1.Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change, 2019).2.Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010). A field study in which dwarf-shrub canopies were removed experimentally, resulting in increased thaw depths, thereby, underscoring the protective role of vegetation cover on permafrost.
Google Scholar
3.van Huissteden, J. Thawing Permafrost: Permafrost Carbon in a Warming Arctic (Springer, 2020).4.Jorgenson, M. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
Google Scholar
5.Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).
Google Scholar
6.Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
Google Scholar
7.Sturm, M. et al. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).
Google Scholar
8.Sturm, M. et al. Winter biological processes could help convert arctic tundra to shrubland. BioScience 55, 17–26 (2005).
Google Scholar
9.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
Google Scholar
10.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018). Review article showing how Arctic ecosystem processes can influence soil thermal dynamics in permafrost soil.
Google Scholar
11.Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
Google Scholar
12.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
Google Scholar
13.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).14.Ksenofontov, S., Backhaus, N. & Schaepman-Strub, G. ‘There are new species’: indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geogr. 42, 34–57 (2019).
Google Scholar
15.Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
Google Scholar
16.Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).
Google Scholar
17.Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
Google Scholar
18.Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
Google Scholar
19.Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
Google Scholar
20.Wang, P. et al. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J. Ecol. 105, 947–957 (2017).
Google Scholar
21.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
Google Scholar
22.Osterkamp, T. et al. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 20, 235–256 (2009).
Google Scholar
23.Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Google Scholar
24.Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
Google Scholar
25.Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).
Google Scholar
26.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
Google Scholar
27.Lenton, T. M. et al. Climate tipping points – too risky to bet against. Nature 575, 592–595 (2019).
Google Scholar
28.Miner, K. R. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).Article
Google Scholar
29.Peterson, K. & Billings, W. Tundra vegetational patterns and succession in relation to microtopography near Atkasook, Alaska. Arct. Alp. Res. 12, 473–482 (1980).
Google Scholar
30.Bliss, L. in North American Terrestrial Vegetation (eds Barbour, M. G. & Billings W. D.) (Cambridge Univ. Press, 1988).31.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
Google Scholar
32.Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
Google Scholar
33.Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7, 015504 (2012).
Google Scholar
34.Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
Google Scholar
35.Chernov, Y. I. & Matveyeva, N. in Polar Alpine Tundra (ed. Wielgolaski, F. E.) 361–507 (Elsevier, 1997).36.Elvebakk, A. in The Species Concept in the High North: A Panarctic Flora Initiative (eds Nordal, I. & Razzhivin, V. Y.) 81–112 (The Norwegian Academy of Science and Letters, 1999).37.Yurtsev, B. A. Floristic division of the Arctic. J. Veg. Sci. 5, 765–776 (1994).
Google Scholar
38.Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012). A meta-analysis of field-observed vegetation changes from 46 polar sites indicating widespread increases of shrub vegetation and increased plant size.
Google Scholar
39.Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).
Google Scholar
40.Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
Google Scholar
41.Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013).
Google Scholar
42.Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021).
Google Scholar
43.Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).
Google Scholar
44.Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
Google Scholar
45.Grunberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020). A field study reporting that large variations in soil temperatures and thaw depths can be explained by vegetation-mediated differences in snow height.
Google Scholar
46.Magnússon, R. I. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
Google Scholar
47.Jorgenson, M. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015). Outlines the role of ground ice and vegetation succession in thermokarst terrain, including first estimates of recovery times.
Google Scholar
48.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). A meta-analysis of plant species responses to experimental climate warming across Arctic sites, finding that shrubs and graminoids generally responded positively to warming, whereas lichens and bryophytes responded more negatively.
Google Scholar
49.Frost, G. V. et al. Arctic Report Card 2020: Tundra Greenness. https://doi.org/10.25923/46rm-0w23 (NOAA, 2020). Provides an annual update of Arctic NDVI, offering a long-standing record of Arctic greening and browning.50.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). Review article outlining complexity in Arctic greening and browning dynamics. The temporal and spatial scale of spectral data and the role of non-vegetation-related processes and ground-truthing remains essential.
Google Scholar
51.Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
Google Scholar
52.Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
Google Scholar
53.Bhatt, U. S. et al. Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact. 14, 1–20 (2010).
Google Scholar
54.Oechel, W. C. & Billings, W. in Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective (eds Chapin, F. S. III et al.) 139–168 (Academic Press, 1992).55.Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).
