More stories

  • in

    Culling corallivores improves short-term coral recovery under bleaching scenarios

    Our model focused on the trophic interactions among CoTS and two groups of coral within a feedback loop with natural and anthropogenic forcing. Our model draws on accepted features of the published dynamics described by Morello et al.37, Condie et al.28 and Condie et al.17, but is a substantial advance in terms of adding spatial structure and coupling with climate variables. Here we have resolved a fine spatiotemporal model structure, developed a novel recruitment formulation for CoTS, integrated tactical management control dynamics and incorporated the impact of broad-scale drivers upon the population dynamics of corals and CoTS at the local scale. Our model is formally fitted to a subset of the CoTS control program data described by Westcott et al.12. We operationalised our model as a tactical and strategic tool to inform how CoTS management strategies interact with alternative disturbance and ecological realisations at the sub-reef scale, the scale at which management operates.DataWe fitted our model to a subset of four reefs from the dataset described by Westcott et al.12, which were consistently and intensively managed (for a map with reef locations see Fig. 2). We restricted our focus to a subset to avoid parametrisation of reef and management site dynamics. Thus, ~39% of site visits were concentrated over the 13 management sites we considered, with a mean of 20.73 ± 5.5 (mean ± standard deviation) visits across the time series relative to a mean visitation rate of 12.23 ± 4.7 (mean ± standard deviation) for the rest of the sites. Each reef in the subset contained two or more management sites where each site was visited at least 18 times. The subset was used because it contained sufficient data for estimating the 11 model parameters for each management site. Across included sites were a range of CoTS densities, coral abundances and disturbance histories12,72,73. Given the intensity with which these sites were managed, they therefore provided us with a valuable opportunity to formally fit the interactions between management intervention, coral abundance and CoTS dynamics in the presence of regional sequential bleaching events.Model spatial structure and ecological componentsSpatially, we considered a circular 300 km region of the Great Barrier Reef centred between Cairns and Cape Tribulation, and resolved at a daily timescale and a sub-reef spatial scale, matching the scale at which observed data were resolved12,19. Reefs were randomly generated as points to capture possible spatial correlation in disturbance impacts between nearby reefs, as well as to allow variability in reef locations. Coral, CoTS and disturbance dynamics within the management sites of each reef were resolved relative to a 1 ha focal region. That is, each management site was captured as a 1 ha area representative of the whole site. In the Pacific, Acanthaster spp. disproportionally target faster-growing corals, predominantly Acropora, Pocillopora and Montipora22. Coral taxa characterised by slow growth rates and massive morphologies, such as Porites, are generally consumed less than expected based on their abundance22 and are thus non-preferred prey. The two modelled coral groups were the fast-growing favoured prey items of CoTS, and the slower-growing non-preferred prey. Processes resolved in the model included reproduction, density dependence, the effect of bleaching and cyclonic disturbances on corals and the impact of manual control (culling) upon CoTS and coral dynamics.CoTS population structureWe used an age-structured approach to model CoTS population dynamics. We defined our age classes to encapsulate plausible size-at-age variation due to plastic growth. This was achieved through linking catch size classes of the management control program19 to age classes through size-age relationships developed from observations spanning multiple environmental realisations, manipulated scenarios and methodologies55,70,74,75. Delayed growth in juvenile CoTS due to deferral of their switch to coral prey or composition of their pre-coral diet, may induce variability in the size-at-age of juveniles52,53. However, the population-level consequences of prolonged juvenile phases are not easily observed nor understood. For example, juveniles are subject to high mortality rates in situ, delayed growth may reduce lifetime fitness and there have been no observations of juveniles during spawning periods that would indicate protracted juvenile phases55,56,57. Consequently, suggests size-at-age is—due to an early life history mortality bottleneck or otherwise—predominantly concordant with growth curves of the literature55,70,74,75 and the size classes we have used here. Age classes comprised annual 0, 1, 2 and 3+ groups, with 3+ being an absorbing class – once there, they stay there. Age-0 ( ; 32.5)). This induced a slope change in the relationship between maximum wind velocity and its radius at a wind velocity of 32.5 m.s−1 (≥ category 3 intensities). However, whilst maximum wind velocity was modelled to determine ({d}_{{{{{{rm{m}}}}}}}), the overall size of the cyclone was uncorrelated with its intensity. The overall size was uniformly sampled from 130 to 460 km diameter which allowed for the potential of complete focal area coverage and for a range of intensity-size relationships to be captured. Given a cyclone footprint of radius ({d}_{0}) (km), wind velocity, (V) (m.s−1), at a distance, (d) (km), was interpolated104 through:$$Vleft(dright)=left{begin{array}{c}{V}_{0}+left({V}_{{{{{{rm{m}}}}}}}-{V}_{0}right){left(frac{sqrt{{d}_{0}}-sqrt{d}}{sqrt{{d}_{0}}-sqrt{{d}_{{{{{{rm{m}}}}}}}}}right)}^{alpha },,dge {d}_{{{{{{rm{m}}}}}}}\ {V}_{{{{{{rm{m}}}}}}}, , d ; < ; {d}_{{{{{{rm{m}}}}}}}end{array}right.$$ (32) The distance from the cyclone centre to the reef perimeter, (D) (km), is calculated through:$$D=sqrt{{left({x}_{{{{{{rm{rf}}}}}}}-{r}_{1}-{x}_{{{{{{rm{cyc}}}}}}}right)}^{2}+{left({x}_{{{rm{rf}}}}-{r}_{1}-{y}_{{{{{{rm{cyc}}}}}}}right)}^{2}}$$ (33) Thus, given a reef strike occurs ((sqrt{{d}_{0}}-sqrt{d}ge 0) required from non-integer (alpha)), the wind velocity experienced at said reef due to the tropical cyclone was calculated as (Vleft(Dright)). Wind velocity was subsequently categorised and damage to reef zone corals calculated as per Supplementary Table 4.We resolved stochasticity in cyclone dynamics in projection scenarios. In projected scenarios cyclone arrivals, locations and intensities were probabilistically sampled and their inflicted damage upon coral communities sampled from damage ranges. Cyclone locations, their footprints, intensity ranges and corresponding damage ranges were sampled from uniform distributions. Cyclone arrivals were sampled from a Poisson distribution and considered in scenarios from 2018 to 2029. Projections were averaged over 80 simulations to capture mean dynamics and bound trajectory uncertainty due to said stochasticity.Our cyclone model was calibrated to parameters sourced from the literature (Supplementary Tables 4-5). This was necessary since our data time series did not encompass a cyclone event and/or impacts upon a reef and cyclone-induced mortality is typically a key coral mortality source30. Consequently, we were unable to validate the impacts of cyclones through formal estimation in our model. However, our endeavours to source parameters from empirical and modelling studies in conjunction with our formulation allowed us to plausibly capture the cumulative outcomes of a cyclone event at discrete locations. Our cyclone model offers a limited complexity approach that is empirically grounded to simply resolve cyclone impacts in local-scale models without the need to be coupled to a regional-scale model.Cyclones, induced thermal stress and tactical managementThe occurrence of cyclone events was modelled to directly interact with both management interventions and thermal stress events. Cyclones were assumed to realistically preclude co-occurring co-located management interventions. This was such that a management site control visit was abandoned if a cyclone preceded or was forecast within five days of a control voyage. The later interaction of cyclones with thermal stress events operated through an induced thermal cooling of sea surface temperatures (SST) at impacted locations.In the case of the overlapping cyclone and thermally induced bleaching events, we first accounted for cyclone impacts. This was because, in addition to physical damage to corals, cyclones have the potential for regional-scale cooling of SST which can reduce coral bleaching43,107. To capture this interaction, we resolved the duration108,109 and amplitude107 of tropical cyclone-induced cooling. We captured this interaction through Degree Heating Weeks (DHW) which is a useful metric for the accumulated thermal stress experienced by corals94.The duration of tropical cyclone-induced cooling was modelled through a temporal-SST response curve consistent with the work of Lloyd and Vecchi108 and Vincent et al.109. Cooling rapidly occurs once a tropical cyclone arrives at a location and decays in an asymptotic manner over a period of ~40–60 days108,109. Temperatures however do not return to pre-cyclone levels and plateau at ~1/4 of the cooling signal amplitude below pre-cyclone levels108,109. We expressed this cooling response curve as it related to bleaching-induced coral mortality through DHWs.We based the average expected DHW cooling signal on the work of Carrigan and Puotinen107. This was achieved through scaling the difference in amplitude of overlapping thermal stress-tropical cyclone events and thermal stress only events—a cooling signal amplitude of ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}} sim 1.5) DHW. Consistent with the model of Carrigan and Puotinen107, we then resolved cooling within the radius of gale-force winds (category 1, 17 m.s−1) to model tropical cyclone-induced cooling. Depending on the size of the tropical cyclone, this meant that an individual cyclone would not necessarily cool all reefs within the model region. However, the culmination of multiple cyclones may have limited bleaching exposure for corals across the region107.We did not treat the cooling consequences of multiple cyclones additively nor the complex interplay of oceanic feedbacks upon cyclone intensity and cooling. Such processes were beyond the scope of our study and model. If multiple cyclones occurred within our model, then the cooling signal timeline was re-initialised at impacted reefs for the last tropical cyclone at said location. Non-impacted reefs maintained the timeline for the decay of the cooling signal originating from their previous tropical cyclone interaction.Once a tropical cyclone impacted a reef, the duration of the induced cooling signal was modelled. Price et al.110 found that cooling decays exponentially which is reflective of the recovery of SST following tropical cyclones as demonstrated by Lloyd and Vecchi108 and Vincent et al.109. We operationalised the exponential functional form in conjunction with the decay timelines of Lloyd and Vecchi108 and Vincent et al.109 and the DHW amplitude of Carrigan and Puotinen107. We modelled the level of cooling ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}) after ({d}_{{{{{{rm{postTC}}}}}}}) days post-cyclone event by:$${{{{{{rm{DHW}}}}}}}_{{{{{{rm{cool}}}}}}}left({d}_{{{{{{rm{postTC}}}}}}}right)=frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}+frac{frac{3}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}}{{e}^{{d}_{{{{{{rm{postTC}}}}}}}/10}}$$ (34) This ensured that once a reef experienced a tropical cyclone event, the cooling signal initialised at ({{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) and decayed to (sim frac{1}{4}{{{{{{rm{DHW}}}}}}}_{{{{{{rm{Amp}}}}}}}) after 40–60 days108,109. The rate of decay was given by the e-folding time (days required for the cooling signal to be reduced by a factor of (e)) which we took to be 10. This is consistent with the results of Price et al.110, Lloyd and Vecchi108 and Vincent et al.109 who found e-folding times ranging from 5 through to 20 days. Thermally induced bleaching mortality of corals was computed after cyclone physical damage and cooling had been accounted for.Formal model fittingWe formally fitted our coral-CoTS model simultaneously to coral cover data, catch-per-unit-effort data and catch numbers obtained from the management control program with dive effort (minutes) treated as an input (visits summarised in Supplementary Table 7)12. Simultaneously fitting CoTS and coral dynamics at concurrent locations was useful here as it allowed for coral cover trajectories to help inform local CoTS abundance (sensu CoTS feeding vs. coral trajectories63,79 and local site fidelity24). Our model also used Long Term Monitoring Program (LTMP) data (based on manta tows and provided by the Australian Institute of Marine Science) which provides an independent index of relative abundance of CoTS. This was such that our model here was developed and parametrised based on an earlier version37,111 which did not use CPUE information but was fitted to the LTMP data on CoTS relative abundance, as well as the corresponding coral cover, to estimate a number of CoTS-coral interaction parameters used in the present model (Supplementary Table 3).Fitting and estimation of our model were achieved through Maximum Likelihood Estimation (MLE). Our objective function was the outcome of combining the negative log-likelihood contributions arising from fitting the model to multiple sets of location-specific data, across a range of environmental and ecological realisations, in conjunction with penalty terms. Specifically, we fitted coral cover (data series ({x}^{{{{{{rm{Coral}}}}}}})) and CoTS CPUEs (data series ({x}^{{{{{{rm{CoTS}}}}}}})) at each management site which contained ({n}_{{{{{{rm{Coral}}}}}}}) and ({n}_{{{{{{rm{CoTS}}}}}}}) data points respectively. This involved fitting parameters that were specific to management sites (e.g. thermal stress - DHW), reefs (e.g. recruitment variability) as well as those that were common amongst reefs (e.g. CoTS consumption rates). A parametrisation that optimised one contribution was unlikely to optimise all contributions and hence we obtained a parametrisation across all reefs and sub-regions. For a modelled catch of (N) (sum of catches across age classes), a catchability coefficient (a constant of proportionality) of ({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}), and data standard deviation of ({sigma }_{{{{{{rm{LL}}}}}}}) our likelihood contribution arising from a management site CPUEs was given by:$$-{{log }}{{{{{rm{L}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}N,{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{CoTS}}}}}}}right) = {n}_{{{{{{rm{CoTS}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{LL}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}frac{{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}{N}_{i}right)right)}^{2}}{2{{sigma }_{{{{{{rm{LL}}}}}}}}^{2}}$$ (35) From which the data series variance and catchability coefficient were computed for the maximum likelihood estimate. The derived variance and the catchability were respectively computed as per:$${sigma }_{{{{{{rm{LL}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}right)right)}^{2}}$$ (36) and$${q}_{{{{{{rm{LL}}}}}}}^{{{{{{rm{prop}}}}}}}=frac{1}{{n}_{{{{{{rm{CoTS}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{CoTS}}}}}}}}left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{CoTS}}}}}}}right)-{{{{{rm{ln}}}}}}left({N}_{i}right)right)$$ (37) Similarly, the likelihood contribution arising from fitting to a management site coral cover with standard deviation ({sigma }_{{Coral}}) was described by:$$-{{log }}{{{{{rm{L}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}}}+{C}_{y,d}^{{{{{{rm{s}}}}}}}}{{K}^{{{{{{rm{coral}}}}}}}},{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}{{{{{rm{|}}}}}}{x}_{i}^{{{{{{rm{Coral}}}}}}}right) = {n}_{{{{{{rm{Coral}}}}}}},{{{{{rm{ln}}}}}}left({sigma }_{{{{{{rm{Coral}}}}}}}right)+{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}frac{{left({ln}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}{2{{sigma }_{{{{{{rm{Coral}}}}}}}}^{2}}$$ (38) Where the standard deviation was given by:$${sigma }_{{{{{{rm{Coral}}}}}}}=sqrt{frac{1}{{n}_{{{{{{rm{Coral}}}}}}}}{sum }_{i=1}^{{n}_{{{{{{rm{Coral}}}}}}}}{left({{{{{rm{ln}}}}}}left({x}_{i}^{{{{{{rm{Coral}}}}}}}right)-{{{{{rm{ln}}}}}}left(frac{{C}_{y,d}^{{{{{{rm{f}}}}}},i}+{C}_{y,d}^{{{{{{rm{s}}}}}},i}}{{K}^{{{{{{rm{coral}}}}}}}}right)right)}^{2}}$$ (39) We computed the negative log-likelihood objective function by summing the contributions from all management sites across considered reefs.Fitting was conducted through the modelling language Automatic Differentiation Model Builder (ADMB) which implements a Quasi-Newton optimisation algorithm for estimation of parameters and provides Hessian based estimation of standard errors112. Penalty terms were added to our likelihood function to integrate a prior understanding of system dynamics and to reduce model variability. Penalty terms encompassed recruitment variability and the magnitude of catches observed in the data.Recruitment was expressed through recruitment deviations, ({r}_{y}), given a standard deviation of ({sigma }_{{{{{{rm{R}}}}}}}) about underlying modelled recruitment (sum of self-recruitment and immigration sources described previously). The recruitment variability negative log-likelihood penalty contribution was given by:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{R}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{rec}}}}}}}right)={sum }_{y=1}^{{{{{{rm{#Years}}}}}}}{sum }_{{{{{{rm{reef}}}}}}=1}^{{{{{{rm{#Reefs}}}}}}}{r}_{y,{{{{{rm{reef}}}}}}}^{{rec}}/2{sigma }_{{{{{{rm{R}}}}}}}^{2}$$ (40) An additional penalty term for model deviations from the magnitude of observed catches was encompassed. This was such that a constant of proportionality relating modelled catches to observed catches tended to one. For an allowed standard deviation of ({sigma }_{{{{{{rm{CM}}}}}}}), the likelihood function was penalised for deviations from unity proportionality, ({r}^{{{{{{rm{CM}}}}}}}), through:$$-{{log }}{{{{{rm{L}}}}}}left(0,{sigma }_{{{{{{rm{CM}}}}}}}^{2}{{{{{rm{|}}}}}}{r}^{{{{{{rm{CM}}}}}}}right)={sum }_{{{{{{rm{zone}}}}}}=1}^{{{{{{rm{#Zones}}}}}}}{r}_{{{{{{rm{zone}}}}}}}^{{{{{{rm{CM}}}}}}}/2{sigma }_{{{{{{rm{CM}}}}}}}^{2}$$ (41) Model simulations were conducted in ADMB with output analysis and visualisation conducted in MATLAB.Sensitivity to CoTS controlTo test whether our projected scenarios were consistent with the period over which data were collected, we conducted a model-based before and after comparison to the impact of control. Specifically, we used the fitted trajectory for sites, including both the coral data and CoTS control data (voyages and time spent), and compared this to the model-suggested coral trajectories if CoTS control had not taken place. These were modelled over the fitted period (2013–2018) and, unlike the projected scenarios (2019–2029), were variable in terms of the timing of control (amount of time between visits was variable), the amount of time spent at sites (not a consistent number of dive minutes per visit), CoTS dynamics (recruitment was fitted and hence different annually and between reefs), and in the level of thermal stress they experienced (different sites experienced different effective levels and some sites experience back-to-back events).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Gentle-giant sharks are on a collision course with mighty ships

