More stories

  • in

    Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera)

    1.Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 

    Google Scholar 
    2.Dillon, R. J. & Dillon, V. M. THE gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).CAS 
    PubMed 

    Google Scholar 
    3.Duplouy, A., Hursts, G. D. D., O’neill, S. L. & Charlat, S. Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J. Evol. Biol. 23, 231–235 (2010).CAS 
    PubMed 

    Google Scholar 
    4.Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125–139 (2000).
    Google Scholar 
    5.Jiggins, X., Hurst, X., Dolman, X. & Majerus, X. High-prevalence male-killing Wolbachia in the butterfly Acraea encedana. J. Evol. Biol. 13, 495–501 (2000).
    Google Scholar 
    6.Xu, P., Liu, Y., Graham, R. I., Wilson, K. & Wu, K. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt Biopesticide. PLoS Pathog. 10, e1004490 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bapatla, K. G., Singh, A., Yeddula, S. & Patil, R. H. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J. Basic Microbiol. 58, 217–226 (2018).CAS 
    PubMed 

    Google Scholar 
    8.Chen, F. et al. Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China. Mitochondrial DNA Part A 28, 826–834 (2017).CAS 

    Google Scholar 
    9.van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 1758, 212–221 (2011).
    Google Scholar 
    10.Duplouy, A. & Hornett, E. A. Uncovering the hidden players in Lepidoptera biology: The heritable microbial endosymbionts. PeerJ 6, e4629 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    11.Werren, J. H., Windsor, D. & Guo, L. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 262, 197–204 (1995).ADS 

    Google Scholar 
    12.Salunke, B. K. et al. Determination of Wolbachia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl. Environ. Microbiol. 78, 4458–4467 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Duplouy, A. & Brattström, O. Wolbachia in the genus Bicyclus: A forgotten player. Microb. Ecol. 75, 255–263 (2018).PubMed 

    Google Scholar 
    14.Jiggins, F. M., Bentley, J. K., Majerus, M. E. & Hurst, G. D. How many species are infected with Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1123–1126 (2001).CAS 

    Google Scholar 
    15.Tagami, Y. & Miura, K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 13, 359–364 (2004).CAS 
    PubMed 

    Google Scholar 
    16.Ilinsky, Y. & Kosterin, O. E. Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. Mol. Phylogenet. Evol. 109, 164–179 (2017).CAS 
    PubMed 

    Google Scholar 
    17.Sazama, E. J., Ouellette, S. P. & Wesner, J. S. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48, 127–133 (2019).PubMed 

    Google Scholar 
    18.Zaspel, J. M. Systematics, biology, and behavior of fruit-piercing and blood-feeding moths in the subfamily calpinae (lepidoptera: noctuidae). (2008).19.Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 25 (2014).
    Google Scholar 
    20.Ilinsky, Y. et al. Detection of bacterial symbionts (Wolbachia, Spiroplasma)and eukaryotic pathogen (Microsporidia) in Japanese populationsof gypsy moth species (Lymantria spp.). Euroasian Entomol. J. 16, 1–5 (2017).
    Google Scholar 
    21.Boonsit, P. & Wiwatanaratanabutr, I. Infection density, diversity, and distribution of Wolbachia bacteria in moths (Order Lepidoptera): First systematic report from Thailand. J. Asia-Pac. Entomol. 24, 20 (2021).
    Google Scholar 
    22.Gavotte, L. et al. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol. Biol. Evol. 24, 427–435 (2006).PubMed 

    Google Scholar 
    23.Wang, G. H. et al. Bacteriophage WO can mediate horizontal gene transfer in endosymbiotic wolbachia genomes. Front. Microbiol. 7, 1–16 (2016).
    Google Scholar 
    24.Wang, N., Jia, S., Xu, H., Liu, Y. & Huang, D. Multiple horizontal transfers of bacteriophage WO and host wolbachia in fig wasps in a closed community. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 
    25.Tanaka, K., Furukawa, S., Nikoh, N., Sasaki, T. & Fukatsu, T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the wolbachia genome. Appl. Environ. Microbiol. 75, 5676–5686 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kaushik, S., Sharma, K. K., Ramani, R. & Lakhanpaul, S. Detection of Wolbachia phage (WO) in Indian Lac insect [Kerria lacca (Kerr)] and its implications. Indian J. Microbiol. 59, 237–240 (2019).CAS 
    PubMed 

    Google Scholar 
    27.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl. Acad. Sci. 115, 4987 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Kent, B. N. & Bordenstein, S. R. Phage WO of Wolbachia: Lambda of the endosymbiont world. Trends Microbiol. 18, 173–181 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. 98, 1883–1888 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Boyd, B. M. et al. Two bacterial genera, sodalis and rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82, 3185–3197 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Fukatsu, T. et al. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl. Environ. Microbiol. 73, 6660–6668 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Šochová, E., Husník, F., Nováková, E., Halajian, A. & Hypša, V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5, e4099 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    35.Burke, G. R., Normark, B. B., Favret, C. & Moran, N. A. Evolution and diversity of facultative symbionts from the aphid subfamily lachninae. Appl. Environ. Microbiol. 75, 5328–5335 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 

    Google Scholar 
    38.Conord, C. et al. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: Additional evidence of symbiont replacement in the dryophthoridae family. Mol. Biol. Evol. 25, 859–868 (2008).CAS 
    PubMed 

    Google Scholar 
    39.Kaiwa, N. et al. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Zool. Sci. 28, 169–174 (2011).
    Google Scholar 
    40.Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Sameshima, S., Hasegawa, E., Kitade, O., Minaka, N. & Matsumoto, T. Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool. Sci. 16, 993–1000 (1999).CAS 

    Google Scholar 
    42.Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).
    Google Scholar 
    43.Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 

    Google Scholar 
    44.Khojandi, N., Haselkorn, T. S., Eschbach, M. N., Naser, R. A. & DiSalvo, S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. ISME J. 13, 2068–2081 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 116, 22673–22682 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. & Mergaert, P. Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ. 34, 219–222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    47.Itoh, H. et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Appl. Environ. Microbiol. 80, 5974–5983 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Louis, F. et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J. Virol. 87, 9649–9660 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Ghanavi, H. R., Twort, V., Hartman, T. J., Zahiri, R. & Wahlberg, N. The (non) accuracy of mitochondrial genomes for family level phylogenetics: The case of erebid moths (Lepidoptera; Erebidae). bioRxiv https://doi.org/10.1101/2021.07.14.452330 (2021).Article 

    Google Scholar 
    51.Rigaud, T. & Juchault, P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 8, 25 (1995).
    Google Scholar 
    52.Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    53.Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).54.Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btr026 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia Symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 20 (2012).
    Google Scholar 
    60.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 20 (2009).CAS 

    Google Scholar 
    61.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

    1.Fahmi, A. I., Nagaty, H. H., Eissa, R. A. & Hassan, M. M. Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak. J. Biol. Sci. 14, 385–391 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Munns, R. & Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).CAS 
    PubMed 

    Google Scholar 
    3.Chinnusamy, V., Jagendorf, A. & Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437–448 (2005).CAS 

    Google Scholar 
    4.Chaum, S., Pokasombat, Y. & Kirdmanee, C. Remediation of salt-affected soil by gypsum and farm yard manure—Importance for the production of Jasmine rice. Austr. J. Crop Sci. 5(4), 458–465 (2011).
    Google Scholar 
    5.Sarwar, M., Amjad, M. & Ayyub, C. M. Alleviation of salt stress in cucumber (Cucumis sativus L.) through seed priming with triacontanol. Int. J. Agric. Biol. 19, 771–778 (2017).CAS 

    Google Scholar 
    6.Afzal, I., Basra, S. M. A., Ahmad, N. & Farooq, M. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17(1), 95–109 (2005).
    Google Scholar 
    7.Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M. & Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. AJCS 5(6), 726–734 (2011).CAS 

    Google Scholar 
    8.Ahmad, P. et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7, 513 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    9.Mittova, V., Guy, M., Tal, M. & Volokita, M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55(399), 1105–1113 (2004).CAS 
    PubMed 

    Google Scholar 
    10.Liu, P. et al. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111, 42–51 (2015).CAS 

    Google Scholar 
    11.Kumaravelu, G., Livingstone, M. D. & Ramanujam, M. P. Triacontanol- induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol. Plant 43, 287–290 (2000).CAS 

