More stories

  • in

    Tundra vegetation change and impacts on permafrost

    1.Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change, 2019).2.Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010). A field study in which dwarf-shrub canopies were removed experimentally, resulting in increased thaw depths, thereby, underscoring the protective role of vegetation cover on permafrost.
    Google Scholar 
    3.van Huissteden, J. Thawing Permafrost: Permafrost Carbon in a Warming Arctic (Springer, 2020).4.Jorgenson, M. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    5.Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).
    Google Scholar 
    6.Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Google Scholar 
    7.Sturm, M. et al. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).
    Google Scholar 
    8.Sturm, M. et al. Winter biological processes could help convert arctic tundra to shrubland. BioScience 55, 17–26 (2005).
    Google Scholar 
    9.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    Google Scholar 
    10.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018). Review article showing how Arctic ecosystem processes can influence soil thermal dynamics in permafrost soil.
    Google Scholar 
    11.Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
    Google Scholar 
    12.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
    Google Scholar 
    13.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).14.Ksenofontov, S., Backhaus, N. & Schaepman-Strub, G. ‘There are new species’: indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geogr. 42, 34–57 (2019).
    Google Scholar 
    15.Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
    Google Scholar 
    16.Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).
    Google Scholar 
    17.Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 
    18.Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
    Google Scholar 
    19.Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 
    20.Wang, P. et al. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J. Ecol. 105, 947–957 (2017).
    Google Scholar 
    21.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
    Google Scholar 
    22.Osterkamp, T. et al. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 20, 235–256 (2009).
    Google Scholar 
    23.Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 
    24.Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    Google Scholar 
    25.Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).
    Google Scholar 
    26.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    27.Lenton, T. M. et al. Climate tipping points – too risky to bet against. Nature 575, 592–595 (2019).
    Google Scholar 
    28.Miner, K. R. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).Article 

    Google Scholar 
    29.Peterson, K. & Billings, W. Tundra vegetational patterns and succession in relation to microtopography near Atkasook, Alaska. Arct. Alp. Res. 12, 473–482 (1980).
    Google Scholar 
    30.Bliss, L. in North American Terrestrial Vegetation (eds Barbour, M. G. & Billings W. D.) (Cambridge Univ. Press, 1988).31.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 
    32.Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
    Google Scholar 
    33.Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7, 015504 (2012).
    Google Scholar 
    34.Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
    Google Scholar 
    35.Chernov, Y. I. & Matveyeva, N. in Polar Alpine Tundra (ed. Wielgolaski, F. E.) 361–507 (Elsevier, 1997).36.Elvebakk, A. in The Species Concept in the High North: A Panarctic Flora Initiative (eds Nordal, I. & Razzhivin, V. Y.) 81–112 (The Norwegian Academy of Science and Letters, 1999).37.Yurtsev, B. A. Floristic division of the Arctic. J. Veg. Sci. 5, 765–776 (1994).
    Google Scholar 
    38.Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012). A meta-analysis of field-observed vegetation changes from 46 polar sites indicating widespread increases of shrub vegetation and increased plant size.
    Google Scholar 
    39.Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).
    Google Scholar 
    40.Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
    Google Scholar 
    41.Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013).
    Google Scholar 
    42.Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021).
    Google Scholar 
    43.Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).
    Google Scholar 
    44.Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    Google Scholar 
    45.Grunberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020). A field study reporting that large variations in soil temperatures and thaw depths can be explained by vegetation-mediated differences in snow height.
    Google Scholar 
    46.Magnússon, R. I. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    47.Jorgenson, M. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015). Outlines the role of ground ice and vegetation succession in thermokarst terrain, including first estimates of recovery times.
    Google Scholar 
    48.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). A meta-analysis of plant species responses to experimental climate warming across Arctic sites, finding that shrubs and graminoids generally responded positively to warming, whereas lichens and bryophytes responded more negatively.
    Google Scholar 
    49.Frost, G. V. et al. Arctic Report Card 2020: Tundra Greenness. https://doi.org/10.25923/46rm-0w23 (NOAA, 2020). Provides an annual update of Arctic NDVI, offering a long-standing record of Arctic greening and browning.50.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). Review article outlining complexity in Arctic greening and browning dynamics. The temporal and spatial scale of spectral data and the role of non-vegetation-related processes and ground-truthing remains essential.
    Google Scholar 
    51.Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
    Google Scholar 
    52.Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    Google Scholar 
    53.Bhatt, U. S. et al. Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact. 14, 1–20 (2010).
    Google Scholar 
    54.Oechel, W. C. & Billings, W. in Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective (eds Chapin, F. S. III et al.) 139–168 (Academic Press, 1992).55.Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).
    Google Scholar 
    56.Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. III Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
    Google Scholar 
    57.Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
    Google Scholar 
    58.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 
    59.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
    Google Scholar 
    60.van der Kolk, H.-J., Heijmans, M. M., van Huissteden, J., Pullens, J. W. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
    Google Scholar 
    61.Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
    Google Scholar 
    62.Leffler, A. J., Klein, E. S., Oberbauer, S. F. & Welker, J. M. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181, 287–297 (2016).
    Google Scholar 
    63.Euskirchen, E. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 12, 731–750 (2006).
    Google Scholar 
    64.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar 
    65.National Academies of Sciences, Engineering, and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).66.Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
    Google Scholar 
    67.Bokhorst, S. et al. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).
    Google Scholar 
    68.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).
    Google Scholar 
    69.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
    Google Scholar 
    70.Turetsky et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019). Reveals that abrupt thaw of permafrost could double the estimated future release of greenhouse gases from permafrost soils compared with scenarios of gradual thaw.
    Google Scholar 
    71.Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 
    72.Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).
    Google Scholar 
    73.Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
    Google Scholar 
    74.Olofsson, J., Tommervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
    Google Scholar 
    75.Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).
    Google Scholar 
    76.Verdonen, M., Berner, L. T., Forbes, B. C. & Kumpula, T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett. 15, 105020 (2020).
    Google Scholar 
    77.Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).
    Google Scholar 
    78.Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    Google Scholar 
    79.Magnússon, R. Í. et al. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 782, 146877 (2021).
    Google Scholar 
    80.Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).
    Google Scholar 
    81.Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).
    Google Scholar 
    82.Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    Google Scholar 
    83.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).
    Google Scholar 
    84.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook. Remote Sens. Environ. 246, 111872 (2020).
    Google Scholar 
    85.Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).
    Google Scholar 
    86.Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).
    Google Scholar 
    87.Sturm, M., Racine, C. & Tape, K. Climate change – increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
    Google Scholar 
    88.Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    Google Scholar 
    89.Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A. M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarctic Alp. Res. 47, 785–806 (2015).
    Google Scholar 
    90.Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L. & Orndahl, K. M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 10, 1305 (2018).
    Google Scholar 
    91.Hobbie, J. E. et al. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173 (2017).
    Google Scholar 
    92.Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
    Google Scholar 
    93.Ropars, P. & Boudreau, S. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
    Google Scholar 
    94.Ropars, P., Levesque, E. & Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 103, 679–690 (2015).
    Google Scholar 
    95.Tremblay, B., Levesque, E. & Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ. Res. Lett. 7, 035501 (2012).
    Google Scholar 
    96.Boulanger-Lapointe, N., Levesque, E., Boudreau, S., Henry, G. H. R. & Schmidt, N. M. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. J. Biogeogr. 41, 1967–1978 (2014).
    Google Scholar 
    97.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Google Scholar 
    98.Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Glob. Change Biol. 15, 1664–1675 (2009).
    Google Scholar 
    99.Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).
    Google Scholar 
    100.Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).
    Google Scholar 
    101.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
    Google Scholar 
    102.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    103.Didan, K. MYD13Q1 MODIS/Aqua vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).Article 

    Google Scholar 
    104.Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    105.Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).
    Google Scholar 
    106.Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-ice Conditions (US Geological Survey, 1997).107.Jones, G. A. & Henry, G. H. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 30, 277–296 (2003).
    Google Scholar 
    108.Cornelissen, J. H. C. et al. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 
    109.Aguirre, D., Benhumea, A. E. & McLaren, J. R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol. Biochem. 153, 108121 (2021).
    Google Scholar 
    110.Gornall, J. L., Jonsdottir, I. S., Woodin, S. J. & Van der Wal, R. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941 (2007).
    Google Scholar 
    111.Soudzilovskaia, N. A., Bodegom, P. M. & Cornelissen, J. H. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).
    Google Scholar 
    112.Blok, D. et al. The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14, 1055–1065 (2011).
    Google Scholar 
    113.Belke-Brea, M., Domine, F., Barrere, M., Picard, G. & Arnaud, L. Impact of shrubs on winter surface albedo and snow specific surface area at a low Arctic site: In situ measurements and simulations. J. Clim. 33, 597–609 (2020).
    Google Scholar 
    114.Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).
    Google Scholar 
    115.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    Google Scholar 
    116.Wilson, M. A., Burn, C. & Humphreys, E. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 687–695 (American Society of Civil Engineers, 2019).117.Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).
    Google Scholar 
    118.Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).
    Google Scholar 
    119.Beringer, J., Chapin, F. S., Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 131, 143–161 (2005).
    Google Scholar 
    120.Kemppinen, J. et al. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24, 1378–1392 (2021). Quantifies the effects of shrub abundance on the soil thermal regime using a distinction between a rough, tall-shrub canopy and an aerodynamic, dwarf-shrub canopy.
    Google Scholar 
    121.Jorgenson, M. T., Ely, C. & Terenzi, J. in Shared Science Needs: Report from the Western Alaska Landscape Conservation Cooperative Science Workshop (eds Reynolds, J. H. & Wiggins, H. V.) 130–137 (2012).122.Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110, G01004 (2005).
    Google Scholar 
    123.Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).
    Google Scholar 
    124.Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
    Google Scholar 
    125.Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Google Scholar 
    126.Barrere, M., Domine, F., Belke-Brea, M. & Sarrazin, D. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. J. Clim. 31, 9507–9518 (2018).
    Google Scholar 
    127.Loranty, M. M., Goetz, S. J. & Beck, P. S. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
    Google Scholar 
    128.Bonfils, C. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Google Scholar 
    129.Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).
    Google Scholar 
    130.Juszak, I., Eugster, W., Heijmans, M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).
    Google Scholar 
    131.Göckede, M. et al. Negative feedback processes following drainage slow down permafrost degradation. Glob. Change Biol. 25, 3254–3266 (2019).
    Google Scholar 
    132.Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).133.Eugster, W. et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol. 6, 84–115 (2000).
    Google Scholar 
    134.Liljedahl, A. et al. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8, 3375–3389 (2011).
    Google Scholar 
    135.Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Google Scholar 
    136.Subin, Z. M. et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J. Clim. 26, 3139–3158 (2013).
    Google Scholar 
    137.Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Google Scholar 
    138.Asmus, A. L. et al. Shrub shading moderates the effects of weather on arthropod activity in arctic tundra. Ecol. Entomol. 43, 647–655 (2018).
    Google Scholar 
    139.Hinkel, K., Paetzold, F., Nelson, F. & Bockheim, J. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change 29, 293–309 (2001).
    Google Scholar 
    140.Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).
    Google Scholar 
    141.Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).
    Google Scholar 
    142.Aartsma, P., Asplund, J., Odland, A., Reinhardt, S. & Renssen, H. Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, 1577–1599 (2021).
    Google Scholar 
    143.Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).
    Google Scholar 
    144.Van Cleve, K. et al. Taiga ecosystems in interior Alaska. BioScience 33, 39–44 (1983).
    Google Scholar 
    145.Kade, A., Romanovsky, V. & Walker, D. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. Process. 17, 279–289 (2006).
    Google Scholar 
    146.Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. & Wilson, C. J. Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016).
    Google Scholar 
    147.Klene, A. E., Nelson, F. E., Shiklomanov, N. I. & Hinkel, K. M. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 33, 140–148 (2001).
    Google Scholar 
    148.van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (National Snow and Ice Data Center/World Data Center for Glaciology, 2005).149.Iwahana, G. et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113 (2014).
    Google Scholar 
    150.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    151.Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017).
    Google Scholar 
    152.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
    Google Scholar 
    153.Jorgenson, M., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
    Google Scholar 
    154.Stieglitz, M., Déry, S., Romanovsky, V. & Osterkamp, T. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 30, 1721 (2003).
    Google Scholar 
    155.Anisimov, O. & Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).
    Google Scholar 
    156.Tei, S. et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 34, 522–537 (2020).
    Google Scholar 
    157.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
    Google Scholar 
    158.Fraser, R. H. et al. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 10, 954 (2018).
    Google Scholar 
    159.Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
    Google Scholar 
    160.Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
    Google Scholar 
    161.Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).
    Google Scholar 
    162.Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    163.French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
    Google Scholar 
    164.Burn, C. R. & Friele, P. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42, 31–40 (1989).
    Google Scholar 
    165.Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, vzj2016-01 (2016).
    Google Scholar 
    166.Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Change Biol. 16, 1870–1882 (2010).
    Google Scholar 
    167.Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
    Google Scholar 
    168.Cray, H. A. & Pollard, W. H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: case study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 47, 99–113 (2015).
    Google Scholar 
    169.Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).
    Google Scholar 
    170.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    Google Scholar 
    171.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
    Google Scholar 
    172.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).
    Google Scholar 
    173.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
    Google Scholar 
    174.Hjort, J. E. A. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).175.Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C. & Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Change 21, 550–562 (2011).
    Google Scholar 
    176.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
    Google Scholar 
    177.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
    Google Scholar 
    178.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 
    179.Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).
    Google Scholar 
    180.Mikhailov, I. Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil. Sci. 53, 715–723 (2020).
    Google Scholar 
    181.Frost, G. V. et al. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett. 15, 025003 (2020).
    Google Scholar 
    182.Whitley, M. A. et al. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 258 (2018).
    Google Scholar  More