Google Scholar
56.Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. III Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
Google Scholar
57.Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
Google Scholar
58.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
Google Scholar
59.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
Google Scholar
60.van der Kolk, H.-J., Heijmans, M. M., van Huissteden, J., Pullens, J. W. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
Google Scholar
61.Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
Google Scholar
62.Leffler, A. J., Klein, E. S., Oberbauer, S. F. & Welker, J. M. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181, 287–297 (2016).
Google Scholar
63.Euskirchen, E. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 12, 731–750 (2006).
Google Scholar
64.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
Google Scholar
65.National Academies of Sciences, Engineering, and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).66.Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
Google Scholar
67.Bokhorst, S. et al. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).
Google Scholar
68.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).
Google Scholar
69.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
Google Scholar
70.Turetsky et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019). Reveals that abrupt thaw of permafrost could double the estimated future release of greenhouse gases from permafrost soils compared with scenarios of gradual thaw.
Google Scholar
71.Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
Google Scholar
72.Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).
Google Scholar
73.Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
Google Scholar
74.Olofsson, J., Tommervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
Google Scholar
75.Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).
Google Scholar
76.Verdonen, M., Berner, L. T., Forbes, B. C. & Kumpula, T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett. 15, 105020 (2020).
Google Scholar
77.Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).
Google Scholar
78.Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
Google Scholar
79.Magnússon, R. Í. et al. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 782, 146877 (2021).
Google Scholar
80.Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).
Google Scholar
81.Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).
Google Scholar
82.Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
Google Scholar
83.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).
Google Scholar
84.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook. Remote Sens. Environ. 246, 111872 (2020).
Google Scholar
85.Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).
Google Scholar
86.Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).
Google Scholar
87.Sturm, M., Racine, C. & Tape, K. Climate change – increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
Google Scholar
88.Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
Google Scholar
89.Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A. M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarctic Alp. Res. 47, 785–806 (2015).
Google Scholar
90.Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L. & Orndahl, K. M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 10, 1305 (2018).
Google Scholar
91.Hobbie, J. E. et al. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173 (2017).
Google Scholar
92.Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
Google Scholar
93.Ropars, P. & Boudreau, S. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
Google Scholar
94.Ropars, P., Levesque, E. & Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 103, 679–690 (2015).
Google Scholar
95.Tremblay, B., Levesque, E. & Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ. Res. Lett. 7, 035501 (2012).
Google Scholar
96.Boulanger-Lapointe, N., Levesque, E., Boudreau, S., Henry, G. H. R. & Schmidt, N. M. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. J. Biogeogr. 41, 1967–1978 (2014).
Google Scholar
97.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
Google Scholar
98.Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Glob. Change Biol. 15, 1664–1675 (2009).
Google Scholar
99.Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).
Google Scholar
100.Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).
Google Scholar
101.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
Google Scholar
102.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Google Scholar
103.Didan, K. MYD13Q1 MODIS/Aqua vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).Article
Google Scholar
104.Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article
Google Scholar
105.Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).
Google Scholar
106.Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-ice Conditions (US Geological Survey, 1997).107.Jones, G. A. & Henry, G. H. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 30, 277–296 (2003).
Google Scholar
108.Cornelissen, J. H. C. et al. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
Google Scholar
109.Aguirre, D., Benhumea, A. E. & McLaren, J. R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol. Biochem. 153, 108121 (2021).
Google Scholar
110.Gornall, J. L., Jonsdottir, I. S., Woodin, S. J. & Van der Wal, R. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941 (2007).
Google Scholar
111.Soudzilovskaia, N. A., Bodegom, P. M. & Cornelissen, J. H. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).
Google Scholar
112.Blok, D. et al. The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14, 1055–1065 (2011).
Google Scholar
113.Belke-Brea, M., Domine, F., Barrere, M., Picard, G. & Arnaud, L. Impact of shrubs on winter surface albedo and snow specific surface area at a low Arctic site: In situ measurements and simulations. J. Clim. 33, 597–609 (2020).
Google Scholar
114.Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).
Google Scholar
115.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
Google Scholar
116.Wilson, M. A., Burn, C. & Humphreys, E. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 687–695 (American Society of Civil Engineers, 2019).117.Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).
Google Scholar
118.Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).
Google Scholar
119.Beringer, J., Chapin, F. S., Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 131, 143–161 (2005).