    Google Scholar 
    12.Khan, M. M. A. et al. Triacontanol-induced changes in the growth, yield and quality of tomato (Lycopersicon esculentum Mill). Electron. J. Environ. Agric. Food Chem. 5, 1492–1499 (2006).CAS 

    Google Scholar 
    13.Ries, S. K., Wert, V. F., Sweeley, C. C. & Leavitt, R. A. Triacontanol: A new naturally occurring plant growth regulator. Science 195, 1339–1341 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. & Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant 38, 133–136 (1996).CAS 

    Google Scholar 
    15.Verma, A., Malik, C. P., Gupta, V. K. & Bajaj, B. K. Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea hypogea L. Braz. J. Plant Physiol. 23, 271–277 (2011).CAS 

    Google Scholar 
    16.Kilic, N. K., Duygu, E. & Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 182, 525–530 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Naeem, M., Khan, M. M. A., Moinuddin, M., Idrees, K. & Aftab, T. Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul. 11, 9588–9598 (2011).
    Google Scholar 
    18.Chen, X. et al. Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): Possible role of triacontanol as plant growth stimulator. Plant Cell Physiol. 43(8), 869–876 (2002).CAS 
    PubMed 

    Google Scholar 
    19.Chen, X., Yuan, H., Chen, R., Zhu, L. & He, G. Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul. 40, 249–256 (2003).CAS 

    Google Scholar 
    20.Reddy, B. O., Giridhar, P. & Ravishankar, G. A. The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult. 71, 253–258 (2002).
    Google Scholar 
    21.Tantos, A., Meszaros, A., Farkas, T., Szalai, J. & Horvath, G. Triacontanol supported the micropropagation of woody plants. Plant Cell Rep. 20, 16–21 (2001).CAS 
    PubMed 

    Google Scholar 
    22.Cavusoglu, K., Kilic, S. & Kabar, K. Effects of triacontanol pretreatment on seed germination, seedling growth and leaf anatomy under saline (NaCl) conditions. Sdu. Fen. Edebiyat Fakultesi Fen Dergisi (E-Dergi) 2(2), 136–145 (2007).
    Google Scholar 
    23.Noreen, Z. & Ashraf, M. Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774 (2009).CAS 
    PubMed 

    Google Scholar 
    24.FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk (Food and Agriculture Organization of the United Nations, 2012).
    Google Scholar 
    25.Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10(12), 616–619 (2005).
    Google Scholar 
    26.Stepien, P. & Klobus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 50, 610–616 (2006).CAS 

    Google Scholar 
    27.Ayers, R. S. & Westcot, D. W. Water quality for agriculture FAO irrigation and drainage. UN Rome 29, 1 (1985).
    Google Scholar 
    28.Dorota, Z. Irrigating with High Salinity Water Bulletin 322 Agricultural and Biological Engineering Dep (Florida Cooperative Extension service Institute of Food and Agriculture Sciences University of Florida, 1997).
    Google Scholar 
    29.Wang, X. J. Analysis of secondary salination in protected soils. North. Hortic. 3(4), 12–13 (1998).
    Google Scholar 
    30.Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013).CAS 

    Google Scholar 
    31.Sarwar, M. et al. Evaluation of cucumber germplasm for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Transylv. Rev. 24(11), 1077–1086 (2016).
    Google Scholar 
    32.Zekri, M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47, 305–315 (1991).CAS 

    Google Scholar 
    33.Moya, J. L., Gomez-Cademas, A., Primo-Millo, E. & Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleapatra mandarian citrus rootstocks is linked to water use. J. Experi. Bot. 54, 825–833 (2003).CAS 

    Google Scholar 
    34.Giannopolitis, C. N. & Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Chance, B. & Maehly, A. C. Assay of catalase and peroxidase. Methods Enzymol. 2, 764–775 (1955).
    Google Scholar 
    36.Khan, W., Prithiviraj, B. & Smith, P. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5), 485–492 (2003).CAS 
    PubMed 

    Google Scholar 
    37.Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).CAS 

    Google Scholar 
    38.Bates, L. S., Waldron, R. P. & Teaxe, I. W. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207 (1972).
    Google Scholar 
    39.Grieve, C. M. & Gratan, S. R. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307 (1983).CAS 

    Google Scholar 
    40.Julkenen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Agric. Food Chem. 33(2), 213–217 (1985).
    Google Scholar 
    41.Wheatherly, P. E. & Barrs, C. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).
    Google Scholar 
    42.Dadzie, B. K. & Orchard, J. E. Routine Postharvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2 9–11 (International Plant Genetic Resources Institute, 1997).
    Google Scholar 
    43.Delfine, S., Alvino, A., Villani, M. C. & Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol. 119, 101–106 (1999).
    Google Scholar 
    44.Chen, S. F., Zhu, Y. L., Liu, Y. L., Hu, C. M. & Zhang, G. W. Effects of NaCl stress on ABA and polyamine contents in leaves of grafted tomato seedlings. Acta Hortic. Sin. 33(1), 58–62 (2006).
    Google Scholar 
    45.Eriksen, A. B., Haugstad, M. K. & Nilsen, S. Yield of tomato and maize in response to foliar and root applications of triacontanol. Plant Growth Regul. 1, 11–14 (1982).CAS 

    Google Scholar 
    46.Misra, A. & Srivastava, N. K. Effects of the triacontanol formulations ‘“Miraculan”’ on photosynthesis, growth, nutrient uptake, and essential oil yield of lemongrass (Cymbopogon flexuosus) Steud, Watts. Plant Growth Regul. 10, 57–63 (1991).CAS 

    Google Scholar 
    47.Ivanov, A. G. & Angelov, M. N. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. Plant Growth Regul. 21, 145–152 (1997).CAS 

    Google Scholar 
    48.Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317–322 (2003).CAS 

    Google Scholar 
    49.Aziz, R., Shahbaz, M. & Ashraf, M. Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak. J. Bot. 45(6), 1913–1918 (2013).CAS 

    Google Scholar 
    50.Shao, H. B. et al. Phenol by Synechocystis sp. in media including triacontanol hormone. Water Environ. J. 26, 1747–6585 (2006).
    Google Scholar 
    51.Moghaieb, R. E. A., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci. 166(5), 1345–1349 (2004).CAS 

    Google Scholar 
    52.Munns, R. Gene and salt tolerance: Bringing them together. New Phytol. 167(3), 645–663 (2005).CAS 
    PubMed 

    Google Scholar 
    53.Gucci, R., Lombardini, L. & Tattini, M. Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17, 13–21 (1997).CAS 
    PubMed 

    Google Scholar 
    54.Khandaker, M. M., Faruq, G., Motior, R. M., Sofian-Azirun, M. & Nasrulhaq, B. A. The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. ‘‘Elizabeth Angus’’) under natural conditions. Sci. World J. 10, 1–12 (2013).
    Google Scholar 
    55.Gatica, A. M., Arrieta, G. & Espinosa, A. M. Direct somatic embryogenesis in Coffea arabica L cvs catura and catuai: Effect of triacontanol, light condition, and medium consistence. Agron. Costarric. 32(1), 139–147 (2008).
    Google Scholar 
    56.Naeem, M., Khan, M. M. A., Moinuddin, M. & Siddiqui, M. H. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci. Hortic. 121, 389–396 (2009).CAS 

    Google Scholar 
    57.Zhu, J. K. Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6, 66–72 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Dos-Reis, S. P., Lima, A. M. & De-Souza, C. R. B. Recent molecular advances on down stream plant responses to abiotic stress. Int. J. Mol. Sci. 13(7), 8628–8647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    59.Shahbaz, M., Ashraf, M., Al-Qurainy, F. & Harris, P. J. C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31, 303–320 (2012).CAS 

    Google Scholar 
    60.Mahboob, W. et al. Seed priming improves the performance of late sown spring maiz (Zea mays) through better crop stand and physiological attributes. Int. J. Agric. Biol. 17(3), 491–498 (2015).CAS 

