More stories

  • in

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    1.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).2.Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).
    Google Scholar 
    3.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).8.Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
    Google Scholar 
    9.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    14.Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
    Google Scholar 
    16.Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).
    Google Scholar 
    17.Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).CAS 

    Google Scholar 
    18.Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).
    Google Scholar 
    19.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..20.Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 
    26.Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
    Google Scholar 
    32.Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).
    Google Scholar 
    33.Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    34.Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    36.Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).
    Google Scholar 
    37.Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).
    Google Scholar 
    38.Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).
    Google Scholar 
    39.Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).
    Google Scholar 
    40.Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).41.Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).
    Google Scholar 
    42.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).
    Google Scholar 
    47.Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).
    Google Scholar 
    48.Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    50.Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
    Google Scholar 
    51.Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    52.Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    53.Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).
    Google Scholar 
    55.Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
    Google Scholar 
    56.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    57.O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).
    Google Scholar 
    58.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).59.Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).
    Google Scholar 
    60.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    61.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
    Google Scholar 
    62.Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
    Google Scholar 
    64.Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).
    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).67.Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).CAS 

    Google Scholar 
    68.Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).70.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).
    Google Scholar  More

  • in

    Predicting spring migration of two European amphibian species with plant phenology using citizen science data

    1.Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: A developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933. https://doi.org/10.1242/jeb.040865 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia (eds Rounsevell, M. et al.) (IPBES, 2018).
    Google Scholar 
    3.Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Accessible habitat: An improved measure of the effects of habitat loss and roads on wildlife populations. Landsc. Ecol. 23, 159–168. https://doi.org/10.1007/s10980-007-9174-7 (2008).Article 

    Google Scholar 
    4.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 (2006).Article 

    Google Scholar 
    5.Pittman, S. E., Osbourn, M. S. & Semlitsch, R. D. Movement ecology of amphibians: A missing component for understanding population declines. Biol. Conserv. 169, 44–53. https://doi.org/10.1016/j.biocon.2013.10.020 (2014).Article 

    Google Scholar 
    6.Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 1–11. https://doi.org/10.1186/s12898-017-0134-z (2017).Article 

    Google Scholar 
    7.Heigl, F. & Zaller, J. G. Using a citizen science approach in higher education: A case study reporting roadkills in Austria. Hum. Comput. https://doi.org/10.15346/hc.v1i2.7 (2014).Article 

    Google Scholar 
    8.Kyek, M., Kaufmann, P. H. & Lindner, R. Differing long term trends for two common amphibian species (Bufo bufo and Rana temporaria) in alpine landscapes of Salzburg, Austria. PLoS ONE 12, e0187148. https://doi.org/10.1371/journal.pone.0187148 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Klepsch, R. et al. Amphibienschutz an Straßen. Leitbilder zu temporären und permanenten Schutzeinrichtungen. ÖGH-Aktuell, Mitteilungen der Österreichischen Gesellschaft für Herpetologie (2011).10.Kropfberger, J. Naturschützer als Amphibientaxi. Amphibienschutzprojekte des naturschutzbund Oberösterreich. natur&land 103, 12–13 (2017).
    Google Scholar 
    11.Gross, M. Amphibienschutz an Niederösterreichs Straßen. natur&land 103, 16–18 (2017).
    Google Scholar 
    12.Kordges, T. & Weddeling, K. Immer früher? Langzeitmonitoring (1979–2013) zum Laichbeginn des Grasfrosches (Rana temporaria) im Felderbachtal in Hattingen (NRW). Zeitschrift für Feldherpetologie 24, 211–222 (2015).
    Google Scholar 
    13.Arnfield, H., Grant, R., Monk, C. & Uller, T. Factors influencing the timing of spring migration in common toads (Bufo bufo). J. Zool. 288, 112–118. https://doi.org/10.1111/j.1469-7998.2012.00933.x (2012).Article 

    Google Scholar 
    14.Timm, B. C., McGarigal, K. & Compton, B. W. Timing of large movement events of pond-breeding amphibians in Western Massachusetts USA. Biol. Conserv. 136, 442–454. https://doi.org/10.1016/j.biocon.2006.12.015 (2007).Article 

    Google Scholar 
    15.Dervo, B. K., Bærum, K. M., Skurdal, J. & Museth, J. Effects of temperature and precipitation on breeding migrations of amphibian species in southeastern Norway. Scientifica 2016, 3174316. https://doi.org/10.1155/2016/3174316 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Loman, J. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size. Ecol. Evolut. 6, 6202–6209. https://doi.org/10.1002/ece3.2356 (2016).Article 

