Déjà vu: a reappraisal of the taphonomy of quarry VM4 of the Early Pleistocene site of Venta Micena (Baza Basin, SE Spain)
Patterns of species abundanceIn their analysis of the fossil assemblage of VM4, Luzón et al.1 indicate that herbivorous taxa comprise the bulk of the fauna. Their data, compiled in Table 1, show that herbivore remains represent 94.2% (1492/1578) of NISP and 78.8% (41/52) of MNI values for large mammals. These figures are close to those of VM3, 93.5% (6570/7027) and 84.4% (287/340), respectively (Table 1). A χ2 test shows that these differences are not statistically significant (p > 0.3 in both cases). Among herbivores, Luzón et al.1 indicate that E. altidens is the species most abundantly preserved, both in frequency of remains and number of individuals, followed by cervids, bison, caprines, and megaherbivores (i.e., elephant, rhino, and hippo). This is also the situation in VM3 according to data compiled in Table 1: for example, the NISP value of E. altidens represents 31.8% (124/390) of the remains of large mammal identified in VM4 and 49.6% (2937/5924) in VM3. Although this difference is statistically significant (χ2 = 46.408, p 0.75). The difference based on NISP values seems high, but it falls within the range expected from variations in abundance data from different years for the ungulate prey more common in Serengeti, where the frequencies of Thomson’s gazelle, wildebeest, and zebra fluctuated in the late sixties between 18.9–56.3%, 21.3–42.8%, and 11.1–15.7%, respectively15,16. Finally, P. brevirostris is the species most represented among carnivores in both assemblages according to NISP values (Table 1), 26.8% (15/56) in VM4 and 30.0% (122/407) in VM3 (χ2 = 0.241, p > 0.6), followed by canids, ursids and felids.The distribution of NISP and MNI values among taxa in VM4 and VM3 was further analysed using an approach based on contingency tables. The table for NISP values shows a significant χ2 value (Table 2, left part). This results from some differences in taxa abundance between the assemblages compared, which are reflected in the adjusted residuals: remains of megaherbivores and carnivores (excluding hyaenas) are represented in VM4 by higher frequencies than those expected from a random, homogeneous distribution, while they are underrepresented in VM3. This applies to the estimates obtained for VM4 using the data of Luzón et al.1 and our own data (Tables S1, S2). The NISP values estimated for P. brevirostris by Luzón et al.1 suggest a higher frequency of this carnivore in VM4 than in VM3, as indicated by the adjusted residual. However, the abundance of hyaena remains in our dataset for VM4 does not depart significantly from the expectations, as happens in VM3. Given that the database of Luzón et al.1 includes less than half of the remains of large mammals included in our database (Table 2), this suggests that the high frequency of P. brevirostris reported in VM4 results from poor sampling. The remains of other carnivores are more abundantly represented in VM4 than in VM3. However, it must be noted that a study of 24 dens of the three living hyaenas showed that the abundance of carnivore remains is highly variable, even among dens of the same species17. The distribution of MNI values among taxa in VM4 and VM3 (Table 2, right part) does not differ from the expectations of a random distribution according to the low χ2 value of the contingency table. Only the adjusted residual for megaherbivores, which are slightly over-represented in VM4 according to the data of Luzón et al.1, is statistically significant, while their abundance in VM3 is slightly lower than expected. Moreover, the probabilities of obtaining in the randomization tests the cumulative χ2 values observed for the NISP and MNI values of each species (p 0.97, respectively; Fig. S4) are equivalent to those obtained with their groupings in Table 2.Table 2 Contingency tables for the abundance of large mammals in the assemblages of the two excavation quarries of Venta Micena compared in this study, VM4 (a: data published by Luzón et al.1 for the fossils unearthed during the years 2005 and 2019–2020; b: unpublished data analysed by M.P. Espigares for the fossils of 2005 and 2013–2015) and VM3 (updated from Ref.9).Full size tableIn summary, the comparison of the faunal assemblages from both excavation quarries (Tables 1, 2) only shows some minor differences in taxa abundance for horse, megaherbivores, and carnivores other than the hyaena, as well as the presence in VM3 of some remains of two small ungulates (a roe deer-sized cervid and a chamois-sized bovid) and two small carnivores (Table 1), which are not reported by Luzón et al.1. Given their comparatively low number of specimens studied at VM4, it is reasonable to expect that the latter taxa, which are poorly represented in VM3, will also appear in VM4 during future