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Individualism versus collective movement during travel

    Study siteSocial hermit crabs (Coenobita compressus) were studied in Osa Peninsula, Costa Rica, at a long-term field site (Osa Conservation’s Piro Biological Station), where the population has been under study since 200817. Experiments were carried out from January to March 2019 at the beach-forest interface (Fig. 1A), an area where ‘fission–fusion’ social groupings30 continuously form and dissolve31 and where free-roaming individuals regularly travel17. All studies were undertaken during daylight hours (06:30–11:30 h) during periods of peak social activity.Figure 1Study site and experimental areas. (A) Satellite view of study site: a section of Piro beach, Osa Peninsula, Costa Rica. Dashed red squares indicate areas where experiments were carried out and schematic versions are shown below in (B) and (C) (Satellite image: created using Google Earth Version 9, https://earth.google.com/). (B) Overhead view of the section of the beach where free-roam experiments were carried out. Arrows denoting left and right correspond to stimulus directions during free-roam experiments. (C) Overhead view of the beach-forest interface where the handled experiments were carried out. Arrows denoting left, right, forest, and ocean correspond to stimulus directions during handled experiments. The solid red box represents the platform on which the artificial beach was created. For (B) and (C), environment is color coded: blue = ocean, yellow = beach sand, dark green = rainforest, light green = open grassy area with sparse trees. Compass in the bottom left of each panel shows cardinal directions.Full size imageWe conducted two separate sets of experiments, both involving a similar stimulus design (below). First, to determine whether free-roaming individuals were biased in their movement decisions by a collective, we performed a set of free-roam experiments (see “Experiment 1: Free-roam”). The free-roam experiments were conducted directly on the beach (Fig. 1B; 8° 23′ 39.5″ N, 83° 20′ 10.2″ W). Second, to determine whether an increase in danger influenced the relative independence versus social bias in individual movement, we performed a set of handled experiments (see “Experiment 2: Handled”). The handled experiments were conducted on a platform (Fig. 1C; 8° 23′ 33.2″ N, 83° 19′ 50.6″ W), which was immediately adjacent to the beach and situated within the range of the crabs’ normal daily movements. All reported compass bearings are relative to magnetic North (0°) unless otherwise specified.Stimulus designAs conspecific ‘stand-ins’, we used N = 60 Nerita scabricosta shells (C. compressus’ preferred shell species23), spanning a natural range of sizes (9–32 mm) within this population (Table S1; Fig. S1). To create a group of these stand-ins that we could manoeuvre as a collective, each shell was affixed using epoxy to one of four strands of clear fishing line, which were each 4 m long. These lines were spaced approximately 30 cm apart on a long wooden dowel (Figs. 2A,B, 3A,B). An equal number of shells (N = 15 shells per line) were distributed randomly along the 2 m of each fishing line furthest from the dowel. To allow the experimenter to manoeuvre the stimuli, without disturbing live crabs’ behaviour, another fishing line (4 m in length) was attached to the top of the dowel. With this line, the entire apparatus could be pulled by the experimenter from a distance, thereby simulating synchronised movement of the entire collective. To control for any influence the apparatus might have on focal individuals (other than that produced by the movement of the shell ‘stand-ins’), the entire apparatus—dowels and fishing lines—was replicated, just without any attached shells, for use as a control (Figs. 2C, 3C).Figure 2Free-roam experiments: stimuli and experimental design. (A) Photograph of a free-roam experiment in progress, with a drone hovering above and one of the authors (CD) pulling the simulated collective (Photo: Jakob Krieger). Schematics of stimuli are shown in B and C, with N = 3 free-roaming crabs also pictured. (B) Experimental stimuli: consisting of N = 60 shells arranged in four lines of fifteen shells each, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. An experimenter moved the stimuli from a distance, by pulling another clear fishing line along an open strip of sandy beach in the presence of free roaming crabs. Each experiment was video recorded from above by an overhead drone.Full size imageFigure 3Handled experiments: stimuli and experimental design. (A) Photograph of the artificial beach created on a platform adjacent to the natural beach (Photo: Mark Laidre). Photo shows experimental stimulus and an opaque plastic cup in the center, under which a focal crab was placed prior to the start of each experiment. Schematics of stimuli are shown in (B) and (C). (B) Experimental stimuli: consisting of 60 shells arranged in four lines of fifteen, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. The cup was removed by one experimenter from a distance via an attached clear fishing line on a pulley system; the stimulus was then maneuvered by a second experimenter, also from a distance, via another clear fishing line.Full size imageExperiment 1: Free-roamTo test whether the movement of the collective influenced free-roaming individuals’ travel direction, the stimuli were pulled across the beach at a uniform speed (1 m per min), within the natural range of the walking speed of social hermit crabs17,22,23. Each trial lasted 1 min. A total of N = 80 free-roam trials were conducted, N = 40 experimental (with the full collective, represented by all the shells) and N = 40 controls (with only the raw materials, but no shell collective). For each of the N = 80 trials, the movement of a single free-roaming focal individual was recorded.It is not uncommon to see multiple crabs moving parallel to (or perpendicular to) the shore, since many individuals will often be collectively attracted to eviction sites, injured conspecifics, or food items, with all the attracted individuals travelling in a roughly parallel formation16,17. For each trial in the free-roam experiments, the stimuli were pulled parallel to the shore (Fig. 1B), either to the right (116.1°) or to the left (296.1°). We did not pull the stimuli perpendicular to the shore, given the substantial slope from the forest down to the ocean, which would have confounded any such comparisons. Condition (experimental or control) and stimulus direction (right or left) were selected randomly, with balanced sample sizes (N = 20 for each). To ensure there was a free-roaming focal individual, whose movement we could measure in response to the stimulus, a trial was only carried out when at least one live crab was walking within approximately 30 cm of the stationary stimulus. Then pulling was initiated.To avoid disturbing live individuals by moving through or near the vicinity, we gathered overhead video footage of all experiments using a drone (Phantom advanced model GL300C). Drone video recorded all interactions between the focal individual and the simulated collective while the drone hovered at a height of approximately 2 m above the beach. At this height, there was no disturbance to natural behaviour or movement of the crabs, and the drone remained positioned overhead for at least 1 min prior to the start of a trial. Minor adjustments to position were then made between trials due to drone drift (i.e., slight movement of the drone due to wind).To randomly select focal individuals for video coding, we first split an image of the starting frame of each video file into a 4 × 4 matrix, with N = 16 equally-sized sections, and then used a random number generator to choose one section (repeating this step if no crabs were present in the selected section). Second, we numbered all individuals in the selected section and again used a random number generator to select the individual.To calculate bearings relative to magnetic North for the direction each focal crab moved, we first measured the angle of divergence (°) between the stimulus trajectory and the focal crabs’ trajectory. Focal crab trajectory—a proxy for the overall direction of the crab’s movement—was measured by drawing a straight line from the start-to-end position of that individual (see Fig. S2 and Vid. S1 for further explanation). Stimulus trajectory was measured in the same manner, using the shell closest to the focal at the beginning of the trial. Using Google Maps and the IGIS Map bearing angle calculator, we calculated the bearing of our stimuli (right and left) relative to true North (right: 114°, left: 294°). To determine bearings for our stimuli relative to magnetic North, we then used the Enhanced Magnetic Model (EMM) magnetic field calculator, provided by NOAA, to calculate the relevant declination (− 2.1°) for our coordinates on the dates the experiments were carried out, subtracting this value from true North. Thus, for the free-roam experiments, the bearing of a stimulus moving to the right, relative to magnetic North, was 116.1°, and the bearing of a stimulus moving to the left, relative to magnetic North, was 296.1°. Lastly, bearings for focal crabs’ directions, relative to magnetic North, could then be calculated using the new bearings of the stimuli and the angle of divergence between stimulus and crab trajectories.To gauge the level of interaction that focal individuals had with the collective, we recorded whether or not individuals initiated contact with shells in the experimental condition. An individual was classed as having initiated contact if it climbed onto a shell or touched a shell with its claws (Vid. S2). Additionally, we noted whether individuals were bumped by passing shells. An individual was classed as having been bumped if a moving shell hit it while the individual was withdrawn, stationary, or facing away from the moving shell (Vid. S3).To assess whether drone drift during experiments was a problem, we examined a random sample (N = 20) of the videos, both control (N = 10) and experimental (N = 10). We took N = 40 images from these 20 videos (i.e., two images from each video: one at the start of the 1-min trial and one at the end of the 1-min trial) and used a system wherein we marked the same two distinguishable fixed points on the landscape in each pair of images. We then overlaid the images in each pair, allowing us to see any longitudinal or latitudinal movement as well as any potential rotation of the drone. Nineteen of the N = 20 pairs of images showed virtually identical overlap of the markers, with just one image showing a minor gap between 1 of the 2 landmarks, suggesting slight rotation of the drone. We were therefore confident that drone drift was not an issue in our analyses.All videos were coded by CD. To measure inter-observer reliability for the angle of divergence (°) between stimulus trajectory and focal crabs’ trajectory (see Fig. S2), a random sample of videos (N = 41 total, N = 22 of experimental and N = 19 of control) were also coded by a second observer (MP) who was naïve to the competing hypotheses. There was strong inter-observer reliability in the measurements (F1,39 = 142.8, p  More