  • in

    West Nile virus transmission potential in Portugal

    1.Granwehr, B. P. et al. West Nile virus: Where are we now? Lancet. Infect. Dis. 4, 547–556 (2004).PubMed 

    Google Scholar 
    2.Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. West Nile virus. Lancet. Infect. Dis. 2, 519–529 (2002).PubMed 

    Google Scholar 
    3.Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: Review of the literature. JAMA. 310, 308–315 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Gamino, V. & Höfle, U. Pathology and tissue tropism of natural West Nile virus infection in birds: A review. Vet. Res. 44, 39 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Bunning, M. L. et al. Experimental infection of horses with West Nile virus. Emerg. Infect. Dis. 8, 380-386 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    6.Hayes, E. B. et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 11, 1174–1179 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    7.Saiz, J.-C. Animal and Human Vaccines against West Nile Virus. Pathogens. 9, 1073 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    8.Rizzoli, A. et al. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int. J. Parasitology: Parasites. Wildl. 9, 394–401 (2019).
    Google Scholar 
    9.Wang, Y., Yim, S. H. L., Yang, Y. & Morin, C. W. The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. Int. J. Biometeorol. 64, 501–512 (2020).PubMed 

    Google Scholar 
    10.Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R. & de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites. Vectors. 11, 29 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    11.Johnson, N. et al. Emerging mosquito-borne threats and the response from european and eastern mediterranean countries. Int. J. Environ. Res. Public. Health. 15, 2775 (2018).PubMed Central 

    Google Scholar 
    12.Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. Elife. 6, e29820 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Giovanetti, M. et al. Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Rep. 30, 2275–2283.e7 (2020).CAS 
    PubMed 

    Google Scholar 
    14.Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science. 361, 894–899 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Wu, J. T., Peak, C. M., Leung, G. M. & Lipsitch, M. Fractional dosing of yellow fever vaccine to extend supply: a modelling study. Lancet. 388, 2904–2911 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    16.Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe, and Asia. Curr. Top. Microbiol. Immunol. 267, 195–221 (2002).CAS 
    PubMed 

    Google Scholar 
    17.Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    19.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. Elife. 9, e58511 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Haussig, J. M. et al. Early start of the West Nile fever transmission season 2018 in Europe. Euro. Surveill. 23, 1800428 (2018).PubMed Central 

    Google Scholar 
    21.Riccardo, F. et al. West Nile virus in Europe: after action reviews of preparedness and response to the 2018 transmission season in Italy, Slovenia, Serbia and Greece. Glob. Health. 16, 47 (2020).
    Google Scholar 
    22.Bakonyi, T. & Haussig, J. M. West Nile virus keeps on moving up in Europe. Eurosurveillance. 25, 2001938 (2020).PubMed Central 

    Google Scholar 
    23.Vlaskamp, D. R. M. et al. First autochthonous human West Nile virus infections in the Netherlands, July to August 2020. Eurosurveillance. 25, 2001904 (2020).24.West Nile virus in Europe in 2020 – human cases compared to previous seasons, updated 8 October 2020. https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-europe-2020-human-cases-compared-previous-seasons-updated-8 (2020).25.Weekly updates: 2020 West Nile virus transmission season. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc.26.Council Directive 82/894/EEC of 21 December 1982 on the notification of animal diseases within the Community. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31982L0894.27.European Food Safety Authority. https://www.efsa.europa.eu/en.28.European Centre for Disease Prevention and Control – West Nile virus. https://www.ecdc.europa.eu/en/west-nile-virus-infection.29.REVIVE – Rede de Vigilância de Vetores. http://www2.insa.pt/sites/INSA/Portugues/AreasCientificas/DoencasInfecciosas/AreasTrabalho/EstVectDoencasInfecciosas/Paginas/Revive.aspx.30.Osório, H. C., Zé-Zé, L., Amaro, F. & Alves, M. J. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal – 2008-2014. Int. J. Environ. Res. Public. Health. 11, 11583–11596 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    31.European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (VectorNet). https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/vector-net.32.Filipe, A. R. Anticorpos contra virus transmitidos por artropodos-arbovirus do grupo B em animais do Sul de Portugal: inquérito serológico preliminar com o vírus West Nile, estirpe Egypt 101. Ann. Esc. Nacional de. Saúde. Pública de. Med. Tropical 1, 197–204 (1967).CAS 

    Google Scholar 
    33.Filipe, A. R. & Pinto, M. R. Survey for antibodies to arboviruses in serum of animals from southern Portugal. Am. J. Trop. Med. Hyg. 18, 423–426 (1969).CAS 
    PubMed 

    Google Scholar 
    34.Filipe, A. R. & Campaniço, M. Encefalomielite equina por arbovírus. A propósito de uma epizootia presuntiva causada pelo vírus West Nile. Revista Portuguesa de Ciências Veterinárias LXVIII, (1973).35.Filipe, A. R. Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta Virol. 16, 361 (1972).CAS 
    PubMed 

    Google Scholar 
    36.Filipe, A. R. Anticorpos contra arbovírus na população de Portugal. Separata de O Médico. LXVII, 731–732 (1973).37.Formosinho, P. et al. O vírus West Nile em Portugal – estudos de vigilância epidemiológica. Rev. Portuguesa de. Ciências Veterinárias 101, 61–68 (2006).
    Google Scholar 
    38.Barros, S. C. et al. Serological evidence of West Nile virus circulation in Portugal. Vet. Microbiol. 152, 407–410 (2011).PubMed 

    Google Scholar 
    39.Almeida, A. P. G. et al. Potential mosquito vectors of arboviruses in Portugal: Species, distribution, abundance and West Nile infection. Trans. R. Soc. Trop. Med. Hyg. 102, 823–832 (2008).CAS 
    PubMed 

    Google Scholar 
    40.Esteves, A. et al. West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 5, 410–413 (2005).PubMed 

    Google Scholar 
    41.Barros, S. C. et al. West Nile virus in horses during the summer and autumn seasons of 2015 and 2016, Portugal. Vet. Microbiol. 212, 75–79 (2017).PubMed 

    Google Scholar 
    42.World Organization for Animal Health (OIE) – West Nile reports. Information received on 03/09/2015 from Prof. Dr Álvaro Mendonça, Director General, Direcção Geral de Alimentação e Veterinária, Ministério da Agricultura E do Mar, Lisboa, Portugal https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=18585 (2015).43.Connell, J. et al. Two linked cases of West Nile virus (WNV) acquired by Irish tourists in the Algarve, Portugal. Weekly releases (1997–2007) 8, 2517 (2004).44.Alves, M. J. et al. Infecção por vírus West Nile [Flavivírus] em Portugal. Considerações acerca de. um. caso cl.ínico de. s.índrome febril com. exantema 8, 46–51 (2012).
    Google Scholar 
    45.Zé-Zé, L. et al. Human case of West Nile neuroinvasive disease in Portugal, summer 2015. Eurosurveillance 20, 30024 (2015).
    Google Scholar 
    46.Direcção-Geral de Veterinária (Directorate-General of Veterinary). National statistics on official number of equines in subregions of Portugal. http://srvbamid.dgv.min-agricultura.pt/portal/page/portal/DGV/genericos?actualmenu=23555&generico=33698230&cboui=33698230.47.Osório, H. C., Zé-Zé, L., Amaro, F., Nunes, A. & Alves, M. J. Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med. Vet. Entomol. 28, 103–109 (2014).PubMed 

    Google Scholar 
    48.Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: A review of the evidence. Ecohealth. 11, 619–632 (2014).PubMed 

    Google Scholar 
    49.Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia–a review. Int. J. Environ. Res. Public. Health. 10, 3543–3562 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    50.Eisen, L. et al. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado. J. Med. Entomol. 47, 939–951 (2010).PubMed 

    Google Scholar 
    51.Gates, M. C. & Boston, R. C. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Prev. Vet. Med 89, 134–137 (2009).PubMed 

    Google Scholar 
    52.Kovach, T. J. & Kilpatrick, A. M. Increased human incidence of West Nile virus disease near rice fields in California but Not in Southern United States. Am. J. Trop. Med. Hyg. 99, 222–228 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    53.Rocheleau, J. P. et al. Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiol. Infect. 145, 2797–2807 (2017).CAS 
    PubMed 

