixture was added to 0.5 µl of 10 male-equivalents of nuptial secretion (i.e., 20 male-equivalents/µl). HPLC-grade water was added for a total volume of 10 µl and a final concentration of 1 male-equivalent/µl. The mix of saliva and either sugars or nuptial secretion was incubated for 5 min at 25 °C. All test solutions contained blue food dye. Test subjects were 5 day-old GA♀ and 20–25 females were tested in each assay.Nuptial secretion and saliva collectionsThe nuptial secretion of WT♂ was collected by the following method: Five 10–12 days-old males were placed in a container (95 × 95 × 80 mm) with 5 day-old GA♀. After the males displayed wing-raising courtship behavior toward the females, individual males were immediately decapitated and the nuptial secretion in their tergal gland reservoirs was drawn into a calibrated borosilicate glass capillary (76 × 1.5 mm) under the microscope. The nuptial secretions from 30 males were pooled in a capillary and stored at −20 °C until use. Saliva from 5 day-old WT♀ and GA♀ was collected by the following method: individual females were briefly anesthetized with carbon dioxide under the microscope and the side of the thorax was gently squeezed. A droplet of saliva that accumulated on the mouthparts was then collected into a microcapillary (10 µl, Kimble Glass). Fresh saliva was immediately used in experiments.GC-MS procedures for analysis of sugarsStandards of D-( + )-glucose (Sigma-Aldrich), D-( + )-maltose (Fisher Scientific) and maltotriose (Sigma-Aldrich) were diluted in HPLC-grade water (Fisher Scientific) at 10, 50, 100, 500 and 1000 ng/µl to generate calibration curves. Samples were vortexed for 20 s and a 10 μl aliquot of each sample was transferred to a Pyrex reaction vial containing a 10 μl solution of 5 ng/μl sorbitol (≥98%) in HPLC-grade water as internal standard and dried under a gentle flow of N2 for 20 min.Samples containing degradation products from nuptial secretions were prepared by adding 15 μl of HPLC-water to each sample in a 1.5 ml Eppendorf tube, vortexed for 30 s and centrifuged at 8000 rpm (5223 RCF) for 5 min to separate lipids from the water layer. The water phase was transferred to a reaction vial using a glass capillary. This procedure was repeated with the remaining lipid layer and the water layers were combined in the same reaction vial containing 10 μl of a solution of 5 ng/μl sorbitol and dried under N2 for 20 min.For derivatization of sugars and samples, each reaction vial received 12 μl of anhydrous pyridine under a constant N2 flow, then vortexed and incubated at 90 °C for 5 min. Three μl of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA; Sigma-Aldrich) was added to each reaction vial and centrifuged at 1000 rpm (118 RCF) for 2 min. Vials were incubated in a heat block at 90 °C for 1.5 hr and vortexed every 10 min for the first 30 min of incubation.The total volume of sample was ~10 μl, and 1 μl was injected into the GC-MS (6890 GC coupled to a 5975 MS, Agilent Technologies, Palo Alto, CA). The inlet was operated in splitless mode (17.5 psi) at 290 °C. The GC was equipped with a DB-5 column (30 m, 0.25 mm, 0.25 μm, Agilent), and helium was used as the carrier gas at an average velocity of 50 cm/s. The oven temperature program started at 80 °C for 1 min, increased at 10 °C/min to 180 °C, then increased at 5 °C/min to 300 °C, and held for 10 min. The transfer line was set at 250 °C for 24 min, ramped at 5 °C/min to 300 °C and held until the end of program. The ion source operated at 70 eV and 230 °C, while the MS quadrupole was maintained at 200 °C. The MSD was operated in scan mode, starting after 9 min (solvent delay time) with a mass range of 33–650 AMU.For GC-MS data analysis, the sorbitol peak area was obtained from the extracted ion chromatograms with m/z = 205, the sorbitol base peak. The area of peaks of glucose, maltose and maltotriose were obtained from the extracted ion chromatograms using m/z = 204, the base peak of the three sugars. The most abundant peaks of each sugar were selected for quantification36, and these peaks did not coelute with other peaks. Then, the peak areas of the three sugars were divided by the area of the respective sorbitol peak in each sample to normalize the data and to correct technical variability during sample processing. This procedure was performed to obtain the calibration curves and quantification of sugars in our experiments.The results of sugar analysis using GC-MS are reported in Supplementary Figs. 1–4.Analysis of nuptial secretionsWe focused the GC-MS analysis on glucose, maltose and maltotriose in WT♂ nuptial secretion (Fig. 4c). To quantify the time-course of saliva-catalyzed hydrolysis of WT♂ nuptial secretion to glucose, 1 µl of GA♀ saliva was mixed with 1 µl of 10 male-equivalents/µl. We incubated the mixtures for 0, 5, 10 and 300 s at 25 °C, and added 4 µl of methanol to stop the enzyme activity (n = 5 each treatment). Each sample contained the nuptial secretions of 5 males to obtain enough detectable amount of sugars. For the statistical analysis, the amounts of sugars were divided by 5 to obtain the amount of sugars in 1 male (1 male-equivalent). These amounts were also used for generating Fig. 4c and Supplementary Table 9. In calculations of the concentration of the three sugars (mmol l−1), the mass and volume of the nuptial secretion were measured using 70–130 male-equivalents of undiluted secretion of each strain (n = 3). The mass and volume of the nuptial secretion/male, including both lipid and aqueous layers, were approximately 30–50 µg and 40–50 nl. Because it was difficult to separate the lipid layer from the water layer at this small scale, we roughly estimated that the tergal reservoirs of the four cockroach lines had 30 nl of aqueous layer that contained sugars.To quantify the time-course of saliva-catalyzed hydrolysis of maltose and maltotriose to glucose, 1 µl of GA♀ saliva was mixed with 1 µl of 200 mmol l−1 of either maltose or maltotriose (Fig. 4d, e). Incubation time points were 0, 5, 10 and 300 s at 25 °C and methanol was used to stop the enzyme activity. Controls without saliva were also prepared using HPLC-grade water instead of saliva and 300 s incubations. n = 5 for each treatment.PhotomicroscopyThe photographs of the tergal glands and mouthparts (Fig. 5) were obtained using an Olympus Digital camera attached to an Olympus CX41 microscope (Olympus America, Center Valley, PA).Statistics and reproducibilityThe sample size and number of replicates for each experiment are noted in the respective section describing the experimental details. In summary, the samples sizes were: Mating bioassays, n = 18–80; Feeding assays, n = 16–65; Sugar analysis, n = 5; Life history parameters, n  > 14. All statistical analyses were conducted in R Statistical Software (v4.1.0; R Core Team 2021) and JMP Pro 15.2 software (SAS Institute Inc., Carey, NC). For bioassay data and sugar analysis data, we calculated the means and standard errors, and we used the Chi-square test with Holm’s method for post hoc comparisons, t-test, and ANOVA followed by Tukey’s HSD test (all α = 0.05), as noted in each section describing the experimental details, results, and in Supplementary Tables 1–11.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More