  • in

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Clark, D. A. & Clark, D. B. Spacing dynamics of a Tropical rain forest tree: Evaluation of the Janzen-Connell model. Am. Nat. 124, 769–788 (1984).Article 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and dendity-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jansen, P. A. & Forget, P.-M. Scatterhoarding rodents and tree regeneration. in Nouragues (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) vol. 80 pp. 275–288 (Springer Netherlands, 2001).Janzen, D. H. Herbivores and the number of tree species in Tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Hammond, D. S. Tropical forests of the Guiana shield: ancient forests in a modern world. (CABI Publishing, 2005).Forget, P.-M. et al. Frugivores and seed dispersal (1985–2010); the ‘seeds’ dispersed, established and matured. Acta Oecologica 37, 517–520 (2011).ADS 
    Article 

    Google Scholar 
    Levey, D. J., Silva, W. R. & Galetti, M. Seed dispersal and frugivory: Ecology, evolution and conservation. (CABI Publishing, 2002).Boissier, O., Feer, F., Henry, P. & Forget, P. Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecol. Appl. 30, (2020).Ducrettet, M. et al. Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biol. Conserv. 245, 108574 (2020).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: Implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Holbrook, K. M. & Loiselle, B. A. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal?. Ecology 90, 1449–1455 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. The role of frugivores in determining seed removal and dispersal in the neotropical nutmeg. Trop. Conserv. Sci. 6, 690–704 (2013).Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. Frugivores and seed removal at Tetragastris altissima (Burseraceae) in a fragmented forested landscape of French Guiana. J. Trop. Ecol. 21, 501–508 (2005).Article 

    Google Scholar 
    Stevenson, P. R., Link, A., González-Caro, S. & Torres-Jiménez, M. F. Frugivory in canopy plants in a western Amazonian forest: Dispersal systems, phylogenetic ensembles and keystone plants. PLoS ONE 10, e0140751 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todeschini, F., de Toledo, J. J., Rosalino, L. M. & Hilário, R. R. Niche differentiation mechanisms among canopy frugivores and zoochoric trees in the northeastern extreme of the Amazon. Acta Amaz 50, 263–272 (2020).Article 

    Google Scholar 
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shanee, N. Trends in local wildlife hunting, trade and control in the Tropical Andes Biodiversity Hotspot, northeastern Peru. Endanger. Species Res. 19, 177–186 (2012).Article 

    Google Scholar 
    Muscarella, R. & Fleming, T. H. The role of frugivorous bats in Tropical forest succession. Biol. Rev. 82, 573–590 (2007).PubMed 
    Article 

    Google Scholar 
    Willig, M. R. et al. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica 39, 737–746 (2007).Article 

    Google Scholar 
    Charles-Dominique, P. et al. Les mammifères frugivores arboricoles nocturnes d’une forêt guyanaise: Inter-relation plantes-animaux. Rev. Ecol. Terre Vie 35, (1981).Stevenson, P. R., Cardona, L., Cárdenas, S. & Link, A. Oilbirds disperse large seeds at longer distance than extinct megafauna. Sci. Rep. 11, 420 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by Binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 
    Nakashima, Y., Inoue, E., Inoue-Murayama, M. & Abd. Sukor, J. R. Functional uniqueness of a small carnivore as seed dispersal agents: A case study of the common palm civets in the Tabin Wildlife Reserve, Sabah, Malaysia. Oecologia 164, 721–730 (2010).Kays, R. W. Food preferences of kinkajous (Potos flavus): A frugivorous carnivore. J. Mammal. 80, 589–599 (1999).Article 

    Google Scholar 
    Julien-Laferrière, D. Frugivory and Seed Dispersal by Kinkajous. in Nouragues: Dynamics and Plant-Animal Interactions in a Neotropical Rainforest (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) 217–226 (Springer, 2001).Helgen, K. M. et al. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324, 1–83 (2013).Article 

    Google Scholar 
    Nascimento, F. F. et al. The evolutionary history and genetic diversity of kinkajous, Potos flavus (Carnivora, Procyonidae). J. Mamm. Evol. 24, 439–451 (2017).MathSciNet 
    Article 

    Google Scholar 
    Picart, L. et al. The CAFOTROP method: An improved rope-climbing method for access and movement in the canopy to study biodiversity. Ecotropica 20, 45–52 (2014).
    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. 12, 1768–1779 (2021).Article 

    Google Scholar 
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate Tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 3892 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queenborough, S. A. & Forget, P. M. Adding spice to life: A special issue on the Myristicaceae. Trop. Conserv. Sci. 3 (2013).Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    Russo, S. E. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136, 80–87 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Howe, H. F. & Vande Kerckhove, G. A. Removal of wild nutmeg (Virola Surinamensis) crops by birds. Ecology 62, 1093–1106 (1981).Laurance, W. F. et al. Averting biodiversity collapse in Tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    de Thoisy, B., Renoux, F. & Julliot, C. Hunting in northern French Guiana and its impact on primate communities. Oryx 39, 149–157 (2005).Article 

    Google Scholar 
    de Thoisy, B. et al. Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).Article 

    Google Scholar 
    Peres, C. A. & Dolman, P. M. Density compensation in Neotropical primate communities: Evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122, 175–189 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178 (2019).Article 

    Google Scholar 
    Harrison, R. D. et al. Consequences of defaunation for a Tropical tree community. Ecol. Lett. 16, 687–694 (2013).PubMed 
    Article 

    Google Scholar 
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).PubMed 
    Article 

    Google Scholar 
    Boissier, O., Bouiges, A., Mendoza, I., Feer, F. & Forget, P.-M. Rapid assessment of seed removal and frugivore activity as a tool for monitoring the health status of Tropical forests. Biotropica 46, 633–641 (2014).Article 

    Google Scholar 
    Howe, H. F. Fruit production and animal activity at two Tropical trees. Ecol. Trop. For. Seas. Rhythms Long-Term Chang. 189–199 (1982).Julien-Laferriere, D. Foraging strategies and food partitioning in the Neotropical frugivorous mammals Caluromys philander and Potos flavus. J. Zool. 247, 71–80 (1999).Article 

    Google Scholar 
    Julien-Laferriere, D. Radio-tracking observations on ranging and foraging patterns by kinkajous (Potos flavus) in French Guiana. J. Trop. Ecol. 9, 19–32 (1993).Article 

    Google Scholar 
    Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P. & Anderson, M. J. Estimating mammalian species richness and occupancy in Tropical forest canopies with arboreal camera traps. Remote Sens. Ecol. Conserv. 3, 146–157 (2017).Article 

    Google Scholar 
    Debruille, A., Kayser, P., Veron, G., Vergniol, M. & Perrigon, M. Improving the detection rate of binturongs (Arctictis binturong) in Palawan Island, Philippines, through the use of arboreal camera-trapping. Mammalia 84, 563–567 (2020).Article 

    Google Scholar 
    Gregory, T., Carrasco Rueda, F., Deichmann, J., Kolowski, J. & Alonso, A. Arboreal camera trapping: taking a proven method to new heights. Methods Ecol. Evol. 5, 443–451 (2014).Article 

    Google Scholar 
    Whitworth, A., Braunholtz, L. D., Huarcaya, R. P., MacLeod, R. & Beirne, C. Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals. Trop. Conserv. Sci. 9, 675–698 (2016).Article 

    Google Scholar 
    Laughlin, M. M., Martin, J. G. & Olson, E. R. Arboreal camera trapping reveals seasonal behaviors of Peromyscus spp. in Pinus strobus canopies. 14 (2020).Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. South Afr. J. Wildl. Res. 39, 1–10 (2009).Article 

    Google Scholar 
    Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).Article 

    Google Scholar 
    Mendoza, I. et al. Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): Insights from hierarchical Bayesian analyses. Biotropica 50, 431–441 (2018).Article 

    Google Scholar 
    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Rev. Ecol. Terre Vie 40, 289–320 (1985).
    Google Scholar 
    Coutant, O. et al. Roads disrupt frugivory and seed removal in tropical animal-dispersed plants in French Guiana. Front. Ecol. Evol. 10, 805376 (2022)Article 

    Google Scholar 
    Chapman, C. A. & Russo, S. E. Primate seed dispersal: Linking behavioral ecology with forest community structure. in Primates in Perspective 510–525 (Oxford University Press, 2006).Zhang, S.-Y. Activity and ranging patterns in relation to fruit utilization by brown capuchins (Cebus apella) in French Guiana. Int. J. Primatol. 16, 489–507 (1995).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the Tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).Article 

    Google Scholar 
    Coutant, O. et al. Amazonian mammal monitoring using aquatic environmental DNA. Mol. Ecol. Resour. 21, 1875–1888 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert, J. E., Fellner, V., McKenney, E. & Hartstone-Rose, A. Binturong (Arctictis binturong) and Kinkajou (Potos flavus) Digestive Strategy: Implications for Interpreting Frugivory in Carnivora and Primates. PLoS ONE 9, e105415 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Youlatos, D. Osteological correlates of tail prehensility in carnivorans. J. Zool. 259, 423–430 (2003).Article 

    Google Scholar 
    Lemelin, P. & Cartmill, M. The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus) – Lemelin – 2010 – Journal of Experimental Zoology Part A: Ecological Genetics and Physiology – Wiley Online Library. J. Exp. Zool. 313A, 157–168 (2010).
    Google Scholar 
    McClearn, D. Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J. Mammal. 73, 245–261 (1992).Article 

    Google Scholar 
    Rensch, B. & Dücker, G. Manipulierfähigkeit eines Wickelbären bei längeren Handlungsketten. Z. Für Tierpsychol. 26, 104–112 (1969).
    Google Scholar 
    Kays, R. W. The behavior and ecology of olingos (Bassaricyon gabbii) and their competition with kinkajous (Potos flavus) in central Panama. 64, 1–10 (2000).Alves-Costa, C. P. & Eterovick, P. C. Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica 32, 77–92 (2007).ADS 
    Article 

    Google Scholar 
    Bonaccorso, F. J., Glanz, W. E. & Sandford, C. M. Feeding assemblages of mammals at fruiting Dipteryx panamensis (Papilionaceae) trees in Panama: Seed predation, dispersal, and parasitism. Rev. Biol. Trop. 28, 61–72 (1980).
    Google Scholar 
    Julien-Laferrière, D. Organisation du peuplement de marsupiaux en Guyane française. Rev. Ecol. Terre Vie 46, 125–144 (1991).
    Google Scholar 
    Atramentowicz, M. The opportunistic frugivory of three Diphelphid marsupials of French Guiana. Rev. Ecol. Terre Vie 43, 47–57 (1988).
    Google Scholar 
    Carreira, D. C. et al. Small vertebrates are key elements in the frugivory networks of a hyperdiverse Tropical forest. Sci. Rep. 10, 10594 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erard, C., Théry, M. & Sabatier, D. Fruit characters in the diet of syntopic large frugivorous forest bird species in French Guiana. Rev. Ecol. Terre Vie 62, 323–350 (2007).
    Google Scholar 
    Théry, M., Erard, C. & Sabatier, D. Les fruits dans le régime alimentaire de Penelope marail (Aves, Cracidae) en forêt guyanaise: Frufivorie stricte et sélective? Rev. Ecol. Terre Vie 47, (1992).Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv.Schipper, J. Camera-trap avoidance by kinkajous Potos flavus: rethinking the “non-invasive” paradigm. 36, 5 (2007).Ratiarison, S. Frugivorie dans la canopée de la forêt guyanaise : conséquences pour la pluie de graines. (Paris 6, 2003).Sabatier, D. Fructification et dissémination en forêt guyanaise : l’exemple de quelques espèces ligneuses. (Université de Montpellier, 1983).Sabatier, D. Description et biologie d’une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia 19, 273–278 (1997).
    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bello, C. et al. Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic forest. Ecology 98, 1729–1729 (2017).PubMed 
    Article 

    Google Scholar 
    Galetti, M., Laps, R. & Pizo, M. A. Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica 32, 842–850 (2000).Article 

    Google Scholar 
    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. https://CRAN.R-project.org/package=rstatix (2021). More

  • in

    Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa

    Runham, N. A study of the replacement mechanism of the pulmonate radula. J. Cell Sci. 3(66), 271–277 (1963).Article 

    Google Scholar 
    Runham, N. & Isarankura, K. Studies on radula replacement. Malacologia 5, 73 (1966).
    Google Scholar 
    Mackenstedt, U. & Märkel, K. Radular structure and function. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 213–236 (CABI Publishing, Oxon, United Kingdom, 2001).Chapter 