    Google Scholar 
    17.Hofrichter, R. Amphibien: Evolution, Anatomie, Physiologie, Ökologie und Verbreitung, Verhalten, Bedrohung und Gefährdung (Naturbuch-Verl., 1998).
    Google Scholar 
    18.Hartel, T., Sas, I., Pernetta, A. P. & Geltsch, I. C. The reproductive dynamic of temperate amphibians: A review. North-Western J. Zool. 3, 127–145 (2007).
    Google Scholar 
    19.Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777. https://doi.org/10.1126/science.1149374 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    20.Reading, C. J. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469–475. https://doi.org/10.1007/s004420050682 (1998).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    21.Tryjanowski, P., Rybacki, M. & Sparks, T. Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann. Zool. Fennici 10, 459–464 (2003).
    Google Scholar 
    22.Mazgajska, J. & Mazgajski, T. D. Two amphibian species in the urban environment: Changes in the occurrence, spawning phenology and adult condition of common and green toads. Eur. Zool. J. 87, 170–179. https://doi.org/10.1080/24750263.2020.1744743 (2020).Article 

    Google Scholar 
    23.Scott, W. A., Pithart, D. & Adamson, J. K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. hpet 42, 89–96. https://doi.org/10.1670/07-022.1 (2008).Article 

    Google Scholar 
    24.Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693. https://doi.org/10.1007/s00442-016-3610-9 (2016).Article 
    PubMed 
    ADS 

    Google Scholar 
    25.Delpierre, N. et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25. https://doi.org/10.1007/s13595-015-0477-6 (2016).Article 

    Google Scholar 
    26.Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 (2012).Article 
    ADS 

    Google Scholar 
    27.Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8. https://doi.org/10.1007/s10342-012-0661-2 (2013).Article 

    Google Scholar 
    28.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).Article 
    ADS 

    Google Scholar 
    29.ZAMG. PhenoWatch—ZAMG Phänologie. http://www.phenowatch.at/ (2020).30.Naturschutzbund Österreich. naturbeobachtung.at: der Treffpunkt für Naturbeobachtung in Österreich (2020).31.Citizen Science Working Group. Project roadkill. https://roadkill.at/ (2020).32.Naturhistorisches Museum Wien. Naturhistorisches Museum Wien—Herpetofaunistische Datenbank. https://www.nhm-wien.ac.at/forschung/1_zoologie_wirbeltiere/herpetologische_sammlung/datenbank (2021).33.Münch, D. Populationsentwicklung und klimatisch veränderte Frühjahrsaktivität von Erdkröte, Teichmolch, Bergmolch nd Kammolch an der Höfkerstraße (am NSG Hallerey in Dortmund 1981–1997). Dortmunder Beitr. Landeskde. Naturwiss. Mitt 32, 98–106 (1998).
    Google Scholar 
    34.Chmielewski, F.-M. & Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 108, 101–112. https://doi.org/10.1016/S0168-1923(01)00233-7 (2001).Article 
    ADS 

    Google Scholar 
    35.Menzel, A. Phenology: Its importance to the global change community. Clim. Change 54, 379–385 (2002).Article 

    Google Scholar 
    36.Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol. Biogeogr. 15, 498–504. https://doi.org/10.1111/j.1466-822X.2006.00247.x (2006).Article 

    Google Scholar 
    37.Crimmins, M. A. & Crimmins, T. M. Does an early spring indicate an early summer? Relationships between intraseasonal growing degree day thresholds. J. Geophys. Res. Biogeosci. 124, 2628–2641. https://doi.org/10.1029/2019JG005297 (2019).Article 

    Google Scholar 
    38.Zentralanstalt für Meteorologie und Geodynamik. Beobachtungsanleitung für die Phänologie (2013).39.Meier, U. (ed.) Growth stages of mono- and dicotyledonous plants. BBCH monograph = Entwicklungsstadien mono- und dikotyler Pflanzen (Blackwell-Wiss.-Verl., 1997).
    Google Scholar 
    40.Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in spawning date between populations of common frog reveal local adaptation. Proc. Natl. Acad. Sci. 107, 8292–8297. https://doi.org/10.1073/pnas.0913792107 (2010).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    41.Auer, I. et al. HISTALP—Historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. https://doi.org/10.1002/joc.1377 (2007).Article 

    Google Scholar 
    42.Hiebl, J. et al. A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. metz 18, 507–530. https://doi.org/10.1127/0941-2948/2009/0403 (2009).Article 

