More stories

  • in

    Personality, density and habitat drive the dispersal of invasive crayfish

    1.Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D. Dispersal (Oxford University Press, 2001).
    Google Scholar 
    2.Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Google Scholar 
    3.Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 
    4.Cote, J., Fogarty, S., Brodin, T., Weinersmith, K. & Sih, A. Personality-dependent dispersal in the invasive mosquitofish: Group composition matters. Proc. R. Soc. B Biol. Sci. 278, 1670–1678 (2011).
    Google Scholar 
    5.Quinn, J. L., Cole, E. F., Patrick, S. C. & Sheldon, B. C. Scale and state dependence of the relationship between personality and dispersal in a great tit population. J. Anim. Ecol. 80, 918–928 (2011).PubMed 

    Google Scholar 
    6.Brodin, T., Lind, M. I., Wiberg, M. K. & Johansson, F. Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav. Ecol. Sociobiol. 67, 135–143 (2013).
    Google Scholar 
    7.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 199–205 (1998).
    Google Scholar 
    8.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    9.Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 

    Google Scholar 
    10.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 

    Google Scholar 
    11.Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 

    Google Scholar 
    12.Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).
    Google Scholar 
    13.Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. 104, 15017–15022 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 

    Google Scholar 
    15.Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).
    Google Scholar 
    16.Malange, J., Izar, P. & Japyassú, H. Personality and behavioural syndrome in Necromys lasiurus (Rodentia: Cricetidae): Notes on dispersal and invasion processes. Acta Ethol. 19, 189–195 (2016).
    Google Scholar 
    17.Rees, E. M. A. et al. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK. PLoS ONE 12, e0178805 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    19.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    20.Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).CAS 
    PubMed 

    Google Scholar 
    21.Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76, 751–786 (2010).
    Google Scholar 
    22.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    23.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 

    Google Scholar 
    24.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).
    Google Scholar 
    25.Duckworth, R. A. Evolution of personality: Developmental constraints on behavioral flexibility. Auk 127, 752–758 (2010).
    Google Scholar 
    26.Trillmich, F., Müller, T. & Müller, C. Understanding the evolution of personality requires the study of mechanisms behind the development and life history of personality traits. Biol. Lett. 14, 20170740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behaviour 142, 1159–1184 (2005).
    Google Scholar 
    28.Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289 (2012).PubMed 

    Google Scholar 
    29.Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).PubMed 

    Google Scholar 
    30.Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions?. Trends Ecol. Evol. 27, 57–64 (2012).PubMed 

    Google Scholar 
    31.Hirsch, P. E., Thorlacius, M., Brodin, T. & Burkhardt-Holm, P. An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers. Ecol. Evol. 7, 720–732 (2017).PubMed 

    Google Scholar 
    32.Groen, M. et al. Is there a role for aggression in round goby invasion fronts?. Behaviour 149, 685–703 (2012).
    Google Scholar 
    33.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).PubMed 

    Google Scholar 
    34.Lopez, D. P., Jungman, A. A. & Rehage, J. S. Nonnative African jewelfish are more fit but not bolder at the invasion front: A trait comparison across an Everglades range expansion. Biol. Invasions 14, 2159–2174 (2012).
    Google Scholar 
    35.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).
    Google Scholar 
    36.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (University of Chicago Press, 2013).
    Google Scholar 
    37.Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 

    Google Scholar 
    38.Archard, G. A. & Braithwaite, V. A. The importance of wild populations in studies of animal temperament. J. Zool. 281, 149–160 (2010).
    Google Scholar 
    39.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).
    Google Scholar 
    40.Liedvogel, M., Chapman, B. B., Muheim, R. & Åkesson, S. The behavioural ecology of animal movement: Reflections upon potential synergies. Anim. Migr. 1, 39–46 (2013).
    Google Scholar 
    41.Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).PubMed 

    Google Scholar 
    42.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshw. Biol. 51, 1359–1368 (2006).
    Google Scholar 
    43.Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).
    Google Scholar 
    44.Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).
    Google Scholar 
    45.Lindstrom, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. 110, 13452–13456 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bubb, D. H., Thom, T. J. & Lucas, M. C. The within-catchment invasion of the non-indigenous signal crayfish Pacifastacus leniusculus (Dana), in upland rivers. Bull. Fr. Pêche Piscic. 376–377, 665–673 (2005).
    Google Scholar 
    47.Závorka, L., Lassus, R., Britton, J. R. & Cucherousset, J. Phenotypic responses of invasive species to removals affect ecosystem functioning and restoration. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15271 (2020).Article 
    PubMed 

    Google Scholar 
    48.Sbragaglia, V. & Breithaupt, T. Daily activity rhythms, chronotypes, and risk-taking behavior in the signal crayfish. Curr. Zool. https://doi.org/10.1093/cz/zoab023 (2021).Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).50.Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).
    Google Scholar 
    51.Rupia, E. J., Binning, S. A., Roche, D. G. & Lu, W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J. Anim. Ecol. 85, 927–937 (2016).PubMed 

    Google Scholar 
    52.Karavanich, C. & Atema, J. Individual recognition and memory in lobster dominance. Anim. Behav. 56, 1553–1560 (1998).CAS 
    PubMed 

    Google Scholar 
    53.Houlihan, D., Govind, C. & El Haj, A. Energetics of swimming in Callinectes sapidus and walking in Homarus americanus. Comp. Biochem. Physiol. Part A Physiol. 82, 267–279 (1985).
    Google Scholar 
    54.Vogt, G. Functional anatomy. In Biology of Freshwater Crayfish (ed. Holdich, D. M.) 53–151 (Blackwell Science Ltd., 2002).
    Google Scholar 
    55.Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Blackwell Science Ltd., 2000).
    Google Scholar 
    56.Clark, J. & Kershner, M. Size-dependent effects of visible implant elastomer marking on crayfish (Orconectes obscurus) growth, mortality, and tag retention. Crustaceana 79, 275–284 (2006).
    Google Scholar 
    57.Streissl, F. & Hödl, W. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiologia 477, 195–199 (2002).
    Google Scholar 
    58.Chadwick, D. D. A. et al. A novel ‘triple drawdown’ method highlights deficiencies in invasive alien crayfish survey and control techniques. J. Appl. Ecol. 58, 316–326 (2021).
    Google Scholar 
    59.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    60.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    61.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
    Google Scholar 
    62.Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
    Google Scholar 
    63.Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).
    Google Scholar 
    64.Robinson, C. A., Thom, T. J. & Lucas, M. C. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw. Biol. 44, 509–521 (2000).
    Google Scholar 
    65.Bubb, D. H., O’Malley, O. J., Gooderham, A. C. & Lucas, M. C. Relative impacts of native and non-native crayfish on shelter use by an indigenous benthic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 448–455 (2009).
    Google Scholar 
    66.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    67.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    68.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6. (2019).69.Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, 2008).MATH 

    Google Scholar 
    70.Edwards, D. D., Rapin, K. E. & Moore, P. A. Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish, Orconectes virilis. Ethology 124, 311–330 (2018).
    Google Scholar 
    71.Teknomo, K. Similarity Measurements. https://people.revoledu.com/kardi/tutorial/Similarity (2015).72.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    73.Vainikka, A., Rantala, M. J., Niemelä, P., Hirvonen, H. & Kortet, R. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol. 14, 17–25 (2011).
    Google Scholar 
    74.Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N. & Skalski, G. T. Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration. Am. Nat. 158, 124–135 (2001).CAS 
    PubMed 

    Google Scholar 
    75.Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. & Drent, P. J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. London. Ser. B Biol. Sci. 270, 741–747 (2003).
    Google Scholar 
    76.McMahon, T. E. & Tash, J. C. Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology 69, 1871–1883 (1988).
    Google Scholar 
    77.Porter, J. H. & Dooley, J. L. Animal dispersal patterns: A reassessment of simple mathematical models. Ecology 74, 2436–2443 (1993).
    Google Scholar 
    78.Einum, S., Sundt-Hansen, L. & Nislow, K. H. The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113, 489–496 (2006).
    Google Scholar 
    79.Lodge, D. M. & Hill, A. M. Factors governing species composition, population size and productivity of coolwater crayfishes. Nord. J. Freshw. Res. 69, 111–136 (1994).
    Google Scholar 
    80.Berthouly-Salazar, C., van Rensburg, B. J., Le Roux, J. J., van Vuuren, B. J. & Hui, C. Spatial sorting drives morphological variation in the invasive bird, Acridotheris tristis. PLoS ONE 7, e38145 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).
    Google Scholar 
    82.Wilshin, S. et al. Limping following limb loss increases locomotor stability. J. Exp. Biol. 221, jeb174268 (2018).PubMed 

    Google Scholar 
    83.Podgorniak, T., Blanchet, S., De Oliveira, E., Daverat, F. & Pierron, F. To boldly climb: Behavioural and cognitive differences in migrating European glass eels. R. Soc. Open Sci. 3, 150665 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can. J. Zool. 84, 1202–1209 (2006).
    Google Scholar 
    85.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Google Scholar 
    86.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshw. Biol. 49, 357–368 (2004).
    Google Scholar 
    87.Hudina, S., Kutleša, P., Trgovčić, K. & Duplić, A. Dynamics of range expansion of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region in Croatia. Aquat. Invasions 12, 67–75 (2017).
    Google Scholar 
    88.Wutz, S. & Geist, J. Sex- and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica 43, 59–66 (2013).
    Google Scholar 
    89.Fraser, H., Barnett, A., Parker, T. H. & Fidler, F. The role of replication studies in ecology. Ecol. Evol. 10, 5197–5207 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    90.Linzmaier, S. M., Goebel, L. S., Ruland, F. & Jeschke, J. M. Behavioral differences in an over-invasion scenario: marbled vs. spiny-cheek crayfish. Ecosphere 9, e02385 (2018).
    Google Scholar 
    91.Wang, X. et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers. Distrib. https://doi.org/10.1111/ddi.13359 (2021).Article 

    Google Scholar  More

  • in

    Hydrological properties predict the composition of microbial communities cycling methane and nitrogen in rivers

    Relationships between microbial diversity and base flow indexThe number of reads obtained per sample and total number of OTUs obtained after rarefaction for each gene dataset are summarised in Table S2. According to taxonomic analyses of our 16S rRNA gene dataset, archaeal communities in our river sediment samples consisted largely of OTUs assigned to the Woesarchaeota (20.8% of OTUs and 24.7% of reads) and Methanomicrobia (16.9% of OTUs and 31.8% of reads). Of the functional groups analysed here, ten OTUs were assigned to AOA, Nitrososphaera (n = 8) and Nitrosopumilus (n = 2), that together formed 4.8% of all archaeal 16S rRNA reads. A total of 137 OTUs were assigned to orders of methanogenic archaea, with 15.3% and 16% of archaeal reads assigned to the orders Methanomicrobiales and Methanosarcinales, respectively, with other methanogen orders constituting a further 6.7% of reads.Bacterial communities were more diverse and OTUs assigned to taxa within the functional groups analysed here formed a relatively small proportion of our bacterial 16S rRNA gene dataset. Ammonia oxidising bacteria were represented by only five OTUs (all assigned to Nitrosospira) that together constituted 0.02% of the total bacterial community across our sediments. A further 84 OTUs were assigned to methanotrophic genera, and these OTUs contributed a total of 0.88% of all bacterial 16S rRNA sequences. These were Methylobacter (30 OTUs, 0.7% of bacterial sequences), Methylophilus (15 OTUs, 0.1% of bacterial sequences), Methylosoma (7 OTUs, 0.004% of bacterial sequences), Methylomonas and Methylotenera (6 OTUs each, 0.02 and 0.002% of bacterial sequences, respectively), and Methylosarcina (5 OTUs, 0.002% of bacterial sequences), with a further eight genera represented by a total of 15 OTUs. As reported previously, no OTUs were assigned to known anammox genera, which were likely below the limit of detection in our study [8].The OTU richness of archaeal communities (based on 16S rRNA amplicons) was negatively, albeit weakly, related to BFI (coef = 0.52, z = −2.95, adj-D2 = 0.12, P  More