excavations.Age mortality profilesLuzón et al.1 indicate that two megaherbivores, elephant Mammuthus meridionalis and rhino Stephanorhinus aff. hundsheimensis, show frequencies of non-adults that are close to, or even higher than, those of adults, as happens in VM3 (Table 1). However, the low MNI counts for these species in VM4 do not allow to state this: for example, elephants are represented by a juvenile and an adult, which gives a frequency of 50% of non-adults; with a sample size of only two individuals, the 95% confidence interval calculated with a binomial approach for this percentage is 1.3–98.7% (Table 1). In S. hundsheimensis, the frequency of non-adults, 80% (4/5), has also a very wide confidence interval (28.4–99.5%). In three species of medium-to-large sized ungulates, E. altidens, the ancestor of water buffalo Hemibos aff. gracilis and P. verticornis, Luzón et al.1 report similar frequencies of adults and non-adults, while they indicate that Bison sp. shows a lower frequency of juveniles (Table 1). This is true for horse and deer (58.3% and 42.9% of non-adults, respectively), but Hemibos is only recorded by one adult individual, which means that the percentage of non-adults for this species is not reliable. Luzón et al.1 calculate the percentage of 33% non-adult bison over a sample of only three individuals, of which one is a juvenile: the confidence interval for non-adults (0.8–90.6%) comprises the frequencies for horse and megacerine deer (Table 1), which rules out their suggestion of a lower frequency of juveniles for this bovid. In contrast to VM4, the abundances of non-adult horse, bison and megacerine deer are similar in VM3 (Table 1), where they are represented by higher MNI counts (which makes their percentages reliable). A similar reasoning can be applied to the claim of Luzón et al.1 that adults outnumber calves and juveniles among smaller herbivores such as the Ovibovini Soergelia minor, the Caprini Hemitraus albus and the cervid Metacervocerus rhenanus: in these species, MNI counts are very low to calculate reliably the percentage of juveniles (see their confidence intervals in Table 1). In fact, Luzón et al.1 acknowledge this limitation when they write that “the total number of individuals in each species is too low to draw reliable conclusions on the resulting patterns” and “a prime-dominant, L- or U-shaped mortality profile cannot be clearly discerned”. The situation in VM3 is quite different (Table 1): MNI counts for the two ungulates better represented in the assemblage, E. altidens and P. verticornis, allowed to reconstruct U-shaped attritional mortality profiles (Fig. 2b), which evidenced that the hypercarnivores focused on young and old individuals in the case of large prey6,7.Patterns of skeletal abundanceThe limitations and inaccuracies cited above result from the small sample analysed by Luzón et al.1 in VM4 (1578 remains of large mammals of which only 420 could be determined taxonomically and anatomically, compared to 8150 and 6331 remains in VM3, respectively: Table 1). These limitations apply also to their inferences on the skeletal profiles of ungulates. For example, they indicate that species of herbivore size class 2 (50–125 kg: M. rhenanus, H. albus, and S. minor) show biased skeletal profiles, with a predominance of teeth and elements of the forelimb over those of the hindlimb. In VM3, these ungulates also show higher frequencies of teeth than of bones, which has been interpreted as evidence of the transport by P. brevirostris of small-to-medium sized ungulates as whole carcasses to their denning site, where the giant hyaenas fractured the bones for accessing their medullary cavities and this resulted in their underrepresentation compared to teeth7,8,9,10. In the case of the major limb bones of these species in VM4, the elements of the forelimb (12.9%, 13 bones out of 101 determined remains) are twice as abundant as those of the hindlimb (6.9%, 7 bones), but these percentages do not differ statistically (χ2 = 2.028, p = 0.1544), which indicates the effects of poor sampling. In the species of herbivore size class 3 (125–500 kg), Luzón et al.1 indicate that they are well represented by all anatomical elements (e.g., craniodental elements account for ~ 30% of the remains, while both axial and appendicular elements show frequencies > 20%). This pattern is like the one reported in VM3 for medium-to-large sized ungulates7,8,9,10. However, Luzón et al.1 indicate a bias in the disproportionate amount of posterior limb remains compared to anterior limb specimens, which in their opinion contrasts with the more balanced representation of these elements observed in VM3. Specifically, the number of forelimb bones (13.8%, 54 out of 392 bones) is about half the abundance of hindlimb bones (25.3%, 99 bones). This difference is statistically significant (χ2 = 16.460, p More