Google Scholar
120.Kemppinen, J. et al. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24, 1378–1392 (2021). Quantifies the effects of shrub abundance on the soil thermal regime using a distinction between a rough, tall-shrub canopy and an aerodynamic, dwarf-shrub canopy.
Google Scholar
121.Jorgenson, M. T., Ely, C. & Terenzi, J. in Shared Science Needs: Report from the Western Alaska Landscape Conservation Cooperative Science Workshop (eds Reynolds, J. H. & Wiggins, H. V.) 130–137 (2012).122.Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110, G01004 (2005).
Google Scholar
123.Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).
Google Scholar
124.Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
Google Scholar
125.Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
Google Scholar
126.Barrere, M., Domine, F., Belke-Brea, M. & Sarrazin, D. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. J. Clim. 31, 9507–9518 (2018).
Google Scholar
127.Loranty, M. M., Goetz, S. J. & Beck, P. S. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
Google Scholar
128.Bonfils, C. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
Google Scholar
129.Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).
Google Scholar
130.Juszak, I., Eugster, W., Heijmans, M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).
Google Scholar
131.Göckede, M. et al. Negative feedback processes following drainage slow down permafrost degradation. Glob. Change Biol. 25, 3254–3266 (2019).
Google Scholar
132.Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).133.Eugster, W. et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol. 6, 84–115 (2000).
Google Scholar
134.Liljedahl, A. et al. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8, 3375–3389 (2011).
Google Scholar
135.Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
Google Scholar
136.Subin, Z. M. et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J. Clim. 26, 3139–3158 (2013).
Google Scholar
137.Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
Google Scholar
138.Asmus, A. L. et al. Shrub shading moderates the effects of weather on arthropod activity in arctic tundra. Ecol. Entomol. 43, 647–655 (2018).
Google Scholar
139.Hinkel, K., Paetzold, F., Nelson, F. & Bockheim, J. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change 29, 293–309 (2001).
Google Scholar
140.Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).
Google Scholar
141.Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).
Google Scholar
142.Aartsma, P., Asplund, J., Odland, A., Reinhardt, S. & Renssen, H. Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, 1577–1599 (2021).
Google Scholar
143.Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).
Google Scholar
144.Van Cleve, K. et al. Taiga ecosystems in interior Alaska. BioScience 33, 39–44 (1983).
Google Scholar
145.Kade, A., Romanovsky, V. & Walker, D. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. Process. 17, 279–289 (2006).
Google Scholar
146.Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. & Wilson, C. J. Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016).
Google Scholar
147.Klene, A. E., Nelson, F. E., Shiklomanov, N. I. & Hinkel, K. M. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 33, 140–148 (2001).
Google Scholar
148.van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (National Snow and Ice Data Center/World Data Center for Glaciology, 2005).149.Iwahana, G. et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113 (2014).
Google Scholar
150.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
Google Scholar
151.Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017).
Google Scholar
152.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Google Scholar
153.Jorgenson, M., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
Google Scholar
154.Stieglitz, M., Déry, S., Romanovsky, V. & Osterkamp, T. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 30, 1721 (2003).
Google Scholar
155.Anisimov, O. & Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).
Google Scholar
156.Tei, S. et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 34, 522–537 (2020).
Google Scholar
157.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
Google Scholar
158.Fraser, R. H. et al. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 10, 954 (2018).
Google Scholar
159.Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
Google Scholar
160.Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
Google Scholar
161.Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).
Google Scholar
162.Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
Google Scholar
163.French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
Google Scholar
164.Burn, C. R. & Friele, P. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42, 31–40 (1989).
Google Scholar
165.Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, vzj2016-01 (2016).
Google Scholar
166.Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Change Biol. 16, 1870–1882 (2010).
Google Scholar
167.Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
Google Scholar
168.Cray, H. A. & Pollard, W. H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: case study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 47, 99–113 (2015).
Google Scholar
169.Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).
Google Scholar
170.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
Google Scholar
171.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
Google Scholar
172.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).
Google Scholar
173.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
Google Scholar
174.Hjort, J. E. A. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).175.Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C. & Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Change 21, 550–562 (2011).
Google Scholar
176.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
Google Scholar
177.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
Google Scholar
178.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
Google Scholar
179.Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).
Google Scholar
180.Mikhailov, I. Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil. Sci. 53, 715–723 (2020).
Google Scholar
181.Frost, G. V. et al. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett. 15, 025003 (2020).
Google Scholar
182.Whitley, M. A. et al. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 258 (2018).
Google Scholar More