  • in

    Effectiveness of protection areas in safeguarding biodiversity and ecosystem services in Tibet Autonomous Region

    1.Cao, S. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).ADS 

    Google Scholar 
    2.Kinzig, A. P. et al. Response—Ecosystem services: Free lunch no more. Science 335, 656 (2012).ADS 
    CAS 

    Google Scholar 
    3.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. For. Ecol. Manage. 319, 1–9 (2014).
    Google Scholar 
    4.Chen, Z. et al. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 648, 1097–1104 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Boerema, A., Van Passel, S. & Meire, P. Cost-effectiveness analysis of ecosystem management with ecosystem services: From theory to practice. Ecol. Econ. 152, 207–218 (2018).
    Google Scholar 
    6.Bouwma, I. et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 29, 213–222 (2018).
    Google Scholar 
    7.Carpenter, S. R. et al. Millennium ecosystem assessment: Research needs. Science 314, 257 (2006).CAS 
    PubMed 

    Google Scholar 
    8.Xiao, Q., Tao, J., Xiao, Y. & Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environ. Monit. Assess. 189, 493 (2017).PubMed 

    Google Scholar 
    9.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Zhang, J. et al. Modeling activity patterns of wildlife using time-series analysis. Ecol. Evol. 7, 2575–2584 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    11.Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).ADS 
    CAS 

    Google Scholar 
    12.Ouyang, W. et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 613–614, 798–809 (2018).ADS 
    PubMed 

    Google Scholar 
    13.Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Feng, X. et al. Human cystic and alveolar echinococcosis in the Tibet Autonomous Region (TAR), China. J. Helminthol. 89, 671–679 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hallquist, M. et al. Photochemical smog in China: Scientific challenges and implications for air-quality policies. Natl. Sci. Rev. 3, 401–403 (2016).CAS 

    Google Scholar 
    17.Zhang, G. G. et al. Abundance and conservation of waterbirds breeding on the Changtang Plateau, Tibet Autonomous Region, China. Waterbirds 38, 19–29 (2015).CAS 

    Google Scholar 
    18.Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10 (2018).
    Google Scholar 
    19.Wangdwei, M., Steele, B. & Harris, R. B. Demographic responses of plateau pikas to vegetation cover and land use in the Tibet Autonomous Region, China. J. Mammal. 94, 1077–1086 (2013).
    Google Scholar 
    20.Zhuo, G., La, B., Pubu, C. & Luo, B. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region. J. Geogr. Sci. 24, 113–128 (2014).ADS 

    Google Scholar 
    21.Butarbutar, T., Soedirman, S., Neupane, P. R. & Köhl, M. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. https://doi.org/10.1186/s40663-019-0195-x (2019).Article 

    Google Scholar 
    22.Yu, W. J. & Zhou, W. Q. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 634, 1362–1371 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Storch, F., Kändler, G. & Bauhus, J. Assessing the influence of harvesting intensities on structural diversity of forests in south-west Germany. For. Ecosyst. https://doi.org/10.1186/s40663-019-0199-6 (2019).Article 

    Google Scholar 
    24.Xiao, Y. & Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess 190, 258 (2018).PubMed 

    Google Scholar 
    25.Ge, J. et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 218, 162–173 (2018).ADS 

    Google Scholar 
    26.Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Xin, S. et al. Forestland-cover changes in China’s tropical area: Historical patterns, implications, and policy options-a case study from Xishuangbanna. J. Sustain. For. 36, 18–31 (2017).
    Google Scholar 
    28.Rao, Y. et al. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 186, 662–672 (2018).
    Google Scholar 
    29.Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Nguyen, M. D., Ancev, T. & Randall, A. Forest governance and economic values of forest ecosystem services in Vietnam. Land Use Policy 97, 103297 (2018).
    Google Scholar 
    31.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A. 114, 1601–1606 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. U.S.A. 117, 14593–14601 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Anne, B. et al. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 176, 1–9 (2018).
    Google Scholar 
    34.Karlen, D. L., Peterson, G. A. & Westfall, D. G. Soil and water conservation: Our history and future challenges. Soil Sci. Soc. Am. J. 78, 1493–1499 (2014).ADS 

    Google Scholar 
    35.Tuo, D., Xu, M. & Gao, G. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 633, 1032–1040 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Rubio-Delgado, J., Schnabel, S., Gómez-Gutiérrez, Á. & Sánchez-Fernández, M. Estimation of soil erosion rates in dehesas using the inflection point of holm oaks. CATENA 166, 56–67 (2018).
    Google Scholar 
    37.Abouabdillah, A. et al. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manage. 30, 539–549 (2014).
    Google Scholar 
    38.Dominati, E. J., Mackay, A., Lynch, B., Heath, N. & Millner, I. An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst. Serv. 9, 204–215 (2014).
    Google Scholar 
    39.Engdawork, A. & Bork, H.-R. Long-term indigenous soil conservation technology in the Chencha Area, Southern Ethiopia: Origin, characteristics, and sustainability. Ambio 43, 932–942 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    40.Sverdrup, H. U. & Olafsdottir, A. H. Considerations on the future biomass production potential of Iceland, and what role that could have in future fuel supply and carbon balances. J. Sustain. For. 36, 647–665 (2017).
    Google Scholar 
    41.Ofoegbu, C. & Speranza, C. I. Assessing rural peoples’ intention to adopt sustainable forest use and management practices in South Africa. J. Sustain. For. 36, 729–746 (2017).
    Google Scholar 
    42.Munyati, C. & Sinthumule, N. I. Cover gradients and the forest-community frontier: Indigenous forests under communal management at Vondo and Xanthia, South Africa. J. Sustain. For. 33, 757–775 (2014).
    Google Scholar 
    43.Xiao, Q., Gao, Y., Hu, D., Tan, H. & Wang, T. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: A case study for China’s Hunan Province. Int. J. Environ. Res. Public Health 8, 2937–2950 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    44.Sun, Q., Miao, C., Qiao, Y. & Duan, Q. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim. Dyn. 49, 4281–4292 (2017).
    Google Scholar 
    45.Cao, S., Chen, L., Xu, C. & Liu, Z. Impact of three soil types on afforestation in China’s Loess Plateau: Growth and survival of six tree species and their effects on soil properties. Landsc. Urban Plan. 83, 208–217 (2007).
    Google Scholar 
    46.Setten, G. & Brown, K. M. Ecosystem services as an integrative framework: What is the potential? Land Use Policy 75, 549–556 (2018).
    Google Scholar 
    47.Arroyo-Vargas, P., Fuentes-Ramírez, A., Muys, B. & Pauchard, A. Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. For. Ecosyst. https://doi.org/10.1186/s40663-019-0202-2 (2019).Article 

    Google Scholar 
    48.Paudel, S. & Sah, J. P. Effects of different management practices on stand composition and species diversity in subtropical forests in Nepal: Implications of community participation in biodiversity conservation. J. Sustain. For. 34, 738–760 (2015).
    Google Scholar 
    49.Su, L., Miao, C., Borthwick, A. G. L. & Duan, Q. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Res. 49, 94–105 (2017).ADS 

    Google Scholar 
    50.Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Miao, C., Sun, Q., Duan, Q. & Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. 47, 3221–3234 (2016).
    Google Scholar 
    53.Zhang, J. et al. Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales. Biol. Conserv. 209, 119–129 (2017).
    Google Scholar 
    54.Cao, S., Liu, Y., Su, W., Zheng, X. & Yu, Z. The net ecosystem services value in mainland China. Sci. China Earth Sci. 61, 595–603 (2018).ADS 

    Google Scholar 
    55.Waiswa, D., Stern, M. J. & Prisley, S. P. Drivers of deforestation in the Lake Victoria crescent, Uganda. J. Sustain. For. 34, 259–275 (2015).
    Google Scholar 
    56.Xiao, Q. & Hu, D. Dynamic characteristics of a water resource structure in an urban ecological system: Structure modelling based on input–occupancy–output technology. J. Clean. Prod. 153, 548–557 (2017).
    Google Scholar  More

  • in

    Correction to: Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean

    Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, FranceTom O. Delmont, Patrick Wincker & Eric PelletierResearch Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, Paris, FranceTom O. Delmont, Juan José Pierella Karlusich, Chris Bowler, Patrick Wincker & Eric PelletierInstitut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, FranceJuan José Pierella Karlusich & Chris BowlerGraduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USAIva VeseliDepartment of Medicine, University of Chicago, Chicago, IL, 60637, USAJessika Fuessel & A. Murat ErenBay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USAA. Murat ErenDepartment of Ecology, Environment and Plant Sciences, Stockholm University Stockholm, Stockholm, 10691, SwedenRachel A. Foster More

  • in

    Taxonomic, structural diversity and carbon stocks in a gradient of island forests

    1.Eckehard, G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2 (2017).Article 

    Google Scholar 
    2.Bastrup-Birk, A., Reker, J., Zal, N., Romao, C. & Cugny-Seguin, M. (2016) European Forest Ecosystems: State and Trends Technical Report No 5 (Publications Office of the European Union, European Environment Agency, 2016).
    Google Scholar 
    3.Aznar-Sánchez, J. A., Belmonte-Ureña, L. J., López-Serrano, M. J. & Velasco-Muñoz, J. F. Forest ecosystem services: An analysis of worldwide research. Forests 9, 453. https://doi.org/10.3390/f9080453 (2018).Article 

    Google Scholar 
    4.Masiero, M. et al. Valuing Forest Ecosystem Services: A Training Manual for Planners and Project Developers. Forestry Working Paper No. 11 216 (FAO, 2019).
    Google Scholar 
    5.Maes, J. et al. Mapping and Assessment of Ecosystems and their Services: An Analytical Framework for Ecosystem Condition (Publications Office of the European Union, 2018).
    Google Scholar 
    6.Pastur, G. M., Perera, A. H., Peterson, U. & Iverson, L. R. Ecosystem services from forested landscapes: An overview. In Ecosystem Services from Forest Landscapes: Broadscale Considerations (eds Perera, A. H. et al.) 1–10 (Springer International, 2018).
    Google Scholar 
    7.Jenkins, M. & Schaap, B. Background Analytical Study Forest Ecosystem Services, by, Background study prepared for the thirteenth session of the United Nations Forum on Forests (2018).8.Lellia, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717. https://doi.org/10.1016/j.foreco.2018.09.057 (2019).Article 

    Google Scholar 
    9.van der Plas, F. et al. Jack-of-all-trades effects drive biodiversityecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109. https://doi.org/10.1038/ncomms11109 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealized potential for forest multifunctionality. Ecol. Lett. 21, 32–42. https://doi.org/10.1111/ele.12868 (2017).Article 