    Google Scholar 
    Crampton, D. M. Functional anatomy of the buccal apparatus of Onchidoris bilamellata (Mollusca: Opisthobranchia). Trans. Zool. Soc. Lond. 34(1), 45–86 (1977).Article 

    Google Scholar 
    Steneck, R. S. & Watling, L. Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar. Biol. 68(3), 299–319 (1982).Article 

    Google Scholar 
    Jensen, K. R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 11, 301–335 (1997).Article 

    Google Scholar 
    Nishi, M. & Kohn, A. J. Radular teeth of Indo-Pacific molluscivorous species of Conus: A comparative analysis. J. Molluscan Stud. 65(4), 483–497 (1999).Article 

    Google Scholar 
    Duda, T. F., Kohn, A. J. & Palumbi, S. R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. Lond. 73, 391–409 (2001).Article 

    Google Scholar 
    von Rintelen, T., Wilson, A. B., Meyer, A. & Glaubrecht, M. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc. R. Soc. B 271, 2541–2549 (2004).Article 

    Google Scholar 
    Ekimova, I. et al. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 141, 106609 (2019).PubMed 
    Article 

    Google Scholar 
    Mikhlina, A., Ekimova, I. & Vortsepneva, E. Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidia: Fionidae). Zoology 143, 125850 (2020).PubMed 
    Article 

    Google Scholar 
    Krings, W. Trophic specialization of paludomid gastropods from ‘ancient’ Lake Tanganyika reflected by radular tooth morphologies and material properties, Thesis, Universität Hamburg (2020).Krings, W., Brütt, J.-O., Gorb, S. N. & Glaubrecht, M. Tightening it up: Diversity of the chitin anchorage of radular-teeth in paludomid freshwater-gastropods. Malacologia 63(1), 77–94 (2020).Article 

    Google Scholar 
    Bleakney, J. S. Indirect evidence of a morphological response in the radula of Placida dendritica (Alder & Hancock, 1843) (Opisthobranchia: Ascoglossa/ Sacoglossa) to different algae prey. Veliger 33(1), 111–115 (1990).
    Google Scholar 
    Jensen, K. R. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. Lond. 48, 135–155 (1993).Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littorina species (Gastropoda: Littorinidae). J. Molluscan Stud. 65, 355–370 (1999).Article 

    Google Scholar 
    Padilla, D. K., Dilger, E. K. & Dittmann, D. E. Phenotypic plasticity of feeding structures in species of Littorina. Am. Zool. 40, 1161 (2000).
    Google Scholar 
    Ito, A., Ilano, A. S., Goshima, S. & Nakao, S. Seasonal and tidal height variations in body weight and radular length in Nodilittorina radiata (Eydoux and Souleyet, 1852). J. Molluscan Stud. 68, 197–203 (2002).Article 

    Google Scholar 
    Padilla, D. K. Form and function of radular teeth of herbivorous molluscs: Focus on the future. Am. Malacol. Bull. 18(1/2), 163–168 (2003).
    Google Scholar 
    Krings, W. & Gorb, S. N. Substrate roughness induced wear pattern in gastropod radulae. Biotribology 26, 100164 (2021).Article 

    Google Scholar 
    Krings, W., Hempel, C., Siemers, L., Neiber, M. T. & Gorb, S. N. Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci. Rep. 11, 9556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, D. & Barber, A. H. Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9(71), 1318–1324 (2012).PubMed 
    Article 

    Google Scholar 
    Grunenfelder, L. K. et al. Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri. Adv. Funct. Mater. 24(39), 6093–6104 (2014).CAS 
    Article 

    Google Scholar 
    Barber, A. H., Lu, D. & Pugno, N. M. Extreme strength observed in limpet teeth. J. R. Soc. Interface 12(105), 20141326 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herrera, S. A., Grunenfelder, L., Escobar, E., Wang, Q., Salinas, C., Yaraghi, N., Geiger, J., Wuhrer, R., Zavattieri, P. & Kisailus, D. Stylus support structure and function of radular teeth. In Cryptochiton Stelleri, 20th International Conference on Composite Materials Copenhagen, 19–24th July, 2015.Ukmar-Godec, T. et al. Materials nanoarchitecturing via cation-mediated protein assembly: Making limpet teeth without mineral. Adv. Mater. 29(27), 1701171 (2017).Article 
    CAS 

    Google Scholar 
    Pohl, A. et al. Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. J. Mech. Behav. Biomed. Mater. 111, 103991 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stegbauer, L. et al. Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. PNAS 118(23), e2020160118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13(1–2), 42–52 (2010).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri. Adv. Fun. Mater. 23, 2908–2917 (2013).CAS 
    Article 

    Google Scholar 
    Ukmar-Godec, T. Mineralization of goethite in limpet radular teeth. In Iron Oxides: From Nature to Applications (eds Faivre, D. & Frankel, R. B.) 207–224 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Krings, W., Brütt, J.-O. & Gorb, S. N. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Under review at Frontiers in Zoology (2022).Brooker, L. R. & Shaw, J. A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization (ed. Seto, J.) 65–84 (Intech Open, Rijeka, Croatia, 2012).
    Google Scholar 
    Joester, D. & Brooker, L. R. The chiton radula: A model system for versatile use of iron oxides. In Iron Oxides: From Nature to Applications (ed. Seto, J.) 177–205 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Kisailus, D. & Nemoto, M. Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Biological Magnetic Materials and Applications (eds Matsunaga, T. et al.) 53–73 (Springer, Singapore, 2018).Chapter 

    Google Scholar 
    Moura, H. M. & Unterlass, M. M. Biogenic metal oxides. Biomimetics 5(2), 29 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A., Glaubrecht, M. & Gorb, S. N. Differences in the Young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology 137, 125713 (2019).PubMed 
    Article 

    Google Scholar 
    Krings, W., Neiber, M. T., Kovalev, A., Gorb, S. N. & Glaubrecht, M. Trophic specialisation reflected by radular tooth material properties in an ‘ancient’ Lake Tanganyikan gastropod species flock. BMC Ecol. Evol. 21, 35 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Marcé-Nogué, J. & Gorb, S. N. Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci. Rep. 11, 22775 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorb, S. N. & Krings, W. Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomater. 134, 513–530 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Troschel, F. H. Das Gebiss Der Schnecken Zur Begründung Einer Natürlichen Classification (Nicolaische Verlagsbuchhandlung, Berlin, Germany, 1863).
    Google Scholar 
    Sollas, I. B. The molluscan radula: Its chemical composition, and some points in its development. Q. J. Microsc. Sci. 51, 115–136 (1907).
    Google Scholar 
    Jones, E., McCance, R. & Shackleton, L. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. J. Exp. Biol. 12(1), 59–64 (1935).CAS 
    Article 

    Google Scholar 
    Tillier, S. & Cuif, J.-P. L’animal-conodonte est-il un Mollusque Aplacophore. C. R. Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univ. Sci. Terre 303(7), 627–632 (1986).Cruz, R., Lins, U. & Farina, M. Minerals of the radular apparatus of Falcidens sp. (Caudofoveata) and the evolutionary implications for the phylum mollusca. Biol. Bull. 194(2), 224–230 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, I. F. Lepidochitona cinerea, identification and biology, 2020. https://doi.org/10.13140/RG.2.2.28288.58889.Smith, I. F. Acanthochitona fascicularis (Linnaeus, 1767), identification and biology, 2020. https://doi.org/10.13140/RG.2.2.10640.64005.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 57, 999–1008 (2010).ADS 
    Article 

    Google Scholar 
    Coelho, M., Domingues, P., Balguerias, E., Fernandez, M. & Andrade, J. P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (Central-East Atlantic). Fish. Res. 29(3), 245–255 (1997).Article 

    Google Scholar 
    Notman, G. M., McGill, R. A., Hawkins, S. J. & Burrows, M. T. Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar. Ecol. Prog. Ser. 549, 113–123 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Marchais, V. et al. New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Mar. Biol. 164, 71 (2017).Article 

    Google Scholar 
    Eichhorst, T. E. Neritidae of the World: Volume 1 and 2 (ConchBooks, 2016).Bourguignat, M. J. R. Notice Prodromique sur les Mollusques Terrestres et Fluviatiles (Savy, Paris, 1885).
    Google Scholar 
    Bourguignat, M. J. R. Iconographie Malacologiques des Animaux Mollusques Fluviatiles du Lac Tanganika (Corbeil, Crété, 1888).Book 

    Google Scholar 
    West, K., Michel, E., Todd, J., Brown, D. & Clabaugh, J. The gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna (Special publications: Societas Internationalis Limnologiae – Int. Assoc. of Theoretical and Applied Limnology, 2003)Glaubrecht, M. Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosyst. Evol. 84, 71–122 (2008).Article 

    Google Scholar 
    Moore, J. E. S. The Tanganyika Problem (Burst and Blackett, London, 1903).Book 

    Google Scholar 
    Leloup, E. Exploration Hydrobiologique du Lac Tanganika (1946–1947) (Bruxelles, 1953).Brown, D. Freshwater Snails of Africa and their Medical Importance (Taylor and Francis, London, 1994).Book 

    Google Scholar 
    Germain, L. Mollusques du Lac Tanganyika et de ses environs. Extrait des resultats secientifiques des voyages en Afrique d’Edouard Foa. Bull. Mus. Natl. Hist. Nat. 14, 1–612 (1908).
    Google Scholar 
    Coulter, G. W. Lake Tanganyika and its Life (Oxford University Press, Oxford, 1991).
    Google Scholar 
    Bandel, K. Evolutionary history of East African fresh water gastropods interpreted from the fauna of Lake Tanganyika and Lake Malawi. Zent. Geol. Paläontol. Teil I, 233–292 (1997).
    Google Scholar 
    Pilsbry, H. A. & Bequaert, J. The aquatic mollusks of the Begian Congo. With a geographical and ecological account of Congo malacology. Bull. Am. Mus. Nat. Hist. 53, 69–602 (1927).
    Google Scholar 
    Lok, A. F. S. L., Ang, W. F., Ng, P. X., Ng, B. Y. Q. & Tan, S. K. Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore. NiS 4, 115–121 (2011).
    Google Scholar 
    Das, R. R. et al. Limited distribution of devil snail Faunus ater (Linnaeus, 1758) in tropical mangrove habitats of India. IJMS 47(10), 2002–2007 (2018).
    Google Scholar 
    Watson, D. C. & Norton, T. A. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88, 193–211 (1985).Article 

    Google Scholar 
    Imrie, D. W., McCrohan, C. R. & Hawkins, S. J. Feeding behaviour in Littorina littorea: A study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. Hydrobiologia 193, 191–198 (1990).Article 

    Google Scholar 
    Olsson, M., Svärdh, L. & Toth, G. B. Feeding behaviour in Littorina littorea: The red seaweed Osmundea ramosissima may not prevent trematode infection. Mar. Ecol. Prog. Ser. 348, 221–228 (2007).ADS 
    Article 

    Google Scholar 
    Lauzon-Guay, J. S. & Scheibling, R. E. Food-dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581–587 (2009).Article 

    Google Scholar 
    Bogan, A. E. & Hanneman, E. H. A carnivorous aquatic gastropod in the pet trade in North America: The next threat to freshwater gastropods?. Ellipsaria 15, 18–19 (2013).
    Google Scholar 
    Strong, E. E., Galindo, L. A. & Kantor, Y. I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 11(5), e3638 (2017).Article 

    Google Scholar 
    Himmelman, J. H. & Hamel, J. R. Diet behaviour and reproduction of the whelk Buccinum undatum in the northern Gulf of St Lawrence, eastern Canada. Mar. Biol. 116, 423–430 (1993).Article 

    Google Scholar 
    Barnes, H. & Powell, H. T. Onchidoris fusca (Müller); A predator of barnacles. J. Anim. Ecol. 23(2), 361–363 (1954).Article 

    Google Scholar 
    Waters, V. L. Food-preference of the nudibranch Aeolidia papillosa, and the effect of the defenses of the prey on predation. Veliger 15(3), 174–192 (1973).
    Google Scholar 
    Edmunds, M., Potts, G., Swinfen, R. & Waters, V. The feeding preferences of Aeolidia papillosa (L.) (Mollusca, Nudibranchia). J. Mar. Biol. Assoc. U. K. 54(4), 939–947 (1974).Article 

    Google Scholar 
    Edmunds, M. Advantages of food specificity in Aeolidia papillosa. J. Molluscan Stud. 49(1), 80–81 (1983).Article 

    Google Scholar 
    Sørensen, C. G., Rauch, C., Pola, M. & Malaquias, M. A. E. Integrative taxonomy reveals a cryptic species of the nudibranch genus Polycera (Polyceridae) in European waters. J. Mar. Biol. Assoc. U. K. 100(5), 733–752 (2020).Article 
    CAS 

    Google Scholar 
    Forrest, J. E. On the feeding habits and the morphology and mode of functioning of the alimentary canal in some littoral dorid nudibranchiate. Mollusca. Proc. Linn. Soc. Lond. 164(2), 225–235 (1953).Article 

