1.Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2(2), 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 2.Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13(8), 1055–1071. https://doi.org/10.1111/j.1461-0248.2010.01489.x (2010).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 3.Hammerschlag, N., Schmitz, O. J., Flecker, A. S., Lafferty, K. D., Sih, A., Atwood, T. B., Gallagher, A. J., Irschick, D. J., Skubel, R., & Cooke, S. J. Ecosystem function and services of aquatic predators in the anthropocene. In Trends in Ecology and Evolution Vol. 34, Issue 4, 369–383. (Elsevier Ltd, 2019). https://doi.org/10.1016/j.tree.2019.01.0054.Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23(4), 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 5.Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: An understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B Biol. Sci. 285(1875), 20172456. https://doi.org/10.1098/rspb.2017.2456 (2018).Article 
 Google Scholar 
 6.Dulvy, N. K., Simpfendorfer, C. A., Davidson, L. N. K., Fordham, S. V., Bräutigam, A., Sant, G., & Welch, D. J. Challenges and priorities in shark and ray conservation. In Current Biology, Vol. 27, Issue 11, R565–R572. (Cell Press, 2017). https://doi.org/10.1016/j.cub.2017.04.038.7.MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583(7818), 801–806. https://doi.org/10.1038/s41586-020-2519-y (2020).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 8.MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish. 20(2), 255–267. https://doi.org/10.1111/faf.12337 (2019).Article 
 Google Scholar 
 9.Albano, P. S. et al. Successful parks for sharks: No-take marine reserve provides conservation benefits to endemic and threatened sharks off South Africa. Biol. Conserv. 261, 109302 (2021).Article 
 Google Scholar 
 10.Bond, M. E. et al. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier reef. PLOS ONE 7(3), e32983. https://doi.org/10.1371/journal.pone.0032983 (2012).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 11.Ruppert, J. L. W. et al. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob. Change Biol. 24(1), e67–e79. https://doi.org/10.1111/gcb.13882 (2018).Article 
 Google Scholar 
 12.Valdivia, A., Cox, C. E. & Bruno, J. F. Predatory fish depletion and recovery potential on Caribbean reefs. Sci. Adv. 3, e1601303 (2017).ADS 
 Article 
 Google Scholar 
 13.Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30(3), 480–489. https://doi.org/10.1016/j.cub.2019.12.005 (2020).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 14.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).15.Wickham, H, ggplot2: Elegant Graphics for Data Analysis. Springer, New York. ISBN 978-3-319-24277-4 (2016).16.Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5(1), 144–161 (2013).Article 
 Google Scholar 
 17.Desbiens, A. A. et al. Revisiting the paradigm of shark-driven trophic cascades in coral reef ecosystems. Ecology 102(4), e03303. https://doi.org/10.1002/ecy.3303 (2021).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 18.Morrissey, J. E. & Gruber, S. H. Habitat selection by juvenile lemon sharks, Negaprion brevirostris. Environ. Biol. Fishes 38, 311–319 (1993).Article 
 Google Scholar 
 19.Clementi, G. et al. Anthropogenic pressures on reef-associated sharks in jurisdictions with and without directed shark fishing. Mar. Ecol. Prog. Ser. 661, 175–186. https://doi.org/10.3354/meps13607 (2021).ADS 
 Article 
 Google Scholar 
 20.Juhel, J. B. et al. Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior. Sci. Rep. 9(1), 1–11. https://doi.org/10.1038/s41598-018-37145-x (2019).CAS 
 Article 
 Google Scholar 
 21.Goetze, J. S. et al. Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass. Ecol. Appl. 27, 1178–1189 (2017).Article 
 Google Scholar 
 22.Mitchell, J. D. et al. Quantifying shark depredation in a recreational fishery in the Ningaloo Marine Park and Exmouth Gulf, Western Australia. Mar. Ecol. Prog. Ser. 587, 141–157. https://doi.org/10.3354/meps12412 (2018).ADS 
 Article 
 Google Scholar 
 23.Mitchell, J. D. et al. A novel experimental approach to investigate the potential for behavioural change in sharks in the context of depredation. J. Exp. Mar. Biol. Ecol. 530–531, 151440. https://doi.org/10.1016/j.jembe.2020.151440 (2020).Article 
 Google Scholar 
 24.Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Cons. 220, 308–319. https://doi.org/10.1016/j.biocon.2018.01.010 (2018).Article 
 Google Scholar 
 25.Bond, M. E., Albanese, J. V., Heithaus, E. A. B. M. R. & Cerrato, R. D. G. R. Top predators induce habitat shifts in prey within marine protected areas. Oecologia 190(2), 375–385. https://doi.org/10.1007/s00442-019-04421-0 (2019).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 26.Lester, E. K. et al. Relative influence of predators, competitors and seascape heterogeneity on behaviour and abundance of coral reef mesopredators. Oikos 130, 2239–2249. https://doi.org/10.1111/oik.08463 (2021).Article 