    Google Scholar 
    11.Onyekwelu, J. C. & Olabiwonnu, A. A. Can forest plantations harbour biodiversity similar to natural forest ecosystems over time?. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 12, 108–115. https://doi.org/10.1080/21513732.2016.1162199 (2016).Article 

    Google Scholar 
    12.Saikia, P. et al. Plant diversity patterns and conservation status of eastern Himalayan forests in Arunachal Pradesh, Northeast India. For. Ecosyst. 4, 28. https://doi.org/10.1186/s40663-017-0117-8 (2017).Article 

    Google Scholar 
    13.Mishra, B. P., Tripathi, O. & Laloo, R. C. Community characteristics of a climax subtropical humid forest of Meghalaya and population structure of ten important tree species. Trop. Ecol. 46, 241–251 (2005).
    Google Scholar 
    14.de Gouvenain, R. C. & Silander, J. Temperate Forests. Reference Module in Life Sciences (Elsevier, 2017).
    Google Scholar 
    15.FAO. 2016. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? Second Edition. Rome, Italy: FAO [www document]. http://www.fao.org/3/a-i4793e.pdf (2015).16.Durigan, M. R. et al. Soil organic matter responses to anthropogenic forest disturbance and land use change in the Eastern Brazilian Amazon. Sustainability 9, 379. https://doi.org/10.3390/su9030379 (2017).CAS 
    Article 

    Google Scholar 
    17.Mukhortova, L., Schepaschenko, D., Shvidenko, A., McCallum, I. & Kraxner, F. Soil contribution to carbon budget of Russian forests. Agric. For. Meteorol. 200, 97–108. https://doi.org/10.1016/j.agrformet.2014.09.017 (2015).ADS 
    Article 

    Google Scholar 
    18.Justine, M. F. Y. et al. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6, 3665–3682. https://doi.org/10.3390/f6103665 (2015).Article 

    Google Scholar 
    19.Hansson, K. Impact of tree species on carbon in forest soils. Doctoral Thesis, Swedish University of Agricultural Sciences. Faculty of Natural Resources and Agricultural Sciences (2011).20.Zhang, Y., Duan, B., Xian, J., Korpelainen, H. & Li, C. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. For. Ecol. Manage. 262, 361–369. https://doi.org/10.1016/j.foreco.2011.03.042 (2011).Article 

    Google Scholar 
    21.Sing, L., Metzger, M. J., Paterson, J. S. & Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. Forestry 91, 151–164. https://doi.org/10.1093/forestry/cpx042 (2018).Article 

    Google Scholar 
    22.Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322. https://doi.org/10.1111/geb.12126 (2014).Article 

    Google Scholar 
    23.Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106. https://doi.org/10.1038/ncomms13106 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565. https://doi.org/10.1038/s41467-018-04889-z (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 5635. https://doi.org/10.1038/s41467-020-19460-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kendie, G., Addisu, S. & Abiyu, A. Biomass and soil carbon stocks in different forest types, Northwestern Ethiopia. Int. J. River Basin Manag. 19(1), 123–129. https://doi.org/10.1080/15715124.2019.159318 (2021).Article 

    Google Scholar 
    27.Omoro, L. M. A., Starr, M. & Pellikka, P. K. E. Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fenn. 47, 935. https://doi.org/10.14214/sf.935 (2013).Article 

    Google Scholar 
    28.Zhang, G., Zhang, P., Peng, S., Chen, Y. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7, 11754. https://doi.org/10.1038/s41598-017-12199-5 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Kerdraon, D. et al. Litter traits of native and non-native tropical trees influence soil carbon dynamics in timber plantations in panama. Forests 10, 209. https://doi.org/10.3390/f10030209 (2019).Article 

    Google Scholar 
    30.Novara, A. et al. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 6, 425–432. https://doi.org/10.5194/se-6-425-2015 (2015).ADS 
    Article 

    Google Scholar 
    31.Capellesso, E. S. et al. Effects of forest structure on litter production, soil chemical composition and litter–soil interactions. Acta Bot. Bras. 30(3), 329–335. https://doi.org/10.1590/0102-33062016abb0048 (2016).Article 

    Google Scholar 
    32.Castle, S. C. & Neff, J. C. Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12, 101–113. https://doi.org/10.1007/s10021-008-9210-8 (2009).CAS 
    Article 

    Google Scholar 
    33.Gerdol, R., Marchesini, R. & Iacumin, P. Bedrock geology interacts with altitude in affecting leaf growth and foliar nutrient status of mountain vascular plants. Plant Ecol. 10, 839–850. https://doi.org/10.1093/jpe/rtw092 (2017).Article 

    Google Scholar 
    34.Sieber, I., Borges, P. & Burkhard, B. Hotspots of biodiversity and ecosystem services: The Outermost Regions and Overseas Countries and Territories of the European Union. One Ecosyst. 3, e24719. https://doi.org/10.3897/oneeco.3.e24719 (2018).Article 

    Google Scholar 
    35.Iranah, P., Lal, P., Wolde, B. T. & Burli, P. Valuing visitor access to forested areas and exploring willingness to pay for forest conservation and restoration finance: The case of small island developing state of Mauritius. J. Environ. Manage. 223, 868–877. https://doi.org/10.1016/j.jenvman.2018.07.008 (2018).Article 
    PubMed 

    Google Scholar 
    36.Balzan, M. V., Potschin-Young, M. & Haines-Young, R. Island ecosystem services: insights from a literature review on case-study island ecosystem services and future prospects. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 14, 71–90. https://doi.org/10.1080/21513732.2018.1439103 (2018).Article 

    Google Scholar 
    37.Wardle, D. A. Islands as model systems for understanding how species affect ecosystem properties. J. Biogeogr. 29, 583–591. https://doi.org/10.1046/j.1365-2699.2002.00708.x (2002).Article 

    Google Scholar 
    38.Wardle, D. A., Zackrisson, O., Hornberg, G. & Gallet, C. The influence of island area on ecosystem properties. Science 277, 1296–1299. https://doi.org/10.1126/science.277.5330.1296 (1997).CAS 
    Article 

    Google Scholar 
    39.Santamarta, J. C., Rodríguez-Martín, J. & Neris, J. Water resources management and forest engineering in volcanic islands. IERI Procedia 9, 129–134. https://doi.org/10.1016/j.ieri.2014.09.052 (2014).Article 

    Google Scholar 
    40.Fontes, J. C., Pereira, L. S. & Smith, R. E. Runoff and erosion in volcanic soils of Azores: Simulation with OPUS. CATENA 56, 199–212. https://doi.org/10.1016/j.catena.2003.10.011 (2004).Article 

    Google Scholar 
    41.Rodrigues, F. & Rodrigues, A. F. Distribution of environmental isotopes in precipitation on a small oceanic island (Terceira-Azores): Some particularities based on preliminary results. Arquipélago. Agrarian Sci. Environ. 1, 1–6 (2002).
    Google Scholar 
    42.Dias, E. & Melo, C. Factors influencing the distribution of Azorean mountain vegetation: Implications for nature conservation. Biodivers. Conserv. 19, 3311–3326. https://doi.org/10.1007/s10531-010-9894-x (2010).Article 

    Google Scholar 
    43.Louvat, P. & Allègre, C. J. Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chem. Geol. 148, 177–200. https://doi.org/10.1016/S0009-2541(98)00028-X (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Malheiro, A. Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability. J. Volcanol. Geotherm. Res. 156, 158–171. https://doi.org/10.1016/j.jvolgeores.2006.03.012 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Marques, R., Zêzere, J., Trigo, R., Gaspar, J. & Trigo, I. Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): Relationships with the North Atlantic Oscillation. Hydrol. Process. https://doi.org/10.1002/hyp.6879 (2008).Article 

    Google Scholar 
    46.Lopes, F. & Amaral, B. The value of forest recreation in Azorean public parks. Rev. Econ. Sociol. Rural https://doi.org/10.1590/1806-9479.2021.238884 (2021).Article 

    Google Scholar 
    47.Pavão, D. C. et al. Land cover along hiking trails in a nature tourismdestination: the Azores as a case study. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-021-01356-6 (2021).Article 

    Google Scholar 
    48.Florestas.pt The Navigator Company Madeira de criptoméria: inovar para reforçar valor (https://florestas.pt/valorizar/madeira-de-criptomeria-inovar-para-reforcar-valor/) 07 de abril 202149.Marcelino, J. A. P., Silva, L., Garcia, P. V., Weber, E. & Soares, A. O. Using species spectra to evaluate plant community conservation value along a gradient of anthropogenic disturbance. Environ. Monit. Assess. 185, 6221–6233. https://doi.org/10.1007/s10661-012-3019-9 (2013).Article 
    PubMed 

    Google Scholar 
    50.Marcelino, J. A. P., Weber, E., Silva, L., Garcia, P. V. & Soares, A. O. Expedient metrics to describe plant community change across gradients of anthropogenic influence. Environ. Manage. 54, 1121–1130. https://doi.org/10.1007/s00267-014-0321-z (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    51.Abreu, P. M. R. Contributo da Criptoméria Para o Sequestro de carbono nos Açores 128 (Tese de Mestrado, Universidade de Aveiro, 2011).
    Google Scholar 
    52.Vergílio, M., Fjøsneb, K., Nistorab, A. & Calado, H. Carbon stocks and biodiversity conservation on a small island: Pico (the Azores, Portugal). Land Use Policy 58, 196–207. https://doi.org/10.1016/j.landusepol.2016.07.020 (2016).Article 

    Google Scholar 
    53.Borges Silva, L. et al. Development allometric equations for estimating above-ground biomass of woody plants invaders: The Pittosporum undulatum the Azores archipelago. In Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics Vol. 195 (eds Pinto, A. & Ziberman, D.) 463–484 (Springer, 2017).
    Google Scholar 
    54.Borges Silva, L., Teixeira, A., Alves, M., Elias, R. B. & Silva, L. Tree age determination in the widespread woody plant invader Pittosporum undulatum. For. Ecol. Manage. 400, 457–467. https://doi.org/10.1016/j.foreco.2017.06.027 (2017).Article 

    Google Scholar 
    55.Borges Silva, L. et al. Biomass valorization in the management of woody plant invaders: The case of Pittosporum undulatum in the Azores. Biomass Bioenergy 109, 155–165. https://doi.org/10.1016/j.biombioe.2017.12.025 (2018).Article 

    Google Scholar 
    56.Mendonça, E. F. E. P. Serviços dos Ecossistemas na Ilha Terceira: estudo preliminar com ênfase no sequestro de carbono e na biodiversidade 147 (Tese de Mestrado, Universidade dos Açores, 2012).
    Google Scholar 
    57.Cruz, A. & Benedicto, J. Assessing socio-economic benefits of Natura 2000: A case study on the ecosystem service provided by SPA Pico da Vara/Ribeira do Guilherme. Output of the project Financing Natura 2000: Cost estimate and benefits of Natura 2000, 43 (2009).58.Cruz, A., Benedicto, J. & Gil, A. Socio-economic benefits of Natura 2000 in Azores Islands – a Case Study approach on ecosystem services provided by a Special Protected Area. J. Coast Res. 64, 1955–1959 (2011).
    Google Scholar 
    59.Borges, P. A. V. et al. (eds) A List of the Terrestrial and Marine Biota from the Azores 432 (Princípia, 2010).
    Google Scholar 
    60.Silva, L., Moura, M., Schaefer, H., Rumsey, F. & Dias, E. F. Vascular Plants (Tracheobionta). In A List of the Terrestrial and Marine Biota from the Azores (eds Borges, P. A. V. et al.) 117–146 (Princípia, 2010).
    Google Scholar 
    61.Elias, R. B. et al. Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46, 107–123. https://doi.org/10.1127/phyto/2016/0132 (2016).Article 

