More stories

  • in

    Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns

    Research model and softwareCLIMEX modelFAW growth and development are primarily related to climate conditions, especially temperature patterns17. The current study used CLIMEX (version 4)42, a semi-mechanistic niche modeling platform, to project FAW distribution in relation to climate. The model parameters that describe the species’ response to climate were overlaid onto FAW occurrence data and climate data to project the species’ potential global distribution. Briefly, the annual growth index (GI) was used to describe the potential for FAW population growth during favorable climatic conditions, while stress indices (SI: cold, wet, hot, and dry) and interaction stresses (SX: hot-dry, hot-wet, cold-dry, and cold-wet) (Table 1) were applied to describe the probability that FAW populations could survive unfavorable conditions. The Ecoclimatic index (EI) was derived from a combination of GI, SI, and SX indices to provide an overall annual index of climatic suitability on a scale of 0–10042. An EI value of 0 indicates that the location is not suitable for the long-term survival of the species, whereas an EI value of 100 indicates maximum climatic suitability comparable to conditions in incubators. EI values of more than 30 indicate the optimal climate for a species. In this study, the climatic suitability was classified into four arbitrary categories; unsuitable for EI = 0, marginal for 0  More

  • in

    Do the total mercury concentrations detected in fish from Czech ponds represent a risk for consumers?

    1.Stein, E. D., Cohen, Y. & Winer, A. M. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26, 1–43 (1996).CAS 
    Article 

    Google Scholar 
    2.Ciccarelli, C. et al. Assessment of sampling methods about level of mercury in fish. Ital. J. Food Saf. 8, 153–157 (2019).
    Google Scholar 
    3.Ditri, F. M. Mercury contamination: What we have learned since Minamata. Environ. Monit. Assess. 19, 165–182 (1991).CAS 
    Article 

    Google Scholar 
    4.Monteiro, L. R. & Furness, R. W. Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut. 80, 851–870 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    5.Pitter, P. In Hydrochemie 5th edn (ed. Pitter, P.) (VSCHT Praha, 2015).
    Google Scholar 
    6.Hylander, L. D. & Meili, M. 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304, 13–27 (2003).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Pacyna, E. G. et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Pai, P., Niemi, D. & Powers, B. A North American inventory of anthropogenic mercury emissions. Fuel Process. Technol. 65, 101–115 (2000).Article 

    Google Scholar 
    9.Wang, Q. R., Kim, D., Dionysiou, D. D., Sorial, G. A. & Timberlake, D. Sources and remediation for mercury contamination in aquatic systems: A literature review. Environ. Pollut. 131, 323–336 (2004).Article 

    Google Scholar 
    10.Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Gentes, S. et al. Application of European water framework directive: Identification reference sites and bioindicator fish species for mercury in tropical freshwater ecosystems (French Guiana). Ecol. Indic. 106, 105468. https://doi.org/10.1016/j.ecolind.2019.105468 (2019).CAS 
    Article 

    Google Scholar 
    12.Thomas, S. M. et al. Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size. Environ. Res. 188, 109750. https://doi.org/10.1016/j.envres.2020.109750 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Zupo, V. et al. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ. Pollut. 255, 112975. https://doi.org/10.1016/j.envpol.2019.112975 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Zhang, J. L. et al. Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong river. Environ. Sci. Pollut. Res. 26, 9490–9499 (2019).CAS 
    Article 

    Google Scholar 
    15.Cerna, M. Opatreni mezinarodnich instituci a Ceske republiky k omezovani rizika znecistovani zivotniho prostredi rtuti. Chem. Listy. 98, 916–921 (2004) ((Article in Czech)).CAS 

    Google Scholar 
    16.Janouskova, D. & Svehla, J. Mercury concentrations in fish tissues in the water reservoir Rimov, South Bohemia. Crop Sci. 19, 43–48 (2002).
    Google Scholar 
    17.Purba, J. S., Silalahi, J. & Haro, G. Analysis of mercury in fish, North Sumatera, Indonesia by atomic absorption spectrophotometer. Asian J. Pharm. 8, 21–25 (2020).CAS 
    Article 

    Google Scholar 
    18.Willacker, J. J., Eagles-Smith, C. A. & Blazer, V. S. Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. Ecotoxicology 29, 459484 (2020).Article 

    Google Scholar 
    19.Regulation (EU) 2017/852 of European Parliament and of the council of 17 May 2017 on mercury, and repealing Regulation (EC) No 1102/2008. Official Journal of the European Union.20.European Commission. The EU Fish Market. https://www.eumofa.eu/documents/20178/415635/EN_The+EU+fish+market_2020.pdf (2020).21.Nebesky, V., Policar, T., Blecha, M., Kristan, J. & Svacina, P. Trends in import and export of fishery products in the Czech Republic during 2010–2015. Aquacult. Int. 24, 1657–1668 (2016).Article 

    Google Scholar 
    22.FAO. Fisheries & Aquaculture—National Aquaculture Sector Overview—Czech Republic. http://www.fao.org/fishery/countrysector/naso_czechrepublic/en (accessed April 24 April 2021) (2021).23.Rakmanikhah, Z., Esmaili-Sari, A. & Bahramifar, N. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. Environ. Sci. Pollut. Res. 27, 6765–6773 (2020).Article 

    Google Scholar 
    24.Celechovska, O., Svobodova, Z., Zlabek, V. & Macharackova, B. Distribution of metals in tissues of the common carp (Cyprinus carpio L.). Acta Vet. Brno 76, 93–100 (2007).Article 

    Google Scholar 
    25.Cerveny, D. et al. Fish fin-clips as non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere 163, 290–295 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    26.WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx.27.Kannan, K. et al. Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch. Environ. Con. Tox. 34, 109–118 (1998).CAS 
    Article 

    Google Scholar 
    28.US EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories Documents. Volume 2: Risk Assessment and Fish Consumption Limits, Third Edition. https://www.epa.gov/fish-tech/guidance-assessing-chemical-contaminant-data-use-fish-advisories-documents (accessed 8 May 2021) (2000).29.Ministry of Agriculture of the Czech Republic. Situacni a vyhledova zprava—Ryby. http://eagri.cz/public/web/file/666957/Ryby_2020_web.pdf (accessed 8 May 2021, in Czech) (2020).30.Novotna, K., Svobodova, Z., Harustiakova, D. & Mikula, P. Spatial and temporal trends in contamination of the Czech part of the Elbe River by mercury between 1991 and 2016. Bull. Environ. Contam. Toxicol. 105, 750–757 (2020).CAS 
    Article 

    Google Scholar 
    31.Raldua, D., Diez, S., Bayona, J. M. & Barcelo, D. Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere 66, 1217–1225 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    32.Squadrone, S. et al. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere 90, 358–365 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    33.Cerveny, D. et al. Contamination of fish in important fishing grounds of the Czech Republic. Ecotoxicol. Environ. Saf. 109, 101–109 (2014).CAS 
    Article 

    Google Scholar 
    34.Marsalek, P., Svobodova, Z. & Randak, T. The content of total mercury and methylmercury in common carp from selected Czech ponds. Aquac. Int. 15, 299–304 (2007).CAS 
    Article 

    Google Scholar 
    35.Vicarova, P., Docekalova, H., Ridoskova, A. & Pelcova, P. Heavy metals in the common carp (Cyprinus carpio L.) from three reservoirs in the Czech Republic. Czech J. Food Sci. 34, 422–428 (2016).CAS 
    Article 

    Google Scholar 
    36.Akerblom, S., Bignert, A., Meili, M., Sonesten, L. & Sundbom, M. Half a century of changing mercury levels in Swedish freshwater fish. Ambio 43, 91–103 (2014).Article 

    Google Scholar 
    37.Dvorak, P., Andreji, J., Mraz, J. & Dvorakova Liskova, Z. Concentration of heavy and toxic metals in fish and sediments from the Morava river basin, Czech Republic. Neuroendocrinol. Lett. 36, 126–132 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Dusek, L. et al. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Maultispecies monitoring study 1991–1996. Ecotoxicol. Environ. Saf. 61, 256–267 (2005).CAS 
    Article 

    Google Scholar 
    39.Marsalek, P., Svobodova, Z. & Randak, T. Total mercury and methylmercury contamination in fish from various sites along the Elbe River. Acta Vet. Brno. 75, 579–585 (2006).CAS 
    Article 

    Google Scholar 
    40.Wang, X. & Wang, W. X. The three ‘B’ of mercury in China: Bioaccumulation, biodynamics and biotransformation. Environ. Pollut. 250, 216–232 (2019).CAS 
    Article 

    Google Scholar 
    41.Jankovska, I. et al. Importance of fish gender as a factor in environmental monitoring of mercury. Environ. Sci. Pollut. Res. 21, 6239–6242 (2014).CAS 
    Article 

    Google Scholar 
    42.Carrasco, L. et al. Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). Chemosphere 84, 1642–1649 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    43.Havelkova, M., Dusek, L., Nemethova, D., Poleszczuk, G. & Svobodova, Z. Comparison of mercury distribution between liver and muscle: A biomonitoring of fish from lightly and heavily contaminated localities. Sensors. 8, 4095–4109 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    44.Kruzikova, K. et al. The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities. Int. J. Electrochem. Sc. 8, 45–56 (2013).CAS 

    Google Scholar 
    45.Kensova, R., Kruzikova, K. & Svobodova, Z. Mercury speciation and safety of fish from important fishing locations in the Czech Republic. Czech J. Food Sci. 30, 276–284 (2012).CAS 
    Article 

    Google Scholar 
    46.European Commission. Commission Regulation 1881/2006 Setting Maximum Levels of Certain Contaminants in Foodstuffs. https://eur-lex.europa.eu/ (accessed 2 May 2021) (2006). More

  • in

    Apparent stability masks underlying change in a mule deer herd with unmanaged chronic wasting disease