    Google Scholar 
    61.Sarwar, M. et al. Improving the salt stress tolerance in cucumber (Cucumis sativus L.) using by triacontanol. J. Hortic. Sci. Technol. 2(1), 20–26 (2019).
    Google Scholar 
    62.Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant derived bio stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2012).
    Google Scholar 
    63.Miniraj, N. & Shanmugavelu, K. G. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hortic. 35, 362–366 (1987).
    Google Scholar 
    64.Aftab, T. et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 4, 273–481 (2010).
    Google Scholar 
    65.Borowski, E. & Blamowski, Z. K. The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic. 21(1), 39–48 (2009).
    Google Scholar 
    66.Chaudhary, B. R., Sharma, M. D., Shakya, S. M. & Gautam, D. M. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annum L.) at Rampur Chitwan. J. Inst. Agric. Anim. Sci. 27, 65–68 (2006).
    Google Scholar 
    67.Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 29(3), 162–190 (2010).CAS 

    Google Scholar 
    68.Hangarter, R., Ries, S. K. & Carlson, P. Effect of triacontanol on plant cell cultures in vitro. Plant Physiol. 61, 855–857 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Kapitsimadi, C. & Vioryl, S. A. Effect of a long chain aliphatic alcohol (triacontanol) on growth and yield of different horticultural crops. Acta Hortic. 379, 237–243 (1995).CAS 

    Google Scholar 
    70.Muthuchelian, K., Velayutham, M. & Nedunchezhian, N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. Plant Sci. 165, 1253–1257 (2003).CAS 

    Google Scholar 
    71.Khan, N., Nazar, R. & Anjum, N. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci. Hortic. 122, 455–460 (2009).CAS 

    Google Scholar  More

  • in

    Smaller species are not better off

    1.Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).2.Leung, B. et al. Nature 588, 267–271 (2020).CAS 
    Article 

    Google Scholar 
    3.Dornelas, M. et al. Ecol. Lett. 22, 847–854 (2019).Article 

    Google Scholar 
    4.Terry, J. C. D., O’Sullivan, J. D. & Rossberg, A. G. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01624-8 (2021).Article 

    Google Scholar 
    5.Cardillo, M. et al. Science 309, 1239–1241 (2005).CAS 
    Article 

    Google Scholar 
    6.Cardillo, M. Proc. R. Soc. B 288, 20203011 (2021).Article 

    Google Scholar 
    7.Chichorro, F., Juslen, A. & Cardoso, P. Biol. Conserv. 237, 220–229 (2020).Article 

    Google Scholar 
    8.Garcia-R, J. C. & Di Marco, M. Biol. Conserv. 249, 108730 (2020).Article 

    Google Scholar 
    9.Rocha-Ortega, M. et al. Proc. R. Soc. B 287, 20192645 (2020).Article 

    Google Scholar 
    10.Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Global Ecol. Biogeogr. 16, 694–701 (2007).Article 

    Google Scholar 
    11.Meiri, S. & Chapple, D. G. Biol. Conserv. 204, 6–15 (2016).Article 

    Google Scholar 
    12.Dornelas, M. et al. Global Ecol. Biogeogr. 27, 760–786 (2018).Article 

    Google Scholar 
    13.Venter, O. et al. Nat. Commun. 7, 12558 (2016).CAS 
    Article 

    Google Scholar 
    14.Schipper, A. M. et al. Global Change Biol. 22, 3948–3959 (2016).Article 

    Google Scholar 
    15.Gonzalez, A. et al. Ecology 97, 1949–1960 (2016).Article 

    Google Scholar  More

  • in

    No pervasive relationship between species size and local abundance trends

    Recent analyses have found that, despite high and increasing levels of community turnover, there is no clear overall trend in local-scale species richness1,2,3,4. However, it remains unclear how this result translates into functional changes. One of the most fundamental functional traits of a species is its size5,6 and there is an expectation that a warming climate will lead to a shift towards smaller species7,8,9,10,11, drawing upon metabolic theory12 and the observed distributional patterns described by Bergmann’s rule13,14. Temperature-driven shifts towards smaller species have been observed in tundra plant communities15 and some7,9,16, but not all11, aquatic systems. Furthermore, larger species have been more extinction prone during some previous mass extinctions17,18 and are more likely to show strong recent population declines19. Although relationships are threat dependent20,21, larger species tend to be assessed at a higher risk of extinction due to longer generational intervals and increased threat from habitat loss, fragmentation and hunting22.One might therefore expect a detectable signal of shifts in community trait values beneath the apparent underlying consistency in taxonomic diversity. To examine this, we tested whether the size of a species is correlated with the change in abundance through time using the publicly available BioTIME database23. This database is the largest collection of time series of ecological communities and, despite considerable biases that we discuss below, has wide geographic and taxonomic scope23. It consists of ‘studies’ defined by a consistent sampling methodology and taxonomic focus. After cleaning and standardizing the names associated with the records, we linked six fundamental ‘size’ traits from four openly accessible trait databases representing four broad guilds: adult body mass from a database of amniote life history traits24, adult body length and qualitative body size of marine species from the World Register of Marine Species (WoRMS) database25, plant maximum height and seed mass from the TRY database26 and maximum body length of fish from a compilation27 based on data in the FishBase repository28.Observations from single-location studies were combined, whilst widely dispersed studies were separately binned into a global grid of cells, each approximately 10 km wide, and data from each study and cell were treated as discrete assemblages, following previous analyses1,29. Selecting only assemblages with quantitative observations of ≥10 species, over ≥5 years and with ≥40% of the species having records for at least one size trait, we generated 12,956 assemblage time series from 144 studies (Fig. 1). This filtered dataset represented 2,109,593 observations of 10,286 species, of which 7,234 could be linked to at least one size trait (representing 84.02% of observations). Equally weighting studies, the average time series length was 18.2 years (range 5–71.8 years), and the average number of species per included assemblage was 65.4 (range 10–337). The log10 ratio between the largest and smallest species in each study averaged 2.49 (range 0.55–6.73) across the ‘mass’ traits and 1.06 (range 0.3–3.15) across the ‘length’ traits.Fig. 1: Global distribution of studies in our dataset, showing average τ for each study–trait combination and divided into aquatic and terrestrial realms.The aquatic realm is principally marine but includes three freshwater studies. Note that the locations are shown as the centre point of each study, which can cause oceanic studies to be ‘located’ on land. See Extended Data Fig. 1 for full details of study-level results.Full size imageFor each trait and community assemblage time series for which there were sufficient data, we first square-root transformed and standardized each time series following previous approaches3 and calculated βi, the slope of a regression of abundance of species i against time. We then calculated, for each assemblage, τ (the Kendall rank correlation coefficient between the trait in question) and β, across the species for which we had trait data. This gives a non-parametric measure of whether larger species are more or less likely than smaller species to have increased through time and, importantly, can be calculated where trait values for only a fraction of the observed species are available. To weight each study within BioTIME equally, where there were multiple assemblages per study, these were averaged to generate a τ value for each possible study–trait combination. To provide a reference distribution against which to evaluate the statistical significance of this multistage analysis, we repeated the procedure with 10,000 trait randomizations within each assemblage.Certain individual studies showed significant relationships between size traits and population trends (coloured dots in Fig. 2 and Extended Data Fig. 1). However, for five of the six tested size traits, the overall mean τ values did not differ significantly from the null model (Fig. 2). For one trait (amniote body mass, Fig. 2d) we found a marginally significant (unadjusted for multiple comparisons) overall average positive relationship between size and the slope of population trends (β). Alternative population data transformations gave highly concordant results (Extended Data Figs. 2 and 3). Possible confounding factors for the value of τ associated with each study, namely the total span of the time series, the number of sample points, the species richness, the range of traits in the assemblage, the average size trait completeness, the number of assemblages within the study, the grain of the study and the absolute latitude, did not consistently predict either τ or τ2 (Extended Data Figs. 4 and 5 and Supplementary Tables 1 and 2). Further, the likelihood of an individual species showing either a statistically significant positive or negative population trend was not linked to its relative size trait value within the assemblage (all P  > 0.05; Extended Data Fig. 6 and Supplementary Table 3).Fig. 2: Correlation between six body-size traits and changes in abundance through time (τ).a–f, Distribution of Kendall rank correlation coefficient between body-size traits for body length (a) and qualitative body size (b) of marine species, maximum length of fish (c), adult body mass of amniotes (d) and seed mass (e) and maximum height (f) of plants versus changes in abundance through time. Each dot represents one study, averaging across the constituent assembly time series for studies of large spatial extent. Study-level results are binned into classes 0.05 units of τ wide. Coloured dots highlight studies that were individually identified as showing a significant trend (yellow for negative, blue for positive; see Extended Data Fig. 1 for study-level intervals). The error bar below each plot displays the distribution (central 95% and 66%) of mean τ values over 10,000 permutations of the size trait data, whilst the red line indicates the observed mean τ value within that panel. Displayed P values are calculated from permutation tests. Equivalent results using alternative approaches to transforming the community data are given in Extended Data Fig. 3.Full size imageThese results indicate that there is not yet evidence for widely pervasive within-assemblage trends in a core functional trait, size. Importantly however, this study should not be seen as a refutation or diminishment of the heightened threats faced by the very largest apex species30,31, which constitute only a minor component of the BioTIME database. Rather, against a background of considerable turnover2,3 across whole observed community assemblages, on average, species positions in communities are being taken up by species of comparable size. Our results suggest that previously identified shifts towards smaller species found in some aquatic systems9,16 may not be as universal as currently expected7,11 and align with the divergent changes in global body-size abundance distributions observed between mammal guilds32 and the apparent stability of trait diversity in North American birds despite declines in abundance33.The tendency towards an overall positive association between body-size and population trends across the amniote studies could have a number of drivers that would benefit from further investigation. One putative explanation that has been put forward for positive size trends is that anthropogenic dispersal limitations (generally considered to act more strongly against smaller species) may be having a greater immediate impact than climate change34. There are also indications of differences between terrestrial and marine systems. Previous work with the same datasets1,29 has found greater species richness and abundance changes in marine than terrestrial systems, whilst here we see a signal of greater trait changes in the (largely terrestrial) amniotes.In our dataset, the fish length trait studies displayed a particularly skewed distribution of τ values (Fig. 2c), with a modal peak of studies showing small negative values then a tail of strongly positive relationships. This guild is also the most likely to have experienced sustained anthropogenic pressure35, and many of the ‘fish’ datasets in BioTIME include data from surveys of actively fished and managed areas. Accurately quantifying marine community trends is a challenge36,37, but this pattern could reflect the imposition or relaxation of anthropogenic pressure across marine systems38,39. Positive τ values could represent recoveries from past pressures on larger species, and positive τ values were associated with shorter study durations in the fish studies (Extended Data Fig. 4).Our analysis necessarily sacrifices fine resolution for global scale. Technically, BioTIME studies represent assemblages defined by taxonomy and sampling protocol rather than complete ecological communities. We must implicitly assume that the scope of each study within BioTIME strikes a reasonable balance between the need to include a sufficiently diverse set of species to be able to observe any potential impact of trait differences whilst maintaining meaningful comparability. Limitations to total time series lengths and the limited range of sizes recorded within each dataset inevitably constrain our capacity to detect gradual changes or subtle influences of size. Although the lack of consistent study-level drivers of τ suggests that the results are unlikely to be solely determined by the inevitable spatial and temporal limitations of the BioTIME database, future work should seek to improve the scope and resolution of available data to enable more strongly parametric analyses and examine additional measures of community change.Whilst available trait databases of amniotes and fish are carefully curated, checked and taxonomically tidy, the other databases pose more problems in terms of taxonomic matching and consistency of trait measurements. Without direct correspondence between the sources of dynamics and trait data, it is necessary to take traits as fixed values for each species, despite known differences in traits in time8,40,41,42 and space43 that may themselves represent responses to global change. However, in Celtic Sea fish, within-species shifts have been shown to contribute less to community-level size shifts than changes in species composition44. We also note that ‘size’ traits for indeterminately growing plants have a less clear meaning than for animals. However, both seed size and maximum height are linked to environmental variables45,46, plant size is linked to life history47,48 and changes in community height driven by species turnover have been observed in tundra plants15.Many of the criticisms and defences regarding earlier studies using the BioTIME dataset, and indeed other analyses of large collections of time series, also apply to this work49,50. The consistency between the alternative approaches we tested to determine population trends (Extended Data Fig. 3) demonstrates that our conclusions are not dependent on particular data transformation choices. However, a largely non-parametric statistical approach was necessitated by the unevenness of the available data, and it must be noted that it could lack the power and resolution to identify subtle changes. Biases in the underlying BioTIME database towards vertebrate taxa, particular biomes and temperate North American and European sites23 are further exaggerated when crossed with trait data availability (Fig. 1). One particularly concerning gap is the absence of any insect studies in our dataset due to a paucity of usable trait information. Observations suggest that there have been considerable changes in the structure of insect communities34,51,52. Developing comprehensive insect trait datasets, including using proxies and data imputation, will be crucial to address this deficit53,54,55.In conclusion, despite necessary reservations, this global analysis suggests that examples of relative increases of larger species11,34 may in fact be as frequent as shifts towards smaller-sized species16. Community responses appear to be considerably more nuanced and localized than previously considered based on theoretical macro-ecological expectations7. More