    Google Scholar 
    62.Borges, P. A. V. et al. Community structure of woody plants on islands along a bioclimatic gradient. Front. Biogeogr. 10, 1–31. https://doi.org/10.21425/F5FBG40295 (2018).Article 

    Google Scholar 
    63.Fimbel, R. A. & Fimbel, C. A. The role of exotic conifer plantations in rehabilitating degraded tropical forest lands: A case study from the Kibale forest in Uganda. For. Ecol. Manage. 81, 215–226. https://doi.org/10.1016/0378-1127(95)03637-7 (1996).Article 

    Google Scholar 
    64.Omoro, L. M. A., Pellikka, P. K. E. & Rogers, P. C. Tree species diversity, richness, and similarity between exotic and indigenous forests in the cloud forests of Eastern Arc Mountains, Taita Hills, Kenya. J. For. Res. 21, 255–264. https://doi.org/10.1007/s11676-010-0069-0 (2010).Article 

    Google Scholar 
    65.Tenzin, J. & Hasenauer, H. Tree species composition and diversity in relation to anthropogenic disturbances in broad-leaved forests of Bhutan. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 12, 274–290. https://doi.org/10.1080/21513732.2016.1206038 (2016).Article 

    Google Scholar 
    66.Braun, A. C. Taxonomic diversity and taxonomic dominance: The example of forest plantations in south-central Chile. Open J. Ecol. 5, 199–212. https://doi.org/10.4236/oje.2015.55017 (2015).Article 

    Google Scholar 
    67.Cordeiro, N. & Silva, L. Seed production and vegetative growth of Hedychium gardnerianum Ker-Gawler (Zingiberaceae) in São Miguel Island (Azores). Arquipélago. Life Mar. Sci. 20A, 31–36 (2003).
    Google Scholar 
    68.Ricketts, T. H. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 18, 1262–1271. https://doi.org/10.1111/j.1523-1739.2004.00227.x (2004).Article 

    Google Scholar 
    69.Bunker, D. E. et al. Species loss and above-ground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.11176821029-1031 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Phillpott, S. M. et al. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol. Appl. 19, 1858–1867. https://doi.org/10.1890/08-1928.1 (2009).Article 

    Google Scholar 
    71.Ifo, S. A. et al. Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: Case of the Forest of Likouala in the Republic of Congo. Int. J. For. Res. 2016, 1–12. https://doi.org/10.1155/2016/7593681 (2016).Article 

    Google Scholar 
    72.Borges, P. A. V., Santos, A. M. C., Elias, R. B. & Gabriel, R. The Azores Archipelago: Biodiversity erosion and conservation biogeography. In Encyclopedia of the World’s Biomes-Earth Systems and Environmental Sciences. Reference Module in Earth Systems and Environmental Sciences (eds Scott, E. et al.) 1–13 (Elsevier, 2019).
    Google Scholar 
    73.Lourenço, P., Medeiros, V., Gil, A. & Silva, L. Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. For. Ecol. Manage. 262, 178–187. https://doi.org/10.1016/j.foreco.2011.03.021 (2011).Article 

    Google Scholar 
    74.Gabriel, R. & Bates, J. W. Bryophyte community composition and habitat specificity in the natural forests of Terçeira, Azores. Plant Ecol. 177, 125–144. https://doi.org/10.1007/s11258-005-2243-6 (2005).Article 

    Google Scholar 
    75.Elias, R. B., Dias, E. & Pereira, F. Disturbance, regeneration and the spatial pattern of tree species in Azorean mountain forests. Community Ecol. 12, 23–30. https://doi.org/10.1556/ComEc.12.2011.1.4 (2011).Article 

    Google Scholar 
    76.Elias, R. B. & Dias, E. The effects of landslides on the mountain vegetation of Flores Island, Azores. J. Veg. Sci. 20, 706–717. https://doi.org/10.1111/j.1654-1103.2009.01070.x (2009).Article 

    Google Scholar 
    77.Gleadow, R. M., Rowan, K. S. & Ashton, D. H. Invasion by Pittosporum undulatum of the forests of Central Victoria IV. Shade tolerance. Aust J. Bot. 31, 151–160. https://doi.org/10.1071/BT9830151 (1983).Article 

    Google Scholar 
    78.Bradstock, R. A., Tozer, M. G. & Keith, D. A. Effects of high frequency fire on floristic composition and abundance in a fire-prone heathland near Sydney. Aust. J. Bot. 45, 641–655. https://doi.org/10.1071/BT96083 (1997).Article 

    Google Scholar 
    79.Gleadow, R. M. & Ashton, D. H. Invasion by Pittosporum undulatum of the forests of Central Victoria. I. Invasion patterns and plant morphology. Aust. J. Bot. 29, 705–720. https://doi.org/10.1071/BT9810705 (1981).Article 

    Google Scholar 
    80.Ramos, J. A. Introduction of exotic tree species as a threat to the azores bullfinch population. J. Appl. Ecol. 33, 710–722 (1996).
    Google Scholar 
    81.Silva, L., Ojeda-Land, E. & Rodríguez-Luengo, J. L. Invasive terrestrial flora and fauna of Macaronesia. Top 100 in Azores, Madeira and Canaries 546 (ARENA, 2008).
    Google Scholar 
    82.Castro, S. A. et al. Floristic homogenization as a teleconnected trend in oceanic islands. Divers. Distrib. 16, 902–910. https://doi.org/10.1111/j.1472-4642.2010.00695.x (2010).Article 

    Google Scholar 
    83.Kueffer, C. et al. Magnitude and form of invasive plant impacts on oceanic islands: A global comparison. Perspect. Plant Ecol. Evol. Syst. 12, 145–161. https://doi.org/10.1016/j.ppees.2009.06.002 (2010).Article 

    Google Scholar 
    84.Gil, A., Lobo, A., Abadi, M., Silva, L. & Calado, H. Mapping invasive woody plants in Azores Protected Areas by using very high-resolution multispectral imagery. Eur. J. Remote. Sens. 46, 289–304. https://doi.org/10.5721/EuJRS20134616 (2013).Article 

    Google Scholar 
    85.DRRF. Plano de Gestão Florestal-Perímetro Florestal e Matas Regionais da Ilha de São Miguel. Direção Regional dos Recursos Florestais. Secretaria Regional da Agricultura e Florestas. Região Autónoma dos Açores. (http://drrf.azores.gov.pt/areas/cert/Documents/PGF_do_Perimetro_Florestal_e_Matas_Regionais_da_Ilha_de_Sao_Miguel_2017.pdf) (2017).86.Dutra Silva, L., Azevedo, E. B., Elias, R. B. & Silva, L. Species distribution modeling: Comparison of fixed and mixed effects models using INLA. Int. J. Geogr. Inf. Sci. 6, 1–35. https://doi.org/10.3390/ijgi6120391 (2017).Article 

    Google Scholar 
    87.Dutra Silva, L., Azevedo, E. B., Reis, F. V., Elias, R. B. & Silva, L. Limitations of species distribution models based on available climate change data: a case study in the Azorean forest. Forests 10, 575. https://doi.org/10.3390/f10070575 (2019).Article 

    Google Scholar 
    88.Hortal, J., Borges, P. A. V., Jiménez-Valverde, A., Azevedo, E. B. & Silva, L. Assessing the areas under risk of invasion within islands through potential distribution modelling: The case of Pittosporum undulatum in São Miguel, Azores. J. Nat. Conserv. 18, 247–257. https://doi.org/10.1016/j.jnc.2009.11.002 (2010).Article 

    Google Scholar 
    89.Gil, A., Yu, Q., Abadi, M. & Calado, H. Using ASTER multispectral imagery for mapping woody invasive species in Pico da Vara Natural Reserve (Azores Islands, Portugal). Revista Árvore. 38, 391–401 (2014).
    Google Scholar 
    90.Magurran, A. E. Ecological Diversity and Its Measurement 178 (Croom Helm, 1988).
    Google Scholar 
    91.Dias, E., Elias, R. B., Melo, C. & Mendes, C. O elemento insular na estruturação das florestas da Macaronésia. In Árvores e Florestas de Portugal. Volume 6. Açores e Madeira. A Floresta das ilhas 362 (Público, Comunicação Social, SA. Fundação Luso-Americana para o Desenvolvimento, 2007).
    Google Scholar 
    92.Dias, E., Elias, R. B., Melo, C. & Mendes, C. O elemento insular na estruturação das florestas da Macaronésia. Açores Madeira 6, 15–48 (2007).
    Google Scholar 
    93.Kacholi, D. S. Analysis of structure and diversity of the Kilengwe forest in the Morogoro Region, Tanzania. Int. J. Biodivers. 2014, 1–8. https://doi.org/10.1155/2014/516840 (2014).Article 

    Google Scholar 
    94.Jögren, E. Recent changes in the vascular flora and vegetation of the Azores Islands, Memórias da Sociedade Broteriana. Agric. For. 22, 1–113 (1973).
    Google Scholar 
    95.Silva, L. & Smith, C. W. A quantitative approach to the study of non- indigenous plants: An example from the Azores Archipelago. Biodivers. Conserv. 15, 1661–1679. https://doi.org/10.1007/s10531-004-5015-z (2006).Article 

    Google Scholar 
    96.Szmyt, J. Structural diversity of selected oak stands (Quercus robur L.) on the Krotoszyn Plateau in Poland. For. Res. Pap. 78, 4–27. https://doi.org/10.1515/frp-2017-0002 (2017).Article 

    Google Scholar 
    97.Lillo, E. P., Fernando, E. S. & Lillo, M. J. R. Plant diversity and structure of forest habitat types on Dinagat Island, Philippines. J. Asia Pac. Biodivers. 12, 83–105. https://doi.org/10.1016/j.japb.2018.07.003 (2018).Article 

    Google Scholar 
    98.Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x (2011).Article 
    PubMed 

    Google Scholar 
    99.Park, J., Kim, H. S., Jo, H. K. & Jung, B. The influence of tree structural and species diversity on temperate forest productivity and stability in Korea. Forests https://doi.org/10.3390/f10121113 (2019).Article 

    Google Scholar 
    100.Yang, Y., Luo, Y. & Finzi, A. Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytol. 190, 977–989. https://doi.org/10.1111/j.1469-8137.2011.03645.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    101.Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03. https://doi.org/10.1029/2009JG000935 (2009).ADS 
    Article 

    Google Scholar 
    102.Matos, B. et al. Linking dendrometry and dendrochronology in the Dominant Azorean Tree Laurus azorica (Seub.) Franco. Forests 10, 538. https://doi.org/10.3390/f10070538 (2019).Article 