 Google Scholar 
 27.Phenix, L. et al. Evaluating the effects of large marine predators on mobile prey behavior across subtropical reef systems. Ecol. Evol. 9, 13740–13751 (2019).Article 
 Google Scholar 
 28.Shea, B. D. et al. Effects of exposure to large sharks on the abundance and behavior of mobile prey fishes along a temperate coastal gradient. PLOS ONE 15(3), e0230308. https://doi.org/10.1371/journal.pone.0230308 (2020).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 29.Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away, rays will play: Effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157. https://doi.org/10.3354/meps13307 (2020).ADS 
 Article 
 Google Scholar 
 30.Ryan, K. L., Hall, N. G., Lai, E. K., Smallwood, C. B., Tate, A., Taylor, S. M., & Wise, B. S. Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2017/18, 8. Fisheries Research Report No. 297 (2019).31.Cresswell, A. K. et al. Disentangling the response of fishes to recreational fishing over 30 years within a fringing coral reef reserve network. Biol. Cons. 237, 514–524. https://doi.org/10.1016/j.biocon.2019.06.023 (2019).Article 
 Google Scholar 
 32.Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26(6), 3525–3538. https://doi.org/10.1111/gcb.15065 (2020).ADS 
 Article 
 Google Scholar 
 33.Goetze, J. S., & Fullwood, L. A. F. Fiji’s largest marine reserve benefits reef sharks. In Coral Reefs Vol. 32, Issue 1, 121–125. (Springer, 2013). https://doi.org/10.1007/s00338-012-0970-4.34.Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55(2), 673–683. https://doi.org/10.1111/1365-2664.13007 (2018).Article 
 Google Scholar 
 35.Birt, M. J. et al. Isolated reefs support stable fish communities with high abundances of regionally fished species. Ecol. Evol. 11(9), 4701–4718. https://doi.org/10.1002/ece3.7370 (2021).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 36.Fitzpatrick, R. et al. A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship. PLOS ONE 7(12), e51927. https://doi.org/10.1371/journal.pone.0051927 (2012).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 37.Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26(15), 2011–2016. https://doi.org/10.1016/j.cub.2016.05.058 (2016).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 38.Braccini, M., Molony, B. & Blay, N. Patterns in abundance and size of sharks in northwestern Australia: Cause for optimism. ICES J. Mar. Sci. 77(1), 72–82. https://doi.org/10.1093/icesjms/fsz187 (2020).Article 
 Google Scholar 
 39.Holmes, T., Rule, M., Bancroft, K., Shedrawi, G., Murray, K., Wilson, S., & Kendrick, A. Ecological Monitoring in the Ningaloo Marine Reserves 2017 (2017).40.Martín, G., Espinoza, M., Heupel, M. & Simpfendorfer, C. A. Estimating marine protected area network benefits for reef sharks. J. Appl. Ecol. 57(10), 1969–1980. https://doi.org/10.1111/1365-2664.13706 (2020).Article 
 Google Scholar 
 41.Ferreira, L. C. et al. Crossing latitudes-long-distance tracking of an apex predator. PLOS ONE 10(2), e0116916. https://doi.org/10.1371/journal.pone.0116916 (2015).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 42.Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. 74(3), 481–498. https://doi.org/10.1017/S0025315400047615 (1994).Article 
 Google Scholar 
 43.Stobart, B. et al. Performance of baited underwater video: Does it underestimate abundance at high population densities?. PLOS ONE 10(5), e0127559. https://doi.org/10.1371/journal.pone.0127559 (2015).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 44.Papastamatiou, Y. P., Lowe, C. G., Caselle, J. E. & Friedlander, A. M. Scale-dependent effects of habitat on movements and path structure of reef sharks at a predator-dominated atoll. Ecology 90(4), 996–1008 (2009).Article 
 Google Scholar 
 45.Rizzari, J. R., Frisch, A. J. & Magnenat, K. A. Diversity, abundance, and distribution of reef sharks on outer-shelf reefs of the Great Barrier Reef Australia. Mar. Biol. 161(12), 2847–2855. https://doi.org/10.1007/s00227-014-2550-3 (2014).Article 
 Google Scholar 
 46.Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293. https://doi.org/10.3354/meps08581 (2010).ADS 
 Article 
 Google Scholar 
 47.Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of marine park zoning. PLOS ONE 9(9), e106885. https://doi.org/10.1371/journal.pone.0106885 (2014).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 48.Mourier, J., Planes, S. & Buray, N. Trophic interactions at the top of the coral reef food chain. Coral Reefs 32(1), 285. https://doi.org/10.1007/s00338-012-0976-y (2013).ADS 
 Article 
 Google Scholar 