  • in

    Global warming decreases connectivity among coral populations

    1.Cesar, H., Burke, L. & Pet-Soede L. The Economics of Worldwide Coral Reef Degradation (Cesar Environmental Economics Consulting, 2003).2.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).CAS 
    Article 

    Google Scholar 
    3.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    4.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Grottoli, A. G., Rodrigues, L. J. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).CAS 
    Article 

    Google Scholar 
    6.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    7.Underwood, J. N., Smith, L. D., van Oppen, M. J. H. & Gilmour, J. P. Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).Article 

    Google Scholar 
    8.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).Article 

    Google Scholar 
    9.Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).Article 

    Google Scholar 
    10.Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).Article 

    Google Scholar 
    11.Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).Article 

    Google Scholar 
    12.van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617 (2017).Article 

    Google Scholar 
    13.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).14.Nishikawa, A. & Sakai, K. Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool. Sci. 22, 391–399 (2005).Article 

    Google Scholar 
    15.Connolly, S. R. & Baird, A. H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 3572–3583 (2010).Article 

    Google Scholar 
    16.Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94, 650–659 (2013).Article 

    Google Scholar 
    17.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    18.Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).Article 

    Google Scholar 
    19.Burgess, S. C. et al. Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).Article 

    Google Scholar 
    20.Woolsey, E. S., Keith, S. A., Byrne, M., Schmidt-Roach, S. & Baird, A. H. Latitudinal variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs 34, 471–478 (2015).Article 

    Google Scholar 
    21.Rodriguez-Lanetty, M., Harii, S. & Hoegh-Guldberg, O. Early molecular responses of coral larvae to hyperthermal stress. Mol. Ecol. 18, 5101–5114 (2009).CAS 
    Article 

    Google Scholar 
    22.Andutta, F. P., Kingsford, M. J. & Wolanski, E. ‘Sticky water’ enables the retention of larvae in a reef mosaic. Estuar. Coast. Shelf Sci. 54, 655–668 (2012).
    Google Scholar 
    23.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).Article 

    Google Scholar 
    24.Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).Article 

    Google Scholar 
    25.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 

    Google Scholar 
    26.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).CAS 
    Article 

    Google Scholar 
    27.Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70, 377–396 (2002).
    Google Scholar 
    28.Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    Article 

    Google Scholar 
    29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 

    Google Scholar 
    30.Leis, J. M. Nearshore distributional gradients of larval fish (15 taxa) and planktonic crustaceans (6 taxa) in Hawaii. Mar. Biol. 72, 89–97 (1982).Article 

    Google Scholar 
    31.Kraines, S. B., Yanagi, T., Isobe, M. & Komiyama, H. Wind-wave driven circulation on the coral reef at Bora Bay, Miyako Island. Coral Reefs 17, 133–143 (1998).Article 

    Google Scholar 
    32.Paris, C. B. & Cowen, R. K. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr. 49, 1964–1979 (2004).Article 

    Google Scholar 
    33.Keshavmurthy, S., Fontana, S., Mezaki, T., Gonzalez, L. C. & Chen, C. A. Doors are closing on early development in corals facing climate change. Sci. Rep. 4, 5633 (2014).CAS 
    Article 

    Google Scholar 
    34.Thomas, C. J. et al. Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol. Model. 272, 160–174 (2014).Article 

    Google Scholar 
    35.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).Article 

    Google Scholar 
    36.Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).Article 