    Google Scholar 
    103.Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341. https://doi.org/10.1016/j.scitotenv.2020 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    104.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215. https://doi.org/10.1038/nature07276 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    105.Pavão, D. C. et al. Dendrochronological potential of the Azorean endemic gymnosperm Juniperus brevifolia. Dendrochronologica 71, 125901. https://doi.org/10.1016/j.dendro.2021.125901 (2022).Article 

    Google Scholar 
    106.Fernández-Palácios, J. M., Garcia Esteban, J. J., López, R. J. & Luzardo, M. C. Aproximación a la estima de la biomassa y producción primaria neta aéreas en una estación de la Laurisilva tinerfeña. Vieraea 20, 11–20 (1991).
    Google Scholar 
    107.Brown, S. & Lugo, A. E. Biomass of tropical forests: A new estimate based on forest volumes. Science 223, 1290–1293. https://doi.org/10.1126/science.223.4642.1290 (1984).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    108.Silva, J. Açores e Madeira: A Floresta das Ilhas Vol. 6, 362 (Coleção Árvores e florestas de Portugal,1ª Edição, Fundação Luso-Americana para o Desenvolvimento, 2007).
    Google Scholar 
    109.Fukuda, M., Iehara, T. & Matsumoto, M. Carbon stock estimates for Sugi and Hinoki forests in Japan. For. Ecol. Manage. 184, 1–16. https://doi.org/10.1016/S0378-1127(03)00146-4 (2003).Article 

    Google Scholar 
    110.Sasaki, N. & Kim, S. Biomass carbon sinks in Japanese forests: 1966–2012. Forestry 82, 105–115. https://doi.org/10.1093/forestry/cpn049 (2009).Article 

    Google Scholar 
    111.Dar, J. A. & Sundarapandian, S. M. Soil organic carbon stock assessment in two temperate forest types of western Himalaya of Jammu and Kashmir, India. For. Res. 3, 114. https://doi.org/10.4172/2168-9776.1000114 (2013).Article 

    Google Scholar 
    112.Gilliam, F. S. Excess nitrogen in temperate forest ecosystems decreases herbaceous layer diversity and shifts control from soil to canopy structure. Forests 10, 66. https://doi.org/10.3390/f10010066 (2019).Article 

    Google Scholar 
    113.Li, P., Wang, Q., Endo, T., Zhao, X. & Kakubari, Y. Soil organic carbon stock is closely related to vegetation properties in cold-temperate mountainous forests. Geoderma 154, 407–415. https://doi.org/10.1016/j.geoderma.2009.11.023 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    114.Diaz-Pines, E., Rubio, A., Miegroet, H. V., Montes, F. & Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests. For. Ecol Manage. 262, 1895–1904. https://doi.org/10.1016/j.foreco.2011.02.004 (2011).Article 

    Google Scholar 
    115.Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 133, 13–22. https://doi.org/10.1016/S0378-1127(99)00294-7 (2000).Article 

    Google Scholar 
    116.Boring, L. R. & Hendricks, J. J. Litter quality of native herbaceous legumes in a burned pine forest of the Gerogia Piedmont. Can. J. For. Res. 22, 2007–2010. https://doi.org/10.1139/x92-263 (1992).Article 

    Google Scholar 
    117.Thuille, A. & Schulze, E. D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Chang. Biol. 6, 325–342. https://doi.org/10.1111/j.1365-2486.2005.01078.x (2006).ADS 
    Article 

    Google Scholar 
    118.Jandl, R. et al. How strongly can forest management influence soil carbon sequestration?. Geoderma 137, 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    119.van Wesemael, B. & Veer, M. A. C. Soil organic matter accumulation, litter decomposition and humus forms in Mediterranean forests of southern Tuscany, Italy. J. Soil Sci. 43, 133–144. https://doi.org/10.1111/j.1365-2389.1992.tb00125.x (1992).Article 

    Google Scholar 
    120.Kavvadias, V. A., Alifragis, D. A., Tsiontsis, A., Brofas, G. & Stamatelos, G. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol Manage. 144, 113–127. https://doi.org/10.1016/S0378-1127(00)00365-0 (2001).Article 

    Google Scholar 
    121.Rahman, M. M., Tsukamoto, J., Tokumoto, Y. & Ashikur, R. S. The role of quantitative traits of leaf litter on decomposition and nutrient cycling of the forest ecosystems. J. For. Sci. 29, 38–48. https://doi.org/10.7747/JFS.2013.29.1.38 (2013).Article 

    Google Scholar 
    122.Bowden, R. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75. https://doi.org/10.2136/sssaj2013.09.0413nafsc (2014).Article 

    Google Scholar 
    123.Madeira, M. et al. (eds) Soils of Volcanic Regions in Europe (Springer, 2007).
    Google Scholar 
    124.Arnalds, O. et al. (eds) Soils of Volcanic Regions in Europe (Springer, 2007).
    Google Scholar 
    125.Zheng, X., Wei, X. & Zhang, S. Tree species diversity and identity effects on soil properties in the Huoditang area of the Qinling Mountains, China. Ecosphere 8, e01732. https://doi.org/10.1002/ecs2.1732 (2017).Article 

    Google Scholar 
    126.Duan, L., Huang, Y., Hao, J., Xie, S. & Hou, M. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification. Sci. Total Environ. 330, 187–198. https://doi.org/10.1016/j.scitotenv.2004.03.035 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    127.Heath, L. S., Kimble, J. M., Birdsey, R. A. & Lal, R. The potential of U.S. forest soils to sequester carbon. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect (eds Kimble, J. M. et al.) 385–394 (CRC Press, 2003).
    Google Scholar 
    128.D’Amore, D. & Kane, E. Climate Change and Forest Soil Carbon. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/forest-soil-carbon (2016).129.Ramade, F. Ecology of Natural Resources (Wiley, 1981).
    Google Scholar 
    130.Osman, K. T. Physical properties of forest soils. In Forest Soils 19–44 (Springer, 2013).
    Google Scholar 
    131.Sanchez, P. A. & Logan, T. J. Myths and science about the chemistry and fertility of soils in the tropics. In Myths and Science of Soils of the Tropics Vol. 29 (eds Lal, R. & Sanchez, P. A.) 35–46 (SSSA, 1992).
    Google Scholar 
    132.Sibrant, A. L. R. et al. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira rift, Azores). J. Volcanol. Geotherm. Res. 301, 90–106. https://doi.org/10.1016/j.jvolgeores.2015.04.011 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    133.Hildenbrand, A., Weis, D., Madoreira, P. & Marques, F. O. Recent plate reorganization at the Azores triple junction: Evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic islands. Lithos 210–211, 27–39. https://doi.org/10.1016/j.lithos.2014.09.009 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    134.Demand, J., Fabriol, R., Gerard, F., Lundt, F. & Chovelon, P. Prospection Géothermique, íles de Faial et de Pico (Açores). Rapport géologique, geochimique et gravimétrique. Technical report, BRGM 82 SGN 003 GTH (1982).135.Elias, R. B. & Dias, E. Ecologia das florestas de Juniperus dos Açores Cadernos de Botânica nº5 (Herbário da Universidade dos Açores, 2008).
    Google Scholar 
    136.DRRF. Avaliação da Biomassa Disponível em Povoamentos Florestais na Região Autonoma dos Açores (Evaluation of Available Biomass in Forestry Stands in the Azores Autonomic Region) 8 (Inventário Florestal da Regiao Autonoma dos Açores Direcção Regional dos Recursos Florestais, Secretaria Regional da Agricultura e Florestas da Região Autonoma dos Açores, 2007).
    Google Scholar 
    137.Silva, L. & Smith, C. W. A characterization of the non-indigenous flora of the Azores Archipelago. Biol. Invasions 6, 193–204. https://doi.org/10.1023/B:BINV.0000022138.75673.8c (2004).Article 

    Google Scholar 
    138.Fernandes, A. & Fernandes, R. B. Iconographia Selecta Florae Azoricae Vol. I, 131 (Fasc. 1. Coimbra, 1980).
    Google Scholar 
    139.Fernandes, A. & Fernandes, R. B. Iconographia Selecta Florae Azoricae Vol. II, 178 (Fasc. 1 Edição da Secretaria Regional da Cultura da Região Autónoma dos Açores, 1983).
    Google Scholar 
    140.Mengistu, B. & Asfaw, Z. Woody species diversity and structure of agroforestry and adjacent land uses in Dallo Mena District, South-East Ethiopia. Nat. Resour. 7, 515–534. https://doi.org/10.4236/nr.2016.710044 (2016).Article 

    Google Scholar 
    141.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Biol. Sci. 285, 20181240. https://doi.org/10.1098/rspb.2018.1240 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    142.Lou, J. Entropy & diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).Article 

    Google Scholar 
    143.Whittaker, R. H. Communities and Ecosystems 162 (MacMillan, 1970).
    Google Scholar 
    144.Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564. https://doi.org/10.1016/j.tree.2018.04.012 (2018).Article 
    PubMed 

    Google Scholar 
    145.Oksanen, J. et al. Community Ecology Package. Vegan Tutorial (2018).146.Pavão, D. C., Elias, R. E. & Silva, L. Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities. Ecol. Model. 402, 93–106. https://doi.org/10.1016/j.ecolmodel.2019.03.021 (2019).Article 

    Google Scholar 
    147.Legendre, P. & Legendre, L. Numerical Ecology 2nd edn, 853 (Elsevier, 1998).MATH 

    Google Scholar 
    148.Oksanen F.G. et al. Vegan: Community Ecology Package. R Package Version 2.4-2 (2017).149.Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366. https://doi.org/10.2307/2963459 (1997).Article 

    Google Scholar 
    150.Silva, L., Le Jean, F., Marcelino, J. & Soares, A. O. Using bayesian inference to validate plant community assemblages and determine indicator species. In Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics Vol. 195 (eds Pinto, A. & Zilberman, D.) (Springer, 2017).
    Google Scholar 
    151.van Rensburg, B. J., McGeoch, M. A., Chown, S. L. & van Jaarsveld, A. S. Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol. Conserv. 88, 145–153. https://doi.org/10.1016/S0006-3207(98)00109-8 (1999).Article 

    Google Scholar 
    152.Solomou, A. D. & Sfougaris, A. I. Herbaceous plant diversity and identification of indicator species in olive groves in Central Greece. Commun. Soil Sci. Plant Anal. 44, 320–330. https://doi.org/10.1080/00103624.2013.741926 (2013).CAS 
    Article 

    Google Scholar 
    153.De Caceres, M. & Jansen, F. Indicspecies: Relationship Between Species and Groups of Sites. R package version 1.7.5. (2016).154.Aboal, J., Arévalo, J. R. & Fernández, Á. Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora 200, 264–274. https://doi.org/10.1016/j.flora.2004.11.001 (2005).Article 

    Google Scholar 
    155.Lim, K. H., Lee, K.-H., Lee, K. H. & Park, I. H. Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in southern. J. For. Res. 18, 316–322. https://doi.org/10.1007/s10310-012-0353-2 (2013).CAS 
    Article 

    Google Scholar 
    156.Paul, K. I. et al. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For. Ecol. Manage. 310, 483–494. https://doi.org/10.1016/j.foreco.2013.08.054 (2013).Article 