    Google Scholar 
    Rose, R. M. Functional morphology of the buccal mass of the nudibranch Archidoris pseudoargus. J. Zool. 165(3), 317–336 (1971).Article 

    Google Scholar 
    Faivre, D. & Ukmar-Godec, T. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54(16), 4728–4747 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Towe, K. M. & Lowenstam, H. A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastruct. Res. 17(1–2), 1–13 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Distribution and composition of the matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Mar. Biol. 109, 281–286 (1991).CAS 
    Article 

    Google Scholar 
    Macey, D. J. & Brooker, L. R. The junction zone: Initial site of mineralization in radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). J. Morphol. 230, 33–42 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, A. P. et al. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3, 614–619 (1998).CAS 
    Article 

    Google Scholar 
    Brooker, L. R. & Macey, D. J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 16(1/2), 203–215 (2001).
    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., Webb, J. & van Bronswijk, W. A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. J. Biol. Inorg. Chem. 8(3), 256–262 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, J. A. et al. The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. J. Morphol. 270(5), 588–600 (2009).PubMed 
    Article 

    Google Scholar 
    Gordon, L. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194–198 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmanuel, S., Schuessler, J. A., Vinther, J., Matthews, A. & von Blanckenburg, F. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments. Biogeosciences 11(19), 5493–5502 (2014).ADS 
    Article 

    Google Scholar 
    Shaw, J. A., Macey, D. J. & Brooker, L. R. Radula synthesis by three species of iron mineralizing molluscs: Production rate and elemental demand. J. Mar. Biol. Assoc. U. K. 88(3), 597–601 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., van Bronswijk, W. & Webb, J. Multiple-front iron-mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Mar. Biol. 142, 447–454 (2003).CAS 
    Article 

    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., van Bronswijk, W. & Webb, J. Apatite mineralization in teeth of the chiton Acanthopleura echinata. Calcif. Tissue Int. 67, 408–415 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., Webb, J. & van Bronswijk, W. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder Chitonina. Venus 65(1–2), 71–80 (2006).
    Google Scholar 
    van der Wal, P. Structure and formation of the magnetite-bearing cap of the polyplacophoran tricuspid radula teeth. In Iron Biominerals (eds Frankel, R. B. & Blakemore, R. P.) 221–229 (Plenum Press, New York, 1990).
    Google Scholar 
    Saunders, M., Kong, C., Shaw, J. A. & Clode, P. L. Matrix-mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microsc. Microanal. 17, 220–225 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. Phosphatic hard tissues of marine invertebrates, their nature and mechanical function, and some fossil implications. Chem. Geol. 9, 153–166 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Macey, D. J., Webb, J. & Brooker, L. R. The structure and synthesis of biominerals in chiton teeth. Bull. Inst. Océanogr. (Monaco) 4(1), 191–197 (1994).
    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radula teeth of chitons. Science 227, 51–52 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Mollusca. In On biomineralization (eds Lowenstam, H. A. & Weiner, S.) 88–305 (Oxford University Press, Oxford, 1989).Chapter 

    Google Scholar 
    Evans, L. A. & Alvarez, R. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis. J. Biol. Inorg. Chem. 4(2), 166–170 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radula teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78–82 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, K. S., Webb, J., Macey, D. J. & Cohen, D. D. Compositional changes during biomineralization of the radula of the chiton Clavarizona hirtosa. J. Inorg. Biochem. 28(2–3), 337–345 (1986).CAS 
    Article 

    Google Scholar 
    Runham, N. W. The histochemistry of the radula of Patella vulgata. Q. J. Microsc. Sci. 102(3), 371–380 (1961).
    Google Scholar 
    Runham, N. W., Thronton, P. R., Shaw, D. A. & Wayte, R. C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Z. Zellforsch. 99, 608–626 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grime, G. et al. Biological applications of the Oxford scanning proton microprobe. Trends Biochem. Sci. 10(1), 6–10 (1985).CAS 
    Article 

    Google Scholar 
    St Pierre, T. G. et al. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata; Mössbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. B 228, 31–42 (1986).ADS 
    CAS 

    Google Scholar 
    Mann, S., Perry, C. C., Webb, J., Luke, B. & Williams, R. J. P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc. R. Soc. B 227(1247), 179–190 (1986).ADS 
    CAS 

    Google Scholar 
    van der Wal, P. Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). J. Ultrastruct. Mol. Struct. Res. 102(2), 147–161 (1989).Article 

    Google Scholar 
    Huang, C., Li, C.-W., Deng, M. & Chin, T. Magnetic properties of goethite in radulae of limpets. IEEE Trans. Magn. 28(5), 2409–2411 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Rinkevich, B. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantea. Mar. Biol. 117, 269–277 (1993).Article 

    Google Scholar 
    Liddiard, K. J., Hockridge, J. G., Macey, D. J., Webb, J. & van Bronswijk, W. Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Res. 24, 21–31 (2004).CAS 
    Article 

    Google Scholar 
    Cruz, R. & Farina, M. Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar. Biol. 147, 163–168 (2005).CAS 
    Article 

    Google Scholar 
    Davies, M. S., Proudlock, D. J. & Mistry, A. Metal concentrations in the radula of the common limpet, Patella vulgata L., from 10 sites in the UK. Ecotoxicology 14(4), 465–475 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, E. D., Weiner, S. & Addadi, L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hua, T.-E. & Li, C.-W. Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zool. Stud. 46(4), 379–388 (2007).CAS 

    Google Scholar 
    Krings, W. et al. In slow motion: Radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding. R. Soc. Open Sci. 6(7), 2054–5703 (2019).Article 
    CAS 

    Google Scholar 
    Mikovari, A. et al. Radula development in the giant key-hole limpet Megathura crenulate. J. Shellfish Res. 34(3), 893–902 (2015).Article 

    Google Scholar 
    Ukmar-Godec, T., Kapun, G., Zaslansky, P. & Faivre, D. The giant keyhole limpet radular teeth: A naturally-grown harvest machine. J. Struct. Biol. 192, 392–402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macey, D. J., Brooker, L. R. & Cameron, V. Mineralisation in the teeth of the gastropod mollusc Nerita atramentosa. Molluscan Res. 18(1), 33–41 (1997).Article 

    Google Scholar 
    Barkalova, V. O., Fedosov, A. E. & Kantor, Y. I. Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res. 36, 54–73 (2016).Article 

    Google Scholar 
    Ponte, G. & Modica, M. V. Salivary glands in predatory mollusks: Evolutionary considerations. Front. Physiol. 8, 580 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haszprunar, G. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367–441 (1988).Article 

    Google Scholar 
    Sasaki, T. Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). Univ. Tokyo Bull. 38, 1–224 (1998).
    Google Scholar 
    Simone, L. R. L. Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arq. Zool. 42(4), 161–323 (2011).Article 

    Google Scholar 
    Meirelles, C. A. & Matthews-Cascon, H. Relations between shell size and radula size in marine prosobranchs (Mollusca: Gastropoda). Thalassas 19(2), 45–53 (2003).
    Google Scholar 
    Peile, A. J. Some radula problems. J. Conchol. 20, 292–304 (1937).
    Google Scholar 
    Marcus, E. & Marcus, E. Mesogastropoden von der Küste São Paulos. Abh Math Naturwissenschaftlichen Kl Akad Wiss Lit Mainz 1963(1), 1–105 (1963).
    Google Scholar 
    Reid, D. G. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: The Genus LITTORARIA (British Museum Natural History, London, 1986).
    Google Scholar 
    Reid, D. G. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B 324, 1–110 (1989).ADS 
    Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littoraria species (Gastropoda: Littorinidae). J. Molluscan Stud. 65(3), 355–370 (1999).Article 

    Google Scholar 
    Fretter, V. & Graham, A. British Prosobranch Molluscs (The Ray Society, London, 1994).
    Google Scholar 
    Cabral, J. P. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival. Web Ecol. 7, 11–21 (2007).Article 

    Google Scholar 
    Nesson, M. H. Studies on radula tooth mineralization in the Polyplacophora, thesis, California Institute of Technology, Pasadena, USA (1969).Shaw, J. A., Brooker, L. R. & Macey, D. J. Radular tooth turnover in the chiton Acanthopleura hirtosa (Blainville, 1825) (Mollusca: Polyplacophora). Molluscan Res. 22, 93–99 (2002).Article 

    Google Scholar 
    Isarankura, K. & Runham, N. Studies on the replacement of the gastropod radula. Malacologia 7(1), 71–91 (1968).
    Google Scholar 
    Padilla, D. K., Dittman, D. E., Franz, J. & Sladek, R. Radular production rates in two species of Lacuna Turton (Gastropoda: Littorinidae). J. Molluscan Stud. 62(3), 275–280 (1996).Article 

    Google Scholar 
    Runham, N. W. Rate of replacement of the molluscan radula. Nature 194, 992–993 (1962).ADS 
    Article 

    Google Scholar 
    Mackenstedt, U. & Märkel, K. Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology 107(4), 209–239 (1987).Article 

    Google Scholar 
    Mischor, B. & Märkel, K. Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia). Zoomorphology 104, 42–66 (1984).Article 

    Google Scholar 
    Fujioka, Y. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (Küster) (Gastropoda: Muricidae). J. Exp. Mar. Biol. Ecol. 90(1), 43–54 (1985).Article 

    Google Scholar 
    Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progr. Mater. Sci. 88, 467–498 (2017).CAS 
    Article 

    Google Scholar 
    Vincent, J. F. V. The hardness of the tooth of Patella vulgata L. Radula: A Reappraisal. J. Molluscan Stud. 46, 129–133 (1980).
    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa. Philos. Trans. R. Soc. Lond. B 329, 87–96 (1990).ADS 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa. Acta Zool. 75(1), 75–79 (1994).Article 

    Google Scholar 
    Wealthall, R. J., Brooker, L. R., Macey, D. J. & Griffin, B. J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J. Morphol. 265, 165–175 (2005).PubMed 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proc. R. Soc. B 288, 20203173 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater. 135, 458–472 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Radwin, G. E. & Wells, H. W. Comparative radular morphology and feeding habits of muricid gastropods from the Gulf of Mexico. Bull. Mar. Sci. 18(1), 72–85 (1968).
    Google Scholar 
    Grünbaum, D. & Padilla, D. K. An integrated modeling approach to assessing linkages between environment, organism, and phenotypic plasticity. Integr. Comp. Biol. 54(2), 323–335 (2014).PubMed 
    Article 

    Google Scholar 
    Scheel, C., Gorb, S. N., Glaubrecht, M. & Krings, W. Not just scratching the surface: Distinct radular motion patterns in Mollusca. Biol. Open 9, bio055699 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. On the division of ctenobranchous gasteropodous Mollusca into larger groups and families. Ann. Mag. Nat. Hist. 11(2), 124–133 (1853).Article 

    Google Scholar 
    Hyman, L. H. Mollusca I. Aplacophora polyplacophora monoplacophora. Gastropoda, the coelomate bilateria. The invertebrates 6 (McGraw-Hill Book Company, New York, 1967).
    Google Scholar 
    Nixon, M. A nomenclature for the radula of the Cephalopoda (Mollusca) – living and fossil. J. Zool. 236, 73–81 (1995).Article 

    Google Scholar 
    Haszprunar, G. & Götting, K. J. Mollusca, Weichtiere. In Spezielle Zoologie Teil Einzeller und wirbellose Tiere (eds Westheide, W. & Rieger, R.) 305–362 (Springer, Berlin, Germany, 2007).
    Google Scholar 
    Lowenstam, H. A. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. Am. Bull. 73, 435–438 (1962).ADS 
    CAS 
    Article 

    Google Scholar 
    Kirschvink, J. L. & Lowenstam, H. A. Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. EPSL 44, 193–204 (1979).ADS 
    Article 

    Google Scholar 
    Han, Y. et al. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus. Bioelectromagnetics 32, 226–233 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemoto, M. et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci. Rep. 9, 856 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McCoey, J. M. et al. Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa. Small Methods 4, 1900754 (2020).CAS 
    Article 

    Google Scholar 
    Lowenstam, H. A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 56, 1373–1375 (1967).ADS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J. & Webb, J. Molluscan and other marine teeth. In Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) 5186–5189 (Elsevier Science Ltd., Oxford, 2001).Chapter 

    Google Scholar 
    Shaw, J. A. et al. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc. Microanal. 15(2), 154–165 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Creighton, T. E. Protein folding coupled to disulphide bond formation. Biol. Chem. 378(8), 731–744 (1997).CAS 
    PubMed 

    Google Scholar 
    Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Cryst. D 58, 872–874 (2002).Article 
    CAS 

    Google Scholar 
    Hayes, T. The influence of diet on local distributions of Cypraea. Pac. Sci. 37(1), 27–36 (1983).
    Google Scholar 
    Padilla, D. K. The importance of form: Differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. Exp. Mar. Biol. Ecol. 79(2), 105–127 (1984).Article 

    Google Scholar 
    Kesler, D. H., Jokinen, E. H. & Munns, W. R. Jr. Trophic preferences and feeding morphology of two pulmonate snail species from a small New England pond, USA. Can. J. Zool. 64, 2570–2575 (1986).Article 