 49.Raoult, V., Broadhurst, M. K., Peddemors, V. M., Williamson, J. E. & Gaston, T. F. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. J. Fish Biol. 95(6), 1430–1440. https://doi.org/10.1111/jfb.14160 (2019).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 50.Andrzejaczek, S. et al. Biologging tags reveal links between fine-scale horizontal and vertical movement behaviors in tiger sharks (Galeocerdo cuvier). Front. Mar. Sci. 6(May), 1–13. https://doi.org/10.3389/fmars.2019.00229 (2019).ADS 
 Article 
 Google Scholar 
 51.Andrzejaczek, S. et al. Depth-dependent dive kinematics suggest cost-efficient foraging strategies by tiger sharks. R. Soc. Open Sci. 7(8), 200789. https://doi.org/10.1098/rsos.200789 (2020).ADS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 52.Brooks, E. J., Sloman, K. A., Sims, D. W. & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endang. Species Res. 13(3), 231–243. https://doi.org/10.3354/esr00331 (2011).Article 
 Google Scholar 
 53.Santana-Garcon, J. et al. Calibration of pelagic stereo-BRUVs and scientific longline surveys for sampling sharks. Methods Ecol. Evol. 5(8), 824–833. https://doi.org/10.1111/2041-210X.12216 (2014).Article 
 Google Scholar 
 54.Barnett, A., Abrantes, K. G., Seymour, J. & Fitzpatrick, R. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLOS ONE 7(5), e36574. https://doi.org/10.1371/journal.pone.0036574 (2012).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 55.Papastamatiou, Y. P. et al. Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming. Mov. Ecol. 6(1), 1–15. https://doi.org/10.1186/s40462-018-0127-3 (2018).Article 
 Google Scholar 
 56.Vianna, G. M. S., Meekan, M. G., Meeuwig, J. J. & Speed, C. W. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites. PLOS ONE 8(4), e60331. https://doi.org/10.1371/journal.pone.0060331 (2013).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 57.Lear, K. O., Whitney, N. M., Morris, J. J. & Gleiss, A. C. Temporal niche partitioning as a novel mechanism promoting co-existence of sympatric predators in marine systems. Proc. R. Soc. B: Biol. Sci. 288(1954), 20210816. https://doi.org/10.1098/rspb.2021.0816 (2021).Article 
 Google Scholar 
 58.Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572(7770), 461–466. https://doi.org/10.1038/s41586-019-1444-4 (2019).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 59.Langlois, T. et al. A field and video annotation guide for baited remote underwater stereo-video surveys of demersal fish assemblages. Methods Ecol. Evol. 11(11), 1401–1409. https://doi.org/10.1111/2041-210X.13470 (2020).Article 
 Google Scholar 
 60.Lin, X. & Zhang, D. Inference in generalized additive mixed models by using smoothing splines. J. R. Stat. Soc. 61(2), 381–400 (1999).MathSciNet 
 Article 
 Google Scholar 
 61.Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C. & Langlois, T. J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 8(12), 6104–6113. https://doi.org/10.1002/ece3.4134 (2018).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 62.Mullahy, J. Specification and testing of some modified count data models. J. Econom. 33, 341–365 (1986).MathSciNet 
 Article 
 Google Scholar 
 63.Tweedie, M. An index which distinguishes between some important exponential families. In Statistics: Applications and New Directions: Proceedings of the Indian Statistical Institute Golden Jubelee International Conference Vol. 604 (1984).64.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 
 Google Scholar 
 65.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304. https://doi.org/10.1177/0049124104268644 (2004).MathSciNet 
 Article 
 Google Scholar 
 66.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference; A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 
 Google Scholar 
 67.Ward‐Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish Biol. 80(5), 1844–1869 (2012).68.Graham, F et al. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers. Distrib. 22(5), 534–546 (2016).69.Morgan, A., Calich, H., Sulikowski, J. & Hammerschlag, N. Evaluating spatial management options for tiger shark (Galeocerdo cuvier) conservation in US Atlantic Waters. ICES J. Mar. Sci. 77(7–8), 3095–3109 (2020).70.Harvey, E. S. & Shortis, M. R. A system for stereo-video measurement of sub-tidal organisms. Mar. Technol. Soc. J. 29(4), 10–22 (1995).71.R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/72.McLean, D. L. et al. Distribution, abundance, diversity and habitat associations of fishes across a bioregion experiencing rapid coastal development. Estuar. Coast Shelf S. 178, 36–47 (2016).73.Althaus, F.et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PloS one 10(10), e0141039 (2015).74.Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151(3), 1069–1076 (2007).75.Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31(5), 395–407 (2016). More