    Google Scholar 
    157.Acosta-Mireles, M., Vargas-Hernández, J., Velázquez-Martínez, A. & Etchevers-Barra, J. D. Aboveground biomass estimation by means of allometric relationships in six hardwood species in Oaxaca, México. Agrociência 36, 725–736 (2002).
    Google Scholar 
    158.Zianis, D. & Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manage. 187, 311–332. https://doi.org/10.1016/j.foreco.2003.07.007 (2004).Article 

    Google Scholar 
    159.IPCC. Guidelines for National Greenhouse Gas Inventories Vol. 4 (Intergovernmental Panel on Climate Change (IPCC), Agriculture, Forestry and Other Land Use (AFLOLU), Institute for Global Environmental Strategies, 2006).
    Google Scholar 
    160.Mokany, K., Raison, J. R. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Chang. Biol. 12, 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x (2006).ADS 
    Article 

    Google Scholar 
    161.Lamlom, S. & Savidge, R. A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy. 25, 381–388. https://doi.org/10.1016/S0961-9534(03)00033-3 (2003).CAS 
    Article 

    Google Scholar 
    162.Jew, E. K. K., Dougill, A. J., Sallu, S. M., O’Connell, J. & Benton, T. G. Miombo woodland under threat: consequences for tree diversity and carbon storage. For. Ecol. Manage. 361, 144–153. https://doi.org/10.1016/j.foreco.2015.11.0110378-1127 (2016).Article 

    Google Scholar 
    163.Hetland, J., Yowargana, P., Leduc, S. & Kraxner, F. Carbon-negative emissions: systemic impacts of biomass conversion: A case study on CO2 capture and storage options. Int. J. Greenh. Gas Control. 49, 330–342 (2016).CAS 

    Google Scholar 
    164.Macías, C. A. S., Orihuela, J. C. A. & Abad, S. I. Estimation of above-ground live biomass and carbon stocks in different plant formations and in the soil of dry forests of the Ecuadorian coast. Food Energy Secur. 6, e115. https://doi.org/10.1002/fes3.115 (2017).Article 

    Google Scholar 
    165.Yigini, Y. et al. Soil Organic Carbon Mapping Cookbook 2nd edn, 220 (FAO, 2018).
    Google Scholar 
    166.Azevedo, E. B. & Pereira, L. S. Modelling the local climate in island environments: Water balance applications. Agric. Water Manag. 40, 393–403 (1999).
    Google Scholar 
    167.Costa, H. et al. Predicting successful replacement of forest invaders by native species using species distribution models: The case of Pittosporum undulatum and Morella faya in the Azores. For. Ecol. Manage. 279, 90–96. https://doi.org/10.1016/j.foreco.2012.05.022 (2012).Article 

    Google Scholar 
    168.Costa, H., Medeiros, V., Azevedo, E. B. & Silva, L. Evaluating the ecological-niche factor analysis as a modelling tool for environmental weed management in island systems. Weed Res. 53, 221–230. https://doi.org/10.1111/wre.12017 (2013).Article 

    Google Scholar  More

  • in

    Effects of Chinese medicine herbal residues on antibiotic resistance genes and the bacterial community in chicken manure composting

    1.Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial rResistance. Environ Sci Technol. 2015;49:6772–82.CAS 
    Article 

    Google Scholar 
    2.Zhao WX, Wang B, Yu G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Environ Sci Pollut R. 2018;25:21467–82.CAS 
    Article 

    Google Scholar 
    3.Han XM, Hu HW, Chen QL, Yang LY, Li HL, Zhu YG, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol Biochem. 2018;126:91–102.CAS 
    Article 

    Google Scholar 
    4.Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, et al. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ. 2013;456:161–70.Article 

    Google Scholar 
    5.Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. Fems Microbiol Rev. 2009;33:430–49.CAS 
    Article 

    Google Scholar 
    6.Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–86.CAS 
    Article 

    Google Scholar 
    7.Meng F, Yang S, Wang X, Chen T, Wang X, Tang X, et al. Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. J Infect Public Health. 2017;10:749–54.Article 

    Google Scholar 
    8.Zhou Y, Selvam A, Wong JWC. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour Technol. 2018;249:182–8.CAS 
    Article 

    Google Scholar 
    9.Wu HW, Sun XQ, Liang BW, Chen JB, Zhou XF. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization. J Agro-Environ Sci. 2020;39:1168–76.
    Google Scholar 
    10.Chen J, Yu Z, Michel FC Jr., Wittum T, Morrison M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol. 2007;73:4407–16.CAS 
    Article 

    Google Scholar 
    11.Duan M, Gu J, Wang X, Li Y, Zhang S, Yin Y, et al. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting. Ecotoxicol Environ Saf. 2018;147:637–42.CAS 
    Article 

    Google Scholar 
    12.Cui E, Wu Y, Zuo Y, Chen H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour Technol. 2016;203:11–7.CAS 
    Article 

    Google Scholar 
    13.Ma Y, Wilson CA, Novak JT, Riffat R, Aynur S, Murthy S, Pruden A. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline Resistance Genes and Class I Integrons. Environ Sci Technol. 2011;45:7855–61.CAS 
    Article 

    Google Scholar 
    14.Tien YC, Li B, Zhang T, Scott A, Murray R, Sabourin L, et al. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci Total Environ. 2017;581-582:32–9.CAS 
    Article 

    Google Scholar 
    15.Zhang L, Sun XY. Effects of waste lime and Chinese medicinal herbal residue amendments on physical, chemical, and microbial properties during green waste composting. Environ Sci Pollut Res. Int. 2018;25:31381–95.CAS 
    Article 

    Google Scholar 
    16.Wang YQ, Wu XQ, Zhu TT, Ma QG, Chen HG. Study on utilization of solid slag compost of Chinese medicinal herbal. J Chin Medicinal Mater. 2008;31:1622–4.CAS 

    Google Scholar 
    17.Wu DL, Liu P, Luo YZ, Tian GM, Mahmood Q. Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge. J Zhejiang Univ Sci B. 2010;11:497–505.Article 

    Google Scholar 
    18.Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv. 2017;133462.19.Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.
    Google Scholar 
    20.Chao A, Yang MCK. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika. 1993;80:193–201.Article 

    Google Scholar 
    21.Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:623–56.Article 

    Google Scholar 
    22.Simpson EH. Measurement of diversity. Nature 1949;163:688.Article 

    Google Scholar 
    23.Huang K, Xia H, Wu Y, Chen J, Cui G, Li F, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour Technol. 2018;259:32–9.CAS 
    Article 

    Google Scholar 
    24.Qian X, Sun W, Gu J, Wang XJ, Sun JJ, Yin YN, et al. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J Hazard Mater. 2016;315:61–9.CAS 
    Article 

    Google Scholar 
    25.Zhang R, Gu J, Wang X, Li Y, Zhang K, Yin Y, Zhang X. Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. J Hazard Mater. 2018;358:82–91.CAS 
    Article 

    Google Scholar 
    26.Wang H, Sangwan N, Li HY, Su JQ, Oyang WY, Zhang ZJ, et al. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. Isme J. 2017;11:100–11.Article 

    Google Scholar 
    27.Li J, Xin Z, Zhang Y, Chen J, Yan J, Li H, Hu H. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Appl Soil Ecol. 2017;121:193–200.Article 

    Google Scholar 
    28.Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol. 2015;49:7356–63.CAS 
    Article 

    Google Scholar 
    29.Li H, Duan M, Gu J, Zhang Y, Qian X, Ma J, et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol Environ Saf. 2017;140:1–6.Article 

    Google Scholar 
    30.Zhang J, Lin H, Ma J, Sun W, Yang Y, Zhang X. Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Sci Total Environ. 2019;649:396–404.CAS 
    Article 

    Google Scholar 
    31.Ghosh S, Ramsden SJ, LaPara TM. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Appl Microbiol Biotechnol. 2009;84:791–6.CAS 
    Article 

    Google Scholar 
    32.Selvam A, Xu D, Zhao Z, Wong JW. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour Technol. 2012;126:383–90.CAS 
    Article 

    Google Scholar 
    33.Antunes P, Machado J, Sousa JC, Peixe L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Chemother. 2005;49:836–9.CAS 
    Article 

    Google Scholar 
    34.Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    Article 

    Google Scholar 
    35.Chen Q, An X, Li H, Su J, Ma Y, Zhu YG. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.CAS 
    Article 

    Google Scholar  More

  • in

    A global coral-bleaching database, 1980–2020

    The GCBD is stored at figshare23. Below we describe 20 Tables (also see Fig. 3 schematic) that comprise the GCBD: (1) Site_Info_tbl, (2) Sample_Event_tbl, (3) R_Scripts_tbl, (4) Cover_tbl, (5) Bleaching_tbl, (6) Environmental_tbl, (7) Authors_LUT, (8) Bleaching_Level_LUT, (9) City_Town_Name_LUT, (10) Country_Name_LUT, (11) Data_Source_LUT, (12) Ecoregion_Name_LUT, (13) Exposure_LUT, (14) Ocean_Name_LUT, (15) Realm_Name_LUT, (16) State_Island_Province_Name_LUT, (17) Substrate_Type_LUT, (18) Relevant_Papers_tbl, (19) Severity_Code_LUT, and (20) Bleaching_Prevalence_Score_LUT, where LUT stands for look-up table.

    1)

    Site Information (Site_Info_tbl)
    Latitude_Degrees: latitude coordinates in decimal degrees.
    Longitude_Degrees: longitude coordinates in decimal degrees.
    Ocean_Name: the ocean in which the sampling took place.
    Realm_Name: identification of realm as defined by the Marine Ecoregions of the World (MEOW)12.
    Ecoregion_Name: identification of the Ecoregions (150) as defined by Veron et al.13.
    Country_Name: the country where sampling took place.
    State_Island_Province_Name: the state, territory (e.g., Guam) or island group (e.g., Hawaiian Islands) where sampling took place.
    City_Town_Name: the region, city, or nearest town, where sampling took place.
    Site_Name: the accepted name of the site or the name given by the team that sampled the reef.
    Distance_to_Shore: the distance (m) of the sampling site from the nearest land.
    Exposure: a site was considered exposed if it had >20 km of fetch, if there were strong seasonal winds, or if the site faced the prevailing winds. Otherwise, the site was considered sheltered or ‘sometimes’. ‘Sometimes’ refers to a few sites with a >20 km fetch through a narrow geographic window, and therefore we considered that the site was potentially exposed during cyclone seasons. We left the category ‘sometimes’ in the database because those sites were not clearly exposed sites, nor were they clearly sheltered sites, and future researchers may be interested in temporary exposure.
    Turbidity: kd490 with a 100-km buffer.
    Cyclone_Frequency: number of cyclone events from 1964 to 2014.
    Comments: comments of any issues with the site or additional information.

    2)

    Sample Event Information (Sample_Event_tbl)
    Site_ID: site ID field from Site_Info_tbl.
    Reef_ID: name of reef site that was adopted by sampling group (from ReefCheck).
    Quadrat_No: quadrat number (from McClanahan et al.)20.
    Date_Day: the date of the sampling event.
    Date_Month: the month of sampling event.
    Date_Year: the year of sampling event.
    Depth: depth (m) of sampling site. Comments: comments of any issue or additional information of sampling event.