    Deer capture and samplingWe captured 100 mule deer (54 females, 46 males) during November 2018–February 2019, avoiding capture and sampling of juveniles. We attempted to distribute captures throughout the ~23 km2 study area described by Miller et al.5 to minimize spatial disparities in comparing contemporary and past data, and to assure marks were widely distributed for December ground counts to estimate deer abundance5,35,36. Field and sampling methods generally followed those used elsewhere5,31,37. Field procedures were reviewed and approved by the CPW Animal Care and Use Committee (file 14–2018).We pursued deer on foot and darted them opportunistically, delivering sedative combinations intramuscularly via projectile syringe. Premixed immobilization drug combinations included either nalbuphine (N; 0.9 mg/kg) or butorphanol (B; 0.5 mg/kg) combined with azaperone (A; 0.2 mg/kg) and medetomidine (M; 0.2 mg/kg)38, with standard total doses for respective combinations based on an estimated mass of 70 kg (average drug volume per animal was 1.3 ml NMA, 1.4 ml BAM). We collected rectal mucosa biopsies to determine CWD infection status37. We also collected whole blood and marked all deer with individually identifiable ear tags and some with telemetry (n = 51) or visual identification (n = 12) collars. Ages were estimated to the nearest year via tooth replacement and wear patterns39; observers used a pocket reference guide in the field to help assure consistency. To antagonize sedation upon completion of handling and sampling, each deer received 5 mg atipamezole/mg M administered, injected intramuscularly.Prion diagnosticsFormalin-fixed tissue biopsies were processed and analyzed by immunohistochemistry (IHC) at the Colorado State University Veterinary Diagnostic Laboratory (Fort Collins, Colorado USA; CSUVDL) for evidence of CWD-associated prion (PrPCWD) accumulations using monoclonal antibody F99/97.6.1 (VMRD Inc., Pullman, Washington, USA)40 and standard IHC methods24,37,41, except that the CSUVDL’s IHC staining machine (Leica Microsystems Inc., Buffalo Grove, Illinois, USA) was different from that used in earlier studies (Ventana Medical Systems, Oro Valley, Arizona, USA). Biopsies were evaluated microscopically and classified as positive (infected) or not detected (negative) based on PrPCWD presence or absence; the same pathologist (T. R. Spraker) read biopsies for both the current and prior5 studies.We included only data from deer with biopsies providing ≥3 lymphoid follicles in analyses involving infection status in order to maintain a relatively high (≥90%) probability of detecting infected individuals24. Two animals with low follicle counts that died shortly after capture were excepted by substituting postmortem IHC results. Limiting the acceptable follicle count excluded seven females (two 225SS, five 225SF) and two males (one 225SS, one 225SF) from some analyses. One male deer was 225FF and one female deer was missing a blood sample and thus not assigned to a PRNP gene group; these two individuals also were excluded from some analyses (e.g., Table 1).
    PRNP genotypingWe used DNA extracted from whole blood buffy coat aliquots (n = 99) to screen for the presence of sequences at PRNP gene codon 225 that encode for serine (S) and/or phenylalanine (F) in the mature prion polypeptide, classifying individuals as 225SS, 225SF, or 225FF16,36,42. Methods generally followed those described by Jewell et al.16. Briefly, we extracted DNA using the DNeasy® blood and tissue kit (Qiagen, Valenica, California, USA). We amplified the complete open reading frame (ORF) plus 25 bp of 5′ flanking sequences and 53 bp of 3′ flanking sequences in the PRNP coding region using polymerase chain reaction (PCR). Purified DNA was combined in a 0.2 ml PCR tube containing a puReTag Ready-To-Go PCR bead (illustra™, GE Healthcare Bio-Sciences Corp, Piscataway, New Jersey, USA). Each PCR bead contained 2.5 units puReTag DNA polymerase, 10 mM Tris-HCI, 50 mM KCl, 1.5 mM MgCl2, 200 µM of each deoxynucleoside triphosphate, and stabilizers, including bovine serum albumin. For each PCR assay, 1 μL of each primer at 200 nM, 22 μL of RNase-free water and 1 μL of approximately 100 ng total genomic DNA was added for a final volume of 25 μL. Primers used for amplification were forward (MD582F, 5′-ACATGGGCATATGATGCTGACACC-3′) and reverse (MD1479RC, 5′-ACTACAGGGCTGCAGGTAGATACT-3′) described by Jewell et al.16. Reactions were thermal-cycled in a PTC 100 (MJ Research) at 94 C for 5 min and then 32 cycles of 94 C for 7 s, 62 C for 15 s, 72 C for 30 s and a final cycle of 72 C for 5 min, and kept at 4 C until inspected for successful amplification by agarose gel electrophoresis. As confirmed by LaCava et al.19, the MD582F and MD1479RC primers developed by Jewell et al.16 specifically amplify the functional PRNP gene ORF, thereby excluding confounding effects that could arise from the presence of a processed pseudogene that occurs in a majority of deer (Odocoileus spp.)42.We used EcoRI restriction digestion of the PCR-amplified PRNP region16—a validated assay targeting the singular polymorphism at codon 225 in mule deer—to screen all 99 samples for presence of S or F codons. Aliquots (10 μl) of completed PCR reactions were incubated with 10 U EcoRI (New England Biolabs) in a total volume of 12 μl containing 50 mM NaCl, 100 mM Tris/HCl, 10 mM MgCl2, 0.025% Triton X-100 (pH 7.5) at 37 C for 2–16 h followed by the addition of 2.5 μl 6× concentrate gel loading solution (Sigma- Aldrich) per sample, and the inspection of products by agarose gel electrophoresis for the presence of one 897bp-sized band for 225SS, two bands—one 897 bp and one 719 bp—for 225SF, or one 719 bp-sized band for 225FF. As noted by Jewell et al.16, occurrence of TTC (the F codon) at position 225 creates an EcoRI recognition DNA sequence and cleavage site GAATTC from codons 224–225, whereas TCC (the S codon) creates the sequence GAATCC, which is not cut by EcoRI. When incubated with EcoRI, PCR products with a TTC codon at position 225 yielded cleavage fragments of the predictable sizes listed16. Because no other sites within the PRNP ORF DNA sequence are potentially transformable to GAATTC with one base change, this represents a specific genotyping method for assessing the S225F polymorphism in mule deer16.To confirm findings from EcoRI screening, we examined sequences of the complete PRNP ORF from 20 samples that showed evidence of cleavage indicating 225*F and 6 samples without cleavage identified as 225SS. For DNA sequencing, we used primers 245 (5′-GGTGGTGACTGACTGTGTGTTGCTTGA-3′), 12 (5′-TGGTGGTGACTGTGTGTTGCTTGA-3′) and 3FL1 (5′-GATTAAGAAGATAATGAAAACAGGAAGG-3′; Integrated DNA Technologies). Sanger sequencing was done on purified PCR product by Eurofins Genomics (Louisville, Kentucky, USA). Sequence chromatograms were viewed and DNA sequence alignments and comparisons were made using the MAFFT multiple sequence alignment program v7.450 module, software platform v2020.2.3 of Geneious Prime. Sequencing confirmed the presence of coding for F in all samples identified as 225*F by EcoRI digestion, as well as the absence of such coding in samples identified by EcoRI digestion as 225SS. Moreover, presence of AGC at codon 138 in all sequenced samples reconfirmed that the primers we used had amplified the functional PRNP gene42.Statistics and reproducibilityFor analyses, we tabulated IHC-positive and -negative results to estimate apparent prevalence of prion infection. We also tabulated the number of individuals assigned to PRNP genotypes and to age groupings as described. Age groupings were selected based on relevance to CWD epidemiology in mule deer1,5,8,12,16,17,18,20,24,31,37. Assuming a ~2-year disease course5,8,17 and relative scarcity of end-stage disease in 225SS deer More

  • in

    Landmark Colombian bird study repeated to right colonial-era wrongs

    NEWS
    11 January 2022

    Landmark Colombian bird study repeated to right colonial-era wrongs

    A re-run of a 100-year-old, US-led bird survey will inform future conservation efforts — but be helmed by local researchers.

    Luke Taylor

    Luke Taylor

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Ornithologist Andrés Cuervo takes a selfie of a team of Colombia Resurvey Project researchers during an expedition in Caquetá.Credit: Andrés M. Cuervo

    Colombia has more animal and plant species per square kilometre than anywhere else in the world. Pioneering US bird scientist Frank Chapman once said that the country was so rich in biodiversity that when his research team explored the area in the early twentieth century, it could have studied a single mountain range for five years and still not have mapped all of its fauna.More than 100 years later, Colombian researchers are redoing his legendary bird survey, which is a reference for ornithologists the world over. They are surveying the areas that Chapman catalogued between 1911 and 1915, to investigate how a century of war, global warming and industrialization has affected the landscape and its biodiversity.
    The world’s species are playing musical chairs: how will it end?
    But this project will not snatch birds and whisk them to a museum abroad — as Chapman’s team did. Instead, local scientists will keep specimens in Colombia and engage with local communities during their expeditions, to include them in the momentous endeavour, improve the quality of the research and set an ethical standard for future fieldwork.Chapman and at least 5 other collectors shot many of the nearly 16,000 birds that they hauled back to the American Museum of Natural History in New York City, offering local residents little explanation — or credit. “You wouldn’t like it if I came to your house, surveyed it without permission, took photos and then went back to Colombia without telling you what I had found,” says Nelsy Niño-Rodríguez, the Colombia Resurvey Project’s community-relations coordinator, who is an ornithologist at the Alexander von Humboldt Biological Resources Research Institute in Bogotá. Without local guides knowledgeable about Colombia and its birds, Chapman couldn’t possibly have located and collected so many specimens, says Natalia Ocampo-Peñuela, a research partner on the resurvey project and a conservation ecologist at the University of California, Santa Cruz. Yet Chapman’s logs hardly mention guides; when they are discussed, it’s usually in racist or pejorative terms, she says.“His interest was to feed his curiosity, his scientific intellect and the museum,” she adds, but not to inform the wider population — and definitely not the local populations.A changed landscape Colombian researchers have dreamt of re-running Chapman’s expeditions for decades. But it wasn’t possible until the past few years, because many areas were inaccessible owing to armed conflict. Following a landmark peace deal in 2016, remote regions that had been under the control of the Revolutionary Armed Forces of Colombia (FARC), a left-wing guerrilla group, once again opened to exploration. That, and an infusion of funding from the Colombian government and international donors, meant researchers could attempt a resurvey.