    Google Scholar 
    37.Gleason, D. F. & Hofmann, D. K. Coral larvae: from gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).Article 

    Google Scholar  More

  • in

    Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics

    1.Haq, B. U. Jurassic sea-level variations: a reappraisal. GSA Today 28, 4–10 (2017).
    Google Scholar 
    2.Sahagian, D., Pinous, O., Olferiev, A. & Zakharov, V. Eustatic curve for the Middle Jurassic–Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. Am. Assoc. Pet. Geol. Bull. 80, 1433–1458 (1996).
    Google Scholar 
    3.Donnadieu, Y. et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography 26, PA3212 (2011).
    Google Scholar 
    4.Korte, C. & Hesselbo, S. P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse–greenhouse cycles during the Early Jurassic. Paleoceanography 26, PA4219 (2011).
    Google Scholar 
    5.Dromart, G. et al. Ice age at the Middle–Late Jurassic transition? Earth Planet. Sci. Lett. 213, 205–220 (2003).
    Google Scholar 
    6.Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth Sci. Rev. 48, 183–210 (1999).
    Google Scholar 
    7.Rogov, M. A. & Zakharov, V. A. Jurassic and Lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy. Earth Sci. Front. 17, 345–347 (2010).
    Google Scholar 
    8.Teichert, B. M. A. & Luppold, F. W. Glendonites from an Early Jurassic methane seep—climate or methane indicators? Palaeogeogr. Palaeoclimatol. Palaeoecol. 390, 81–93 (2013).
    Google Scholar 
    9.Suan, G. et al. Polar record of Early Jurassic massive carbon injection. Earth Planet. Sci. Lett. 312, 102–113 (2011).
    Google Scholar 
    10.Brandt, K. Glacioeustatic cycles in the Early Jurassic? Neues Jahrb. Geol. Palaontol. Abh. 5, 257–274 (1986).
    Google Scholar 
    11.Woolfe, K. J. & Francis, J. E. An Early to Middle Jurassic glaciation-evidence from Allan Hills, Transantarctic Mountains. In Proc. 6th International Symposium on Antarctic Earth Sciences, Japan 652–653 (1991).12.Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the early Toarcian anoxic event. Paleoceanography 27, PA2211 (2012).
    Google Scholar 
    13.Silva, R. C. & Duarte, L. V. Organic matter production and preservation in the Lusitanian Basin (Portugal) and Pliensbachian climatic hots snaps. Glob. Planet. Change 131, 24–34 (2015).
    Google Scholar 
    14.Gómez, J. J., Comas-Rengifo, M. J. & Goy, A. Paleoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain). Clim. Past 12, 1199–1274 (2016).
    Google Scholar 
    15.Suan, G. et al. Secular environmental precursors to early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. 290, 448–458 (2010).
    Google Scholar 
    16.Fantasia, A. et al. Global versus local processes during the Pliensbachian–Toarcian transition at the Peniche GSSP, Portugal: a multi-proxy record. Earth Sci. Rev. 198, 2932 (2019).
    Google Scholar 
    17.Sell, B. et al. Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth Planet. Sci. Lett. 408, 48–56 (2014).
    Google Scholar 
    18.Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).
    Google Scholar 
    19.Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) ocean anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).
    Google Scholar 
    20.Schubert, B. A. & Jahren, A. H. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth Sci. Rev. 177, 637–642 (2018).
    Google Scholar 
    21.Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).
    Google Scholar 
    22.Gómez, J. J., Goy, A. & Canales, M. L. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 28–58 (2008).
    Google Scholar 
    23.Rosales, I., Quesada, S. & Robles, S. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque–Cantabrian basin, northern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 253–275 (2004).
    Google Scholar 
    24.van de Schootbrugge, B. et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–97 (2010).
    Google Scholar 
    25.Vera, E. I. & Césari, S. N. New species of conifer wood from the Baqueró Group (Early Cretaceous) of Patagonia. Ameghiniana 52, 468–471 (2015).
    Google Scholar 
    26.Wilson, J. P. et al. Dynamic Carboniferous tropical forests: new views of plant function and physiological forcing of climate. New Phytol. 215, 1333–1353 (2017).
    Google Scholar 
    27.Lomax, B. H., Lake, J. A., Leng, M. J. & Jardine, P. E. An experimental evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochim. Cosmochim. Acta 247, 162–174 (2019).
    Google Scholar 
    28.Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).
    Google Scholar 
    29.Diefendorf, A. F., Freeman, K. H. & Wing, S. L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical substantial. Geochim. Cosmochim. Acta 85, 342–356 (2012).
    Google Scholar 
    30.Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
    Google Scholar 
    31.McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).
    Google Scholar 
    32.Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 117 (2020).
    Google Scholar 
    33.Huang, C. & Hesselbo, S. P. Pacing of the Toarcian oceanic anoxic event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res. 25, 1348–1356 (2014).
    Google Scholar 
    34.Fung, M. K., Katz, M. E., Miller, K. G., Browning, J. V. & Rosenthal, Y. Sequence stratigraphy, micropaleontology, and foraminiferal geochemistry, Bass River, New Jersey paleoshelf, USA: implications for Eocene ice-volume changes. Geosphere 15, 502–532 (2019).
    Google Scholar 
    35.Oerlemans, J. A model of the Antarctic ice sheet. Nature 297, 550–553 (1982).
    Google Scholar 
    36.Esch, M. B. & Herterich, K. A two-dimensional coupled atmosphere–ice sheet–continent model designed for paleoclimatic simulations. Ann. Glaciol. 14, 55–57 (1990).
    Google Scholar 
    37.Foster, G. L. & Rohling, E. J. Relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013).
    Google Scholar 
    38.Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).
    Google Scholar 
    39.Booth, B. B. et al. Narrowing the range of future climate projections using historical observations of atmospheric CO2. J. Clim. 30, 3039–3053 (2017).
    Google Scholar 
    40.Hesselbo, S. P. & Pienkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth Planet. Sci. Lett. 301, 365–372 (2011).
    Google Scholar 
    41.Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proc. Natl Acad. Sci. USA 117, 3974–3982 (2020).
    Google Scholar 
    42.Jenkyns, H. C. & Clayton, C. J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687–706 (1997).
    Google Scholar 
    43.Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super-greenhouse driven by sea level. Clim. Past 9, 2703–2712 (2013).
    Google Scholar 
    44.Schouten, S., van Kaam-Peters, M. E., Rijpstra, W. I. C., Schoell, M. & Damste, J. S. S. Effects of an oceanic anoxic event on the stable carbonate isotopic composition of early Toarcian carbon. Am. J. Sci. 300, 1–22 (2000).
    Google Scholar 
    45.Sabatino, N. et al. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdobia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeooceaogrpahic and stratigraphic implications. Sedimentology 56, 1307–1328 (2009).
    Google Scholar 
    46.Garbe, J., Albrecht, T., Levermann, A., Donges, J. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
    Google Scholar 
    47.Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event form the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202 (2008).
    Google Scholar 
    48.Müller, T. et al. New multiproxy record of the Jenkyns Event (also known as the Toarcian anoxic event) from the Mecsek Mountains (Hungary): differences, duration and drivers. Sedimentology 64, 66–86 (2017).
    Google Scholar 
    49.Ogg, J. G. & Hinnov, A. L. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 26 (Elsevier, 2012).50.McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801 (2004).
    Google Scholar 
    51.Voelker, S. L. et al. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).
    Google Scholar 
    52.Tholen, D. & Zhu, X. G. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol. 156, 90–105 (2011).
    Google Scholar 
    53.Cui, Y. & Schubert, B. A. Quantifying the uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation. Geochim. Cosmochim. Acta 172, 127–138 (2016).
    Google Scholar 
    54.Schubert, B. A. & Jahren, A. H. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim. Cosmochim. Acta 96, 29–43 (2012).
    Google Scholar 
    55.Philippe, M. et al. The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 373–381 (2017).
    Google Scholar 
    56.Zhou, Z. A heterophyllous conifer from the Cretaceous of East China. Palaeontology 26, 789–811 (1983).
    Google Scholar 
    57.Farjon A. A. Natural History of Conifers (Timber Press, 2008).58.Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl Acad. Sci. USA 107, 5738–5743 (2010).
    Google Scholar 
    59.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).
    Google Scholar 
    60.Schlesser, G. H., Helle, G., Lücke, A. & Vos, H. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat. Sci. Rev. 18, 927–943 (1999).
    Google Scholar 
    61.Silva, R. L., Duarte, L. V. & Filho, J. G. M. Optical and geochemical characterization of upper Sinemurian (Lower Jurassic) fossil wood from the Lusitanian Basin (Portugal). Geochem. J. 47, 489–498 (2013).
    Google Scholar 
    62.Lukens, W. E., Eze, P. & Schubert, B. A. The effect of diagenesis on carbon isotope values of fossil wood. Geology 47, 987–991 (2019).
    Google Scholar 
    63.Armendáriz, M. et al. An approach to estimate Lower Jurassic seawater oxygen isotope composition using δ18O and Mg/Ca ratios of belemnite calcites (early Pliensbachian, northern Spain). Terra Nova 25, 439–445 (2013).
    Google Scholar 
    64.Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).
    Google Scholar 
    65.Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149–3206 (2019).
    Google Scholar 
    66.Rosales, I. et al. Isotope records (C–O–Sr) of late Pliensbachian–early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 497, 168–185 (2018).
    Google Scholar 
    67.Val, J., Bádenas, B., Aurell, M. & Rosales, I. Cyclostratigraphy and chemostratigraphy of a bioclastic storm-dominated carbonate ramp (late Pliensbachian, Iberian Basin). Sediment. Geol. 355, 93–113 (2017).
    Google Scholar 
    68.Grossman, E. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 10 (Elsevier, 2012).69.Ruebsam, W., Munzberger, P. & Schwark, L. Chronology of the early Toarcian environmental crisis in the Lorraine Sus-Basin (NE Paris Basin). Earth Planet. Sci. Lett. 404, 273–282 (2014).
    Google Scholar 
    70.Pittet, B., Suan, G., Fabien, L., Duarte, L. V. & Mattioli, E. Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the oceanic anoxic event. Sediment. Geol. 303, 1–14.71.Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth system sensitivity of CO2 during the Cretaceous and Cenozoic. Geobiology 10, 298–310 (2012).
    Google Scholar 
    72.Metodiev, L. & Koleva-Rekalova, E. Stable isotope records (δ18O and δ13C) of Lower–Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): palaeoenvironmental application. Appl. Geochem. 23, 2845–2856 (2008).
    Google Scholar 
    73.McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 179, 269–285 (2000).
    Google Scholar 
    74.Jenkyns, H. G., Jones, C. E., Gröcke, D., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002).
    Google Scholar 
    75.Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl Acad. Sci. USA 111, 10073–10076 (2014).
    Google Scholar 
    76.Harazim, D. et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–390 (2010).
    Google Scholar 
    77.Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).
    Google Scholar 
    78.Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet. Sci. Lett. 212, 307–320 (2003).
    Google Scholar 
    79.Montañez, I. P. & Poulsen, C. J. The late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).
    Google Scholar 
    80.Ahokas, J. M., Nystuen, J. P. & Martinius, A. W. Stratigraphic signatures of punctuated rise in relative sea-level in an estuary-dominated heterolithic succession: incised valley fills of the Toarcian Ostrealv Formation, Neill Klinter Group (Jameson Land, East Greenland). Mar. Pet. Geol. 50, 103–129 (2014).
    Google Scholar 
    81.Krencker, F.-C., Kindstrom, S. & Bodin, S. A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Sci. Rep. 9, 12518 (2014).
    Google Scholar 
    82.Marjanac, T. & Steel, R. J. Dunlin Group sequence stratigraphy in the northern North Sea: a model for Cook Sandstone deposition. Am. Assoc. Pet. Geol. Bull. 81, 276–292 (1997).
    Google Scholar  More