    3)

    R Code (R_Scripts_tbl)
    Relevant_Papers_ID: relevant papers ID field from Relevant_Papers_tbl.
    Project name: name of project associated with R code.
    Paper_Title: title of paper where R code was published.
    Code_Name: name of R code file.
    Description: description of the R code.
    Data_Source: data source ID field from Data_Source_LUT.
    R_Code: attachment of R code file.
    URL: hyperlink to R code or link to github.

    4)

    Coral Cover Information (Cover_tbl)
    Sample_ID: sampled ID field from Sample_Event_tbl.
    Substrate_Type: substrate type ID field from Substrate_LUT.
    S1: Reef Check breaks down transects into four 20 m × 5 m segments, point data from segment one of transect.
    S2: Reef Check breaks down transects into four 20 m × 5 m segments, point data from segment two of transect.
    S3: Reef Check breaks down transects into four 20 m × 5 m segments, point data from segment three of transect.
    S4: Reef Check breaks down transects into four 20 m × 5 m segments, point data from segment four of transect.
    Perc_hardcoral: percent hard coral cover from McClanahan et al.20 data source.
    Perc_macroalgae: percent macroalgae cover from McClanahan et al.20 data source.
    Average_Ellipse_Transect: calculated percent hard coral cover per 10 m × 1 m transect using ellipse equation.
    Average_Ellipse_Site: calculated percent hard coral cover per site using ellipse equation.
    Comments: comments of any issue or additional information of sampling event

    5)

    Bleaching Information (Bleaching_tbl)
    Sample_ID: sample ID field from Sample_Event_tbl.
    Bleaching_Level: Reef Check data, coral population or coral colony.
    S1: Reef Check breaks down transects into four 20 m × 5 m segments, percent bleaching from segment one of transect.
    S2: Reef Check breaks down transects into four 20 m × 5 m segments, percent bleaching from segment two of transect.
    S3: Reef Check breaks down transects into four 20 m × 5 m segments, percent bleaching from segment three of transect.
    S4: Reef Check breaks down transects into four 20 m × 5 m segments, percent bleaching from segment four of transect.
    Percent_Bleaching_RC_Old_Method: old method of determining percent bleaching from Reef_Check.
    Severity_Code: coded range of bleaching severity from Donner et al.10.
    Percent_Bleached: percent of coral bleaching.
    Number_Bleached_colonies: number of bleached corals from McClanahan et al.20 data source.
    Bleaching_intensity: from McClanahan et al.20 data source.
    Bleaching_Prevalence_Score: coded range of bleaching prevalence from Safaie et al.21.

    6)

    Environmental Parameter Information (Environmental_tbl)
    Sample_ID: sample ID field from Sample_Event_tbl.
    ClimSST: CoRTAD. [Climatological Sea-Surface Temperature (SST)] based on weekly SSTs for the study time frame, created using a harmonics approach.
    Temperature_ Kelvin: CoRTAD. SST in Kelvin.
    Temperature_Mean: CoRTAD. Mean SST in degrees Celsius.
    Temperature_Minimum: CoRTAD. Minimum SST in degrees Celsius.
    Temperature_Maximum: CoRTAD. Maximum SST in degrees Celsius.
    Temperature_Kelvin_Standard_Deviation: CoRTAD. Standard deviation of SST in Kelvin.
    Windspeed: CoRTAD. meters per hour.
    SSTA: CoRTAD. (Sea-Surface Temperature Anomaly) weekly SST minus weekly climatological SST.
    SSTA_Standard_Deviation: CoRTAD. The Standard Deviation of weekly SSTA in degrees Celsius over the entire period.
    SSTA_Mean: CoRTAD. The mean SSTA in degrees Celsius over the entire period.
    SSTA_Minimum: CoRTAD. The minimum SSTA in degrees Celsius over the entire period.
    SSTA_Maximum: CoRTAD. The maximum SSTA in degrees Celsius over the entire period.
    SSTA_Frequency: CoRTAD. (Sea Surface Temperature Anomaly Frequency) number of times over the previous 52 weeks that SSTA  >  = 1 degree Celsius.
    SSTA_Frequency_Standard_Deviation: CoRTAD. The standard deviation of SSTA Frequency in degrees Celsius over the entire time period of 40 years.
    SSTA_FrequencyMax: CoRTAD. The maximum SSTA Frequency in degrees Celsius over the entire time period.
    SSTA_FrequencyMean: CoRTAD. The mean SSTA Frequency in degrees Celsius over the entire time period of 40 years.
    SSTA_DHW: CoRTAD. (Sea Surface Temperature Degree Heating Weeks) sum of previous 12 weeks when SSTA  >  = 1 degree Celsius.
    SSTA_DHW_Standard_Deviation: CoRTAD. The standard deviation SSTA DHW in degrees Celsius over the entire period.
    SSTA_DHWMax: CoRTAD. The maximum SSTA DHW in degrees Celsius over the entire time period of 40 years.
    SSTA_DHWMean: CoRTAD. The mean SSTA DHW in degrees Celsius over the entire time period of 40 years.
    TSA: CoRTAD. (Thermal Stress Anomaly) weekly SSTs minus the maximum of weekly climatological SSTs in degrees Celsius.
    TSA_Standard_Deviation: CoRTAD. The standard deviation of TSA in degrees Celsius over the entire time period of 40 years.
    TSA_Minimum: CoRTAD. The minimum TSA in degrees Celsius over the entire time period of 40 years.
    TSA_Maximum: CoRTAD. The maximum TSA in degrees Celsius over the entire time period of 40 years.
    TSA_Mean: CoRTAD. The mean TSA in degrees Celsius over the entire time period of 40 years.
    TSA_Frequency: CoRTAD. The number of times over previous 52 weeks that TSA  >  = 1 degree Celsius.
    TSA_Frequency_Standard_Deviation: CoRTAD. The standard deviation of frequency of TSA in degrees Celsius over the entire time period of 40 years.
    TSA_FrequencyMax: CoRTAD. The maximum TSA frequency in degrees Celsius over the entire time period of 40 years.
    TSA_FrequencyMean: CoRTAD. The mean TSA frequency in degrees Celsius over the entire time period of 40 years.
    TSA_DHW: CoRTAD. (Thermal Stress Anomaly Degree Heating Weeks) sum of previous 12 weeks when TSA  >  = 1 degree Celsius.
    TSA_DHW_Standard_Deviation: CoRTAD. The standard deviation of TSA DHW in degrees Celsius over the entire time period of 40 years.
    TSA_DHWMax: CoRTAD. The maximum TSA DHW in degrees Celsius over the entire time period of 40 years.
    TSA_DHWMean: CoRTAD. The mean TSA DHW in degrees Celsius over the entire time period of 40 years.

    7)

    Author Names (Authors_LUT)
    Last_Name: author’s last name.
    First_Name: author’s first name.
    Middle_Initial: author’s middle initial.

    8)

    Bleaching Level Information (Bleaching_Level_LUT)
    Bleaching_Level: Reef Check data, coral population or coral colony.

    9)

    City, Town Names (City_Town_Name_LUT)
    City_Town_Name: the region, city, or town, where sampling took place.

    10)

    Country names (Country_Name_LUT)
    Country_Name: name of the country where sampling took place.

    11)

    Data Source Information (Data_Source_LUT)
    Data_Source: name of source of original data set.
    Sample_Method: Description of the sampling methods used to collect the data. If more than one method was used then we stated that an amalgamation of methods were used to collect the data, and the original papers are found in “Relevant_Papers_tbl”, and can be referenced therein.

    12)

    Ecoregion Names (Ecoregion_Name_LUT)
    Ecoregion_Name: name of Ecoregion from Veron et al.13.

    13)

    Exposure Type (Exposure_LUT)
    Exposure_Type: site exposure to fetch.

    14)

    Ocean Name Information (Ocean_Name_LUT)
    Ocean_Name: name of ocean where sampling took place.

    15)

    Name of Realm (Realm_Name_LUT)
    Realm_Name: name of realm as identified by the Marine Ecoregions of the World (MEOW)12.

    16)

    State, Island, Province Name (State_Island_Province_Name_LUT)
    State_Island_Province_Name, Name of the state, territory (e.g. Guam) or island group (e.g. Hawaiian Islands) where sampling took place.

    17)

    Substrate Type (Substrate_Type_LUT)
    Substrate_Type: type of substrate from Reef Check data.

    18)

    Relevant Publications (Relevant_Papers_tbl)
    Data_Source: source associated with publication.
    Author_ID: author ID field from Authors_LUT.
    Title: title of published work.
    Journal_Name: name of publication journal.
    Year_Published: year of publication.
    Volume: volume number of journal.
    Issue: issue number of journal.
    Pages: page range of publication.
    URL: hyperlink to publication.
    DOI: DOI number of publication.
    pdf: pdf attachment of publication.

    19)

    Severity Index Code (Severity_Code_LUT)
    Severity_Code: coded range of bleaching severity from Donner et al.10.

    20)

    Bleaching Prevalence Code (Bleaching_Prevalence_Score_LUT)

    Bleaching_Prevalence_Score: coded range of bleaching prevalence from Safaie et al. 21. More

  • in

    Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015

    Here we describe methods for the GAEZ+ 2015 Annual Crop Data, and the GAEZ+ 2015 Monthly Cropland Data. The Annual Crop Data was generated first, then the Monthly Cropland Data was calculated based on the Harvest Area results of the Annual Data (Fig. 1).Fig. 1Schematic overview of annual and monthly data production methods. The GAEZ+ 2015 products described in this paper are in dark blue boxes; publicly available data used are in light blue. Dark blue arrows indicate which data are used in each processing step, and grey arrows from steps to data show which steps result in final GAEZ+ 2015 data products. The processing steps listed here are referred to in the Methods section text.Full size imageGAEZ+ 2015 Annual Crop Data MethodsThe GEAZ+ 2015 Annual Crop Data updates the 2010 GAEZ v4 crop harvest area, yield, and production maps6,7 (identified as Theme 5 in ref. 7) using national-scale data on the change in crop harvested area and livestock numbers from 2010 to 2015, based on statistics for 160 crop groups, and cattle and buffalo, from FAOSTAT5.Three datasets were used to produce GAEZ+ 2015 Annual Crop Data:

    1.

    FAOSTAT crop production domain: annual, country-level data on crop harvested area (H) and crop production (P) for each crop from the FAOSTAT database (Table 1)Table 1 GAEZ and FAOSTAT crop harmonization.Full size table

    2.

    GAEZ v46,7 gridded global annual harvested area, yield, and production by crop for the 26 FAOSTAT crops and crop categories at 5-minute resolution

    3.

    Global Administrative Unit Layer (GAUL 2012)13 data. GAUL 2012 reports the fraction of each global 5-minute grid cell that falls within a given country or disputed territory. There are 275 unique global administrative units.