    Birds of Colombia: top, many-banded araçari (Pteroglossus pluricinctus); left, pileated finch (Coryphospingus pileatus); right, white-fringed antwren (Formicivora grisea).Credit: Andrés M. Cuervo

    Chapman visited Colombia because he thought that its geography made it one of the most biodiverse places in the world. He theorized that the presence of the Andes Mountains, combined with the country’s position bridging South and Central America, made it an evolutionary melting pot.
    FARC and the forest: Peace is destroying Colombia’s jungle — and opening it to science
    Although Colombia is still home to around 10% of the world’s biodiversity, the forests once explored by Chapman have changed immensely. Pristine jungles have been cleared to create uniform pastures resembling golf courses, says Andrés Cuervo, an ornithologist at the National University of Colombia in Bogotá who is one of the directors of the resurvey project. The dirt tracks that Chapman and his team traversed on mules are now roads. And climate change has pushed birds to higher elevations and altered their migratory patterns.Seeking to understand the effects of these changes on biodiversity, researchers launched the Colombia Resurvey Project in 2019. The main objective is to gather bird specimens, including DNA and tissue samples, to compare the modern population with Chapman’s collection. The team, which includes US researchers as well as local ones, has so far conducted 6 expeditions, visiting 14 of Chapman’s original sites — leaving 60 to go. A useful catalogue The researchers are finding that they have to venture deep into the forest to find birds that were once a stone’s throw from Chapman’s campsites, Cuervo says. And some species are nowhere to be found, including the red-ruffed fruitcrow (Pyroderus scutatus) — almost certainly lost when the trees in its territory were cut down to grow avocados, he adds.

    Resurvey project researchers Jessica Diaz (right) and Andrés Sierra (left) record data from a mist net, used to collect birds during expeditions.Credit: Andrés M. Cuervo

    The team has also confirmed that birds dependent on unique ecosystems are being replaced by generalist species — which are more adaptable to fragmented forest and a disrupted diet — reducing the country’s biodiversity1. Larger species and fruit eaters seem to have been hit particularly hard over the past century, because they require vast expanses of forest to thrive.
    Illegal mining in the Amazon hits record high amid Indigenous protests
    The effects of climate and landscape changes on bird populations in the tropics are not well understood, so the project will inform future conservation efforts, researchers say. “It’s almost impossible to imagine all the ways in which this data can potentially be used down the road,” says John Bates, curator and head of life sciences at the Field Museum of Natural History in Chicago, Illinois. Members of the resurvey project hope their catalogue will have as much impact as Chapman’s. It will include resources such as a genomic map illustrating birds’ evolution, generated from DNA samples. “We are collecting the most complete set of specimens that one can imagine so that scientists from now and the future can answer questions that we haven’t thought of,” Ocampo says.Taking chargeThe Colombia Resurvey Project team especially hopes that its anti-colonial approach will resonate with the scientific community. The researchers run workshops before each excursion to inform local communities about why they are planning to kill some birds, and how this is important for conservation and science. They are storing the specimens at the National University of Colombia, where the birds will be digitally catalogued, so that people can view them online, listen to audio of their song and scroll through interactive maps of the expeditions. And the team is creating birdwatching tours at the expedition sites to boost tourism.
    Brazilian road proposal threatens famed biodiversity hotspot
    Involving communities leads to better results, Niño-Rodríguez says. For instance, even if some Indigenous people do not know the scientific names for birds, they might be able to identify them on sight and know where they are most likely to be found. And community knowledge of how the forests have changed has passed from generation to generation, so local residents are able to fill gaps when satellite data and research logs aren’t available.It’s equally important to the researchers that those leading the project are from Colombia. They say it’s common for local experts to help visiting foreign researchers to find new species and make discoveries, but be excluded from the scientific process and the credit. “We don’t want to be the guys with the permits or the guys who facilitate the logistics of someone else’s research,” Cuervo says. “We want to do our own high-quality research, and we want it to be available for people to use.” This time around, the American Museum of Natural History is a partner on the project, rather than its lead. “Although the Chapman expedition was conducted with help and permissions from the Colombian government, today’s expeditions appropriately look much different than they did in Chapman’s time,” says a museum spokesperson, adding that the museum “is proud of the very active relationship it maintains with Colombia’s scientific institutions through education and research”.
    Colombia: after the violence
    Meanwhile, project researchers are training curious members of local communities in how to identify birds scientifically, so they can continue to log species with their cameras and mobile phones once the researchers leave the forest. Areas previously ruled by FARC guerrillas are now falling under the control of other armed groups, which might not let outsiders in, so local residents could soon be the only people who have access to some of Colombia’s most biodiverse jungles and the birds that inhabit them.“Hopefully we won’t have to wait another hundred years for scientists to return to these sites and assess their bird fauna,” Cuervo says. “Communities can do it with empowerment and interest in their biodiversity and surroundings.”

    Nature 601, 178-179 (2022)
    doi: https://doi.org/10.1038/d41586-021-03527-x

    References1.Gómez, C., Tenorio, E. A. & Cadena, C. D. Conserv. Biol. 35, 1552–1563 (2021).PubMed 
    Article 

    Google Scholar 
    Download references

    Related Articles

    The world’s species are playing musical chairs: how will it end?

    FARC and the forest: Peace is destroying Colombia’s jungle — and opening it to science

    Colombia: after the violence

    Brazilian road proposal threatens famed biodiversity hotspot

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Colombia creates its first science ministry

    Subjects

    Conservation biology

    Biodiversity

    Climate change

    Animal behaviour

    Latest on:

    Biodiversity

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Climate change

    How researchers can help fight climate change in 2022 and beyond
    Editorial 05 JAN 22

    Sustainability at the crossroads
    Editorial 21 DEC 21

    The science events to watch for in 2022
    News 17 DEC 21

    Jobs

    Postdoctoral Fellowship Positions in Cancer Nanomedicine and Neuro-Engineering

    University of Maryland School of Medicine
    Baltimore, MD, United States

    2022 Call for IBS Directors and Chief Investigators(CI)

    Institute for Basic Science (IBS)
    Multiple locations

    Post-doctoral Fellow – Neurodegeneration

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States

    Post-doctoral Fellow – Neurodegeneration

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States More

  • in

    Permafrost carbon emissions in a changing Arctic

    1.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
    Google Scholar 
    2.Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).
    Google Scholar 
    3.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
    Google Scholar 
    4.Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).
    Google Scholar 
    5.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 
    6.Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).
    Google Scholar 
    7.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar 
    8.Heffernan, L., Estop-Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long-term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).
    Google Scholar 
    9.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).
    Google Scholar 
    10.Bartsch, A. et al. Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 13, 5453–5470 (2016).
    Google Scholar 
    11.Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
    Google Scholar 
    12.Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).
    Google Scholar 
    13.Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 118, e2100163118 (2021).
    Google Scholar 
    14.Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).
    Google Scholar 
    15.Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).
    Google Scholar 
    16.Heslop, J. K. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).
    Google Scholar 
    17.Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).
    Google Scholar 
    18.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
    Google Scholar 
    19.Lara, M. J. et al. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat. Commun. 11, 4925 (2020).
    Google Scholar 
    20.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 
    21.Rey, D. M. et al. Wildfire-initiated talik development exceeds current thaw projections: observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 47, e2020GL087565 (2020).
    Google Scholar 
    22.Kim, J. S., Kug, J. S., Jeong, S. J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).
    Google Scholar 
    23.Vonk, J. E., Tank, S. E. & Walvoord, M. A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 10, 5377 (2019).
    Google Scholar 
    24.Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
    Google Scholar 
    25.Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).
    Google Scholar 
    26.Schwab, M. S. et al. An abrupt aging of dissolved organic carbon in large Arctic rivers. Geophys. Res. Lett. 47, e2020GL088823 (2020).
    Google Scholar 
    27.Walter Anthony, K. M. et al. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett. 16, 35010 (2021).
    Google Scholar 
    28.Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
    Google Scholar 
    29.Turner, M. G. et al. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).
    Google Scholar 
    30.Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).
    Google Scholar 
    31.Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).
    Google Scholar 
    32.Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2012).
    Google Scholar 
    33.Sayedi, S. S. et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett. 15, 124075 (2020).
    Google Scholar 
    34.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).Article 