    Google Scholar 
    Blinn, W., Truitt, R. E. & Pickart, A. Feeding ecology and radular morphology of the freshwater limpet Ferrissia fragilis. J. N. Am. Benthol. Soc. 8(3), 237–242 (1989).Article 

    Google Scholar 
    Hawkins, S. J. et al. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. J. Molluscan Stud. 55(2), 151–165 (1989).Article 

    Google Scholar 
    Franz, C. J. Feeding patterns of Fissurella species on Isla de Margarita, Venezuela: Use of radulae and food passage rates. J. Molluscan Stud. 56(1), 25–35 (1990).Article 

    Google Scholar 
    Thompson, R. C., Johnson, L. E. & Hawkins, S. J. A method for spatial and temporal assessment of gastropod grazing intensity in the field: The use of radula scrapes on wax surfaces. J. Exp. Mar. Biol. Ecol. 218(1), 63–76 (1997).Article 

    Google Scholar 
    Iken, K. Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J. Exp. Mar. Biol. Ecol. 236(1), 133–148 (1999).Article 

    Google Scholar 
    Forrest, R. E., Chapman, M. G. & Underwood, A. J. Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J. Exp. Mar. Biol. Ecol. 258(2), 155–171 (2001).PubMed 
    Article 

    Google Scholar 
    Dimitriadis, V. K. Structure and function of the digestive system in Stylommatophora. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 237–258 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Speiser, B. Food and feeding behaviour. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 259–288 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Sitnikova, T. et al. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682, 75–90 (2012).CAS 
    Article 

    Google Scholar 
    Bergmeier, F. S., Ostermair, L. & Jörger, K. M. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Curr. Biol. 31(13), R836–R837 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodheart, J. A., Bazinet, A. L., Valdés, Á., Collins, A. G. & Cummings, M. P. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol. Biol. 17, 221 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Padilla, D. K. Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90, 103–109 (1985).Article 

    Google Scholar 
    Padilla, D. K. Algal structural defenses: Form and calcification in resistance to tropical limpets. Ecology 70(4), 835–842 (1989).Article 

    Google Scholar 
    Wilson, A. B., Glaubrecht, M. & Meyer, A. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proc. R. Soc. B 271(1538), 529–536 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponder, W. & Lindberg, D. R. Phylogeny and Evolution of the Mollusca (University of California Press, Berkeley, California, 2008).Book 

    Google Scholar 
    Jörger, K. M. et al. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452–456 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M. & Schrödl, M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci. Rep. 10, 101 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364–367 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haszprunar, G. & Wanninger, A. Molluscs. Curr Biol. 22(13), R510-514 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. 94, 102–115 (2019).Article 

    Google Scholar 
    Irisarri, I., Uribe, J. E., Eernisse, D. J. & Zardoya, R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol. Biol. 20, 22 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    7000-year-old evidence of fruit tree cultivation in the Jordan Valley, Israel

    Garfinkel, Y., Ben-Shlomo, D. & Kuperman, T. Large-scale storage of grain surplus in the sixth millennium BC: The silos of Tel Tsaf. Antiquity 83, 309–325 (2009).Article 

    Google Scholar 
    Rosenberg, D., Garfinkel, Y. & Klimscha, F. Large-scale storage and storage symbolism in the Ancient Near East—a unique clay model of a silo from Tel Tsaf, Israel. Antiquity 91, 885–900 (2017).Article 

    Google Scholar 
    Ben-Shlomo, D., Hill, A. C. & Garfinkel, Y. Feasting between the revolutions: Evidence from chalcolithic Tel Tsaf, Israel. J. Mediterr. Archaeol. 22, 129–150 (2009).
    Google Scholar 
    Garfinkel, Y., Ben-Shlomo, D., Freikman, M. & Vered, A. Tel Tsaf: The 2004–2006 excavation seasons. Isr. Explor. J. 57, 1–33 (2007).
    Google Scholar 
    Freikman, M. & Garfinkel, Y. Sealings before cities: New evidence on the beginnings of administration in the Ancient Near East. Levant 49, 1–22 (2017).Article 

    Google Scholar 
    Freikman, M., Ben-Shlomo, D. & Garfinkel, Y. A. Stamped sealing from Middle Chalcolithic Tel Tsaf: Implications for the rise of administrative practices in the Levant. Levant 53, 1–12 (2021).Article 

    Google Scholar 
    Garfinkel, Y., Klimscha, F., Shalev, S. & Rosenberg, D. The beginning of metallurgy in the Southern Levant: A late 6th millennium calBC copper awl from Tel Tsaf, Israel. PLoS One 9, 1–6 (2014).
    Google Scholar 
    Graham, P. Archaeobotanical remains from late 6th/early 5th millennium BC Tel Tsaf, Israel. J. Archaeol. Sci. 43, 105–110 (2014).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. PNAS 106, 10966–10970 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: The archaeobotanical evidence from PPNA Dhra. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Palmisano, A. et al. Holocene landscape dynamics and long-term population trends in the Levant. Holocene 29, 708–727 (2019).ADS 
    Article 

    Google Scholar 
    Gophna, R. & Kislev, M. Finds at Tel-Saf (1977–1978). Rev. Bib. 86, 112–114 (1979).
    Google Scholar 
    Rosenberg, D. et al. Back to Tel Tsaf: A preliminary report on the 2013 season of the renewed project. J. Isr. Prehist. Soc. 44, 148–179 (2014).
    Google Scholar 
    Lipshchitz, N. Analysis of the botanical remains from Tel Tsaf. Tel Aviv 15, 52–54 (1988).Article 

    Google Scholar 
    Vita-Finzi, C. et al. Prehistoric economy in the Mount Carmel area of Palestine: Site catchment analysis. In Proceedings of the Prehistoric Society, Vol. 36 (Cambridge University Press, 1970) pp. 1–37.Prior, J. & Price-Williams, D. An investigation of climate change in the Holocene Epoch using archaeological charcoal from Swaziland, South Africa. J. Archaeol. Sci. 12, 457–475 (1985).Article 

    Google Scholar 
    Shackleton, C. M. & Prins, F. Charcoal analysis and the “Principle of Least Effort”—a conceptual model. J. Archaeol. Sci. 19, 631–637 (1992).Article 

    Google Scholar 
    Asouti, E. & Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 10, 11–18 (2005).Article 

    Google Scholar 
    Deckers, K. et al. Characteristics and changes in archaeology-related environmental data during the Third Millennium BC in Upper Mesopotamia. Collective comments to the data discussed during the Symposium. Publ. Inst. Français Études Anatoliennes 19, 573–580 (2007).
    Google Scholar 
    Marston, J. M. Modeling wood acquisition strategies from archaeological charcoal remains. J. Archaeol. Sci. 36, 2192–2200 (2009).Article 

    Google Scholar 
    Lev-Yadun, S. Wood remains from archaeological excavations: A review with a Near Eastern perspective. Isr. J. Earth Sci. 56, 139–162 (2007).CAS 
    Article 

    Google Scholar 
    Liphschitz, N. Timber in Ancient Israel Dendroarchaeology and Dendrochronology. Monograph Series of the Institute of Archaeology of Tel Aviv University 26 (Tel Aviv, 2007).Sitry, I. & Langgut, D. Wooden objects from the colt collection—Shivta. Michmanim 28, 31–46 (2019).
    Google Scholar 
    Srebro, H. & Soffer, T. The New Atlas of Israel: The National Atlas (Survey of Israel; The Hebrew University of Jerusalem, 2011).
    Google Scholar 
    Gophna, R. & Sadeh, S. Excavations at Tel Tsaf: An early Chalcolithic site in the Jordan Valley. Tel Aviv. 15–16, 3–36 (1988–89).Garfinkel, Y., Ben-Shlomo, D. & Freikman, M. Excavations at Tel Tsaf 2004–2007: Final Report, Volume 1 (Ariel University Press, 2020).
    Google Scholar 
    Rosenberg, D., Pinsky, S. & Klimscha, F. “The renewed research project at Tel Tsaf, Jordan Valley—2013–2019” in Hadashot Arkeologiyot—Excavations and Surveys in Israel, p. 133 (2021).Gopher, A. The Pottery Neolithic in the southern Levant—a second Neolithic revolution. In Village Communities of the Pottery Neolithic Period in the Menashe Hills, Israel (ed. Gopher, A.) 1525–1611 (Tel Aviv University, 2012).
    Google Scholar 
    Streit, K. & Garfinkel, Y. Tel Tsaf and the impact of the Ubaid Culture on the Southern Levant: Interpreting the radiocarbon evidence. Radiocarbon 57, 865–880 (2015).Article 

    Google Scholar 
    Streit, K. & Garfinkel, Y. A specialized ceramic assemblage for water pulling: The Middle Chalcolithic well of Tel Tsaf, Israel. BASOR 374, 61–73 (2015).
    Google Scholar 
    Garfinkel, Y. Proto-historic courtyard buildings in the southern Levant. In Neolithic and Chalcolithic Archaeology in Eurasia: Building Techniques and Spatial Organization (ed. Gheorghiu, D.) 35–41 (BAR International Series, 2010).
    Google Scholar 
    Zohary, M. Geobotanical Foundations of the Middle East (Gustav Gischer Verlag, 1973).
    Google Scholar 
    Bar-Matthews, M. & Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21, 163–171 (2011).ADS 
    Article 

    Google Scholar 
    Fahn, A., Werker, E. & Baas, P. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions (The Israel Academy of Sciences and Humanities, 1986).
    Google Scholar 
    Schweingruber, F. H. Anatomy of European Woods (Verlag Paul Haupt, 1990).
    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Zohary, M. Plant Life of Palestine: Israel and Jordan (Ronald Press Co, 1962).
    Google Scholar 
    Asouti, E. & Hather, J. Charcoal analysis and the reconstruction of ancient woodland vegetation in the Konya Basin, south-central Anatolia, Turkey: Results from the Neolithic site of Çatalhöyük East. Veg. Hist. Archaeobot. 10, 23–32 (2001).Article 

    Google Scholar 
    Thery-Parisot, I., Chabal, L. & Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclim. Palaeoecol. 291, 142–153 (2010).ADS 
    Article 

    Google Scholar 
    Langgut, D. et al. The earliest near-eastern wooden spinning implements. Antiquity 90, 973–990 (2016).Article 

    Google Scholar 
    Langgut, D., Tepper, Y., Benzaquen, M., Erickson-Gini, T. & Bar-Oz, G. Environment and horticulture in the Byzantine Negev Desert, Israel: Sustainability, prosperity and enigmatic decline. Quat. Int. 593, 160–177 (2021).Article 

    Google Scholar 
    Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).Book 

    Google Scholar 
    Weiss, E. Beginnings of fruit growing in the Old World two generations later. Isr. J. Plant Sci. 62, 75–85 (2015).Article 

    Google Scholar 
    Benzaquen, M., Finkelstein, I. & Langgut, D. Vegetation history and human Impact on the environs of Tel Megiddo in the Bronze and Iron Ages (ca 3,500–500 BCE): A dendroarchaeological analysis. Tel Aviv. 49, 1–23 (2019).
    Google Scholar 
    Carrión, Y., Ntinou, M. & Bada, E. Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).ADS 
    Article 

    Google Scholar 
    Lavee, S. & Zohary, D. The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr. J. Plant Sci. 59, 3–13 (2011).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 602–922 (2019).Article 

    Google Scholar 
    Neef, R. Introduction, development and environmental implications of olive culture: The evidence from Jordan. In Man’s Role in the Shaping of the Eastern Mediterranean Landscape (eds Bottema, S. et al.) 295–306 (Rotterdam, 1990).
    Google Scholar 
    Meadows, J. Olive domestication at Teleilat Ghassul. In Archaeology of the Near East: An Australian Perspective (eds Hopkins, L. & Parker, A.) 13–18 (University of Sydney, 2001).
    Google Scholar 
    Dighton, A., Fairbairn, A., Bourke, S., Faith, J. T. & Habgood, P. Bronze Age olive domestication in the north Jordan valley: New morphological evidence for regional complexity in early arboricultural practice from Pella in Jordan. Veg. Hist. Archaeobot. 26, 403–413 (2017).Article 

    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Coastal paleoenvironments and prehistory of the Submerged Pottery Neolithic Settlement of Kfar Samir (Israel). Paléorient 44, 113–132 (2018).
    Google Scholar 
    Namdar, D., Amrani, A., Getzov, N. & Milevski, I. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, northern Israel. Isr. J. Plant Sci. 62, 65–74 (2015).Article 

    Google Scholar 
    Galili, E. et al. Early production of Table Olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Epstein, C. Oil production in the Golan Heights during the Chalcolithic period. Tel Aviv. 20, 133–146 (1993).Article 

    Google Scholar 
    Eitam, D. Between the [olive] rows, oil will be produced, presses will be trod…. (Job 24, 11). In La Production du Vin et l’Huile en Mediterranée:[Actes du Symposium International, (Aix-en-Provence et Toulon, 20-22 Novembre 1991 (Bulletin de correspondence hellénique, Supplementary 26) (eds Amouretti, M. C. & Brun, J. P.) 65–90 (Ecole Francaise d’Athènes, 1993).
    Google Scholar 
    Schiebel, V. Vegetation and Climate History of the Southern Levant During the Last 30000 Years Based on Palynological Investigation (University of Bonn, 2013) PhD Dissertation.Litt, T., Ohlwein, C., Neumann, F. H., Hense, A. & Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).ADS 
    Article 