    Step 1. Calculate crop changes from 2010 to 2015 by country:
    For each country, we extracted the harvested area (H) and crop production (P) for each of the 160 FAOSTAT crop categories, c, from the FAOSTAT database. We averaged three years (2009–2011) of annual national crop harvested area data to represent 2010 national crop harvest area, H2010, and three years (2014–2016) of annual crop harvested area data to represent 2015 national crop harvest area, H2015, then calculated a ratio, rHc, of 2015 to 2010 harvested areas for each crop c in each country, and equivalently, for crop production:$$r{H}_{c}={H}_{2015}/{H}_{2010}$$
    (1)
    $$r{P}_{c}={P}_{2015}/{P}_{2010}$$
    (2)
    This results in 160 rH and rP values per country. If harvest area and production values for a particular crop are zero or unreported in the FAOSTAT data, then rHc and rPc are both set to 1.0 (i.e., no change from 2010 to 2015). Three years of data are averaged (2009 – 2011 and 2014 – 2016) to account for missing data for some country/year combinations and to avoid emphasizing reported outliers.
    Step 2. Aggregate FAOSTAT-based ratios to the GAEZ crop categories:
    We followed the crop aggregation methods of the GAEZ model to aggregate the FAOSTAT crop list (160 unique crops as of 2019) to 26 crops (see Table 1). For each of the 26 GAEZ crop categories, if there is more than one matching FAOSTAT crop (see Table 1) then we applied an area-weighted average (based on FAOSTAT year 2015 harvested area) of the FAOSTAT crops within each country to the rH and rP values for that crop and country. This results in 26 rH and rP values per country. There was one exception to this: the GAEZ_2010 crop category ‘fodder crops’ was an aggregate of 17 FAOSTAT crops (see Table 1) for which harvest area data are no longer reported on FAOSTAT; i.e., GAEZ_2010 had obtained FAOSTAT data on fodder crops circa 2010, but FAOSTAT no longer provides any data on fodder crops for any year. We assumed that the 2010 to 2015 fractional change in fodder crop harvest area in each country was proportional to the change in the FAOSTAT reported national herd sizes for cattle and buffalo livestock data5 for that country, following the same methodology as for crop harvested area change (see Step 2 below). This method assumes a negligible international trade of fodder crops as indicated by bilateral trade matrices available from FAOSTAT.
    Step 3. Apply country-level ratios to grid cells:
    Calculated country-level ratios were then applied to each grid cell k, using the GAUL_201213 definitions for which grid cells fall within which countries. Some grid cells are split between two or more countries. In this case, all model output variables for the grid cell are divided between the countries based on the fraction of grid cell area falling within the country i:$${H}_{c,2015}^{k}={H}_{c,2010}^{k}{sum }_{i},{f}_{i}^{k}r{H}_{c,i}$$
    (3)
    $${P}_{c,2015}^{k}={P}_{c,2010}^{k}{sum }_{i},{f}_{i}^{k}r{P}_{c,i}$$
    (4)
    where ({H}_{c,2015}^{k}) is the year 2015 harvested area (or production) for crop c in grid cell k; ({f}_{i}^{k}) is the fraction of country i in grid cell k, and rHc,i and rPc,i are the ratios for crop c in country i as calculated in Eqs. 1 and 2. This results in 26 H and P values per grid cell. If the sum of all crop harvest areas exceeds 99% of the grid cell area, all crop harvest areas are reduced equally to fit within 99% of the area.
    Special Case: Sudan
    FAOSTAT data for years before 2011 report data for Sudan, and for South Sudan and Sudan after 2011. To compute the ratios for these grid cells, we split the 2010 data for Sudan into a virtual ‘North’ Sudan and ‘South_Sudan’, using the data for the year 2012, which was reported for both countries. We then used these generated 2010 data and applied the same methodology as described above to calculate changes in harvested areas and production in all grid cells in both countries.
    Special Case: Small regions and islands
    Forty-nine countries – generally small regions or islands – had no data reported for crop harvested area by FAOSTAT. We assumed that there was no change in crop harvested area for the grid cells in these countries. Note that many may have had zero ha as previously-reported crop area in GAEZ v4. These countries are (the number following each region is the region’s number in ADM0_CODE in the GAUL_2012 data13):Anguilla (9), Aruba (14), Ashmore_and_Cartier_Islands (16), Azores_Islands (74578), Baker_Island (22), Bassas_da_India (25), Bird_Island (32), Bouvet_Island (36), British_Indian_Ocean_Territory (38), Christmas_Island (54), Clipperton_Island (55), Cocos (Keeling)_Islands (56), Europa_Island (80), French_Southern_and_Antarctic_Territories (88), Glorioso_Island (96), Greenland (98), Guernsey (104), Heard_Island_and_McDonald_Islands (109), Howland_Island (112), Isle_of_Man (120), Jarvis_Island (127), Jersey (128), Johnston_Atoll (129), Juan_de_Nova_Island (131), Kingman_Reef (134), Kuril_islands (136), Madeira_Islands (151), Mayotte (161), Midway_Island (164), Navassa_Island (174), Netherlands_Antilles (176), Norfolk_Island (184), Northern_Mariana_Islands (185), Palmyra_Atoll (190), Paracel_Islands (193), Pitcairn (197), Saint_Helena (207), Scarborough_Reef (216), Senkaku_Islands (218), South_Georgia_and_the_South_Sandwich_Islands (228), Spratly_Islands (230), Svalbard_and_Jan_Mayen_Islands (234), Tromelin_Island (247), Turks_and_Caicos_Islands (251), United_States_Virgin_Islands (258), Wake_Island (265), Gibraltar (95), Holy_See (110), Liechtenstein (146).
    Special Case: Disputed Areas
    Some grid cells in the GAUL_201213 cell-table database are assigned to nine disputed areas, rather than to specific countries. We assumed that there was no change in crop harvested area or production from 2010 to 2015 for grid cells these disputed areas. These areas are (the number following each region is the region’s number of the ADM0_CODE in the GAUL_201213 data):Abyei (102), Aksai_Chin (2), Arunachal_Pradesh (15), China/India (52), Hala’ib_Triangle (40760), Ilemi_Triangle (61013), Jammu_and_Kashmir (40781), Ma’tan_al-Sarra (40762), Falkland_Islands_(Malvinas) (81).
    Step 4. Compute 2015 crop yields:
    Crop yields were computed for each crop, c, and grid cell, k, as the ratio of crop production to crop harvest area (if harvest area, Hc,k,2015, is zero, then yield, Yc,k,2015, is set to zero):$${Y}_{c,k,2015}={P}_{c,k,2015}/{H}_{c,k,2015}$$
    (5)
    The resulting gridded global data are:

    A.

    GAEZ+ 2015 Crop Harvest Area14

    B.

    GAEZ+ 2015 Crop Yield15

    C.

    GAEZ+ 2015 Crop Production16

    This new data product consists of 156 data files in geotiff format, one rainfed harvested area file and one irrigated harvested area file for each crop harvest area (1000 ha (107 m2) per 5-minute grid cell), crop production (1000 tonnes (106 kg) per 5-minute grid cell), and crop yield (tonnes per ha (10−1 kg m−2) per 5-minute grid cell), for each of the 26 GAEZ crops or crop categories in Table 1.GAEZ+ 2015 monthly cropland area methodsTwo datasets were used to produce monthly cropland area by crop and by irrigated vs rainfed management. These are:

    1.

    GAEZ+ 2015 Annual Harvested Area14 (as developed above)

    2.

    MIRCA2000 cropland area4

    Step 5. Harmonize the GAEZ+ 2015 and MIRCA2000 crop lists
    The MIRCA20004 cropland product provides monthly growing area grids (gridded physical cropland area) for 26 irrigated and rainfed crops and crop categories, as well as cropping calendars that identify the planting month and harvesting month for each crop (via ‘subcrops’ – see below). However, the MIRCA2000 crop list is not the same as the GAEZ+ 2015 crop list; we matched each crop type in the GAEZ+ 2015 crop list to a crop type in the MIRCA2000 crop list to enable the application of MIRCA2000 crop calendars to GAEZ+ 2015 crops (Table 2). Out of the 26 GAEZ+ 2015 crops, 18 had clear 1:1 matching crop categories within MIRCA2000. The remaining 8 crops were matched based on general crop characteristics, i.e., annual vs. perennial, or to unmatched MIRCA2000 cereals.Table 2 List of GAEZ crop categories used in all GAEZ+ 2015 products, as well as the matching between GAEZ+ 2015 crops and MIRCA20004 crop categories for the purposes of producing GAEZ+ 2015 monthly cropland data.Full size tableAn essential component of the MIRCA2000 cropland dataset is the identification of subcrop categories within each crop category to split crops into areas grown in different seasons, or crops with different planting and harvesting dates within the same season. Up to 5 subcrops can be defined to represent such multi-cropping practices. Below, we use the following notation:HG = annual harvested area from the GAEZ+ 2015 product for a given cropHM = annual harvested area calculated from the MIRCA2000 data for a given cropAM,n = cropland area of MIRCA2000 crop, subcrop n, by monthAG,n = cropland area of GAEZ+ 2015 crop, subcrop n, by monthAG = cropland area of GAEZ+ 2015 crop, by month
    Step 6. Apply MIRCA2000 monthly crop calendars to GAEZ+ 2015 annual data
    To generate the monthly cropland physical area of GAEZ+ 2015 crops, we followed these steps for each GAEZ crop in each grid cell:

    1.

    For a given GAEZ crop in a given grid cell, is the area reported >0 for the matching MIRCA2000 crop?

    a.

    If YES, then use the MIRCA2000 data for the grid cell and crop considered.

    b.

    If NO, then find the closest grid cell with the matching MIRCA2000 crop category, and apply the MIRCA2000 crop rotation from that grid cell to the given crop/grid cell combination for the following steps.

    2.

    Does the matching MIRCA2000 crop category (Table 1) have more than 1 subcrop?

    a.

    If NO, then AG = HG for all months of the cropping season, as defined by the MIRCA2000 crop calendar.

    b.

    If YES, then for each subcrop category n, apply the ratio of AM,n/HM to HG, then sum the subcrop areas within each month such that:

    $${A}_{G}=sum _{n}frac{{A}_{M,n}}{{H}_{M}}{H}_{G}$$

    3.

    For each month and each grid cell, check if the sum of all crops (irrigated and rainfed) is greater than the 99% of area of the grid cell. We assume that at least 1% of land must be retained as non-cropland for agricultural infrastructure such as roads, buildings, irrigation infrastructure, and other landcovers (e.g. rivers, wetlands).

    a.

    If NO, then no further processing is done.

    b.

    If YES, then reduce crop area by the excess value based on a removal order (Table 2). Rainfed crops have higher removal order numbers for the excess truncation (starting with 1) before removing irrigated crops, until the cell area is not exceeded. A large removal number (e.g., 20) indicates that the crop’s land is unlikely to be removed. Large priority numbers are given to the staple crops to ensure these important food producing lands are consistent with FAOSTAT country data.

    The maximum monthly amount of physical cropland that was removed by step 3 is 711,543 ha, which is 0.05% of total global cropland physical area.The resulting global gridded data from Step 6 are monthly time series of cropland physical area by crop, subcrop, and production system, called GAEZ+_2015 Monthly Cropland Data17. Combining the MIRCA2000 crop calendar and subcrop rotation information with the GAEZ+ 2015 annual data allows for the representation of crop seasonality; e.g., Fig. 2 shows the aggregate monthly cropland physical area for Rice 1 and Rice 2 (two sub-crops of rice) over the northern hemisphere, clearly illustrating the two main rice-growing seasons.Fig. 2Aggregate monthly cropland physical area for Rice 1 and Rice 2 subcrops from monthly GAEZ+ 2015 over the northern hemisphere shows the two main rice-growing seasons. This seasonality is the result of combining GAEZ+ 2015 annual data with the MIRCA20004 crop calendars and subcrop divisions.Full size image More