    Google Scholar 
    54.Lourenço, J., Thompson, R. N., Thézé, J. & Obolski, U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. Euro Surveill. 25, 1900629 (2020).PubMed Central 

    Google Scholar 
    55.Obolski, U. et al. MVSE: An R-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    56.Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat. Commun. 12, 151 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hansen, B. B., Grøtan, V., Herfindal, I. & Lee, A. M. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43, 1591–1602 (2020).
    Google Scholar 
    58.Arizaga, J. et al. Migratory Connectivity in European Bird Populations: Feather stable isotope values correlate with biometrics of breeding and wintering BluethroatsLuscinia svecica. Ardeola. 62, 255–267 (2015).
    Google Scholar 
    59.Pakanen, V.-M. et al. Migration strategies of the Baltic dunlin: Rapid jump migration in the autumn but slower skipping type spring migration. J. Avian Biol. 49, jav–01513 (2018).
    Google Scholar 
    60.Pardal, S. et al. Shorebird low spillover risk of mosquito-borne pathogens on Iberian wetlands. J. Ornithol. 155, 549–554 (2013).
    Google Scholar 
    61.Rizzoli, A. et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit. Vectors. 8, 1–13 (2015).
    Google Scholar 
    62.Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, e82 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    63.Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    64.Vogels, C. B. F., Fros, J. J., Göertz, G. P., Pijlman, G. P. & Koenraadt, C. J. M. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit. Vectors 9, 393 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chuang, T.-W., Hockett, C. W., Kightlinger, L. & Wimberly, M. C. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am. J. Trop. Med. Hyg. 86, 724–731 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    66.Crowder, D. W. et al. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One 8, e55006 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.García-Bocanegra, I. et al. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 65, 567–577 (2018).PubMed 

    Google Scholar 
    68.Lourenco, J. MVSE – WNV related files for Portugal. https://doi.org/10.6084/m9.figshare.c.5281664.v1 (2021).69.Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. Biol. Sci. 277, 3601–3608 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    70.Cator, L. J. et al. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol. Evol. 8, 189 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    71.Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    72.Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    73.Thézé, J. et al. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host. Microbe. 23, 855–864.e7 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    74.Perez-Guzman, P. N. et al. Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLoS Curr. 10, (2018).75.Pereira Gusmão Maia, Z. et al. Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases. Emerg. Microbes Infect. 9, 53–57 (2020).PubMed 

    Google Scholar 
    76.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-climate-change?tab=overview.77.Lourenço, J. & Obolski, U. MVSE R-package official page. https://sourceforge.net/projects/mvse/.78.R-Forge: Circular Statistics: Project Home. https://r-forge.r-project.org/projects/circular/.79.Geraci, M. Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression. J. Stat. Softw. 57, 1–29 (2014).
    Google Scholar 
    80.Damineli, D. S. C., Portes, M. T. & Feijó, J. A. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J. Exp. Bot. 68, 3267–3281 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.wavelets: Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses. https://CRAN.R-project.org/package=wavelets.82.biwavelet GitHub repository. https://github.com/tgouhier/biwavelet.83.Barros, S. C. et al. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J. Virol. Methods 193, 554–557 (2013).CAS 
    PubMed 

    Google Scholar 
    84.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview.85.Filipe, A. R. & de Andrade, H. R. Arboviruses in the Iberian Peninsula. Acta Virol. 34, 582–591 (1990).CAS 
    PubMed 

    Google Scholar 
    86.Almeida, A. P. G. et al. Mosquito surveys and West Nile virus screening in two different areas of southern Portugal, 2004-2007. Vector. Borne. Zoonotic Dis. 10, 673–680 (2010).PubMed 

    Google Scholar 
    87.Freitas, F. B., Novo, M. T., Esteves, A. & de Almeida, A. P. Species Composition and WNV Screening of Mosquitoes from Lagoons in a Wetland Area of the Algarve, Portugal. Front. Physiol. 2, 122 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    88.Parreira, R. et al. Two distinct introductions of the West Nile virus in Portugal disclosed by phylogenetic analysis of genomic sequences. Vector. Borne. Zoonotic. Dis. 7, 344–352 (2007).CAS 
    PubMed 

    Google Scholar 
    89.Fotakis, E. A. et al. Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance. PLoS Negl. Trop. Dis. 14, e0008284 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Mixão, V. et al. Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector, Culex univittatus, in the Iberian Peninsula. Parasit. Vectors. 9, 601 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    91.Osório, H. C., Zé-Zé, L. & Alves, M. J. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J. Med. Entomol. 49, 717–721 (2012).PubMed 

    Google Scholar 
    92.Gomes, B. et al. The Culex pipiens complex in continental Portugal: distribution and genetic structure. J. Am. Mosq. Control. Assoc. 28, 75–80 (2012).PubMed 

    Google Scholar 
    93.Gomes, B. et al. Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol. Biol. 15, 197 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    94.Calzolari, M. et al. Detection of mosquito-only flaviviruses in Europe. J. Gen. Virol. 93, 1215–1225 (2012).CAS 
    PubMed 

    Google Scholar 
    95.Hernández-Triana, L. M. et al. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? Med. Vet. Entomol. 34, 86–96 (2020).PubMed 

    Google Scholar 
    96.Alves, J. M. et al. Flavivírus transmitidos por mosquitos: um risco potencial para Portugal. Investigação em ambiente e saúde – desafios e estratégias (Universidade de Aveiro) (2009).97.Conte, A. et al. Spatio-temporal identification of areas suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS. One. 10, e0146024 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    98.García-Carrasco, J.-M., Muñoz, A.-R., Olivero, J., Segura, M. & Real, R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl. Trop. Dis. 15, e0009022 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    99.Marini, G., Manica, M., Delucchia, L., Pugliesed, A. & Rosa, R. Spring temperature shapes West Nile virus transmission in Europe. Acta. Trop. 215, 105796 (2021).PubMed 

    Google Scholar  More

  • in

    The role of methanotrophy in the microbial carbon metabolism of temperate lakes

    1.Bastviken, D. Methane. in Encyclopedia of Inland Waters (ed. Likens, G. E.) 783–805 (Elsevier, 2009). https://doi.org/10.1016/B978-012370626-3.00117-42.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in Northern Lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).CAS 
    ADS 

    Google Scholar 
    4.Kankaala, P., Taipale, S., Nykänen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. Biogeosciences 112, 1–7 (2007).
    Google Scholar 
    5.Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T. & Ojala, A. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51, 1195–1204 (2006).CAS 
    ADS 

    Google Scholar 
    6.Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981 (2003).
    Google Scholar 
    7.Kankaala, P., Lopez Bellido, J., Ojala, A., Tulonen, T. & Jones, R. I. Variable production by different pelagic energy mobilizers in Boreal Lakes. Ecosystems 16, 1152–1164 (2013).CAS 

    Google Scholar 
    8.Morana, C. et al. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12, 2077–2088 (2015).ADS 

    Google Scholar 
    9.Grey, J. The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front. Ecol. Evol. 4, 1–14 (2016).
    Google Scholar 
    10.Jones, R. I. & Grey, J. Biogenic methane in freshwater food webs. Freshw. Biol. 56, 213–229 (2011).CAS 

    Google Scholar 
    11.Kankaala, P., Taipale, S. & Grey, J. Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol. Oceanogr. 51, 2821–2827 (2006).CAS 
    ADS 

    Google Scholar 
    12.Guérin, F. & Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 112, 1–14 (2007).
    Google Scholar 
    13.Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Soued, C. & Prairie, Y. T. The carbon footprint of a Malaysian tropical reservoir: measured versus modeled estimates highlight the underestimated key role of downstream processes. Biogeosciences 17, 515–227 (2020).CAS 
    ADS 

    Google Scholar 
    15.Del Giorgio, P. A. & Gasol, J. M. Physiological structure and single-cell activity in marine bacterioplankton. in Microbial Ecology of the Oceans: Second Edition (ed. Kirchman, D. L.) 243–298 (John Wiley & Sons, Inc, 2008). https://doi.org/10.1002/9780470281840.ch816.Reis, P. C. J., Ruiz-González, C., Soued, C., Crevecoeur, S. & Prairie, Y. T. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Sci. Total Environ. 748, 141374 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Thottathil, S. D., Reis, P. C. J. & Prairie, Y. T. Methane oxidation kinetics in northern freshwater lakes. Biogeochemistry 143, 105–116 (2019).CAS 

    Google Scholar 
    18.Milucka, J. et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J. 9, 1991–2002 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Zigah, P. K. et al. Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol. Oceanogr. 60, 553–572 (2015).ADS 

    Google Scholar 
    20.Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 1–9 (2020).
    Google Scholar 
    21.Bussmann, I., Rahalkar, M. & Schink, B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol. Ecol. 56, 331–344 (2006).CAS 
    PubMed 

    Google Scholar 
    22.Kankaala, P., Eller, G. & Jones, R. I. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? Fundam. Appl. Limnol. / Arch. f.ür. Hydrobiol. 169, 203–209 (2007).
    Google Scholar 
    23.Khmelenina, V. N. et al. Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology 79, 472–482 (2010).CAS 

    Google Scholar 
    24.Westfall, C. S. & Levin, P. A. Bacterial cell size: multifactorial and multifaceted. Annu. Rev. Microbiol. 71, 499–517 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chien, A. C., Hill, N. S. & Levin, P. A. Cell size control in bacteria. Curr. Biol. 22, R340–R349 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Velimirov, B. Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium. Microbes Environ. 16, 67–77 (2001).
    Google Scholar 
    27.Reis, P. C. J., Thottathil, S. D., Ruiz-González, C. & Prairie, Y. T. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ. Microbiol. 22, 738–751 (2020).CAS 
    PubMed 

    Google Scholar 
    28.Garcia-Chaves, M. C., Cottrell, M. T., Kirchman, D. L., Ruiz-González, C. & del Giorgio, P. A. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. Isme J. 10, 1579–1588 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Jürgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 81, 413–434 (2002).
    Google Scholar 
    30.Rautio, M. & Vincent, W. F. Benthic and pelagic food resources for–zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51, 1038–1052 (2006).CAS 

    Google Scholar 
    31.Rissanen, A. J. et al. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat. Microb. Ecol. 81, 257–276 (2018).
    Google Scholar 
    32.Zimmermann, M. et al. Microbial methane oxidation efficiency and robustness during lake overturn. Limnol. Oceanogr. Lett. 6, 320–328 (2021).CAS 

    Google Scholar 
    33.Puri, A. W. et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775–1781 (2015).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Strong, P. J., Kalyuzhnaya, M., Silverman, J. & Clarke, W. P. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215, 314–323 (2016).CAS 
    PubMed 

    Google Scholar 
    35.Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
    Google Scholar 
    36.Smith, E. M. & Prairie, Y. T. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49, 137–147 (2004).CAS 
    ADS 