    Google Scholar 
    35.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
    Google Scholar 
    36.Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).
    Google Scholar 
    37.Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).
    Google Scholar 
    38.Martens, J. et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation. Glob. Biogeochem. Cycles 33, 2–14 (2019).
    Google Scholar 
    39.Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).
    Google Scholar 
    40.Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).
    Google Scholar 
    41.Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).
    Google Scholar 
    42.Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, 5236–5260 (2021).
    Google Scholar 
    43.Treat, C. C. et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Chang. Biol. 24, 5188–5204 (2018).
    Google Scholar 
    44.Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).
    Google Scholar 
    45.Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. 10, 1143–1148 (2020).
    Google Scholar 
    46.Hope, C. & Schaefer, K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nat. Clim. Chang. 6, 56–59 (2016).
    Google Scholar 
    47.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
    Google Scholar 
    48.Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
    Google Scholar 
    49.Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
    Google Scholar 
    50.Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).
    Google Scholar 
    51.Liljedahl, A. K., Gädeke, A., O’Neel, S., Gatesman, T. A. & Douglas, T. A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).
    Google Scholar 
    52.Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).
    Google Scholar 
    53.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).
    Google Scholar 
    54.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Chang. 5, 67–70 (2015).
    Google Scholar 
    55.Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
    Google Scholar 
    56.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 201916387 (2020).
    Google Scholar 
    57.Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F. J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).
    Google Scholar 
    58.United Nations Framework Convention on Climate Change. Total aggregate greenhouse gas emissions of individual nations, annex 1. World Resources Institute https://www.wri.org/resources/data-sets/climate-watch-cait-unfccc-annex-i-ghg-emissions-data (2008).59.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    60.Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).
    Google Scholar 
    61.Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).62.Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).
    Google Scholar 
    63.Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).
    Google Scholar 
    64.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
    Google Scholar 
    65.Jeong, S. J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).
    Google Scholar 
    66.Disher, B. S., Connon, R. F., Haynes, K. M., Hopkinson, C. & Quinton, W. L. The hydrology of treed wetlands in thawing discontinuous permafrost regions. Ecohydrology 14, e2296 (2021).
    Google Scholar 
    67.Parazoo, N. C. et al. Detecting regional patterns of changing CO2 flux in Alaska. Proc. Natl Acad. Sci. USA 113, 7733–7738 (2016).
    Google Scholar 
    68.Silva, J. L. A., Souza, A. F., Caliman, A., Voigt, E. L. & Lichston, J. E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol. Evol. 8, 4–12 (2018).
    Google Scholar 
    69.Ward, C. P. & Cory, R. M. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167, 63–79 (2015).
    Google Scholar 
    70.Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 
    71.Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).
    Google Scholar 
    72.Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).
    Google Scholar 
    73.Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Glob. Biogeochem. Cycles 34, e2020GB006672 (2020).
    Google Scholar 
    74.Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
    Google Scholar 
    75.Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).
    Google Scholar 
    76.Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).
    Google Scholar 
    77.Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).
    Google Scholar 
    78.Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).
    Google Scholar 
    79.Kwon, M. J. et al. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412 (2017).
    Google Scholar 
    80.Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Chang. Res. 12, 29–47 (2020).
    Google Scholar 
    81.Song, X. et al. Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest. Geoderma 357, 113975 (2020).
    Google Scholar 
    82.Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).
    Google Scholar 
    83.Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).
    Google Scholar 
    84.Thompson, R. L. et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).
    Google Scholar 
    85.Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Chang. 10, 317–321 (2020).
    Google Scholar 
    86.Street, L. E. et al. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob. Chang. Biol. 26, 4559–4571 (2020).
    Google Scholar 
    87.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).
    Google Scholar 
    88.Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).
    Google Scholar 
    89.Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).
    Google Scholar 
    90.Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
    Google Scholar 
    91.Holloway, J. E. et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafr. Periglac. Process. 31, 371–382 (2020).
    Google Scholar 
    92.McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).
    Google Scholar 
    93.Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).
    Google Scholar 
    94.Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 
    95.MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).
    Google Scholar 
    96.Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Chang. 7, 507–511 (2017).
    Google Scholar 
    97.Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region–a model intercomparison. Cryosphere 14, 445–459 (2020).
    Google Scholar 
    98.Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).
    Google Scholar 
    99.Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. 41, 1237–1284 (2020).
    Google Scholar 
    100.Elder, C. D. et al. Airborne mapping reveals emergent power law of Arctic methane emissions. Geophys. Res. Lett. 47, e2019GL085707 (2020).
    Google Scholar 
    101.Byrne, B. et al. Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos. 125, e2019JD032029 (2020).
    Google Scholar 
    102.Karlson, M. et al. Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sens. Environ. 231, 111252 (2019).
    Google Scholar 
    103.Cusworth, D. H. et al. Synthesis of methane observations across scales: strategies for deploying a multitiered observing network. Geophys. Res. Lett. 47, e2020GL087869 (2020).
    Google Scholar 
    104.Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).
    Google Scholar 
    105.Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
    Google Scholar 
    106.Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).
    Google Scholar 
    107.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).
    Google Scholar 
    108.Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).
    Google Scholar 
    109.Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11, 809–819 (2021).
    Google Scholar 
    110.Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).
    Google Scholar 
    111.MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 
    112.Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646-18 (2019).
    Google Scholar 
    113.Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).
    Google Scholar 
    114.Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
    Google Scholar 
    115.Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953 (2016).
    Google Scholar 
    116.Lee, H. et al. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393 (2011).
    Google Scholar 
    117.Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P. & Harden, J. W. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J. Geophys. Res. Biogeosci. 119, 1576–1595 (2014).
    Google Scholar 
    118.Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 20, 960–974 (2017).
    Google Scholar 
    119.Karlsson, J. et al. Carbon emission from Western Siberian inland waters. Nat. Commun. 12, 825 (2021).
    Google Scholar 
    120.Schuur, E. A. G. et al. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. J. Geophys. Res. Biogeosci. 126, e2020JG006044 (2021).
    Google Scholar 
    121.Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).
    Google Scholar 
    122.Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).Article 

    Google Scholar 
    123.Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).
    Google Scholar 
    124.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
    Google Scholar 
    125.Schimel, D. & Schneider, F. D. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).
    Google Scholar 
    126.Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).
    Google Scholar 
    127.Jammet, M. et al. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences 14, 5189–5216 (2017).
    Google Scholar 
    128.Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 5828 (2017).
    Google Scholar 
    129.Sayres, D. S. et al. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft. Atmos. Chem. Phys. 17, 8619–8633 (2017).
    Google Scholar 
    130.Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013).
    Google Scholar 
    131.Davidson, S. J. et al. Upscaling CH4 fluxes using high-resolution imagery in Arctic tundra ecosystems. Remote Sens. 9, 1227 (2017).
    Google Scholar 
    132.Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).
    Google Scholar 
    133.Chang, R. Y. W. et al. Methane emissions from Alaska in 2012 from CARVE airborne observations. Proc. Natl Acad. Sci. USA 111, 16694–16699 (2014).
    Google Scholar 
    134.Saeki, T. et al. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res. Atmos. 118, 1100–1122 (2013).
    Google Scholar 
    135.Kim, J. et al. Impact of Siberian observations on the optimization of surface CO2 flux. Atmos. Chem. Phys. 17, 2881–2899 (2017).
    Google Scholar 
    136.O’Shea, S. J. et al. Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmos. Chem. Phys. 14, 13159–13174 (2014).
    Google Scholar 
    137.Gottwald, M. & Bovensmann, H. SCIAMACHY — Exploring the Changing Earth’s Atmosphere (Springer, 2011).138.Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).
    Google Scholar 
    139.Arndt, K. A. et al. Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett. 14, 125018 (2019).
    Google Scholar 
    140.Widhalm, B., Bartsch, A. & Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 36, 5537–5556 (2015).
    Google Scholar 
    141.Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).
    Google Scholar 
    142.Bartsch, A., Hofler, A., Kroisleitner, C. & Trofaier, A. M. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens. 8, 979 (2016).
    Google Scholar 
    143.Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 9 (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).144.Kivimäki, E. et al. Evaluation and analysis of the seasonal cycle and variability of the trend from GOSAT methane retrievals. Remote Sens. 11, 882 (2019).
    Google Scholar 
    145.Lindqvist, H. et al. Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 15, 13023–13040 (2015).
    Google Scholar 
    146.Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).
    Google Scholar 
    147.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
    Google Scholar 
    148.Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).
    Google Scholar 
    149.Westermann, S. et al. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere 11, 1441–1463 (2017).
    Google Scholar 
    150.Houweling, S. et al. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. 120, 5253–5266 (2015).
    Google Scholar 
    151.Houweling, S. et al. Global inverse modeling of CH4 sources and sinks: an overview of methods. Atmos. Chem. Phys. 17, 235–256 (2017).
    Google Scholar 
    152.Tsuruta, A. et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289 (2017).
    Google Scholar 
    153.Virkkala, A. M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
    Google Scholar 
    154.Hakkarainen, J., Ialongo, I., Maksyutov, S. & Crisp, D. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens. 11, 850 (2019).
    Google Scholar 
    155.Fisher, J. B. et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).
    Google Scholar 
    156.McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).
    Google Scholar 
    157.Lenton, T. M. & Williams, H. T. P. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28, 380–382 (2013).
    Google Scholar 
    158.Lenton, T. M. Arctic climate tipping points. Ambio 41, 10–22 (2012).
    Google Scholar 
    159.Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).
    Google Scholar 
    160.Fleisher, A. J., Long, D. A., Liu, Q., Gameson, L. & Hodges, J. T. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy. J. Phys. Chem. Lett. 8, 4550–4556 (2017).
    Google Scholar 
    161.Genoud, G. et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples. Anal. Chem. 91, 12315–12320 (2019).
    Google Scholar 
    162.Levin, I. et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem. Phys. Meteorol. 62, 26–46 (2010).
    Google Scholar 
    163.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases — carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 23, 3121–3138 (2017).
    Google Scholar 
    164.Mu, C. C. et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44, 8945–8952 (2017).
    Google Scholar 
    165.Krogh, S. A., Pomeroy, J. W. & Marsh, P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol. 550, 685–703 (2017).
    Google Scholar 
    166.Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).
    Google Scholar 
    167.Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions — a significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).
    Google Scholar 
    168.Kelley, J. J., Weaver, D. F. & Smith, B. P. The variation of carbon dioxide under the snow in the Arctic. Ecology 49, 358–361 (1968).
    Google Scholar 
    169.Du, J. et al. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 213, 1–17 (2018).
    Google Scholar 
    170.Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265 (2016).
    Google Scholar 
    171.Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).
    Google Scholar 
    172.Kleinen, T. & Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13, 094001 (2018).
    Google Scholar 
    173.Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).
    Google Scholar 
    174.Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).
    Google Scholar 
    175.Tesi, T. et al. Massive remobilization of permafrost carbon during post-glacial warming. Nat. Commun. 7, 13653 (2016).
    Google Scholar 
    176.McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).
    Google Scholar 
    177.Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2016).
    Google Scholar 
    178.Kuze, A. et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 9, 2445–2461 (2016).
    Google Scholar 
    179.Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).
    Google Scholar 
    180.Yang, D. et al. First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci. 35, 621–623 (2018).
    Google Scholar 
    181.Glumb, R., Davis, G. & Lietzke, C. in IEEE International Geoscience and Remote Sensing Symposium 1238–1240 (IEEE, 2014).182.Lorente, A. et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 14, 665–684 (2021).
    Google Scholar 
    183.Ehret, G. et al. MERLIN: a French–German space lidar mission dedicated to atmospheric methane. Remote Sens. 9, 1052 (2017).
    Google Scholar 
    184.Bousquet, P. et al. Error budget of the MEthane Remote LIdar missioN and its impact on the uncertainties of the global methane budget. J. Geophys. Res. Atmos. 123, 11,766–11,785 (2018).
    Google Scholar 
    185.Bezy, J.-L. et al. in IEEE International Geoscience and Remote Sensing Symposium 8400–8403 (IEEE, 2019).186.Ingmann, P. et al. Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4/-5 and -5p. Remote Sens. Environ. 120, 58–69 (2012).
    Google Scholar 
    187.Nassar, R. et al. The atmospheric imaging mission for northern regions: AIM-North. Can. J. Remote Sens. 45, 423–442 (2019).
    Google Scholar 
    188.Polonsky, I. N., O’Brien, D. M., Kumer, J. B., O’Dell, C. W. & the geoCARB Team. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmos. Meas. Tech. 7, 959–981 (2014).
    Google Scholar 
    189.Chahine, M. T. et al. Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 87, 911–926 (2006).
    Google Scholar 
    190.Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9, 6041–6054 (2009).
    Google Scholar 
    191.Han, Y. et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 118, 734–12,748 (2013).
    Google Scholar 
    192.Zou, C. Z. et al. The reprocessed Suomi NPP satellite observations. Remote Sens. 12, 2891 (2020).
    Google Scholar 
    193.Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_CCI): permafrost climate research data package v1 (CEDA, 2020).194.Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
    Google Scholar 
    195.Arctic Climate Impact Assessment. Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, 2004). More