  • in

    A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic

    Combining agent mobility patterns and SIR modelTo take into account agent mobility19 in a scenario compatible with a SIR model, we developed the model pictorially illustrated in Fig. 1. As explained in details in the Methods Section, the agents can move on a lattice through jumps processes, modelled using a Lévy walk of jump parameter (beta)36,37,38. When (beta) becomes large, i.e., for (beta rightarrow 2), agents tend to perform a Brownian random walk with very short jumps. As (beta rightarrow 1), agents can travel long distances in just one step. There are no constraints on the number of agents that can occupy a single cell. In each cells, agents can be infected by neighbours according to the SIR rules. Thus, the parameters that control the model are the jump parameter (beta) plus the standard SIR parameters, infection rate (alpha) and removal rate (gamma). The agent-based lattice model considered here reduces to a standard SIR model when the well-mixed population condition is satisfied, i. e. when large jumps dominate the dynamics (Fig. 2).Figure 1Agent-based SIR model on a lattice. (a) Agents of different colors, representing the SIR states, move on a lattice. White cells represent empty sites. Green cells are occupied by susceptible (S) agents, blue cells contain only removed (R) agents. Red cells contain only infected (I) agents. Shaded cells contain agents in a mixture of states. Agents can move among cells performing jumps (black arrows) whose length follows Lévy statistics. The letters i and j, with (i=1,..,N_b) and (j=1,…,N_b) define the location of the cell (i, j). (b,c) Agents in the same cell undergo a SIR dynamics: (b) S become I at a rate (alpha); (c) I become R at rate (gamma). (d) The jump dynamics allows an agent to move from the cell (i, j) to ((i+k,j+l)). The probability to perform a large/small jump is controlled by the parameter (beta in [1.0,1.99]). Large (beta) values correspond to small jumps, i. e., a random walk that gives rise to Brownian motion. Small (beta) values correspond to large jumps.Full size imageFor reproducing the kinetics of real data we made the following assumptions:

    In the absence of containing strategies, the infection is characterized by a high infection rate (we take (alpha =0.9)) and a low removal rate ((gamma =0.025) or 0.05). Using as a unit of time the update of all agent positions (see Methods for details), the removal rate introduce a time scale (tau _I = gamma ^{-1}=40) or (20). This characteristic time scale represents the average time an agent remains infected and can thus spread the infection. This condition ensures that we are in an epidemic regime, i. e., the mean-field value is (R_t gg 1). We stress that, since the SIR dynamics with only three sub-populations is a simplification of the real chain of epidemic transmission, the parameters we choose for the epidemic spreading are not strictly related to those of Covid-19. Because we are interested in the effect of mobility restriction on epidemic spreading, we fix the epidemic parameters in a way that, without mobility restrictions, we are sure to stay in the worst-case scenario with an exponentially fast spreading of the infection.

    The parameter (beta in [1,1.99]) tunes the intensity of mobility restrictions. The higher its value, the stricter the limitations. (beta) is one of the fitting parameters.

    Other interventions that mitigate the epidemic spreading tend to increase the removal rate (gamma). We thus assume that (gamma) is another fitting parameter. This is because typical measures, for instance, quarantine, remove infected agents from the system. In this way, we reabsorb the presence of many hidden sub-populations into an effective value of (gamma).

    We define the parameter (delta), i. e., the fraction of infected agents at the epidemic peak with respect to the entire population, that provides a quantitative measure of the reduction of the epidemic peak. In other words, the parameter (delta) represents the efficiency of a given containing strategy compared to the uncontrolled situation where all the agents turn out to contract the infection (which is the case of our model for (gamma ll alpha), (alpha =0.9), and (beta =1)).