    Google Scholar 
    37.Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80, 1422–1431 (1999).
    Google Scholar 
    38.Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Sun, L., Perdue, E. M., Meyer, J. L. & Weis, J. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr. 42, 714–721 (1997).CAS 
    ADS 

    Google Scholar 
    40.Kellerman, A. M., Kothawala, D. N., Dittmar, T. & Tranvik, L. J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8, 454–457 (2015).CAS 
    ADS 

    Google Scholar 
    41.Guillemette, F. & del Giorgio, P. A. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56, 734–748 (2011).CAS 
    ADS 

    Google Scholar 
    42.Logue, J. B. et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10, 533–545 (2016).CAS 
    PubMed 

    Google Scholar 
    43.Salcher, M. M., Posch, T. & Pernthaler, J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 7, 896–907 (2013).CAS 
    PubMed 

    Google Scholar 
    44.Sobek, S., Tranvik, L. J., Prairie, Y., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).CAS 
    ADS 

    Google Scholar 
    45.Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    46.Oshkin, I. Y. et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 9, 1119–1129 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    47.Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).CAS 
    PubMed 

    Google Scholar 
    48.Martinez-Cruz, K. et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607–608, 23–31 (2017).PubMed 
    ADS 

    Google Scholar 
    49.Samad, M. S. & Bertilsson, S. Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    50.Ricão Canelhas, M., Denfeld, B. A., Weyhenmeyer, G. A., Bastviken, D. & Bertilsson, S. Methane oxidation at the water-ice interface of an ice-covered lake. Limnol. Oceanogr. 61, S78–S90 (2016).ADS 

    Google Scholar 
    51.Houser, J. N. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can. J. Fish. Aquat. Sci. 63, 2447–2455 (2006).
    Google Scholar 
    52.Caplanne, S. & Laurion, I. Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat. Sci. 70, 123–133 (2008).CAS 

    Google Scholar 
    53.Oswald, K. et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS ONE 10, e0132574 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    54.Savvichev, A. S. et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake. Microbiology 88, 370–374 (2019).CAS 

    Google Scholar 
    55.Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991).ADS 

    Google Scholar 
    56.Cole, J. J., Likens, G. E. & Strayer, D. L. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27, 1080–1090 (1982).CAS 
    ADS 

    Google Scholar 
    57.Dumestre, J. et al. Influence of light intensity on methanotrophic bacterial activity in Petit Saut reservoir, French Guiana. Appl. Environ. Microbiol. 65, 534–539 (1999).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    58.Murase, J. & Sugimoto, A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol. Oceanogr. 50, 1339–1343 (2005).CAS 
    ADS 

    Google Scholar 
    59.Moran, M. A. & Hodson, R. E. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35, 1744–1756 (1990).CAS 
    ADS 

    Google Scholar 
    60.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    61.Roulet, N. & Moore, T. R. Browning the waters. Nature 444, 283–284 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    62.Weyhenmeyer, G. A., Prairie, Y. T. & Tranvik, L. J. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS ONE 9, e88104 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).ADS 

    Google Scholar 
    64.Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).CAS 

    Google Scholar 
    65.Cantin, A., Beisner, B. E., Gunn, J. M., Prairie, Y. T. & Winter, J. G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 68, 260–276 (2011).
    Google Scholar 
    66.Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).
    Google Scholar 
    67.Del Giorgio, P. A., Pace, M. L. & Fischer, D. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquat. Microb. Ecol. 45, 55–67 (2006).
    Google Scholar 
    68.Eller, G., Stubner, S. & Frenzel, P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol. Lett. 198, 91–97 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Zeder, M. ACME tool3. (2014).70.Callieri, C. et al. Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol. 75, 7298–7300 (2009).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    71.Lew, S. & Glińska-Lewczuk, K. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. Sci. Total Environ. 645, 1201–1211 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    72.Fagerbakke, K. M., Heldal, M. & Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10, 15–27 (1996).
    Google Scholar 
    73.Read J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software. 26, 1325–1336 (2011).
    Google Scholar 
    74.R Core Team. R: a language and environment for statistical computing. (2019). https://www.R-project.org/.75.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MAURL. (2018). http://www.rstudio.com/.76.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019). https://cran.r-project.org/package=dplyr.77.Sievert, C. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016). https://ggplot2.tidyverse.org.79.Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.0.0. (2019). https://CRAN.R-project.org/package=cowplot.80.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. R package version 2.3. (2017). https://CRAN.R-project.org/package=gridExtra.81.Reis, P. C. J., Thottathil, S. D. & Prairie, Y. T. Dataset: the role of methanotrophy in the microbial carbon metabolism of temperate lakes. (1.0.0) [Data set]. Zenodo. (2021). https://doi.org/10.5281/zenodo.5737277. More

  • in

    Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities

    1.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).CAS 
    ADS 

    Google Scholar 
    2.Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).PubMed 

    Google Scholar 
    3.Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).CAS 
    ADS 

    Google Scholar 
    5.Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).PubMed 

    Google Scholar 
    6.Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).CAS 
    PubMed 

    Google Scholar 
    7.Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).CAS 
    PubMed 

    Google Scholar 
    8.Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).
    Google Scholar 
    9.Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).CAS 
    ADS 

    Google Scholar 
    10.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).CAS 
    ADS 

    Google Scholar 
    11.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).CAS 
    PubMed 

    Google Scholar 
    13.Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).PubMed 

    Google Scholar 
    14.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).
    Google Scholar 
    15.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).CAS 
    ADS 

    Google Scholar 
    16.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).CAS 
    ADS 

    Google Scholar 
    17.Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
    Google Scholar 
    18.Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).PubMed 

    Google Scholar 
    19.Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    21.Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 

    Google Scholar 
    22.Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    24.Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).CAS 
    PubMed 

    Google Scholar 
    25.Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).PubMed 

    Google Scholar 
    27.Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 

    Google Scholar 
    29.Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    30.Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    31.Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    32.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).CAS 

    Google Scholar 
    33.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).CAS 

    Google Scholar 
    37.Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).PubMed 

    Google Scholar 
    38.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    39.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).CAS 

    Google Scholar 
    40.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 

    Google Scholar 
    42.Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    44.Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    47.Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).PubMed 

    Google Scholar 
    48.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).CAS 
    ADS 

    Google Scholar 
    49.Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    52.Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).PubMed 

    Google Scholar 
    53.Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).CAS 
    ADS 

    Google Scholar 
    54.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    The metabolic cost of turning right side up in the Mediterranean spur-thighed tortoise (Testudo graeca)

    1.Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5(5211), 1–11. https://doi.org/10.1038/ncomms6211 (2014).CAS 
    Article 

    Google Scholar 
    2.Gans, C. & Hughes, G. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J. Exp. Biol. 47(1), 1–20 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Jackson, D. C., Singer, J. H. & Downey, P. T. Oxidative cost of breathing in the turtle Chrysemys picta bellii. Am. J. Physiol. 261, R1325–R1328 (1991).CAS 
    PubMed 

    Google Scholar 
    4.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta. J. Exp. Zool. 311A, 551–562. https://doi.org/10.1002/jez.478 (2009).Article 

    Google Scholar 
    5.Ruhr, I., Rose, K., Sellers, W., Crossley, D. II. & Codd, J. Turning turtle: Scaling relationships and self-righting ability in Chelydra serpentina. Proc. R. Soc. B. 288, 20210213. https://doi.org/10.1098/rspb.2021.0213 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Pritchard, P. C. H. Encyclopaedia of Turtles (TFH, 1979).
    Google Scholar 
    7.Carr, A. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California (Cornell University Press, 1952).
    Google Scholar 
    8.Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Int. Comp. Biol. 48(6), 769–787. https://doi.org/10.1093/icb/icn088 (2008).Article 

    Google Scholar 
    9.McNeill Alexander, R. Gaits of mammals and turtles. J. R. Soc. Jpn. 11(3), 314–319 (1993).Article 

    Google Scholar 
    10.Zani, P. A. & Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornate. J. Exp. Biol. 211, 3671–3676. https://doi.org/10.1242/jeb.019869 (2008).Article 
    PubMed 

    Google Scholar 
    11.Sellers, W. I., Rose, K. A. R., Crossley, D. A. II. & Codd, J. R. Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits. Comp. Biochem. Physiol. A. 247, 110739. https://doi.org/10.1016/j.cbpa.2020.110739 (2020).CAS 
    Article 

    Google Scholar 
    12.Chiari, Y., van der Meijden, A., Caccone, A., Claude, J. & Gilles, B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-15787-7 (2017).CAS 
    Article 

    Google Scholar 
    13.Woledge, R. C. The energetics of tortoise muscle. J. Physiol. 197(3), 685–707 (1968).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Steyermark, A. C. & Spotila, J. R. Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4, 1050–1057. https://doi.org/10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2 (2001).Article 

    Google Scholar 
    15.Rubin, A. M., Blob, R. W. & Mayerl, C. J. Biomechanical factors influencing successful self-righting in the Pleurodire turtle, Emydura subglobosa. J. Exp. Biol. 221, jeb182642. https://doi.org/10.1242/jeb.182642 (2018).Article 
    PubMed 

    Google Scholar 
    16.Penn, D. & Brockmann, H. J. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Anim. Behav. 49, 1531–1539. https://doi.org/10.1016/003-3472(95)90074-8 (1995).Article 

    Google Scholar 
    17.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372. https://doi.org/10.1006/bjls.2000.0504 (2001).Article 

    Google Scholar 
    18.Zuffi, M. A. L. & Corti, C. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, Western Mediterranean Sea): Preliminary data. Amphib-Reptil. 24, 441–447 (2003).Article 

    Google Scholar 
    19.Domokos, G. & Várkonyi, P. L. Geometry and self-righting of turtles. Proc. R. Soc. B. 275(1630), 11–17. https://doi.org/10.1098/rspb.2007.1188 (2008).Article 
    PubMed 

    Google Scholar 
    20.Mann, G. K. H., O’Riain, M. J. & Hofmeyr, M. D. Shaping up to fight: Sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). J. Zool. 269, 373–379. https://doi.org/10.1111/j.1469-7998.2006.00079x (2006).Article 

    Google Scholar 
    21.Golubović, A., Bonnet, X., Djordjević, S., Djurakic, M. & Tomović, L. Variations in righting behavior across Hermann’s tortoise populations. J. Zool. 291, 69–75. https://doi.org/10.1111/jzo.12047 (2013).Article 

    Google Scholar 
    22.Golubović, A., Andelkovic, M., Arsovski, D., Bonnet, X. & Tomović, L. Locomotor performances reflect habitat constraints in an armoured species. Behav. Ecol. Sociobiol. 71, 93. https://doi.org/10.1007/s00265-017-2318-0 (2017).Article 

    Google Scholar 
    23.Ashe, V. M. The righting reflex in turtles: A description and comparison. Psychol. Sci. 20, 150–152. https://doi.org/10.3758/BF03335647 (1970).Article 

    Google Scholar 
    24.Golubović, A., Tomović, L. & Ivanović, A. Geometry of self-righting: The case of Hermann’s tortoises. Zool. Anz. 254, 99–105. https://doi.org/10.1016/j.jcz.2014.12.003 (2015).Article 