  • in

    Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant

    Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan Theor Appl Genet 109(3):588–595PubMed 

    Google Scholar 
    Akerman A, Bürger R (2014) The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model J Math Biol 68(5):1135–1198PubMed 

    Google Scholar 
    Al-Asadi H, Petkova D, Stephens M, Novembre J (2019) Estimating recent migration and population-size surfaces PLoS Genet 15(1):e1007908PubMed 
    PubMed Central 

    Google Scholar 
    Baker HG (1967) Support for Baker’s law-as a rule Evolution 21(4):853–856PubMed 

    Google Scholar 
    Baker K, Baker K, Bayer M, Cook N, Dreißig S, Dhillon T, Russell J, Hedley PE, Morris J, Ramsay L, Colas I et al. (2014) The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression Plant J 79(6):981–992CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Battey C, Ralph PL, Kern AD (2020) Space is the place: effects of continuous spatial structure on analysis of population genetic data Genetics 215(1):193–214CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross’ Arta’ × H. spontaneum 41-1 Theor Appl Genet 107(7):1215–1225CAS 
    PubMed 

    Google Scholar 
    Bedada G, Westerbergh A, Nevo E, Korol A, Schmid KJ (2014) DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel Heredity 112(6):646–655CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berner D, Roesti M (2017) Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate Mol Ecol 26(22):6351–6369CAS 
    PubMed 

    Google Scholar 
    Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating and interpreting FST: the impact of rare variants Genome Res 23(9):1514–1521CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohra A, Kilian B, Kilian B, Sivasankar S, Caccamo M, Mba, C, McCouch SR, Varshney RK (2021) Reap the crop wild relatives for breeding future crops. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.08.009Bradburd GS, Coop GM, Ralph PL (2018) Inferring continuous and discrete population genetic structure across space. Genetics 210(1):33–52PubMed 
    PubMed Central 

    Google Scholar 
    Bürger R, Akerman A (2011) The effects of linkage and gene flow on local adaptation: a two-locus continent–island model. Theor Popul Biol 80(4):272–288PubMed 
    PubMed Central 

    Google Scholar 
    Cabreros I, Storey JD (2019) A likelihood-free estimator of population structure bridging admixture models and principal components analysis. Genetics 212(4):1009–1029PubMed 
    PubMed Central 

    Google Scholar 
    Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172(1):557–567CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capblancq T, Luu K, Blum MG, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18(6):1223–1233CAS 
    PubMed 

    Google Scholar 
    Caye K, Jumentier B, Lepeule J, François O (2019) LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol 36(4):852–860CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, Casas AM, Igartua E (2019) Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Mol Ecol 28(8):1994–2012PubMed 
    PubMed Central 

    Google Scholar 
    Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaptation to climate change. New Phytol 206(3):913–931PubMed 

    Google Scholar 
    Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (pcnm). Ecol Model 196(3-4):483–493
    Google Scholar 
    Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2019) adespatial: multivariate multiscale spatial analysis. R package version 0.3-7. https://CRAN.R-project.org/package=adespatialElshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103(4):285–298CAS 
    PubMed 

    Google Scholar 
    Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL (2014) Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G34(7):1193–1203PubMed 
    PubMed Central 

    Google Scholar 
    Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315
    Google Scholar 
    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol Ecol 27(9):2215–2233CAS 
    PubMed 

    Google Scholar 
    Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25(1):104–120CAS 
    PubMed 

    Google Scholar 
    Galkin E, Dalal A, Evenko A, Fridman E, Kan I, Wallach R, Moshelion M (2018) Risk-management strategies and transpiration rates of wild barley in uncertain environments. Physiol Plant 164(4):412–428CAS 
    PubMed 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555–1579CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson MJ, Moyle LC (2020) Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol 29(12):2204–2217CAS 
    PubMed 

    Google Scholar 
    Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220PubMed 
    PubMed Central 

    Google Scholar 
    Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Slayton ER, Wilkins O, Castillo CC, Negrão S et al. (2020) Genomic history and ecology of the geographic spread of rice. Nat Plants 6(5):492–502PubMed 

    Google Scholar 
    Hämälä T, Savolainen O (2019) Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol Biol Evol 36(11):2557–2571
    Google Scholar 
    Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080CAS 
    PubMed 

    Google Scholar 
    Hartfield M, Bataillon T, Glémin S (2017) The evolutionary interplay between adaptation and self-fertilization. Trends Genet 33(6):420–431CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L (2016) The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in yellowstone mimulus guttatus. Mol Ecol 25(22):5647–5662CAS 
    PubMed 

    Google Scholar 
    Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B et al. (2017) Soilgrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2):e0169748PubMed 
    PubMed Central 

    Google Scholar 
    Herzig P, Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K (2018) Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. J Exp Bot 69(7):1517–1531CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill W, Weir B (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33(1):54–78CAS 
    PubMed 

    Google Scholar 
    Hodgins KA, Yeaman S (2019) Mating system impacts the genetic architecture of adaptation to heterogeneous environments. New Phytol 224(3):1201–1214PubMed 

    Google Scholar 
    House GL, Hahn MW (2018) Evaluating methods to visualize patterns of genetic differentiation on a landscape. Mol Ecol Resour 18(3):448–460PubMed 

    Google Scholar 
    Hübner S, Korol AB, Schmid KJ (2015) Rna-seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley hordeum spontaneum. BMC Plant Biol15(1):1–14
    Google Scholar 
    Hübner S, Bdolach E, Ein-Gedy S, Schmid KJ, Korol A, Fridman E (2013) Phenotypic landscapes: phenological patterns in wild and cultivated barley. J Evol Biol 26(1):163–174PubMed 

    Google Scholar 
    Hübner S, Günther T, Flavell A, Fridman E, Graner A, Korol A, Schmid KJ (2012) Islands and streams: clusters and gene flow in wild barley populations from the Levant. Mol Ecol 21(5):1115–1129PubMed 

    Google Scholar 
    Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18(7):1523–1536PubMed 

    Google Scholar 
    Jakob SS, Rödder D, Engler JO, Shaaf S, Özkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6(3):685–702CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X-Q, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N (2020) The barley pan-genome reveals the hidden legacy of mutation breeding Nature 588:284–289. https://doi.org/10.1038/s41586-020-2947-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241
    Google Scholar 
    Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genom 276(3):230–241CAS 

    Google Scholar 
    Lasky JR, Des Marais DL, McKAY JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21(22):5512–5529PubMed 

    Google Scholar 
    Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya C, Mitchell SE et al. (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1(6):e1400218PubMed 
    PubMed Central 

    Google Scholar 
    Lawson DJ, Van Dorp L, Falush D (2018) A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat Commun 9(1):1–11CAS 

    Google Scholar 
    Lee C-R, Mitchell-Olds T (2011) Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol Ecol 20(22):4631–4642PubMed 
    PubMed Central 

    Google Scholar 
    Leek JT (2011) Asymptotic conditional singular value decomposition for high-dimensional genomic data. Biometrics 67(2):344–352PubMed 

    Google Scholar 
    Legendre P, Legendre L (2012) Canonical analysis. In: Numerical ecology, 3rd English edn, chap. 11. Elsevier Science BV, The Netherlands, pp 625–710López-Goldar X, Agrawal AA (2021) Ecological interactions, environmental gradients, and gene flow in local adaptation Trends Plant Sci 26(8):796–809PubMed 

    Google Scholar 
    Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24(5):1031–1046PubMed 

    Google Scholar 
    Lundgren E, Ralph PL (2019) Are populations like a circuit? Comparing isolation by resistance to a new coalescent-based method. Mol Ecol Resour 19(6):1388–1406PubMed 

    Google Scholar 
    Makowski D, Ben-Shachar M, Lüdecke D (2019) bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4(40):1541
    Google Scholar 
    Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433CAS 
    PubMed 

    Google Scholar 
    Mascher M (2019) Pseudomolecules and annotation of the second version of the reference genome sequence assembly of barley cv. morex [morex v2]. https://doi.ipk-gatersleben.de:443/DOI/83e8e186-dc4b-47f7-a820-28ad37cb176b/d1067eba-1d08-42e2-85ec-66bfd5112cd8/2McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5(10):e1000686Mee JA, Yeaman S (2019) Unpacking conditional neutrality: genomic signatures of selection on conditionally beneficial and conditionally deleterious mutations. Am Nat 194(4):529–540PubMed 

    Google Scholar 
    Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P et al. (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51(2):319–326CAS 
    PubMed 

    Google Scholar 
    Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102(7):2442–2447CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V et al. (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49(3):476
    Google Scholar 
    Nevo E, Zohary D, Brown A, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33(3):815–833CAS 
    PubMed 

    Google Scholar 
    Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biol J Linn Soc84(2):205–224
    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=veganPankin A, Altmüller J, Becker C, von Korff M (2018) Targeted resequencing reveals genomic signatures of barley domestication. New Phytol 218(3):1247–1259CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633):418–422CAS 

    Google Scholar 
    Pembleton L, Cogan N, Forster J (2013) StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations Mol Ecol Res 13:946–952. https://doi.org/10.1111/1755-0998.12129CAS 
    Article 

    Google Scholar 
    Peterman WE (2018) Resistancega: an r package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9(6):1638–1647
    Google Scholar 
    Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48(1):94CAS 
    PubMed 

    Google Scholar 
    Pham A-T, Maurer A, Pillen K, Brien C, Dowling K, Berger B, Eglinton JK, March TJ (2019) Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biol 19(1):134PubMed 
    PubMed Central 

    Google Scholar 
    Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J (2013) Complex patterns of local adaptation in teosinte. Genome Biol Evol 5(9):1594–1609PubMed 
    PubMed Central 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24(17):4348–4370PubMed 

    Google Scholar 
    Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC, Bowers JE, Burke JM, Rieseberg LH (2013) Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun 4(1):1–8
    Google Scholar 
    Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S et al. (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48(9):1024CAS 
    PubMed 

    Google Scholar 
    Samuk K, Samuk K, Owens GL, Delmore KE, Miller SE, Rennison DJ, Schluter D (2017) Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol Ecol 26(17):4378–4390PubMed 

    Google Scholar 
    Sato K, Mascher M, Himmelbach A, Haberer G, Spannagl M, Stein N (2021) Chromosome-scale assembly of wild barley accession ‘OUH602’. G3 11(10):jkab244PubMed 
    PubMed Central 