    To detail how mobility restrictions induce deviations from the SIR model, we calculate, via numerical simulations, the epidemic curves as a function of time for different values of (beta) as illustrated in Fig. 2a. Here, the SIR parameters are (alpha =0.9) and (gamma =0.025), i. e., the corresponding SIR model is in the fully blown epidemic regime. For small (beta) the epidemic growth is well captured by the exponential function, indicating that we are in the epidemic regime. As (beta) increases the curve turns out to be flattened and the peak reduces to (80%). Moreover, the growth of the epidemic for the largest (beta) examined is well described by the power law (I(t) sim t^{2}). The value of the exponent is comparable with those measured in different countries during the COVID(-19) epidemic wave23. The model considered here suggests that the crossover from exponential growth to power-law might be related to changes of the mobility patterns that, in our picture, shift from being dominated by large jumps to small ones. This finding is consistent with the observation that a sub-exponential growth in the number of infected people is a consequence of containing strategies23. Moreover, in the microscopic description adopted here, the crossover in the kinetics of I(t) is driven by just one parameter.Figure 2Agent dynamics impacts the epidemic spreading process. (a) The graph shows the dependency of the epidemic curves on (beta =1.20,1.50,1.75,1.80,1.85,1.87,1.90,1.92,1.95,1.97,1.99) (increasing values of (beta) from yellow to violet). As (beta) decreases, the epidemic grows exponentially fast (dotted black curve) and approaches the evolution of SIR model in well-mixed population (dashed red curve). The dash-dot blue curve is a power law (sim t^2). The parameters of the SIR reactions are (alpha =0.9) and (gamma =0.025). (b–g) Typical configurations taken at the same fraction of infected agents (I/N sim 0.25) for increasing values of (beta =1.0,1.2,1.4,1.6,1.8,1.9) (red are infected sites, green the susceptible ones, we keep white the sites populated by removed agents). (h) The probability distribution function of the local density of infected sites. (i) Radius of the cluster of infected agents ((beta =1.99)) as a function of time. The red dashed line is a linear fit.Full size imageThe crossover from exponential to power-law growth reflects the drastic change in the structure of clusters of infected agents, as illustrated in Fig. 2b–g, where typical configurations with the same fraction of infected agents are shown ((I/N=0.25, alpha =0.9, gamma =0.025)). As one can see, in the high mobility region ((beta = 1)), infected agents are spread almost everywhere in the system. As (beta) increases, infected sites tend to form a single cluster. This phenomenology is consistent with the literature of mobile agents undergoing SIR dynamics39,40. This structural change is quantitatively documented by the density distribution of infected sites shown in panel (h) of the same figure (see section Methods for details). As one can appreciate, the distribution becomes double-peaked as (beta) increases. The first peak around zero indicates the presence of an extended region of susceptible agents. The peak at high values is due to the growing cluster of infected agents. As highlighted in panel (i), the cluster grows linearly in time and thus the number of infected grows with (t^2).Another interesting aspect to understand with this model is the trade off between mobility restrictions and and other kind of interventions that have the effect of increasing the removal rate. In particular in Asian countries41, NPIs applied during the COVID-19 waves have relied mostly on contact tracing and/or preventive quarantine, with little mobility reduction, leading to effective and durable control of epidemic spreading, as reviewed by Ref.21. To understand if there is an optimal balance between containing strategies (characterized by (beta)) and efficiency in removing infected agents (denoted by (gamma)), we calculate the fraction of infected population at the epidemic peak (the maximum of I(t)) as a function of the jump parameter (beta) and of the removal rate (gamma). As above, the initial occupation number of each site is, on average, one. The infection rate is (alpha =0.9). The resulting phase diagram is shown in Fig. 3. The color indicates the fraction of infected population: in the violet region, this fraction goes to zero (epidemic is suppressed) while in the yellow region such a value goes to one, indicating an epidemic regime. The phase diagram fully recapitulates the effectiveness of the two strategies used to mitigate the infection spread, a strong lockdown with limited contact tracing, or an efficient contact tracing a moderate reduction of the mobility.Figure 3Effect of different containment strategies. The phase diagram is obtained considering as control parameters (beta), that represents mobility restrictions, and (gamma), the efficiency in removing infected agents. The color scale represents the fraction of the initial susceptible population that becomes infected, ranging between 0 (epidemic suppression, violet region) and 1 (fully-blown epidemic, yellow region). Containment is achieved as (beta) increases (corresponding to increasing mobility restrictions) even with low removal rate, or increasing (gamma) (effective removal of infected agents), even with limited mobility restrictions.Full size imageHowever, even under the strictest lockdown, several activities could not be stopped (hospitals, food supply chain, …), meaning that a single mobility parameter cannot fully describe this varied situation. To understand what could be the impact of heterogeneous motility patterns on the evolution of the epidemic, we introduce in the model some regions characterized by a high mobility (jump parameter, (beta _2)), while the majority of the the cells have restricted mobility, with a jump parameter (beta _1=1.99) (see Methods for more details). By varying (beta _2) and the density of more mobile cells (parameter (rho)) we are able to draw the phase diagram shown in Fig. 4.Figure 4Sites of different mobility affect epidemic spreading. (a) Each cell labelled by (i, j) is characterized by its own mobility parameter (beta _{ij}). We consider the special case of a binary mixture ((beta _{ij} = beta _{1,2})) of high and low mobility regions. Changing the density (rho) of (beta _2) sites and the value of (beta _2), we obtain the the phase diagram presented in panel (b), obtained for (beta _1=1.99), (alpha =0.9), and (gamma =0.05), conditions that grant contained epidemic spreading thanks to the low-mobility group. A small amount of sites with small values of (beta _2) can trigger the epidemic spreading.Full size imageAs in the previous case, in the violet area the epidemic spreading is stopped, while in the yellow area the epidemic peak reaches the entire population. Epidemic spreading takes place above a critical curve: for a given value of mobility (beta _2 More

  • in

    Assessing the influence of the amount of reachable habitat on genetic structure using landscape and genetic graphs

    Andersson E, Bodin Ö (2009) Practical tool for landscape planning? an empirical investigation of network-based models of habitat fragmentation. Ecography 32(1):123–132
    Google Scholar 
    Angelone S, Kienast F, Holderegger R (2011) Where movement happens—scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34(5):714–722
    Google Scholar 
    Arnaud J-F (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landsc Ecol 18(3):333–346
    Google Scholar 
    Awade M, Boscolo D, Metzger JP (2012) Using binary and probabilistic habitat availability indices derived from graph theory to model bird occurrence in fragmented forests. Landsc Ecol 27(2):185–198
    Google Scholar 
    Balkenhol N, Pardini R, Cornelius C, Fernandes F, Sommer S (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv Genet 14(2):355–367
    Google Scholar 
    Baranyi G, Saura S, Podani J, Jordán F (2011) Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol Indic 11(5):1301–1310
    Google Scholar 
    Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the Cactus Wren (Campylorhynchus brunneicapillus). Mol Ecol 24(10):2349–2363PubMed 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soci Series B (Methodological) 57(1):289–300
    Google Scholar 
    Bergés L, Avon C, Bezombes L, Clauzel C, Duflot R, Foltête J-C, Gaucherand S, Girardet X, Spiegelberger T (2020) Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J Environ Manag 256:1–10
    Google Scholar 
    Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2017) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol Ecol 26(2):431–443PubMed 

    Google Scholar 
    Bönsel AB, Sonneck A-G (2011) Habitat use and dispersal characteristic by Stethophyma grossum: the role of habitat isolation and stable habitat conditions towards low dispersal. J Insect Conserv 15(3):455–463
    Google Scholar 
    Boulanger E, Dalongeville A, Andrello M, Mouillot D, Manel S (2020) Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 15(1):1–13
    Google Scholar 
    Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457PubMed 

    Google Scholar 
    Capurucho JMG, Cornelius C, Borges SH, Cohn-Haft M, Aleixo A, Metzger JP, Ribas CC (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linnean Soc 110(1):60–76
    Google Scholar 
    Carrascal LM, Galván I, Gordo O (2009) Partial Least Squares regression as an alternative to current regression methods used in ecology. Oikos 118(5):681–690
    Google Scholar 
    Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27(3):369–380
    Google Scholar 
    Díaz SM, Settele J, Brondízio E, Ngo H, Guèze M, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, et al. (2019). The global assessment report on biodiversity and ecosystem services: summary for policy makers. Technical report, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem ServicesDidham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121(2):161–170
    Google Scholar 
    DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1(3):115–126
    Google Scholar 
    Dyer RJ (2015) Population graphs and landscape genetics. Annu Rev Ecol, Evolut Syst 46:327–342
    Google Scholar 
    Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663
    Google Scholar 
    Flavenot T, Fellous S, Abdelkrim J, Baguette M, Coulon A (2015) Impact of quarrying on genetic diversity: an approach across landscapes and over time. Conserv Genet 16(1):181–194
    Google Scholar 
    Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327
    Google Scholar 
    Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, Sahraoui Y, Vuidel G, Garnier S (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol 35(5):1035–1052
    Google Scholar 
    Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140
    Google Scholar 
    Frankham R (2015) Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618PubMed 