    Google Scholar 
    25.Finkler, M. S. Influence of water availability during hatching on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle, Chelydra serpentina. Physiol. Biochem. Zool. 72, 714–722. https://doi.org/10.1086/316711 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Stojadinović, D., Milošević, D. & Crnobrnja-Isailović, J. Righting time versus shell size and shape dimorphism in adult Hermann’s tortoises: Field observations meet theoretical predictions. Anim. Biol. 63(4), 381–396. https://doi.org/10.1163/15707563-00002420 (2013).Article 

    Google Scholar 
    27.Delmas, V., Baudry, E., Girondot, M. & Prevot-Julliard, A.-C. The righting reflex as a fitness indicator in freshwater turtles. Biol. J. Linn. Soc. 91, 99–109. https://doi.org/10.1111/j.1095-8312/2007.00780.x (2007).Article 

    Google Scholar 
    28.Burger, J. Behavior of hatchling diamondback terrapins (Malaclemys terrapin) in the field. Copeia 1976, 742. https://doi.org/10.2307/1443457 (1976).Article 

    Google Scholar 
    29.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206, 3391–3404. https://doi.org/10.1242/jeb.00553 (2003).Article 
    PubMed 

    Google Scholar 
    30.Gaunt, A. S. & Gans, C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J. Morph. 128, 195–227. https://doi.org/10.1002/jmor.1051280205 (1969).Article 

    Google Scholar 
    31.Lambertz, M., Böhme, W. & Perry, S. F. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Crytodira) and related species, and its phylogenetic implications. Comp. Biochem. Physiol. 156, 330–336. https://doi.org/10.1016/j.cbpa.2009.12.016 (2010).CAS 
    Article 

    Google Scholar 
    32.de Souza, R. B. B. & Klein, W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J. Exp. Biol. 224(12), 242386. https://doi.org/10.1242/jeb.242386 (2021).Article 

    Google Scholar 
    33.Jodice, P. G. R., Epperson, D. M. & Visser, G. H. Daily energy expenditure in free-ranging gopher tortoises (Gopherus polyphemus). Copeia 2006(1), 129–136. https://doi.org/10.1643/0045-8511(2006)006[0129:DEEIFG]2.0.CO;2 (2006).Article 

    Google Scholar 
    34.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article 

    Google Scholar 
    35.Shadmehr, R., Huang, H. J. & Ahmed, A. A. A representation of effort in decision-making and motor control. Curr. Biol. 26, 1929–1934. https://doi.org/10.1016/j.cub.2016.05.065 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Shepard, E. L. C. et al. Energy landscapes shapes animal movement ecology. Am. Nat. 182(3), 298–312. https://doi.org/10.1086/671257 (2013).Article 
    PubMed 

    Google Scholar 
    37.Baudinette, R. V., Miller, A. M. & Sarre, M. P. Aquatic and terrestrial locomotory energetics in a toad and a turtle: A search for generalisations among ectotherms. Physiol. Biochem. Zool. 73(6), 672–682. https://doi.org/10.1086/318101 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hailey, A. & Coulson, I. M. Measurement of time budgets from continuous observation of thread-trailed tortoises (Kinixys spekii). Herp. J. 9, 15–20 (1999).
    Google Scholar 
    39.Kram, R. & Taylor, C. R. Energetics of running: A new perspective. Nature 346, 265–267. https://doi.org/10.1038/346265a0 (1990).CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar 
    40.Taylor, C. R. Relating mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994).CAS 
    PubMed 

    Google Scholar 
    41.Cavagna, G. A. & Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481. https://doi.org/10.1113/jphysiol.1977.sp011866 (1977).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Carrier, D. R., Deban, S. M. & Fischbein, T. Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J. Exp. Biol. 209, 2224–2237. https://doi.org/10.1242/jeb.02236 (2006).Article 
    PubMed 

    Google Scholar 
    43.Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292. https://doi.org/10.1242/jeb.115.1.283 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Barclay, C. J. The basis of difference in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharm. Physiol. 44(12), 1279–1286. https://doi.org/10.1111/1440-1681.12850 (2017).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Nwoye, L. O. & Goldspink, G. Biochemical efficiency and intrinsic shortening speed in selected fast and slow muscles. Experientia 37, 856–857. https://doi.org/10.1007/BF1985678 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Lambert, M. Temperature, activity and field sighting in the Mediterranean spur-thighed or common garden tortoise Testudo graeca. Biol. Conserv. 21, 39–54. https://doi.org/10.1016/0006-3207(81)90067-7 (1981).Article 

    Google Scholar 
    47.Tracy, R., Zimmerman, L., Tracy, C., Bradley, K. & Castle, K. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conserv. Biol. 5(2), 269–273. https://doi.org/10.2744/1071-8443(2006)5[269:ROFPIT]2.0.co;2 (2006).Article 

    Google Scholar 
    48.Huey, R. & Kingsolver, J. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Lailvaux, S. & Irschick, D. Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct. Ecol. 21(3), 534–543. https://doi.org/10.1111/j.1365-2435.2007.01263.x (2007).Article 

    Google Scholar 
    50.Lighton, J. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2008).Book 

    Google Scholar 
    51.Brody, S. Bioenergetics and Growth (Reinhold, 1945).
    Google Scholar  More

  • in

    Edward O. Wilson (1929–2021)

    OBITUARY
    10 January 2022

    Edward O. Wilson (1929–2021)

    Naturalist, conservationist and synthesizer who founded sociobiology.

    Bert Hölldobler

    0

    Bert Hölldobler

    Bert Hölldobler holds the Robert A. Johnson Chair in Social Insect Research and is Regent’s Professor in the School of Life Sciences at Arizona State University, Tempe. He began working with Wilson in 1970.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Harvard University Professor E.O. Wilson in his office at Harvard University in Cambridge, MA. USACredit: Rick Friedman/Corbis via Getty

    Edward (Ed) Wilson began by exploring the systematics, geographical distribution, social organization and evolution of ants. He became one of the great scholarly synthesizers, winning two Pulitzer prizes. A superb naturalist who enjoyed challenging dogma, he fought for conservation, brought ideas of biodiversity into the mainstream and set ecology on a rigorous conceptual footing. He has died aged 92.Wilson’s book Sociobiology, published in 1975, was the first to address the evolution and organization of societies in organisms ranging from colonial bacteria to primates, including humans. The final chapter, on human social interaction, ignited controversy. Wilson argued that human behaviour, although adaptable to environmental conditions, is rooted in a genetic ‘blueprint’. Opponents claimed that nothing in human behaviour is grounded in genetics, except sleeping, eating and defecation. In a letter to The New York Review of Books, a group of academics including evolutionary biologists Stephen Jay Gould and Richard Lewontin associated Wilson’s view with racism and genocide. Wilson responded with elegance and humour; in my view, most scholars now agree that he won this argument.
    Conservation: Glass half full
    Wilson was born in 1929 in Birmingham, Alabama, and grew up, as he admitted in his 2006 autobiography, Naturalist, “mostly insulated from its social problems”. After studying biology at the University of Alabama in Tuscaloosa, he did graduate studies at Harvard University in Cambridge, Massachusetts. He felt its Museum of Comparative Zoology, with the world’s largest ant collection, was his “destiny”.In 1955, he obtained his PhD on the systematics of the ant genus Lasius, which includes the widespread black garden ant. Systematic biology and the study of biodiversity remained his mission, but he made significant contributions to other fields, such as animal behaviour and chemical ecology. His early work on chemical communication in animals, particularly social insects, inspired a generation of scientists to explore a new area in behavioural physiology.In 1954, Wilson set out for Melanesia, including New Guinea, to study ant taxonomy and biogeography. On the basis of his data, he elaborated the critique that he and his Harvard colleague William Brown had previously developed on the idea of subspecies. They argued that the distinctions between species should be more clearly defined, allowing for variability within species. Equally influential was their thinking on character displacement — when similar species in the same area diverge genetically to avoid competing for resources.Through his fieldwork in Melanesia and later in the Caribbean, Wilson drafted a principle of biogeography that he called the taxon cycle. Species evolve back and forth between being able to live in marginal habitats, and thus disperse widely, and restricting their distribution to species-rich habitats in island interiors. He tested this and other original hypotheses in the Florida Keys in the 1960s, in collaboration with his former student Daniel Simberloff. With ecologist Robert MacArthur, he proposed that species maintain their populations through trade-offs between number of offspring and quality of parental care (the concept of r/K selection). Their 1967 book The Theory of Island Biogeography had far-reaching effects on studies of evolution and conservation.
    A revolution in evolution
    From early in his career, Wilson wondered about ways to understand the evolution of social organization, from primates to social insects (such as honeybees and ants). “A congenital synthesizer,” he wrote in his autobiography, “I held on to the dream of a unifying theory.” He developed a theory of adaptive demography — that certain kinds of social structure might increase reproductive fitness — and the evolution of division of labour between castes, such as insect queens and worker groups. First brought together in The Insect Societies (1971), these concepts were elaborated in Caste and Ecology in the Social Insects, with mathematical biologist George Oster, in 1978.Sociobiology was a much more far-reaching synthesis on the evolution of social systems. The furore that ensued stimulated Wilson to write an even more provocative book, On Human Nature (1978). This garnered his first Pulitzer. His highly original book Biophilia (1984) was the first to use the term to mean human empathy for the natural world. He argued that pleasure in being surrounded by diverse living organisms is a biological adaptation. These books prepared the ground for Consilience (1998), which one reviewer called a biologist’s dream of the unity of knowledge. It proposed the kind of intellectual annexation that occurs when one field can be explained in terms of a more fundamental discipline, and received a mixed response.To his and my utmost surprise, in 1990, the huge monograph The Ants, on which we worked for years, won another Pulitzer. Wilson continued to publish on human evolution and humanity’s relationship with the planet into his 90s. Half-Earth (2016) is a passionate plea to leave half of our world to nature.Ed was not a team builder. He preferred to work alone, although in a few cases he found colleagues who complemented his abilities. He thrived on controversy. In the past two decades, he had rejected the theory of inclusive fitness — the idea that the reproductive success of an individual increases when it helps to raise the offspring of its close relatives — that he once propagated. This led to heated debates, and I opposed some of his views. When we reached a compromise and submitted the manuscript of our book The Superorganism (2009), Ed’s concluding remark was: “Bert, there is one thing we agree on 100%. That is: my co-author is wrong.” One could disagree with Ed over scientific issues and remain good friends.

    Nature 601 (2022)
    doi: https://doi.org/10.1038/d41586-022-00078-7

    Competing Interests
    The author declares no competing interests.