    Google Scholar 
    Schmid K, Kilian B. Russell J (2018) Barley domestication, adaptation and population genomics. In: The Barley Genome, Springer International Publishing: Cham, pp 317–336Szkiba D, Kapun M, von Haeseler A, Gallach M (2014) SNP2GO: functional analysis of genome-wide association studies. Genetics 197(1):285–289PubMed 
    PubMed Central 

    Google Scholar 
    Terrazas RA, Balbirnie-Cumming K, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Fridman E, Bulgarelli D (2020) A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci Rep 10(1):1–13
    Google Scholar 
    Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 29(12):673–680PubMed 

    Google Scholar 
    Tsuda Y, Chen J, Stocks M, Källman T, Sønstebø JH, Parducci L, Semerikov V, Sperisen C, Politov D, Ronkainen T et al. (2016) The extent and meaning of hybridization and introgression between siberian spruce (picea obovata) and norway spruce (picea abies): cryptic refugia as stepping stones to the west? Mol Ecol 25(12):2773–2789CAS 
    PubMed 

    Google Scholar 
    Turner-Hissong SD, Mabry ME, Beissinger TM, Ross-Ibarra J, Pires JC (2020) Evolutionary insights into plant breeding Curr Opin Plant Biol 54:93–100. https://doi.org/10.1016/j.pbi.2020.03.003CAS 
    Article 
    PubMed 

    Google Scholar 
    de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23(8):2006–2019PubMed 

    Google Scholar 
    Volis S (2011) Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and QST-FST test. New Phytol 192(1):237–248CAS 
    PubMed 

    Google Scholar 
    Volis S, Mendlinger S, Ward D (2002a) Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol J Linn Soc 77(4):479–490
    Google Scholar 
    Volis S, Mendlinger S, Ward D (2002b) Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2):131–138PubMed 

    Google Scholar 
    Volis S, Zaretsky M, Shulgina I (2010) Fine-scale spatial genetic structure in a predominantly selfing plant: role of seed and pollen dispersal. Heredity 105(4):384–393CAS 
    PubMed 

    Google Scholar 
    Volis S, Shulgina I, Ward D, Mendlinger S (2003) Regional subdivision in wild barley allozyme variation: adaptive or neutral? J Hered 94(4):341–351CAS 
    PubMed 

    Google Scholar 
    Volis S, Verhoeven K, Mendlinger S, Ward D (2004) Phenotypic selection and regulation of reproduction in different environments in wild barley. J Evol Biol 17(5):1121–1131CAS 
    PubMed 

    Google Scholar 
    Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S (2005) Distinguishing adaptive from nonadaptive genetic differentiation: comparison of q st and f st at two spatial scales. Heredity 95(6):466–475CAS 
    PubMed 

    Google Scholar 
    Volis S, Yakubov B, Shulgina I, Ward D, Zur V, Mendlinger S (2001) Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biol J Linn Soc 74(3):289–303
    Google Scholar 
    Wang X, Chen Z-H, Yang C, Zhang X, Jin G, Chen G, Wang Y, Holford P, Nevo E, Zhang G et al. (2018) Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proc Natl Acad Sci USA 115(20):5223–5228CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiegmann M, Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K (2019) Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues Sci Rep 9(1):6397. https://doi.org/10.1038/s41598-019-42673-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration–selection balance. Evolution 65(7):1897–1911PubMed 

    Google Scholar 
    Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B (2012) A high-performance computing toolset for relatedness and principal component analysis of snp data Bioinformatics 28(24):3326–3328. https://doi.org/10.1093/bioinformatics/bts606CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Tundra vegetation change and impacts on permafrost

    1.Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change, 2019).2.Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010). A field study in which dwarf-shrub canopies were removed experimentally, resulting in increased thaw depths, thereby, underscoring the protective role of vegetation cover on permafrost.
    Google Scholar 
    3.van Huissteden, J. Thawing Permafrost: Permafrost Carbon in a Warming Arctic (Springer, 2020).4.Jorgenson, M. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    5.Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).
    Google Scholar 
    6.Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Google Scholar 
    7.Sturm, M. et al. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).
    Google Scholar 
    8.Sturm, M. et al. Winter biological processes could help convert arctic tundra to shrubland. BioScience 55, 17–26 (2005).
    Google Scholar 
    9.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    Google Scholar 
    10.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018). Review article showing how Arctic ecosystem processes can influence soil thermal dynamics in permafrost soil.
    Google Scholar 
    11.Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
    Google Scholar 
    12.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
    Google Scholar 
    13.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).14.Ksenofontov, S., Backhaus, N. & Schaepman-Strub, G. ‘There are new species’: indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geogr. 42, 34–57 (2019).
    Google Scholar 
    15.Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
    Google Scholar 
    16.Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).
    Google Scholar 
    17.Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 
    18.Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
    Google Scholar 
    19.Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 
    20.Wang, P. et al. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J. Ecol. 105, 947–957 (2017).
    Google Scholar 
    21.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
    Google Scholar 
    22.Osterkamp, T. et al. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 20, 235–256 (2009).
    Google Scholar 
    23.Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 
    24.Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    Google Scholar 
    25.Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).
    Google Scholar 
    26.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    27.Lenton, T. M. et al. Climate tipping points – too risky to bet against. Nature 575, 592–595 (2019).
    Google Scholar 
    28.Miner, K. R. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).Article 

    Google Scholar 
    29.Peterson, K. & Billings, W. Tundra vegetational patterns and succession in relation to microtopography near Atkasook, Alaska. Arct. Alp. Res. 12, 473–482 (1980).
    Google Scholar 
    30.Bliss, L. in North American Terrestrial Vegetation (eds Barbour, M. G. & Billings W. D.) (Cambridge Univ. Press, 1988).31.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 
    32.Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
    Google Scholar 
    33.Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7, 015504 (2012).
    Google Scholar 
    34.Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
    Google Scholar 
    35.Chernov, Y. I. & Matveyeva, N. in Polar Alpine Tundra (ed. Wielgolaski, F. E.) 361–507 (Elsevier, 1997).36.Elvebakk, A. in The Species Concept in the High North: A Panarctic Flora Initiative (eds Nordal, I. & Razzhivin, V. Y.) 81–112 (The Norwegian Academy of Science and Letters, 1999).37.Yurtsev, B. A. Floristic division of the Arctic. J. Veg. Sci. 5, 765–776 (1994).
    Google Scholar 
    38.Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012). A meta-analysis of field-observed vegetation changes from 46 polar sites indicating widespread increases of shrub vegetation and increased plant size.
    Google Scholar 
    39.Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).
    Google Scholar 
    40.Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
    Google Scholar 
    41.Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013).
    Google Scholar 
    42.Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021).
    Google Scholar 
    43.Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).
    Google Scholar 
    44.Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    Google Scholar 
    45.Grunberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020). A field study reporting that large variations in soil temperatures and thaw depths can be explained by vegetation-mediated differences in snow height.
    Google Scholar 
    46.Magnússon, R. I. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    47.Jorgenson, M. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015). Outlines the role of ground ice and vegetation succession in thermokarst terrain, including first estimates of recovery times.
    Google Scholar 
    48.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). A meta-analysis of plant species responses to experimental climate warming across Arctic sites, finding that shrubs and graminoids generally responded positively to warming, whereas lichens and bryophytes responded more negatively.
    Google Scholar 
    49.Frost, G. V. et al. Arctic Report Card 2020: Tundra Greenness. https://doi.org/10.25923/46rm-0w23 (NOAA, 2020). Provides an annual update of Arctic NDVI, offering a long-standing record of Arctic greening and browning.50.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). Review article outlining complexity in Arctic greening and browning dynamics. The temporal and spatial scale of spectral data and the role of non-vegetation-related processes and ground-truthing remains essential.
    Google Scholar 
    51.Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
    Google Scholar 
    52.Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    Google Scholar 
    53.Bhatt, U. S. et al. Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact. 14, 1–20 (2010).
    Google Scholar 
    54.Oechel, W. C. & Billings, W. in Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective (eds Chapin, F. S. III et al.) 139–168 (Academic Press, 1992).55.Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).
    Google Scholar 
    56.Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. III Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
    Google Scholar 
    57.Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
    Google Scholar 
    58.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 
    59.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
    Google Scholar 
    60.van der Kolk, H.-J., Heijmans, M. M., van Huissteden, J., Pullens, J. W. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
    Google Scholar 
    61.Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
    Google Scholar 
    62.Leffler, A. J., Klein, E. S., Oberbauer, S. F. & Welker, J. M. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181, 287–297 (2016).
    Google Scholar 
    63.Euskirchen, E. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 12, 731–750 (2006).
    Google Scholar 
    64.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar 
    65.National Academies of Sciences, Engineering, and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).66.Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
    Google Scholar 
    67.Bokhorst, S. et al. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).
    Google Scholar 
    68.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).
    Google Scholar 
    69.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
    Google Scholar 
    70.Turetsky et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019). Reveals that abrupt thaw of permafrost could double the estimated future release of greenhouse gases from permafrost soils compared with scenarios of gradual thaw.
    Google Scholar 
    71.Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 
    72.Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).
    Google Scholar 
    73.Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
    Google Scholar 
    74.Olofsson, J., Tommervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
    Google Scholar 
    75.Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).
    Google Scholar 
    76.Verdonen, M., Berner, L. T., Forbes, B. C. & Kumpula, T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett. 15, 105020 (2020).
    Google Scholar 
    77.Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).
    Google Scholar 
    78.Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    Google Scholar 
    79.Magnússon, R. Í. et al. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 782, 146877 (2021).
    Google Scholar 
    80.Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).
    Google Scholar 
    81.Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).
    Google Scholar 
    82.Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    Google Scholar 
    83.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).
    Google Scholar 
    84.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook. Remote Sens. Environ. 246, 111872 (2020).
    Google Scholar 
    85.Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).
    Google Scholar 
    86.Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).
    Google Scholar 
    87.Sturm, M., Racine, C. & Tape, K. Climate change – increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
    Google Scholar 
    88.Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    Google Scholar 
    89.Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A. M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarctic Alp. Res. 47, 785–806 (2015).
    Google Scholar 
    90.Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L. & Orndahl, K. M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 10, 1305 (2018).
    Google Scholar 
    91.Hobbie, J. E. et al. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173 (2017).
    Google Scholar 
    92.Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
    Google Scholar 
    93.Ropars, P. & Boudreau, S. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
    Google Scholar 
    94.Ropars, P., Levesque, E. & Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 103, 679–690 (2015).
    Google Scholar 
    95.Tremblay, B., Levesque, E. & Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ. Res. Lett. 7, 035501 (2012).
    Google Scholar 
    96.Boulanger-Lapointe, N., Levesque, E., Boudreau, S., Henry, G. H. R. & Schmidt, N. M. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. J. Biogeogr. 41, 1967–1978 (2014).
    Google Scholar 
    97.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Google Scholar 
    98.Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Glob. Change Biol. 15, 1664–1675 (2009).
    Google Scholar 
    99.Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).
    Google Scholar 
    100.Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).
    Google Scholar 
    101.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
    Google Scholar 
    102.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    103.Didan, K. MYD13Q1 MODIS/Aqua vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).Article 