    Google Scholar 
    Frankham R, Ballou JD, and Briscoe DA (2004) A primer of conservation genetics. Cambridge University PressGaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Resour 10(5):821–830PubMed 

    Google Scholar 
    Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55
    Google Scholar 
    Greenbaum G, Fefferman NH (2017) Application of network methods for understanding evolutionary dynamics in discrete habitats. Mol Ecol 26(11):2850–2863PubMed 

    Google Scholar 
    Griffioen R (1996) Over het dispersievermogen van de moerassprinkhaan. Nieuwsbrief Saltabel 15(1):39–41
    Google Scholar 
    Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in mountain clover Trifolium montanum L. J Heredity 104(6):842–852
    Google Scholar 
    Hedrick P (2011) Genetics of populations. Jones & Bartlett LearningHolzhauer SI, Ekschmitt K, Sander A-C, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21(6):891–899
    Google Scholar 
    Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914PubMed 

    Google Scholar 
    Ingvarsson PK (2001) Restoration of genetic variation lost-the genetic rescue hypothesis. Trends Ecol Evol 16(2):62–63PubMed 

    Google Scholar 
    Jackson ND, Fahrig L (2015) Habitat amount—not habitat configuration—best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31(5):951–968
    Google Scholar 
    Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian atlantic forest: ecological findings and conservation initiatives. New Phytol 204(3):459–473PubMed 

    Google Scholar 
    Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5(4):539–543
    Google Scholar 
    Keller D, Holderegger R, Strien MJ (2013) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22(9):2467–2482PubMed 

    Google Scholar 
    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85(10):1049–1064
    Google Scholar 
    Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B 272(1562):553–560PubMed 
    PubMed Central 

    Google Scholar 
    Kierepka EM, Anderson SJ, Swihart RK, Rhodes OE (2020) Differing, multiscale landscape effects on genetic diversity and differentiation in eastern chipmunks. Heredity 124(3):457–468PubMed 
    PubMed Central 

    Google Scholar 
    Koen EL, Bowman J, Wilson PJ (2016) Node-based measures of connectivity in genetic networks. Mol Ecol Resour 16(1):69–79PubMed 

    Google Scholar 
    Koschuh A (2004) Verbreitung, lebensräume und gefährdung der sumpfschrecke (stethophyma grossum, l., 1758)(saltatoria) in der steiermark. Joannea, Zool 6:223–246
    Google Scholar 
    Krause S (1996) Populationsstruktur, Habitatbindung und Mobilität der Larven von Stethophyma grossum (Linné, 1758). Articulata 11(2):77–89
    Google Scholar 
    Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landsc Ecol21(6):809–820
    Google Scholar 
    Lehnen L, Jan P-L, Besnard A-L, Fourcy D, Kerth G, Biedermann M, Nyssen P, Schorcht W, Petit E, and Puechmaille S (2021) Genetic diversity in a long-lived mammal is explained by the past’s demographic shadow and current connectivity. Mol Ecol, 00(1)Long FH (2013) Multivariate analysis for metabolomics and proteomics data. In Proteomic and metabolomic approaches to biomarker discovery, pages 299–311. ElsevierMalkus J (1997) Habitatpräferenzen und mobilität der sumpfschrecke (stethophyma grossum l. 1758) unter besonderer berücksichtigung der mahd. Articulata 12(1):1–18
    Google Scholar 
    Marzelli M (1994) Ausbreitung von mecostethus grossus auf einer ausgleichs-und renaturierungsfläche. Articulata 9(1):25–32
    Google Scholar 
    Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8(12):1717–1724
    Google Scholar 
    Millette KL, Keyghobadi N (2015) The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales. Ecol Evol 5(1):73–86PubMed 

    Google Scholar 
    Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145
    Google Scholar 
    Mony C, Abadie J, Gil-Tena A, Burel F, Ernoult A (2018) Effects of connectivity on animal-dispersed forest plant communities in agriculture-dominated landscapes. J Veg. Sci. 29(2):167–178
    Google Scholar 
    Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(1):252–261PubMed 

    Google Scholar 
    Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21(7):959–967
    Google Scholar 
    Pasinelli G, Meichtry-Stier K, Birrer S, Baur B, Duss M (2013) Habitat quality and geometry affect patch occupancy of two Orthopteran species. PLoS One 8(5):e65850PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Rodríguez A, Khimoun A, Ollivier A, Eraud C, Faivre B, Garnier S (2018) Habitat fragmentation, not habitat loss, drives the prevalence of blood parasites in a Caribbean passerine. Ecography 41(11):1835–1849
    Google Scholar 
    Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS (2015) Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. Conserv Genet 16(1):59–69
    Google Scholar 
    Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858PubMed 

    Google Scholar 
    Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28(5):593–602
    Google Scholar 
    Roy K, Kar S, and Das RN (2015) Statistical methods in QSAR/QSPR. In A primer on QSAR/QSPR modeling, pages 37–59. SpringerRozenfeld AF, Arnaud-Haond S, Hernández-Garcia E, Eguíluz VM, Serrão EA, Duarte CM (2008) Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci 105(48):18824–18829PubMed 
    PubMed Central 

    Google Scholar 
    Saura S (2018) The amount of reachable habitat—jointly measuring habitat amount and connectivity in space and time. In Proceedings of international conference of ecological sciences of the French Society for Ecology and EvolutionSaura S (2021) The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. J Biogeogr 48(1):11–22
    Google Scholar 
    Saura S, Bodin Ö, Fortin M-J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182
    Google Scholar 
    Saura S and de la Fuente B (2017) Connectivity as the amount of reachable habitat: conservation priorities and the roles of habitat patches in landscape networks. In Gergel, SE and Turner, MG, editors, Learning landscape ecology: a practical guide to concepts and techniques, pages 229–254. SpringerSaura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537
    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021a) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21(4):1167–1185PubMed 

    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021b) graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods Ecol Evol 12(3):539–547
    Google Scholar 
    Schoville SD, Dalongeville A, Viennois G, Gugerli F, Taberlet P, Lequette B, Alvarez N, Manel S (2018) Preserving genetic connectivity in the European Alps protected area network. Biol Conserv 218:99–109
    Google Scholar 
    Shirk A, Cushman S (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934PubMed 

    Google Scholar 
    Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279PubMed 

    Google Scholar 
    Sonneck A-G, Bönsel A, Matthes J (2008) Der einfluss von landnutzung auf die habitate von stethophyma grossum (linnaeus, 1758) an beispielen aus mecklenburg-vorpommern. Articulata 23:15–30
    Google Scholar 
    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101(42):15261–15264PubMed 
    PubMed Central 

    Google Scholar 
    Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514PubMed 

    Google Scholar 
    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504PubMed 
    PubMed Central 

    Google Scholar 
    Taylor Z, Hoffman S (2014) Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus). Heredity 112(6):588–595PubMed 
    PubMed Central 

    Google Scholar 
    Tenenhaus M (1998) La régression PLS: théorie et pratique. Editions TECHNIPToma Y, Imanishi J, Yokogawa M, Hashimoto H, Imanishi A, Morimoto Y, Hatanaka Y, Isagi Y, Shibata S (2015) Factors affecting the genetic diversity of a perennial herb Viola grypoceras A. Gray var. grypoceras in urban fragmented forests. Landsc Ecol 30(8):1435–1447
    Google Scholar 
    Tournant P, Afonso E, Roué S, Giraudoux P, Foltête J-C (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49
    Google Scholar 
    Trautner J, Hermann G (2008) Die Sumpfschrecke (Stethophyma grossum L., 1758) im Aufwind-Erkenntnisse aus dem zentralen Baden-Württemberg. Articulata 23(2):37–52
    Google Scholar 
    Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218
    Google Scholar 
    van Strien MJ (2017) Consequences of population topology for studying gene flow using link-based landscape genetic methods. Ecol Evol 7(14):5070–5081van Strien MJ, Keller D, Holderegger R, Ghazoul J, Kienast F, Bolliger J (2014) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow Ecol Appl 24(2):327–339PubMed 

    Google Scholar 
    Varvio S-L, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57(2):189–198PubMed 

    Google Scholar 
    Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318
    Google Scholar 
    Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14(2):253–261
    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370PubMed 

    Google Scholar 
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intellig Lab Syst 58(2):109–130
    Google Scholar 
    Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95(4):181–191
    Google Scholar  More