    Related Articles

    A revolution in evolution

    Conservation: Glass half full

    Ecology: Wilson in Africa

    Evolution of eusociality

    Subjects

    Evolution

    Ecology

    Genetics

    Latest on:

    Evolution

    SARS-CoV-2 infection in free-ranging white-tailed deer
    Article 23 DEC 21

    A Species-Level Timeline of Mammal Evolution Integrating Phylogenomic Data
    Article 22 DEC 21

    Large-scale migration into Britain during the Middle to Late Bronze Age
    Article 22 DEC 21

    Ecology

    Emergence of methicillin resistance predates the clinical use of antibiotics
    Article 05 JAN 22

    SARS-CoV-2 infection in free-ranging white-tailed deer
    Article 23 DEC 21

    Sustainability at the crossroads
    Editorial 21 DEC 21

    Genetics

    A blood test to predict complications of pregnancy
    News & Views 05 JAN 22

    Decoding gene regulation in the fly brain
    Article 05 JAN 22

    RNA profiles reveal signatures of future health and disease in pregnancy
    Article 05 JAN 22

    Jobs

    Faculty Positions at Institute of Physics (IOP), Chinese Academy of Sciences: Beijing, China

    Institute of Physics (IOP), Chinese Academy of Sciences (CAS)
    Beijing, China

    Professor of Metabolic Medicine, Nutrition and Diabetes Research

    Lee Kong Chian School of Medicine
    Singapore, Singapore

    Post-doctoral researcher position in Automated Reasoning

    University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral candidates (PhD students) in Mathematics (Algebra and Number Theory)

    University of Luxembourg
    Luxembourg, Luxembourg More

  • in

    Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium

    1.Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 9514, 729 (2020).
    Google Scholar 
    2.Karl, D. et al. Dinitrogen fixation in the world’s oceans. Biogeochemistry 57–58, 47–98 (2002).
    Google Scholar 
    3.Dugdale, R. & Wilkerson, F. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 107–122 (Springer, 1992).4.Carpenter, E. J. & Capone, D. G. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J.) Ch. 4 (Elsevier, 2008).5.Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 23–266 (1997).
    Google Scholar 
    6.Buchanan, P. J., Chase, Z., Matear, R. J., Phipps, S. J. & Bindoff, N. L. Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO2 drawdown. Nat. Commun. https://doi.org/10.1038/s41467-019-12549-z (2019).7.Monteiro, F. M., Follows, M. J. & Dutkiewicz, S. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles 24, 1–16 (2010).
    Google Scholar 
    8.Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A. & Zehr, J. P. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr. 53, 63–77 (2008).CAS 

    Google Scholar 
    9.Monteiro, F. M., Dutkiewicz, S. & Follows, M. J. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem. Cycles 25, 1–8 (2011).
    Google Scholar 
    10.Dutkiewicz, S., Ward, B. A., Monteiro, F. & Follows, M. J. Interconnection of nitrogen fixers and iron in the Pacific Ocean: theory and numerical simulations. Global Biogeochem. Cycles 26, 1–16 (2012).
    Google Scholar 
    11.Walworth, N. G. et al. Nutrient-colimited Trichodesmium as a nitrogen source or sink in a future ocean. Appl. Environ. Microbiol. 84, 1–14 (2018).CAS 

    Google Scholar 
    12.McGillicuddy, D. J. Jr. Do Trichodesmium spp. populations in the North Atlantic export most of the nitrogen they fix? Global Biogeochem. Cycles 28, 103–114 (2014).CAS 

    Google Scholar 
    13.Carpenter, E. J. & Romans, K. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254, 1989–1992 (1991).
    Google Scholar 
    14.Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).CAS 
    PubMed 

    Google Scholar 
    15.Capone, D. G. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).CAS 

    Google Scholar 
    16.Gallon, J. R. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem. Sci. 6, 19–23 (1981).CAS 

    Google Scholar 
    17.Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dron, A. et al. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ. Microbiol. 14, 967–981 (2012).CAS 
    PubMed 

    Google Scholar 
    19.Mohr, W., Intermaggio, M. P. & LaRoche, J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 12, 412–421 (2010).CAS 
    PubMed 

    Google Scholar 
    20.Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).CAS 
    PubMed 

    Google Scholar 
    21.Burnat, M., Herrero, A. & Flores, E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc. Natl Acad. Sci. USA 111, 3823–3828 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Sherman, D. M., Tucker, D. & Sherman, L. A. Heterocyst development and localization of cyanophycin in N2-fixing cultures of Anabaena sp. PCC 7120 (Cyanobacteria). J. Phycol. 941, 932–941 (2000).
    Google Scholar 
    23.Lamont, H. C., Silvester, W. B. & Torrey, J. G. Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can. J. Microbiol. 34, 656–660 (1988).CAS 

    Google Scholar 
    24.Saino, T. Diel variation in nitrogen fixation by a marine blue-green alga, Trichodesmium thiebautii. Deep Sea Res. 25, 1259–1263 (1978).
    Google Scholar 
    25.Saino, T. & Hattori, A. Aerobic nitrogen fixation by the marine non-heterocystous cyanobacterium Trichodesmium (Oscillatoria) spp.: its protective mechanism against oxygen. Mar. Biol. 70, 251–254 (1982).
    Google Scholar 
    26.Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).CAS 
    PubMed 

    Google Scholar 
    27.Ohki, K. & Taniuchi, Y. Detection of nitrogenase in individual cells of a natural population of Trichodesmium using immunocytochemical methods for fluorescent cells. J. Oceanogr. 65, 427–432 (2009).CAS 

    Google Scholar 
    28.Eichner, M. et al. N2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. New Phytol. 222, 852–863 (2019).CAS 
    PubMed 

    Google Scholar 
    29.Ohki, K. Intercellular localization of nitrogenase in a non-heterocystous cyanobacterium (cyanophyte), Trichodesmium sp. NIBB1067. J. Oceanogr. 64, 211–216 (2008).CAS 

    Google Scholar 
    30.Ohki, K., Zehr, F. & Fujita, Y. Regulation of nitrogenase activity in relation to the light-dark regime in the filamentous non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067. J. Gen. Microbiol. 138, 2679–2685 (1992).CAS 

    Google Scholar 
    31.Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl Acad. Sci. USA 106, 9931 (2009).CAS 

    Google Scholar 
    32.Sandh, G., El-Shehawy, R., Díez, B. & Bergman, B. Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. FEMS Microbiol. Lett. 295, 281–288 (2009).CAS 
    PubMed 

    Google Scholar 
    33.Küpper, H. et al. Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol. 135, 2120–2133 (2019).
    Google Scholar 
    34.Ohki, K. & Fujita, Y. Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar. Biol. 98, 111–114 (1988).CAS 

    Google Scholar 
    35.Waterbury, J. B. & Willey, J. M. Isolation and growth of marine planktonic Cyanobacteria. Methods Enzymol. 167, 100–105 (1988).CAS 

    Google Scholar 
    36.Chen, Y. B., Zehr, J. P. & Mellon, M. Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: evidence for a circadian rhythm. J. Phycol. 32, 916–923 (1996).
    Google Scholar 
    37.Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).
    Google Scholar 
    38.Bell, P. R. F. et al. Laboratory culture studies of Trichodesmium isolated from the Great Barrier Reef lagoon, Australia. Hydrobiologia 532, 9–21 (2005).
    Google Scholar 
    39.Tzubari, Y., Magnezi, L., Be’Er, A. & Berman-Frank, I. Iron and phosphorus deprivation induce sociality in the marine bloom-forming cyanobacterium Trichodesmium. ISME J. 12, 1682–1693 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Held, N. A., McIlvin, M. R., Moran, D. M., Laub, M. T. & Saito, M. A. Unique patterns and biogeochemical relevance of two-component sensing in marine bacteria. mSystems 4, 1–16 (2019).
    Google Scholar 
    41.Aryal, U. K. & Sherman, L. A. in Cyanobacteria Omics Manipulation (ed. Los, D. A.) Ch. 6 (Caister Academic Press, 2017).42.Held, N. A. et al. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences 17, 2537–2551 (2020).
    Google Scholar 
    43.Klugkist, J., Haaker, H., Wassink, H. & Veeger, C. The catalytic activity of nitrogenase in intact Azotobacter vinelandii cells. Eur. J. Biochem. 146, 509–515 (1985).CAS 
    PubMed 

    Google Scholar 
    44.Zehr, J. P., Wyman, M., Miller, V., Capone, D. G. & Duguay, L. Modification of the Fe protein of nitrogenase in natural populations of Trichodesmium thiebautii. Appl. Environ. Microbiol. 59, 669–676 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Rodriguez, I. B. & Ho, T.-Y. Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni. Sci. Rep. 4, 4445 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Eichner, M., Kranz, S. A. & Rost, B. Combined effects of different CO2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. Physiol. Plant. 152, 316–330 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Hutchins, D. A. et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 
    48.Levitan, O. et al. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view. Plant Physiol. 154, 346–356 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Villareal, T. A. & Carpenter, E. J. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).CAS 
    PubMed 

    Google Scholar 
    50.Rabouille, S., Staal, M., Stal, L. J. & Soetaert, K. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp. Appl. Environ. Microbiol. 72, 3217–3227 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Breitbarth, E., Wohlers, J., Kläs, J., LaRoche, J. & Peeken, I. Nitrogen fixation and growth rates of Trichodesmium IMS-101 as a function of light intensity. Mar. Ecol. Prog. Ser. 359, 25–36 (2008).CAS 

    Google Scholar 
    52.Chen, Y. B. et al. Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS101. J. Bacteriol. 180, 3598–3605 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rabouille, S., Staal, M., Stal, L. J. & Soetaert, K. Modeling the dynamic regulation of nitrogen fixation in the Cyanobacterium Trichodesmium sp. Appl. Environ. Microbiol. 72, 3217–3227 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Capone, D. G., O’Neill, J. M., Zehr, J. & Carpenter, E. J. Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautti. Appl. Environ. Microbiol. 56, 3532–3536 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Gründel, M., Scheunemann, R., Lockau, W. & Zilliges, Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158, 3032–3043 (2012).PubMed 

    Google Scholar 
    56.Jackson, S. A., Eaton-Rye, J. J., Bryant, D. A., Posewitz, M. C. & Davies, F. K. Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 81, 6210–6222 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Boatman, T. G., Davey, P. A., Lawson, T. & Geider, R. J. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101. PLoS ONE 13, 1–24 (2018).
    Google Scholar 
    58.Chappell, P. D., Moffett, J. W., Hynes, A. M. & Webb, E. A. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J. 6, 1728–1739 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Chappell, P. D. & Webb, E. A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol. 12, 13–27 (2010).CAS 
    PubMed 

    Google Scholar 
    60.Walsby, A. E. The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg. Br. Phycol. J. 13, 103–116 (1978).
    Google Scholar 
    61.Villareal, T. A. & Carpenter, E. J. Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnol. Oceanogr. 35, 1832–1837 (1990).
    Google Scholar 
    62.Romans, K. M., Carpenter, E. J. & Bergman, B. Buoyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate, and nitrogen. J. Phycol. 30, 935–942 (1994).
    Google Scholar 
    63.Wang, L. et al. Molecular structure of glycogen in Escherichia coli. Biomacromolecules 20, 2821–2829 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001).CAS 

