Ant nest architecture is shaped by local adaptation and plastic response to temperature
1.Minter, N. J., Franks, N. R. & Brown, K. A. R. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 9, 586–595 (2012).PubMed
Google Scholar
2.Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 2016).
Google Scholar
3.Tschinkel, W. R. The architecture of subterranean ant nests: Beauty and mystery underfoot. J. Bioecon. 17, 271–291 (2015).
Google Scholar
4.Brian, M. V. & Brian, M. V. Production Ecology of Ants and Termites (Cambridge University Press, 1978).
Google Scholar
5.De Bruyn, L. A. L. & Conacher, A. J. The role of termites and ants in soil modification: A review. Soil Res. 28, 55–93 (1990).
Google Scholar
6.Sankovitz, M. A. & Breed, M. D. Effects of Formica podzolica ant colonies on soil moisture, nitrogen, and plant communities near nests. Ecol. Entomol. 44, 71–80 (2019).
Google Scholar
7.Tschinkel, W. R. Subterranean ant nests: Trace fossils past and future?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 192, 321–333 (2003).
Google Scholar
8.Pinter-Wollman, N. Nest architecture shapes the collective behaviour of harvester ants. Biol. Lett. 11, 20150695 (2015).PubMed
PubMed Central
Google Scholar
9.Rosengren, R., Fortelius, W., Lindström, K. & Luther, A. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fennici 24, 147–155 (1987).
Google Scholar
10.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).
Google Scholar
11.Savolainen, R. & Vepsäläinen, K. A competition hierarchy among boreal ants: Impact on resource partitioning and community structure. Oikos 51, 135–155 (1988).
Google Scholar
12.Frouz, J., Jílková, V. & Sorvari, J. Contribution of wood ants to nutrient cycling and ecosystem function. Wood Ant Ecol. Conserv. https://doi.org/10.1017/CBO9781107261402.010 (2016).Article
Google Scholar
13.Seeley, T. & Heinrich, B. Regulation of Temperature in the Nests of Social Insects (FAO, 1981).
Google Scholar
14.Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Elsevier, 1998).
Google Scholar
15.Blomqvist, M. M., Olff, H., Blaauw, M. B., Bongers, T. & Van Der Putten, W. H. Interactions between above- and belowground biota: Importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90, 582–598 (2000).
Google Scholar
16.MacMahon, J. A., Mull, J. F. & Crist, T. O. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annu. Rev. Ecol. Syst. 31, 265–291 (2000).
Google Scholar
17.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management 130–147 (Springer, 1994).
Google Scholar
18.Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).
Google Scholar
19.Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. U. S. A. 113, 1303–1308 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
20.Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Change Biol. 25, 2162–2173 (2019).ADS
Google Scholar
21.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS
PubMed
Google Scholar
22.Braschler, B. et al. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. J. Anim. Ecol. 89, 2863–2875 (2020).PubMed
Google Scholar
23.Roeder, K. A., Bujan, J., Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: An example from North American ant communities. Ecosphere 12, e03645 (2021).
Google Scholar
24.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U. S. A. 105, 6668–6672 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
25.Diamond, S. E., Sorger, D. M., Hulcr, J. & Pelini, S. L. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 18, 448–456 (2012).ADS
Google Scholar
26.Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27, 934–949 (2013).
Google Scholar
27.Wilson, E. O. The effects of complex social life on evolution and biodiversity. Oikos 63, 13–18 (1992).CAS
Google Scholar
28.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).
Google Scholar
29.Deslippe, R. J. & Savolainen, R. Colony foundation and polygyny in the ant Formica podzolica. Behav. Ecol. Sociobiol. 37, 1–6 (1995).
Google Scholar
30.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Google Scholar
31.Chambers, J. M., Freeny, A. & Heiberger, R. M. Analysis of variance; designed experiments. Stat. Models S 5, 145–193 (1992).
Google Scholar
32.Fox, J. Applied Regression Analysis and Generalized Linear Models (SAGE Publications, 2015).
Google Scholar
33.Mikheyev, A. S. & Tschinkel, W. R. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Soc. 51, 30–36 (2004).
Google Scholar
34.Coppernoll-Houston, D. & Potter, C. Field measurements and satellite remote sensing of daily soil surface temperature variations in the lower Colorado desert of California. Climate 6, 94 (2018).
Google Scholar
35.Jílková, V., Cajthaml, T. & Frouz, J. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Biol. Biochem. 86, 50–57 (2015).
Google Scholar
36.Kadochová, Š, Frouz, J. & Roces, F. Sun basking in red wood ants Formica polyctena (Hymenoptera, Formicidae): Individual behaviour and temperature-dependent respiration rates. PLoS ONE 12, e0170570 (2017).PubMed
PubMed Central
Google Scholar
37.Bollazzi, M., Kronenbitter, J. & Roces, F. Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 158, 165–175 (2008).ADS
PubMed
Google Scholar
38.Stockan, J. A. & Robinson, E. J. H. Wood Ant Ecology and Conservation (Cambridge University Press, 2016).
Google Scholar
39.Porter, S. D. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J. Insect Physiol. 34, 1127–1133 (1988).
Google Scholar
40.Lapointe, S. L., Serrano, M. S. & Jones, P. G. Microgeographic and vertical distribution of Acromynnex landolti (Hymenoptera: Formicidae) nests in a Neotropical Savanna. Environ. Entomol. 27, 636–641 (1998).
Google Scholar
41.Fowler, H. G. Leaf-cuttings ants of the genera Atta and Acromyrmex of Paraguay (Hymenoptera: Formicidae). Mmitt. Mus. Naturkunde Berl. Dtsch. Entomol. Z. 32, 19–34 (2008).
Google Scholar
42.Hansell, M. & Hansell, M. H. Animal Architecture (OUP, 2005).
Google Scholar
43.Shik, J. Z., Arnan, X., Oms, C. S., Cerdá, X. & Boulay, R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J. Anim. Ecol. 88, 1240–1249 (2019).PubMed
Google Scholar
44.Cerda, X., Retana, J. & Cros, S. Critical thermal limits in Mediterranean ant species: Trade-off between mortality risk and foraging performance. Funct. Ecol. 12, 45–55 (1998).
Google Scholar
45.Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).ADS
Google Scholar
46.Talbot, M. Distribution of ant species in the Chicago region with reference to ecological factors and physiological toleration. Ecology 15, 416–439 (1934).
Google Scholar
47.Arnan, X. & Blüthgen, N. Using ecophysiological traits to predict climatic and activity niches: Lethal temperature and water loss in Mediterranean ants: Using physiology to predict niches. Glob. Ecol. Biogeogr. 24, 1454–1464 (2015).
Google Scholar
48.Arnan, X., Blüthgen, N., Molowny-Horas, R. & Retana, J. Thermal characterization of European ant communities along thermal gradients and its implications for community resilience to temperature variability. Front. Ecol. Evol. 3, 138 (2015).
Google Scholar
49.Baudier, K. M. & O’Donnell, S. Structure and thermal biology of subterranean army ant bivouacs in tropical montane forests. Insectes Soc. 63, 467–476 (2016).
Google Scholar
50.Penick, C. A. & Tschinkel, W. R. Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insectes Soc. 55, 176–182 (2008).
Google Scholar
51.Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: Comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
Google Scholar
52.Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. U. S. A. 106, 3835–3840 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
53.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).PubMed
Google Scholar More