    Google Scholar 
    104.Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    105.Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).
    Google Scholar 
    106.Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-ice Conditions (US Geological Survey, 1997).107.Jones, G. A. & Henry, G. H. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 30, 277–296 (2003).
    Google Scholar 
    108.Cornelissen, J. H. C. et al. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 
    109.Aguirre, D., Benhumea, A. E. & McLaren, J. R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol. Biochem. 153, 108121 (2021).
    Google Scholar 
    110.Gornall, J. L., Jonsdottir, I. S., Woodin, S. J. & Van der Wal, R. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941 (2007).
    Google Scholar 
    111.Soudzilovskaia, N. A., Bodegom, P. M. & Cornelissen, J. H. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).
    Google Scholar 
    112.Blok, D. et al. The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14, 1055–1065 (2011).
    Google Scholar 
    113.Belke-Brea, M., Domine, F., Barrere, M., Picard, G. & Arnaud, L. Impact of shrubs on winter surface albedo and snow specific surface area at a low Arctic site: In situ measurements and simulations. J. Clim. 33, 597–609 (2020).
    Google Scholar 
    114.Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).
    Google Scholar 
    115.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    Google Scholar 
    116.Wilson, M. A., Burn, C. & Humphreys, E. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 687–695 (American Society of Civil Engineers, 2019).117.Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).
    Google Scholar 
    118.Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).
    Google Scholar 
    119.Beringer, J., Chapin, F. S., Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 131, 143–161 (2005).
    Google Scholar 
    120.Kemppinen, J. et al. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24, 1378–1392 (2021). Quantifies the effects of shrub abundance on the soil thermal regime using a distinction between a rough, tall-shrub canopy and an aerodynamic, dwarf-shrub canopy.
    Google Scholar 
    121.Jorgenson, M. T., Ely, C. & Terenzi, J. in Shared Science Needs: Report from the Western Alaska Landscape Conservation Cooperative Science Workshop (eds Reynolds, J. H. & Wiggins, H. V.) 130–137 (2012).122.Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110, G01004 (2005).
    Google Scholar 
    123.Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).
    Google Scholar 
    124.Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
    Google Scholar 
    125.Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Google Scholar 
    126.Barrere, M., Domine, F., Belke-Brea, M. & Sarrazin, D. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. J. Clim. 31, 9507–9518 (2018).
    Google Scholar 
    127.Loranty, M. M., Goetz, S. J. & Beck, P. S. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
    Google Scholar 
    128.Bonfils, C. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Google Scholar 
    129.Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).
    Google Scholar 
    130.Juszak, I., Eugster, W., Heijmans, M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).
    Google Scholar 
    131.Göckede, M. et al. Negative feedback processes following drainage slow down permafrost degradation. Glob. Change Biol. 25, 3254–3266 (2019).
    Google Scholar 
    132.Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).133.Eugster, W. et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol. 6, 84–115 (2000).
    Google Scholar 
    134.Liljedahl, A. et al. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8, 3375–3389 (2011).
    Google Scholar 
    135.Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Google Scholar 
    136.Subin, Z. M. et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J. Clim. 26, 3139–3158 (2013).
    Google Scholar 
    137.Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Google Scholar 
    138.Asmus, A. L. et al. Shrub shading moderates the effects of weather on arthropod activity in arctic tundra. Ecol. Entomol. 43, 647–655 (2018).
    Google Scholar 
    139.Hinkel, K., Paetzold, F., Nelson, F. & Bockheim, J. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change 29, 293–309 (2001).
    Google Scholar 
    140.Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).
    Google Scholar 
    141.Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).
    Google Scholar 
    142.Aartsma, P., Asplund, J., Odland, A., Reinhardt, S. & Renssen, H. Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, 1577–1599 (2021).
    Google Scholar 
    143.Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).
    Google Scholar 
    144.Van Cleve, K. et al. Taiga ecosystems in interior Alaska. BioScience 33, 39–44 (1983).
    Google Scholar 
    145.Kade, A., Romanovsky, V. & Walker, D. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. Process. 17, 279–289 (2006).
    Google Scholar 
    146.Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. & Wilson, C. J. Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016).
    Google Scholar 
    147.Klene, A. E., Nelson, F. E., Shiklomanov, N. I. & Hinkel, K. M. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 33, 140–148 (2001).
    Google Scholar 
    148.van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (National Snow and Ice Data Center/World Data Center for Glaciology, 2005).149.Iwahana, G. et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113 (2014).
    Google Scholar 
    150.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    151.Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017).
    Google Scholar 
    152.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
    Google Scholar 
    153.Jorgenson, M., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
    Google Scholar 
    154.Stieglitz, M., Déry, S., Romanovsky, V. & Osterkamp, T. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 30, 1721 (2003).
    Google Scholar 
    155.Anisimov, O. & Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).
    Google Scholar 
    156.Tei, S. et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 34, 522–537 (2020).
    Google Scholar 
    157.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
    Google Scholar 
    158.Fraser, R. H. et al. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 10, 954 (2018).
    Google Scholar 
    159.Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
    Google Scholar 
    160.Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
    Google Scholar 
    161.Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).
    Google Scholar 
    162.Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    163.French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
    Google Scholar 
    164.Burn, C. R. & Friele, P. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42, 31–40 (1989).
    Google Scholar 
    165.Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, vzj2016-01 (2016).
    Google Scholar 
    166.Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Change Biol. 16, 1870–1882 (2010).
    Google Scholar 
    167.Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
    Google Scholar 
    168.Cray, H. A. & Pollard, W. H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: case study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 47, 99–113 (2015).
    Google Scholar 
    169.Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).
    Google Scholar 
    170.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    Google Scholar 
    171.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
    Google Scholar 
    172.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).
    Google Scholar 
    173.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
    Google Scholar 
    174.Hjort, J. E. A. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).175.Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C. & Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Change 21, 550–562 (2011).
    Google Scholar 
    176.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
    Google Scholar 
    177.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
    Google Scholar 
    178.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 
    179.Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).
    Google Scholar 
    180.Mikhailov, I. Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil. Sci. 53, 715–723 (2020).
    Google Scholar 
    181.Frost, G. V. et al. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett. 15, 025003 (2020).
    Google Scholar 
    182.Whitley, M. A. et al. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 258 (2018).
    Google Scholar  More

  • in

    West Nile virus transmission potential in Portugal

    1.Granwehr, B. P. et al. West Nile virus: Where are we now? Lancet. Infect. Dis. 4, 547–556 (2004).PubMed 

    Google Scholar 
    2.Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. West Nile virus. Lancet. Infect. Dis. 2, 519–529 (2002).PubMed 

    Google Scholar 
    3.Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: Review of the literature. JAMA. 310, 308–315 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Gamino, V. & Höfle, U. Pathology and tissue tropism of natural West Nile virus infection in birds: A review. Vet. Res. 44, 39 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Bunning, M. L. et al. Experimental infection of horses with West Nile virus. Emerg. Infect. Dis. 8, 380-386 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    6.Hayes, E. B. et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 11, 1174–1179 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    7.Saiz, J.-C. Animal and Human Vaccines against West Nile Virus. Pathogens. 9, 1073 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    8.Rizzoli, A. et al. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int. J. Parasitology: Parasites. Wildl. 9, 394–401 (2019).
    Google Scholar 
    9.Wang, Y., Yim, S. H. L., Yang, Y. & Morin, C. W. The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. Int. J. Biometeorol. 64, 501–512 (2020).PubMed 

    Google Scholar 
    10.Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R. & de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites. Vectors. 11, 29 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    11.Johnson, N. et al. Emerging mosquito-borne threats and the response from european and eastern mediterranean countries. Int. J. Environ. Res. Public. Health. 15, 2775 (2018).PubMed Central 

    Google Scholar 
    12.Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. Elife. 6, e29820 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Giovanetti, M. et al. Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Rep. 30, 2275–2283.e7 (2020).CAS 
    PubMed 

    Google Scholar 
    14.Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science. 361, 894–899 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Wu, J. T., Peak, C. M., Leung, G. M. & Lipsitch, M. Fractional dosing of yellow fever vaccine to extend supply: a modelling study. Lancet. 388, 2904–2911 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    16.Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe, and Asia. Curr. Top. Microbiol. Immunol. 267, 195–221 (2002).CAS 
    PubMed 

    Google Scholar 
    17.Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    19.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. Elife. 9, e58511 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Haussig, J. M. et al. Early start of the West Nile fever transmission season 2018 in Europe. Euro. Surveill. 23, 1800428 (2018).PubMed Central 

    Google Scholar 
    21.Riccardo, F. et al. West Nile virus in Europe: after action reviews of preparedness and response to the 2018 transmission season in Italy, Slovenia, Serbia and Greece. Glob. Health. 16, 47 (2020).
    Google Scholar 
    22.Bakonyi, T. & Haussig, J. M. West Nile virus keeps on moving up in Europe. Eurosurveillance. 25, 2001938 (2020).PubMed Central 

    Google Scholar 
    23.Vlaskamp, D. R. M. et al. First autochthonous human West Nile virus infections in the Netherlands, July to August 2020. Eurosurveillance. 25, 2001904 (2020).24.West Nile virus in Europe in 2020 – human cases compared to previous seasons, updated 8 October 2020. https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-europe-2020-human-cases-compared-previous-seasons-updated-8 (2020).25.Weekly updates: 2020 West Nile virus transmission season. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc.26.Council Directive 82/894/EEC of 21 December 1982 on the notification of animal diseases within the Community. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31982L0894.27.European Food Safety Authority. https://www.efsa.europa.eu/en.28.European Centre for Disease Prevention and Control – West Nile virus. https://www.ecdc.europa.eu/en/west-nile-virus-infection.29.REVIVE – Rede de Vigilância de Vetores. http://www2.insa.pt/sites/INSA/Portugues/AreasCientificas/DoencasInfecciosas/AreasTrabalho/EstVectDoencasInfecciosas/Paginas/Revive.aspx.30.Osório, H. C., Zé-Zé, L., Amaro, F. & Alves, M. J. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal – 2008-2014. Int. J. Environ. Res. Public. Health. 11, 11583–11596 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    31.European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (VectorNet). https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/vector-net.32.Filipe, A. R. Anticorpos contra virus transmitidos por artropodos-arbovirus do grupo B em animais do Sul de Portugal: inquérito serológico preliminar com o vírus West Nile, estirpe Egypt 101. Ann. Esc. Nacional de. Saúde. Pública de. Med. Tropical 1, 197–204 (1967).CAS 