    Google Scholar 
    65.Kustka, A. B. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron:carbon ratios of field populations. Limnol. Oceanogr. 49, 1224 (2004).CAS 

    Google Scholar 
    66.Paerl, H. W., Prufert-Bebout, I. L. E., Guo, C. & Carolina, N. Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol. 60, 1044–1047 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Rubin, M., Berman-Frank, I. & Shaked, Y. Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4, 529–534 (2011).CAS 

    Google Scholar 
    68.Polyviou, D. et al. Desert dust as a source of iron to the globally important diazotroph Trichodesmium. Front. Microbiol. 8, 1–12 (2018).
    Google Scholar 
    69.Basu, S. & Shaked, Y. Mineral iron utilization by natural and cultured Trichodesmium and associated bacteria. Limnol. Oceanogr. 63, 2307–2320 (2018).CAS 

    Google Scholar 
    70.Held, N. A. et al. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME Commun. 1, 35 (2021).
    Google Scholar 
    71.Basu, S., Gledhill, M., de Beer, D., Prabhu Matondkar, S. G. & Shaked, Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2, 1–8 (2019).CAS 

    Google Scholar 
    72.Tyrrell, T. et al. Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. J. Plankton Res. 25, 405–416 (2003).CAS 

    Google Scholar 
    73.Robson, R. L. & Postgate, J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34, 183–207 (1980).74.Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173 (2011).CAS 
    PubMed 

    Google Scholar 
    75.Bergman, B. & Carpenter, E. J. Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J. Phycol. 27, 158–165 (1991).CAS 

    Google Scholar 
    76.Inomura, K., Wilson, S. T. & Deutsch, C. Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium. mSystems 4, 1–13 (2019).
    Google Scholar 
    77.Janson, S., Matveyev, A. & Bergman, B. The presence and expression of hetR in the non-heterocystous cyanobacterium Symploca PCC 8002. FEMS Microbiol. Lett. 168, 173–179 (1998).CAS 
    PubMed 

    Google Scholar 
    78.Zhang, J. Y., Chen, W. L. & Zhang, C. C. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology 155, 1418–1426 (2009).CAS 
    PubMed 

    Google Scholar 
    79.Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 463–507 (2001).
    Google Scholar 
    80.Chisholm, S. W. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 213–237 (Springer, 1992).https://doi.org/10.1007/978-1-4899-0762-2_1281.Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    82.Lu, X. & Zhu, H. Tube-gel digestion: a novel proteomic approach for high-throughput analysis of membrane proteins. Mol. Cell Proteom. 4, 1948–1958 (2005).CAS 

    Google Scholar 
    83.Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).CAS 
    PubMed 

    Google Scholar 
    84.McIlvin, M. R. & Saito, M. A. Online nanoflow two-dimension comprehensive active modulation reversed phase-reversed phase liquid chromatography high-resolution mass spectrometry for metaproteomics of environmental and microbiome samples. J. Proteome Res. 20, 4589–4597 (2021).CAS 
    PubMed 

    Google Scholar 
    85.Lee, M. D. et al. Transcriptional activities of the microbial consortium living with the marine nitrogen-fixing cyanobacterium Trichodesmium reveal potential roles in community-level nitrogen cycling. Appl. Environ. Microbiol. 84, AEM.02026-17 (2017).
    Google Scholar 
    86.Zhang, Y., Wen, Z., Washburn, M. P. & Florens, L. Refinements to label-free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272–2281 (2010).CAS 
    PubMed 

    Google Scholar 
    87.Gallien, S., Bourmaud, A., Kim, S. Y. & Domon, B. Technical considerations for large-scale parallel reaction monitoring analysis. J. Proteom. 100, 147–159 (2014).CAS 

    Google Scholar 
    88.Pino, L. K. et al. The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 176, 139–148 (2019).
    Google Scholar 
    89.Held, N. A. et al. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME Commun. https://doi.org/10.1038/s43705-021-00034-y (2021).90.White, A. E., Spitz, Y. H. & Letelier, R. M. Modeling carbohydrate ballasting by Trichodesmium spp. Mar. Ecol. Prog. Ser. 323, 35–45 (2006).
    Google Scholar 
    91.Morrison, F. A. An Introduction to Fluid Mechanics (Cambridge Univ. Press, 2013).92.Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    Google Scholar 
    93.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In 7th Python Scientific Conference (SciPy 2008) 11–15 (2008). More