    Google Scholar 
    Van Zeist, W., Baruch, U. & Bottema, S. Holocene palaeoecology of the Hula area, Northeastern Israel. In A Timeless Vale, Archaeological and Related Essays on the Jordan Valley (eds Kaptijn, K. & Petit, L. P.) 29–64 (Leiden University Press, 2009).
    Google Scholar 
    Neumann, F., Schölzel, C., Litt, T., Hense, A. & Stein, M. Holocene vegetation and climate history of the northern Golan heights (Near East). Veg. Hist. Archaeobot. 16, 329–346 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).PubMed 
    Article 

    Google Scholar 
    Moriondo, M. et al. Olive trees as bio-indicators of climate evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 22, 818–833 (2013).Article 

    Google Scholar 
    Langgut, D., Cheddadi, R. & Sharon, G. Climate and environmental reconstruction of the Epipaleolithic Mediterranean Levant (22.0-11.9 ka cal. BP). Quat. Sci. Rev. 270, 107170 (2021).Article 

    Google Scholar 
    Zinger, A. Olive Cultivation 145th edn. (Israel Ministry of Agriculture, 1995) (in Hebrew).
    Google Scholar 
    Miller, N. F. Sweeter than wine? The use of the grape in early western Asia. Antiquity 82, 937–946 (2008).Article 

    Google Scholar 
    Fuller, D. Q. & Stevens, C. J. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Veg. Hist. Archaeobot. 28, 263–282 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lev-Yadun, S. The common fig (Ficus carica) remains in the archaeological record and its domestication processes. In The Fig: Advances in Research and Sustainable Production (eds Flaishman, M. A. & Aksoy, U.) 11–25 (CABI, 2022).
    Google Scholar 
    Flaishman, M., Rodov, V. & Stover, E. The fig: Botany, horticulture and breeding. Hortic. Rev. 34, 113–196 (2008).CAS 
    Article 

    Google Scholar 
    Langgut, D., Lev-Yadun, S. & Finkelstein, I. The Impact of olive orchard abandonment and rehabilitation on pollen signature: An experimental approach to evaluating fossil pollen data. Ethnoarchaeology 6, 121–135 (2014).Article 

    Google Scholar 
    Hobbs, J. J. Bedouin Life in the Egyptian Wilderness (University of Texas Press, 1989).
    Google Scholar 
    Andersen, G. L. et al. Traditional nomadic tending of trees in the Red Sea Hills. J. Arid Environ. 106, 36–44 (2014).ADS 
    Article 

    Google Scholar 
    Mor, E. Reconstructing Tel Bet Yerah’s Natural and Anthropogenic Environment During the Early Bronze Age Through Wood Remains (Tel Aviv University, 2022) MA Thesis, in Hebrew with English abstract.Kislev, M. E., Hartman, A. & Bar-Yosef, O. Early domesticated fig in the Jordan Velley. Science 312, 1372–1374 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lev-Yadun, S., Neeman, G., Abbo, S. & Flaishman, M. A. Comment on “Early Domesticated Fig in the Jordan Valley”.. Science 314, 1683a (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Denham, T. Early fig domestication, or gathering of wild parthenocarpic figs?. Antiquity 81, 457–461 (2007).Article 

    Google Scholar 
    Abbo, S., Gopher, A. & Lev-Yadun, S. Fruit domestication in the near east. Plant Breed. Rev. 39, 325–377 (2015).
    Google Scholar 
    Gopher, A., Lev-Yadun, S. & Abbo, S. Breaking Ground. Plant Domestication in the Neolithic Levant: The “Core-Area—One-Event” Model Emery and Claire Yass Publications in Archaeology (Tel Aviv University, Tel Aviv, The Institute of Archaeology, 2021).
    Google Scholar 
    Shennan, S. Property and wealth inequality as cultural niche construction. Philos. Trans. R. Soc. B. Biol. Sci. 366, 918–926 (2011).Article 

    Google Scholar 
    Twiss, K. The archaeology of food and social diversity. J. Archaeol. Res. 20, 357–395 (2012).Article 

    Google Scholar 
    Bowles, S. & Choi, J. K. Coevolution of farming and private property during the early Holocene. Proc. Natl. Acad. Sci. 110, 8830–8835 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).Article 

    Google Scholar 
    Khalil, E. L. Symbolic products: Prestige, pride and identity goods. Theory Decis. 49, 53–77 (2000).MATH 
    Article 

    Google Scholar 
    Nelissen, R. M. & Meijers, M. H. Social benefits of luxury brands as costly signals of wealth and status. Evol. Hum. Behav. 32, 343–355 (2011).Article 

    Google Scholar 
    Plourde, A. M. The origins of prestige goods as honest signals of skill and knowledge. Hum. Nat. 19, 374–388 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, B. The proof is in the pudding: Feasting and the origins of domestication. Curr. Anthropolac. 50, 597–601 (2009).Article 

    Google Scholar 
    Yahalom-Mack, N. et al. The earliest lead object in the levant. PLoS One 10, e0142948 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mayshar, J., Moav, M., Neeman, Z. & Pascali, L. The origin of the state: Land productivity or appropriability. J. Polit. Econ. 130, 1091–1144 (2022).Article 

    Google Scholar 
    Langgut, D. & Sasi, A. The emergence of fruit tree horticulture in Chalcolithic southern Levant. In (Ben-Yosef, E., Jones, I. Eds) And in Length of Days Understanding” (Job 12:12)—Essays on Archaeology in the 21st Century in Honor of Thomas E. Levy (In Press). More

  • in

    A common sunscreen ingredient turns toxic in the sea — anemones suggest why

    Sea anemones turn oxybenzone into a light-activated agent that can bleach and kill corals.Credit: Georgette Douwma/Getty

    A common but controversial sunscreen ingredient that is thought to harm corals might do so because of a chemical reaction that causes it to damage cells in the presence of ultraviolet light. Researchers have discovered that sea anemones, which are similar to corals, make the molecule oxybenzone water-soluble by tacking a sugar onto it. This inadvertently turns oxybenzone into a molecule that — instead of blocking UV light — is activated by sunlight to produce free radicals that can bleach and kill corals. “This metabolic pathway that is meant to detoxify is actually making a toxin,” says Djordje Vuckovic, an environmental engineer at Stanford University in California, who was part of the research team. The animals “convert a sunscreen into something that’s essentially the opposite of a sunscreen”.Oxybenzone is the sun-blocking agent in many suncreams. Its chemical structure causes it to absorb UV rays, preventing damage to skin cells. But it has attracted controversy in recent years after studies reported that it can damage coral DNA, interfere with their endocrine systems and cause deformities in their larvae2. These concerns have led to some beaches in Hawaii, Palau and the US Virgin Islands, banning oxybenzone-containing sunscreens. Last year, the US National Academies of Sciences, Engineering, and Medicine convened a committee to review the science on sunscreen chemicals in aquatic ecosystems; its report is expected in the next few months.The latest study, published on 5 May in Science1, highlights that there has been little research into the potentially toxic effects of the by-products of some substances in sunscreens, says Brett Sallach, an environmental scientist at the University of York, UK. “It’s important to track not just the parent compound, but these transformed compounds that can be toxic,” he says. “From a regulatory standpoint, we have very little understanding of what transformed products are out there and their effects on the environment.”But other factors also threaten the health of coral reefs; these include climate change, ocean acidification, coastal pollution and overfishing that depletes key members of reef ecosystems. The study does not show where oxybenzone ranks in the list.Simulated seaTo understand oxybenzone’s effects, Vuckovic, environmental engineer William Mitch at Stanford and their colleagues turned to sea anemones, which are closely related to corals, and similarly harbour symbiotic algae that give them colour.The researchers exposed anemones with and without the algae to oxybenzone in artificial seawater, and illuminated them with light — including the UV spectrum — that mimicked the 24-hour sunlight cycle. All the animals exposed to both the chemical and sunlight died within 17 days. But those exposed to sunlight without oxybenzone or to oxybenzone without UV light lived.Oxybenzone alone did not produce dangerous reactive molecules when exposed to sunlight, as had been expected, so the researchers thought that the molecule might be metabolized in some way. When they analysed anemone tissues, they found that the chemical bound to sugars accumulated in them, where it triggered the formation of oxygen-based free radicals that are lethal to corals. “Understanding this mechanism could help identify sunscreen molecules without this effect,” Mitch says.The sugar-bound form of oxybenzone amassed at higher levels in the symbiotic algae than in the anemones’ own cells. Sea anemones lacking algae died around a week after exposure to oxybenzone and sunlight, compared with 17 days for those with algae. That suggests the algae protected the animals from oxybenzone’s harmful effects.Corals that have been subject to environmental stressors such as changing temperatures often become bleached, losing their symbiotic algae. “If they’re weaker in this state, rising sea water temperature or ocean acidification might make them more susceptible to these local, anthropogenic contaminants,” Mitch says.Greater dangerIt’s not clear how closely these laboratory-based studies mimic the reality of reef ecosystems. The concentration of oxybenzone at a coral reef can vary widely, depending on factors such as tourist activity and water conditions. Sallach points out that the concentrations used in the study are more like “worst-case exposure” than normal environmental conditions.The study lacks “ecological realism”, agrees Terry Hughes, a marine biologist at James Cook University in Townsville, Australia. Coral-bleaching events on Australia’s Great Barrier Reef, for example, have been linked more closely to trends in water temperature than to shifts in tourist activity. “Mass bleaching happens regardless of where the tourists are,” Hughes says. “Even the most remote, most pristine reefs are bleaching because water temperatures are killing them.”Hughes emphasizes that the greatest threats to reefs remain rising temperatures, coastal pollution and overfishing. Changing sunscreens might not do much to protect coral reefs, Hughes says. “It’s ironic that people will change their sunscreens and fly from New York to Miami to go to the beach,” he says. “Most tourists are happy to use a different brand of sunscreen, but not to fly less and reduce carbon emissions.” More

  • in

    Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean

    Mackintosh NA. The southern stocks of whalebone whales 1942.Perrin, W. F. & Wursig, B. Thewissen JGM “Hans” (Academic Press, 2009).
    Google Scholar 
    Rizzo, L. Y. & Schulte, D. A review of humpback whales’ migration patterns worldwide and their consequences to gene flow. J. Mar. Biol. Assoc. U.K. 89, 995–1002. https://doi.org/10.1017/S0025315409000332 (2009).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Clapham, P. J. et al. Seasonal occurrence and annual return of humpback whales, Megaptera novaeangliae, in the southern Gulf of Maine. Can J Zool 71, 440–443. https://doi.org/10.1139/z93-063 (1993).Article 

    Google Scholar 
    Dawbin, W. H. The seasonal migratory cycle of humpback whales. Whales Dolphins Porpoises 4, 145–70 (1966).Article 

    Google Scholar 
    Horton, T. W., Zerbini, A. N., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00414 (2020).Article 

    Google Scholar 
    Larsen, A. H., Sigurjónsson, J., Oien, N., Vikingsson, G. & Palsbøll, P. Populations genetic analysis of nuclear and mitochondrial loci in skin biopsies collected from central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): Population identity and migratory destinations. Proc. Biol. Sci. 263, 1611–1618. https://doi.org/10.1098/rspb.1996.0236 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Palsbøll, P. J. et al. Genetic tagging of humpback whales. Nature 388, 767–9. https://doi.org/10.1038/42005 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22. https://doi.org/10.2989/18142321003714203 (2010).Article 

    Google Scholar 
    Best, B. P., Sekiguchi, K. & Findlay, P. K. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Mar. Ecol. Prog. Ser. 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS 
    Article 

    Google Scholar 
    Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234. https://doi.org/10.1098/rspb.1995.0034 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Christensen, I., Haug, T. & Øien, N. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355. https://doi.org/10.1093/icesjms/49.3.341 (1992).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?1. Mar. Mamm. Sci. 15, 1228–1245. https://doi.org/10.1111/j.1748-7692.1999.tb00887.x (1999).Article 

    Google Scholar 
    Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Druskat, A., Ghosh, R., Castrillon, J. & Bengtson Nash, S. M. Sex ratios of migrating southern hemisphere humpback whales: A new sentinel parameter of ecosystem health. Mar. Environ. Res. 151, 104749. https://doi.org/10.1016/j.marenvres.2019.104749 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19. https://doi.org/10.3354/meps09831 (2012).ADS 
    Article 

    Google Scholar 
    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333. https://doi.org/10.1038/s41598-018-30748-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S. & Zerbini, A. N. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2, 150489. https://doi.org/10.1098/rsos.150489 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Riekkola, L., Andrews-Goff, V., Friedlaender, A., Constantine, R. & Zerbini, A. N. Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean. J. Exp. Mar. Biol. Ecol. 517, 1–12. https://doi.org/10.1016/j.jembe.2019.05.008 (2019).Article 

    Google Scholar 
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224. https://doi.org/10.1111/gcb.13171 (2016).ADS 
    Article 