    Google Scholar 
    33.Filipe, A. R. & Pinto, M. R. Survey for antibodies to arboviruses in serum of animals from southern Portugal. Am. J. Trop. Med. Hyg. 18, 423–426 (1969).CAS 
    PubMed 

    Google Scholar 
    34.Filipe, A. R. & Campaniço, M. Encefalomielite equina por arbovírus. A propósito de uma epizootia presuntiva causada pelo vírus West Nile. Revista Portuguesa de Ciências Veterinárias LXVIII, (1973).35.Filipe, A. R. Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta Virol. 16, 361 (1972).CAS 
    PubMed 

    Google Scholar 
    36.Filipe, A. R. Anticorpos contra arbovírus na população de Portugal. Separata de O Médico. LXVII, 731–732 (1973).37.Formosinho, P. et al. O vírus West Nile em Portugal – estudos de vigilância epidemiológica. Rev. Portuguesa de. Ciências Veterinárias 101, 61–68 (2006).
    Google Scholar 
    38.Barros, S. C. et al. Serological evidence of West Nile virus circulation in Portugal. Vet. Microbiol. 152, 407–410 (2011).PubMed 

    Google Scholar 
    39.Almeida, A. P. G. et al. Potential mosquito vectors of arboviruses in Portugal: Species, distribution, abundance and West Nile infection. Trans. R. Soc. Trop. Med. Hyg. 102, 823–832 (2008).CAS 
    PubMed 

    Google Scholar 
    40.Esteves, A. et al. West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 5, 410–413 (2005).PubMed 

    Google Scholar 
    41.Barros, S. C. et al. West Nile virus in horses during the summer and autumn seasons of 2015 and 2016, Portugal. Vet. Microbiol. 212, 75–79 (2017).PubMed 

    Google Scholar 
    42.World Organization for Animal Health (OIE) – West Nile reports. Information received on 03/09/2015 from Prof. Dr Álvaro Mendonça, Director General, Direcção Geral de Alimentação e Veterinária, Ministério da Agricultura E do Mar, Lisboa, Portugal https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=18585 (2015).43.Connell, J. et al. Two linked cases of West Nile virus (WNV) acquired by Irish tourists in the Algarve, Portugal. Weekly releases (1997–2007) 8, 2517 (2004).44.Alves, M. J. et al. Infecção por vírus West Nile [Flavivírus] em Portugal. Considerações acerca de. um. caso cl.ínico de. s.índrome febril com. exantema 8, 46–51 (2012).
    Google Scholar 
    45.Zé-Zé, L. et al. Human case of West Nile neuroinvasive disease in Portugal, summer 2015. Eurosurveillance 20, 30024 (2015).
    Google Scholar 
    46.Direcção-Geral de Veterinária (Directorate-General of Veterinary). National statistics on official number of equines in subregions of Portugal. http://srvbamid.dgv.min-agricultura.pt/portal/page/portal/DGV/genericos?actualmenu=23555&generico=33698230&cboui=33698230.47.Osório, H. C., Zé-Zé, L., Amaro, F., Nunes, A. & Alves, M. J. Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med. Vet. Entomol. 28, 103–109 (2014).PubMed 

    Google Scholar 
    48.Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: A review of the evidence. Ecohealth. 11, 619–632 (2014).PubMed 

    Google Scholar 
    49.Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia–a review. Int. J. Environ. Res. Public. Health. 10, 3543–3562 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    50.Eisen, L. et al. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado. J. Med. Entomol. 47, 939–951 (2010).PubMed 

    Google Scholar 
    51.Gates, M. C. & Boston, R. C. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Prev. Vet. Med 89, 134–137 (2009).PubMed 

    Google Scholar 
    52.Kovach, T. J. & Kilpatrick, A. M. Increased human incidence of West Nile virus disease near rice fields in California but Not in Southern United States. Am. J. Trop. Med. Hyg. 99, 222–228 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    53.Rocheleau, J. P. et al. Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiol. Infect. 145, 2797–2807 (2017).CAS 
    PubMed 

    Google Scholar 
    54.Lourenço, J., Thompson, R. N., Thézé, J. & Obolski, U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. Euro Surveill. 25, 1900629 (2020).PubMed Central 

    Google Scholar 
    55.Obolski, U. et al. MVSE: An R-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    56.Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat. Commun. 12, 151 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hansen, B. B., Grøtan, V., Herfindal, I. & Lee, A. M. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43, 1591–1602 (2020).
    Google Scholar 
    58.Arizaga, J. et al. Migratory Connectivity in European Bird Populations: Feather stable isotope values correlate with biometrics of breeding and wintering BluethroatsLuscinia svecica. Ardeola. 62, 255–267 (2015).
    Google Scholar 
    59.Pakanen, V.-M. et al. Migration strategies of the Baltic dunlin: Rapid jump migration in the autumn but slower skipping type spring migration. J. Avian Biol. 49, jav–01513 (2018).
    Google Scholar 
    60.Pardal, S. et al. Shorebird low spillover risk of mosquito-borne pathogens on Iberian wetlands. J. Ornithol. 155, 549–554 (2013).
    Google Scholar 
    61.Rizzoli, A. et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit. Vectors. 8, 1–13 (2015).
    Google Scholar 
    62.Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, e82 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    63.Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    64.Vogels, C. B. F., Fros, J. J., Göertz, G. P., Pijlman, G. P. & Koenraadt, C. J. M. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit. Vectors 9, 393 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chuang, T.-W., Hockett, C. W., Kightlinger, L. & Wimberly, M. C. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am. J. Trop. Med. Hyg. 86, 724–731 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    66.Crowder, D. W. et al. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One 8, e55006 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.García-Bocanegra, I. et al. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 65, 567–577 (2018).PubMed 

    Google Scholar 
    68.Lourenco, J. MVSE – WNV related files for Portugal. https://doi.org/10.6084/m9.figshare.c.5281664.v1 (2021).69.Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. Biol. Sci. 277, 3601–3608 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    70.Cator, L. J. et al. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol. Evol. 8, 189 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    71.Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    72.Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    73.Thézé, J. et al. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host. Microbe. 23, 855–864.e7 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    74.Perez-Guzman, P. N. et al. Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLoS Curr. 10, (2018).75.Pereira Gusmão Maia, Z. et al. Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases. Emerg. Microbes Infect. 9, 53–57 (2020).PubMed 

    Google Scholar 
    76.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-climate-change?tab=overview.77.Lourenço, J. & Obolski, U. MVSE R-package official page. https://sourceforge.net/projects/mvse/.78.R-Forge: Circular Statistics: Project Home. https://r-forge.r-project.org/projects/circular/.79.Geraci, M. Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression. J. Stat. Softw. 57, 1–29 (2014).
    Google Scholar 
    80.Damineli, D. S. C., Portes, M. T. & Feijó, J. A. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J. Exp. Bot. 68, 3267–3281 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.wavelets: Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses. https://CRAN.R-project.org/package=wavelets.82.biwavelet GitHub repository. https://github.com/tgouhier/biwavelet.83.Barros, S. C. et al. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J. Virol. Methods 193, 554–557 (2013).CAS 
    PubMed 

    Google Scholar 
    84.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview.85.Filipe, A. R. & de Andrade, H. R. Arboviruses in the Iberian Peninsula. Acta Virol. 34, 582–591 (1990).CAS 
    PubMed 

    Google Scholar 
    86.Almeida, A. P. G. et al. Mosquito surveys and West Nile virus screening in two different areas of southern Portugal, 2004-2007. Vector. Borne. Zoonotic Dis. 10, 673–680 (2010).PubMed 

    Google Scholar 
    87.Freitas, F. B., Novo, M. T., Esteves, A. & de Almeida, A. P. Species Composition and WNV Screening of Mosquitoes from Lagoons in a Wetland Area of the Algarve, Portugal. Front. Physiol. 2, 122 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    88.Parreira, R. et al. Two distinct introductions of the West Nile virus in Portugal disclosed by phylogenetic analysis of genomic sequences. Vector. Borne. Zoonotic. Dis. 7, 344–352 (2007).CAS 
    PubMed 

    Google Scholar 
    89.Fotakis, E. A. et al. Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance. PLoS Negl. Trop. Dis. 14, e0008284 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Mixão, V. et al. Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector, Culex univittatus, in the Iberian Peninsula. Parasit. Vectors. 9, 601 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    91.Osório, H. C., Zé-Zé, L. & Alves, M. J. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J. Med. Entomol. 49, 717–721 (2012).PubMed 

    Google Scholar 
    92.Gomes, B. et al. The Culex pipiens complex in continental Portugal: distribution and genetic structure. J. Am. Mosq. Control. Assoc. 28, 75–80 (2012).PubMed 

    Google Scholar 
    93.Gomes, B. et al. Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol. Biol. 15, 197 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    94.Calzolari, M. et al. Detection of mosquito-only flaviviruses in Europe. J. Gen. Virol. 93, 1215–1225 (2012).CAS 
    PubMed 

    Google Scholar 
    95.Hernández-Triana, L. M. et al. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? Med. Vet. Entomol. 34, 86–96 (2020).PubMed 

    Google Scholar 
    96.Alves, J. M. et al. Flavivírus transmitidos por mosquitos: um risco potencial para Portugal. Investigação em ambiente e saúde – desafios e estratégias (Universidade de Aveiro) (2009).97.Conte, A. et al. Spatio-temporal identification of areas suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS. One. 10, e0146024 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    98.García-Carrasco, J.-M., Muñoz, A.-R., Olivero, J., Segura, M. & Real, R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl. Trop. Dis. 15, e0009022 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    99.Marini, G., Manica, M., Delucchia, L., Pugliesed, A. & Rosa, R. Spring temperature shapes West Nile virus transmission in Europe. Acta. Trop. 215, 105796 (2021).PubMed 

    Google Scholar  More