  • in

    Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants

    Study areaAll simulations were run at a 100 × 100 m resolution for the entire European Alps, which cover ~200,000 km². Elevations reach 4,810 m above sea level at the highest peak (Mont Blanc, elevational data were obtained from ref. 44). Mean annual temperature ranges from approximately −13 up to 16 °C and annual precipitation sums reach up to ~3,600 mm (climatic conditions were obtained from WorldClim45).Species dataTrue presences/absences were derived from complete species lists of 14,040 localized plots covering subalpine and alpine non-forest vegetation of the Alps, compiled from published46 and unpublished data sources. For more information see the supplementary information in ref. 21.Data on demographic rates as well as dispersal parameters were taken from ref. 21, Supplementary Table 1. Detailed values are provided in Supplementary Table 1.Environmental variablesCurrent climate dataMaps of current climatic conditions were generated on the basis of mean, minimum and maximum monthly temperature obtained from WorldClim45 and monthly precipitation sums derived from ref. 47 at a resolutions of 0.5 arcmin and 5 km, respectively. Temperature and precipitation data were downscaled to 100 m as described in ref. 21 and using ordinary kriging with elevation as covariable. As the reference periods of these two datasets do not match (temperature values represent averages for 1950–2000, while precipitation covers 1970–2005) temperature values were adapted using the E-OBS climate grids available online (www.ecad.eu/download/ensembles/download.php). We used these spatially refined temperature and precipitation grids to derive maps of mean annual temperature and mean annual precipitation sum. We chose only two climatic variables to keep models simple and, therefore, interpretation of results more straightforward. In fact, the climatic drivers of population performance and distribution can be more complex48 and vary among species, life history stages and vital rates49. However, as correlations between different descriptors of temperature (such as coldest month or warmest month temperature, Pearson correlation of 0.84) as well as between precipitation variables are high in the European Alps, we chose mean annual temperature and mean annual precipitation sum as they give the most basic description of how climatic conditions change over geographical and elevational gradients.Future climate dataMonthly time series of mean temperature as well as precipitation sums predicted for the twenty-first century were extracted from the Cordex data portal (http://cordex.org). We chose two IPCC5 scenarios from the RCP families representing mild (RCP 2.6) and severe (RCP 8.5) climate change to consider the uncertainty in the future climate predictions. Both scenarios were generated by Météo-France/Centre National de Recherches Météorologiques using the CNRM-ALADIN53 model, fed by output from the global circulation model CNRM-CM5 (ref. 50). The RCP 2.6 scenario assumes that radiative forcing reaches nearly 3 W m−2 (equal to 490 ppm CO2 equivalent) mid-century and will decrease to 2.6 W m−2 by 2100. In the RCP 8.5 scenario, radiative forcing continues to rise throughout the twenty-first century and reaches >8.5 W m−2 (equal to 1,370 ppm CO2 equivalent) in 210024.These time series were statistically downscaled (delta method) by (1) calculating differences (deltas) between monthly temperature and precipitation values hindcasted for the current climatic conditions (mean 1970–2005) and forecasted future values at the original spatial resolution of 11′; (2) spatially interpolating these differences to a resolution of 100 × 100 m using cubic splines and (3) adding them to the downscaled current climate data separately for each climatic variable21,36. Subsequently, we calculated running means (averaged over 35 years) for every tenth year (2030, 2040 through to 2080) for each climatic variable and finally derived, on the basis of the monthly data, mean annual temperature and mean annual precipitation sums for these decadal time steps. The application of 35-yr running means ensures that we use the same time interval for parameterization and prediction. Furthermore, for long-lived species such as alpine plants, running means over long time intervals appear most appropriate to characterize climatic niches33.Soil dataIn addition to the climatic data we used a map of the percentage of calcareous substrate within a cell (5′ longitude × 3′ latitude dissolved to 100 m resolution; further referred to as soil) as described in the supplementary information of ref. 21.Environmental suitability modellingWe parameterized logistic regression models (LRMs) with a logit link function using species presence/absence data as response and the three environmental (two bioclimatic and one soil) variables as predictors. All predictor variables entered the model as second-order polynomials in agreement with the standard unimodal niche concept.From the models, we also derived a threshold value to use for translating predicted probability of occurrence (as a measure of site suitability) into predicted presence or absence of each species at a site (called occurrence threshold, OT, henceforth). The threshold was defined such that it optimized the true skills statistic (TSS), a measure of predictive accuracy derived from comparing observed and predicted presence–absence maps51.Genetic model and niche partitioningSpecies-specific suitability curves for the annual mean temperature gradient derived from the LRMs were partitioned into suitability curves of ecologically different haplotypes of a species as defined by allelic variation in up to three diploid loci (Extended Data Fig. 6). The number of alleles was varied (n = 1, 2, 3, 5 and 10 alleles) as was the proportion of the entire species’ (temperature) niche covered by each haplotype. Models with more than one locus were run with diallelic loci, as otherwise computational efforts would have increased excessively (for each haplotype the number of seeds, juveniles and adults has to be stored and all seeds have to be distributed separately). Each combination of haplotype number and allelic niche size used in a particular simulation is further referred to as setting. Species-specific suitability curves along the other two dimensions (precipitation and soil) remained unpartitioned to ease interpretation of results. The implications of relaxing this assumption by modelling niche partitioning along different environmental gradients are hard to predict. Outcomes would probably depend on the direction and strength of individual specialization along these gradients, whether they are positively or negatively correlated, as well as on how both temperature and precipitation patterns will be affected by climate change. As a consequence, the patterns we found could be re-enforced, for example when the replacement of cold-adapted haplotypes within the species elevational range is further delayed, for example, because those haplotypes adapted to warmer conditions can cope less well with higher precipitation at higher elevations. Vice versa, maladaptation to the warming temperatures might be attenuated, for example, if temperature increase is paralleled by precipitation decrease and emerging drought stress. If, in this case, haplotypes from lower elevations can better cope with both higher temperatures and less water availability than those of median elevations, they may replace the latter faster at these median elevations and hence shorten the phase of maladaptation.Allelic effects were assumed to define the temperature optimum additively. Hence, the heterozygotes’ optimum is always exactly between the optima of the two corresponding homozygotes, corresponding to a codominant genetic model. Finally, all haplotypes corresponding to one setting were assumed to have constant (temperature) niche size, defined as a proportion (ω = 50%, 75% and 100%, for one haplotype only 100%) of the entire species’ (temperature) niche. The temperature niche was computed as the difference between the upper and lower temperature values at which the LRM-derived suitability curve predicted a suitability equal to OT (with precipitation and soil set to the respective optima of the species, also derived from the LRMs). To derive the same geographic distribution under current climatic conditions for each setting, the union of the niches of all haplotypes of one set has to approximate the niche of the single-species model (Extended Data Fig. 6). Note, however, that, the aspired equality of niches is impossible, as the niches resulting from a logistic regression with quadratic terms are always elliptic in shape. Therefore, the optima of the two extreme homozygotes (that is, those carrying haplotypes adapted to the coldest or warmest margins of the entire species’ niche) are fixed at: niche limits ± 1/2 × ω × niche size and all other optima are distributed between them at equal distances (Extended Data Fig. 6 gives a schematic illustration). As a consequence, the performance of the extreme haplotypes, both coldest and warmest, is modelled to be somewhat higher towards the cold and warm margins of the temperature niche, respectively, compared with the performance modelled for the species without intraspecific niche partitioning (compare the overlap of the black with the red and blue curves in Extended Data Fig. 6a). However, as haplotype number did not affect modelled range loss (compare Table 1), this marginal mismatch does not apparently impact our results. Homozygotes were ordered from the cold-adapted A1A1 up to the warm-adapted AnAn.Finally, the suitability curves of the genotypes were assumed to have the same value at their optimum as the species-specific suitability curve at this point (Extended Data Fig. 6).Artificial landscapesArtificial landscapes were defined as a raster of 50 × 112 cells (of 100 × 100 m). These rasters were homogeneous with respect to precipitation and soil carbon conditions which were set to the values optimal for each species according to the LRMs. With respect to temperature, by contrast, we implemented a gradient across the raster running from the minimum –9.1 °C to the maximum +3.8 °C temperature for which the LRM predicts values >OT across all six species. Buffering by 1 °C at both limits was done to avoid truncating simulation results. Further 4 °C at the lower limit were added to consider simulated temperature increase (below). The final temperature range represented by the raster ran from −14.1 to +4.8 °C. Temperature increased linearly along this axis by an increment of 0.171 °C per cell, derived from a 20° slope and a temperature decrease of 0.5 °C per 100 m of elevational change. Along the 50-cell breadth of the landscape, temperature values were kept constant. On the basis of these grids, we implemented a moderate and a severe climate change scenario, characterized by temperature increases of 2 and 4 °C, respectively, over 80 yr. Therefore, temperature of each raster cell increased annually by 0.025 and 0.05 °C, respectively.Simulations of spatiotemporal range dynamicsCATS21 is a spatially and temporarily explicit model operating on a two-dimensional grid (of 100 m mesh size in this case). CATS combines simulations of local species’ demography with species’ distribution models by scaling demographic rates relative to occurrence probabilities (suitabilities) predicted for the respective site or grid cell by the latter. Dispersal among grid cells is modelled as a combination of wind, exozoochoric and endozoochoric (that is, animal dispersal via attachment to the fur or ingestion and defecation, respectively) dispersal of plant seeds. Time proceeds in annual steps. The annually changing occurrence probabilities at each site affect the demography of local populations and hence, eventually, the number of seeds that are produced in each grid cell in the respective year. As a consequence, local populations grow or decrease, become extinct or establish anew and hence the species’ distribution across the whole study area changes as a function of the changing climate.Demographic modellingClimate-dependence of local demography was modelled by linking demographic rates (seed persistence, germination, survival, flowering frequency, seed yield and clonal reproduction) and carrying capacity to occurrence probabilities predicted by LRMs by means of sigmoidal functions. Furthermore, all rates were fixed at OT at a value ensuring stable population sizes; for more information see refs. 21,33. Demographic rates were confined by zero and a species-specific maximum value (Supplementary Table 1), which was assumed to be the same for all genotypes of a species. As a corollary, the demographic rates of all genotypes of a species are the same under optimal environmental conditions but their actual values for a particular site in a particular year differ due to different temperature optima of genotypes. In addition, germination, survival and clonal reproduction were modelled as density-dependent processes to account for intraspecific competition between genotypes. In our application, for all density-dependent functions, the species abundance is defined as the sum of all adult individuals in a given cell, regardless of their genotypes. Density dependence is commonly achieved by multiplying rates with (C – N)/C, where N is the species abundance and C is the (site- and genotype-specific) carrying capacity. This correction for density dependence causes the functions to drop to zero when N approximates C. To avoid the subsequent collapse of population sizes, we defined density-dependent rates as (C – N)/C × rate() + N/C × rate(OT), which ensures stable population sizes at densely populated sites occupied by only one genotype. To account for uncertainty in parameters of demographic rates, we assigned each species two value sets representing the upper and lower end of a plausible range of values on the basis of information derived from databases and own measurements (Supplementary Table 1).The simulations allowed for cross-pollination between genotypes. We used the relative amount of flowers (genotype-specific flowering frequency as defined by the sigmoid curve for the given suitability in the given raster cell for the given year × number of adults of that genotype in the population of that cell) to derive an estimate of the haplotype frequencies in the total pollen produced by the population within a grid cell. For the multiallelic case we allowed for recombination between loci with a recombination rate of 0.1%. These frequencies were set equal to the probability that particular haplotypes are transmitted to each year’s seed yield by pollination. Spatial pollen dispersal was accounted for in the following way: in each cell, 5% of the pollen involved in producing the annual seed yield, was assumed to stem from outside the respective raster cell. The proportions of different haplotypes in this 5% were derived from the overall pollen frequencies in all cells within a 700 m radius around the target cell (following estimates in ref. 52). Subsequently, produced seeds of each genotype were divided into resulting genotypes regarding the adult’s haplotype composition and the haplotype frequencies in the cells’ entire pollen load.Dispersal modellingFor wind dispersal of plant species we parameterized the analytical WALD kernel53 on the basis of measured seed traits and wind speed data from a meteorological station in the Central Alps of Austria. Exozoochorous and endozoochorous plant kernels were parameterized on the basis of correlated random walk simulations for the most frequent mammal dispersal vector in the study area, the chamois (Rupicapra rupicapra L.). For more details, see ref. 33. To account for uncertainties in species-specific dispersal rates, the proportion of seeds dispersed by the more far-reaching zoochorous kernels was assumed either as high (1–5%) or low (0.1–0.5%), setting upper and lower boundaries of a credible range of the dispersal ability of species.Simulation set up and simulation initializationTo test for the effects of climate change on genetic diversity in 2080, we ran CATS over the period 2000 to 2080 for each of the six study species across the entire Alps under a full factorial combination of (1) three niche sizes (50%, 75% and 100%); (2) six numbers of haplotypes (equal to two, three, five and ten alleles for one locus and four and eight for the diallelic two- and three-locus models, respectively); (3) three climate scenarios (current climate, RCP 2.6 and RCP 8.5); and (4) two sets of demographic and dispersal parameters. As a ‘control’ we also ran simulations for all climate scenarios and the two demographic and dispersal parameter sets for a setting with one genotype filling the whole niche of the species. To account for stochastic elements in CATS four replications were run for each combination of ‘treatments’.For simulations in artificial landscapes we used, instead of RCP 2.6 and RCP 8.5, ‘artificial’ climatic scenarios with an assumed warming of 2 and 4 °C, respectively, and no change in precipitation.All simulation runs were started with homozygotic individuals only. As initial distribution, for each simulation run each cell predicted to be environmentally suitable to the species (that is, occurrence probability of species >OT)—and within the real distribution range of the species28 (not relevant for simulations in artificial landscapes, of course)—was assumed to be occupied by an equal number of adults of each (homozygotic) genotype, with the total sum equal to the carrying capacity of the site. To accommodate this arbitrary within-cell genetic mixture of homozygotes (and missing heterozygotes) to actual local conditions we started simulations of range dynamics with a burn-in phase of 200 yr, run under constant current climatic conditions. To have a smooth transition from the burn-in phase under current climate (corresponding to the climate of the years 1970–2005; see current climate data) to future climate projections (starting with 2030) and to derive annual climate series, climate data were linearly interpolated between these two time intervals.Statistical analysisWe evaluated the contribution of climate scenario, haplotype number and haplotype niche size to overall species’ range change as well as the change in the frequency of the warm-adapted haplotype by means of linear models. In these models, log(range size in 2080/range size in 2000) and log(percentage of warm-adapted haplotype in 2080/percentage of warm-adapted haplotype in 2000), averaged over the four replicates and the two demographic and dispersal parameter sets, were the response variables. For the analysis of the change of the warm-adapted haplotype simulation settings with 100% niche size were ignored, as in this setting all haplotypes have the same temperature optimum (that is, neutral genetic variation). Approximate normality of residuals was confirmed by visual inspection.As indicator of the ‘topographic opportunity’ remaining to the species in the real world we calculated the area colonizable at elevations higher than those already occupied at the end of the simulation period. We therefore drew a buffer of 1 km around each cell predicted to be occupied in 2080 and then summed the area within these buffers at a higher elevation than the focal, occupied cell. Overlapping buffer areas were only counted once. This calculation was done for simulations conducted with one full-niche genotype per species only.Sensitivity analysisWe interpret the simulated relative decrease of warm-adapted haplotypes mainly as an effect of (1) the unrestricted expansion of cold-adapted haplotypes at the leading edge and (2) the resistance of the locally predominating haplotype that becomes increasingly maladapted with progressive climate warming, to recruitment by better-adapted haplotypes from below that are either rare or not present at all initially. However, the results achieved, and our conclusions, may be sensitive to assumptions about particular parameter values. Parameters that control the longevity of adult plants, and indirectly the rate of recruitment of new individuals, as well as those controlling gene flow via pollen (instead of seeds) may be particularly influential in this respect. We additionally ran simulations on artificial landscapes under alternative values of these parameters. In particular, we set the maximum age of plants to 10 yr instead of 100 yr and raised the proportion of locally produced pollen assumed to be transported up to 700 m to 10%. Both of these values are thus probably set to rather extreme levels: a maximum age of 10 yr is much shorter than the 30–50 yr assumed to be the standard age of (non-clonal) alpine plants31; and a cross-pollination rate between cells of 10% is high given that among the most important alpine pollinators only bumblebees are assumed to transport pollen >100 m regularly54,55. We add that we ran these additional simulations only in combination with the demographic species parameters set to high values because a short life span combined with low-level demographic parameters did not allow for stable populations of some species, even under current climatic conditions.For individual species, adapting plant age and cross-pollination rate between cells (Extended Data Fig. 7), did change the magnitude of loss of the warm-adapted haplotype. Nevertheless, for all of them the warm-adapted haplotype still became rarer when climate warmed and this effect increased with the level of warming. We are confident that our conclusions are qualitatively insensitive to variation of these parameters within a realistic range.Finally, in the simulations where we assumed a multilocus structure of the temperature niche, the recombination rate may also affect simulation results because it determines the rate by which new haplotypes can emerge. We also tested sensitivity of our simulations to doubling the recombination rate to 0.2%. Again, we found that a higher recombination rate had little qualitative effect on the results. Quantitatively, it resulted in a slightly pronounced relative decrease of the warmth-adapted haplotype in most species (Extended Data Fig. 8).Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More