    Google Scholar 
    Nash, S. M. B. et al. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Change Biol. 24, 1500–1510. https://doi.org/10.1111/gcb.14035 (2018).ADS 
    Article 

    Google Scholar 
    Cartwright, R. et al. Fluctuating reproductive rates in Hawaii’s humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. R. Soc. Open Sci. 6, 181463. https://doi.org/10.1098/rsos.181463 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880. https://doi.org/10.1890/04-1852 (2005).Article 

    Google Scholar 
    Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E. & Fryxell, J. M. Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85, 2436–2445. https://doi.org/10.1890/03-0269 (2004).Article 

    Google Scholar 
    Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State–space models of individual animal movement. Trends Ecol. Evol. 23, 87–94. https://doi.org/10.1016/j.tree.2007.10.009 (2008).Article 
    PubMed 

    Google Scholar 
    Jonsen, I. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci. Rep. https://doi.org/10.1038/srep20625 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills Flemming, J., Jonsen, I. D., Myers, R. A. & Field, C. A. Hierarchical state-space estimation of leatherback turtle navigation ability. PLoS ONE 5, e14245. https://doi.org/10.1371/journal.pone.0014245 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).Article 

    Google Scholar 
    Ward, E., Zerbini, A. N., Kinas, P. G., Engel, M. H. & Andriolo, A. Estimates of population growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J Cetacean Res. Manag. 3, 145–149 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227. https://doi.org/10.3354/meps12393 (2017).ADS 
    Article 

    Google Scholar 
    Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).Article 

    Google Scholar 
    Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).Article 

    Google Scholar 
    Engel, M. & Martin, A. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964–969 (2009).Article 

    Google Scholar 
    Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 5, 1253–1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).CAS 
    Article 

    Google Scholar 
    Stevick, P., De Godoy, L. P., McOsker, M., Engel, M. & Allen, J. A note on the movement of a humpback whale from Abrolhos Bank, Brazil to South Georgia. J. Cetac. Res. Manag. 8, 297 (2006).
    Google Scholar 
    Zerbini, A. N. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–8 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295–304. https://doi.org/10.3354/meps313295 (2006).ADS 
    Article 

    Google Scholar 
    de Castro, F. R. et al. Are marine protected areas and priority areas for conservation representative of humpback whale breeding habitats in the western South Atlantic?. Biol. Conserv. 179, 106–114. https://doi.org/10.1016/j.biocon.2014.09.013 (2014).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Kleivane, L., OIen, N., Laidre, K. L. & Jensen, M. V. A new technique for deploying Sa℡lite transmitters on baleen whales: Tracking a blue whale (balaenoptera Musculus) in the North Atlantic. Mar. Mamm. Sci. 17, 949–54. https://doi.org/10.1111/j.1748-7692.2001.tb01309.x (2011).Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. From greenland to Canada in ten days: Tracks of bowhead whales, Balaena mysticetus, across Baffin Bay. Arctic 56, 21–31 (2003).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Laidre, K. L., Jensen, M. V., Dueck, L. & Postma, L. D. Dissolving stock discreteness with Sa℡lite tracking: Bowhead whales in Baffin Bay. Mar. Mamm. Sci. 22, 34–45. https://doi.org/10.1111/j.1748-7692.2006.00004.x (2006).Article 

    Google Scholar 
    Zerbini, A. N., Fernandez, A. A., Andriolo, A., Clapham, P. J., Crespo, E., Gonzalez, R., et al. Satellite tracking of southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. Scientific Committee of the International Whaling Commission SC67b, Bled, Slovenia (2018).Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshwater Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article 

    Google Scholar 
    Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mamm. Sci. 24, 315–325. https://doi.org/10.1111/j.1748-7692.2007.00180.x (2008).Article 

    Google Scholar 
    Lambertsen, R. H. A biopsy system for large whales and its use for cytogenetics. J. Mamm. 68, 443–445. https://doi.org/10.2307/1381495 (1987).Article 

    Google Scholar 
    Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).Chin, T. M., Milliff, R. F. & Large, W. G. Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol. 15, 741–763. https://doi.org/10.1175/1520-0426(1998)015%3c0741:BSHWSS%3e2.0.CO;2 (1998).ADS 
    Article 

    Google Scholar 
    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the antarctic circumpolar current. Deep Sea Res. Part I 42, 641–673. https://doi.org/10.1016/0967-0637(95)00021-W (1995).Article 

    Google Scholar 
    Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215. https://doi.org/10.1890/07-1032.1 (2008).Article 
    PubMed 

    Google Scholar 
    Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClintock, B. T., London, J. M., Cameron, M. F. & Boveng, P. L. Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol. Evol. 6, 266–277. https://doi.org/10.1111/2041-210X.12311 (2015).Article 

    Google Scholar 
    Akaike, H. Theory and an Extension of the Maximum Likelihood Principal. International Symposium on Information Theory (Akademiai Kaiado, 1973).MATH 

    Google Scholar 
    Auger-Méthé, M. et al. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Mar. Ecol. Prog. Ser. 565, 237–249. https://doi.org/10.3354/meps12019 (2017).ADS 
    Article 

    Google Scholar 
    Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566. https://doi.org/10.1002/ecy.2566 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: Automatic differentiation and laplace approximation. J. Stat. Softw. https://doi.org/10.18637/jss.v070.i05 (2016).Article 

    Google Scholar 
    Marcondes, M. C. C. et al. The Southern Ocean Exchange: Porous boundaries between humpback whale breeding populations in southern polar waters. Sci. Rep. 11, 23618. https://doi.org/10.1038/s41598-021-02612-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M. & Garrigue, C. Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. Sci. Rep. 10, 4871. https://doi.org/10.1038/s41598-020-61771-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495. https://doi.org/10.1111/j.1748-7692.2007.02414.x (2007).Article 

    Google Scholar 
    Gabriele, C. M. et al. Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Can. J. Zool. 79, 589–600. https://doi.org/10.1139/z01-014 (2001).Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J., Atkinson, A. & Thorpe, S. E. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment. Mar. Ecol. Progress Ser. 368, 75–91 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J. & Ward, P. SeaWiFS in the southern ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia. Deep Sea Res. Part II 51, 99–116. https://doi.org/10.1016/j.dsr2.2003.04.002 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23. https://doi.org/10.3354/meps07498 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Murphy, E. J. et al. Southern antarctic circumpolar current front to the northeast of South Georgia: Horizontal advection of krill and its role in the ecosystem. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001522 (2004).Article 

    Google Scholar 
    Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36. https://doi.org/10.4319/lo.2014.59.1.0017 (2014).ADS 
    Article 

    Google Scholar 
    Trathan, P. N. et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fish. Oceanogr. 12, 569–583. https://doi.org/10.1046/j.1365-2419.2003.00268.x (2003).Article 

    Google Scholar 
    Venables, H. J. & Meredith, M. P. Theory and observations of Ekman flux in the chlorophyll distribution downstream of South Georgia. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041371 (2009).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968. https://doi.org/10.1007/s00300-010-0774-3 (2010).Article 

    Google Scholar 
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: A review of large-scale links in a krill centred food web. Philos. Trans. R. Soc. B Biol. Sci. 362, 113–48. https://doi.org/10.1098/rstb.2006.1957 (2007).CAS 
    Article 

    Google Scholar 
    Thorpe, S. E., Murphy, E. J. & Watkins, J. L. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: Investigating the roles of ocean and sea ice transport. Deep Sea Res. Part I 54, 792–810. https://doi.org/10.1016/j.dsr.2007.01.008 (2007).Article 

    Google Scholar 
    Mori, M. et al. Modelling dispersal of juvenile krill released from the Antarctic ice edge: Ecosystem implications of ocean movement. J. Mar. Syst. 189, 50–61. https://doi.org/10.1016/j.jmarsys.2018.09.005 (2019).Article 

    Google Scholar 
    Kohlbach, D. et al. Ice algae-produced carbon is critical for overwintering of antarctic krill Euphausia superba. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00310 (2017).Article 

    Google Scholar 
    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861. https://doi.org/10.1038/s41559-017-0368-3 (2017).Article 
    PubMed 

    Google Scholar 
    Meyer, B. et al. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614. https://doi.org/10.4319/lo.2009.54.5.1595 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: A model study. Biogeosciences 6, 2861–2878. https://doi.org/10.5194/bg-6-2861-2009 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Brierley, A. S. et al. Antarctic krill under Sea Ice: Elevated abundance in a narrow band just south of Ice Edge. Science 295, 1890–1892. https://doi.org/10.1126/science.1068574 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidt, K., Atkinson, A., Venables, H. J. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms. Deep Sea Res. Part II 59–60, 159–172. https://doi.org/10.1016/j.dsr2.2011.05.002 (2012).ADS 
    Article 

    Google Scholar 
    Walsh, J., Reiss, C. S. & Watters, G. M. Flexibility in Antarctic krill Euphausia superba decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula. Mar. Ecol. Prog. Ser. 642, 1–19. https://doi.org/10.3354/meps13325 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318. https://doi.org/10.1038/ncomms5318 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS 
    Article 

    Google Scholar 
    Murase, H., Matsuoka, K., Ichii, T. & Nishiwaki, S. Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35° E–145° W). Polar Biol 25, 135–145. https://doi.org/10.1007/s003000100321 (2002).Article 

    Google Scholar 
    Reisinger, R. R. et al. Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern Ocean humpback whales. Remote Sens. 13, 2074. https://doi.org/10.3390/rs13112074 (2021).ADS 
    Article 

    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Whitehouse, M. J. et al. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels. Deep Sea Res. Part I 55, 1218–1228. https://doi.org/10.1016/j.dsr.2008.06.002 (2008).Article 

    Google Scholar 
    Dawson, H. R. S., Strutton, P. G. & Gaube, P. The unusual surface chlorophyll signatures of southern Ocean Eddies. J. Geophys. Res. Oceans 123, 6053–6069. https://doi.org/10.1029/2017JC013628 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D. & Holm-Hansen, O. Eddies enhance biological production in the weddell-scotia confluence of the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030430 (2007).Article 

    Google Scholar 
    Fach, B. A., Hofmann, E. E. & Murphy, E. J. Modeling studies of antarctic krill Euphausia superba survival during transport across the Scotia Sea. Mar. Ecol. Prog. Ser. 231, 187–203. https://doi.org/10.3354/meps231187 (2002).ADS 
    Article 

    Google Scholar 
    Ichii, T., Katayama, K., Obitsu, N., Ishii, H. & Naganobu, M. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: Relationship to environmental parameters. Deep Sea Res. Part I 45, 1235–1262. https://doi.org/10.1016/S0967-0637(98)00011-9 (1998).Article 

    Google Scholar 
    Witek, Z., Kalinowski, J. & Grelowski, A. Formation of Antarctic Krill Concentrations in Relation to Hydrodynamic Processes and Social Behaviour. In Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 237–44 (Springer, 1988). https://doi.org/10.1007/978-3-642-73724-4_21.Chapter 

    Google Scholar 
    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022 (2009).Article 

    Google Scholar 
    Carranza, M. M. & Gille, S. T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J. Geophys. Res. Oceans 120, 304–323. https://doi.org/10.1002/2014JC010203 (2015).ADS 
    Article 

    Google Scholar 
    Luis, A. J. & Pandey, P. C. Seasonal variability of QSCAT-derived wind stress over the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2003GL019355 (2004).Article 

    Google Scholar 
    Fiechter, J. & Moore, A. M. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005140 (2009).Article 

    Google Scholar 
    Cimino, M. A. et al. Essential krill species habitat resolved by seasonal upwelling and ocean circulation models within the large marine ecosystem of the California Current System. Ecography 43, 1536–1549. https://doi.org/10.1111/ecog.05204 (2020).Article 

    Google Scholar 
    Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14. https://doi.org/10.1038/s41467-018-07865-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. PNAS 116, 14414–14423. https://doi.org/10.1073/pnas.1906556116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegel, V. Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol. 35, 1151–1177. https://doi.org/10.1007/s00300-012-1162-y (2012).Article 

    Google Scholar 
    Francis, D., Eayrs, C., Cuesta, J. & Holland, D. Polar cyclones at the origin of the reoccurrence of the maud rise polynya in austral winter 2017. J. Geophys. Res. Atmos. 124, 5251–5267. https://doi.org/10.1029/2019JD030618 (2019).ADS 
    Article 

    Google Scholar 
    Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the maud rise seamount. Geophys. Res. Lett. 46, 4320–4329. https://doi.org/10.1029/2018GL081482 (2019).ADS 
    Article 

    Google Scholar 
    Brandt, A. et al. Maud rise–a snapshot through the water column. Deep Sea Res. Part II 58, 1962–1982. https://doi.org/10.1016/j.dsr2.2011.01.008 (2011).ADS 
    Article 

    Google Scholar 
    Plötz, J., Weidel, H. & Bersch, M. Winter aggregations of marine mammals and birds in the north-eastern Weddell Sea pack ice. Polar Biol 11, 305–309. https://doi.org/10.1007/BF00239022 (1991).Article 

    Google Scholar 
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238. https://doi.org/10.1038/nclimate1686 (2013).ADS 
    Article 

    Google Scholar 
    Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 18, S157–S165. https://doi.org/10.1890/06-0571.1 (2008).Article 
    PubMed 

    Google Scholar  More