    Google Scholar 
    43.BMVIT—Bundesministerium für Verkehr, Innovation und Technologie. Gesamtverkehrsplan für Österreich. https://www.bmk.gv.at/dam/jcr:dfd82842-234b-41c7-a267-0dc7ac76eb6b/gvp_gesamt.pdf (2012).44.European Environment Agency. Landscape fragmentation pressure and trends in Europe. https://www.eea.europa.eu/data-and-maps/indicators/mobility-and-urbanisation-pressure-on-ecosystems-2/assessment (2020).45.Grillmayer, R., Banko, G., Leitner, H. & Leissing, D. Wie zerschnitten ist unsere Landschaft? natur&land, 30–31 (2015).46.Weißmair, W. Monitoring ausgewählter Amphibienwanderstrecken—Endbericht 2010 Amt der Oö (Landesregierung, Abteilung Naturschutz, 2011).
    Google Scholar 
    47.Dick, G. & Sackl, P. Angaben zur Laichwanderung von Erdkröte, Bufo b. bufo (LINNAEUS; 1758), und Grasfrosch, Rana t. temporaria LINNAEUS, 1758, einiger Populationen im Waldviertel (Niederösterreich) sowie zu praktischen Schutzmaßnahmen. Herpetozoa 1, 13–22 (1988).
    Google Scholar 
    48.Wolf, M. J., Smole-Wiener, A. K. & Kleewein, A. Lebensraum- und Populationsanalyse am Beispiel der Amphibienwanderstrecke 37 Wernberg, Kärnten. Carinthia II 125, 741 (2015).
    Google Scholar 
    49.Kapeller, H. Amphibienschutz im Sellraintal. natur&land 103, 15 (2017).
    Google Scholar 
    50.Templ, B. et al. Pan European phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 62, 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 (2018).Article 
    PubMed 
    ADS 

    Google Scholar 
    51.Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).Article 
    ADS 

    Google Scholar 
    52.Lanner, J., Huchler, K., Pachinger, B., Sedivy, C. & Meimberg, H. Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in European alpine countries. PLoS ONE 15, e0236042. https://doi.org/10.1371/journal.pone.0236042 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Schweiger, S., Grillitsch, H., Hill, J. & Mayer, W. Die Mauereidechse, Podarcis muralis (Laurenti, 1768) in Österreich: Phylogeographie, Verbreitung, Lebensräume und Schutz. In Verbreitung, Biologie und Schutz der Mauereidechse Podarcis muralis (Laurenti, 1768) (eds Laufer, H. & Schulte, U.) 44–55 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e.V, 2015).
    Google Scholar 
    54.Maletzky, A. & Schweiger, S. Zur Situation der Erdkröte, Bufo bufo in Österreich—Verbreitung, Phänologie, Gefährdung und Schutz. In Verbreitung, Biologie und Schutz der Erdkröte Bufo bufo (LINNAEUS, 1758) mit besonderer Berücksichtigung des Amphibienschutzes an Straßen (eds Maletzky, A. et al.) 58–66 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde, 2016).
    Google Scholar 
    55.Cabela, A., Grillitsch, H. & Tiedemann, F. Atlas zur Verbreitung und Ökologie der Amphibien und Reptilien in Österreich. Auswertung der herpetofaunistischen Datenbank der herpetologischen Sammlung des Naturhistorischen Museums in Wien (Naturhistorisches Museum, 2001).
    Google Scholar 
    56.Brunken, G. Amphibienwanderungen. Zwischen Land und Wasser. Merkblatt NVN/BSH 1–4 (2004).57.Hiebl, J., Reisenhofer, S., Auer, I., Böhm, R. & Schöner, W. Multi-methodical realisation of Austrian climate maps for 1971–2000. Adv. Sci. Res. 6, 19–26. https://doi.org/10.5194/asr-6-19-2011 (2011).Article 

    Google Scholar 
    58.RStudio. RStudio—Take control of your R code. https://rstudio.com/products/rstudio/ (2020). More

  • in

    Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application

    Field control effect of strain MHT1134 on Fusarium wilt of pepperBefore the investigation of strain MHT1134 control effect, pepper plants with the same wilt symptoms were collected from CC9, TR1 and TR2 fields. The same wilt symptom is that the lower leaves of the plant turn yellow or fall off, and the whole seedling plant wilt and die in the later stage. The pepper root neck can be seen with obvious water-stained brown disease spots. When the root and stem are cut open, the vascular bundle turns brown and has a trend of upward stretching (Fig. 1A–C). We isolated a strain in the root, which colony color is purple (Fig. 1E,F), On the sixth day after inoculating healthy pepper with the spore suspension, the plants showed lower leaf shedding and plant wilting (Fig. 1D). And the pathogen was isolated in the root with the same colony characteristics and micromorphology. The main classification features are as follows: the conidiophores are colorless, with bottle-shaped spore-producing cells at the top (Fig. 1G). There are two kinds of conidias. The small conidia are monocytic, oval or kidney shaped, colorless and are 5–12 × 2–3.5 μm in size. Large conidia are multicellular, sickle-shaped, slightly curved, with slightly pointed cells at both ends, colorless and are 19.6–39.4 × 3.5–5.0 μm in size (Fig. 1H). The morphological characteristics of the strain were consistent with Fusarium oxysporum. The strain DNA was extracted and ITS sequence was amplified by PCR to obtain a DNA fragment with a length of about 500 bp. The sequencing results were compared with the gene sequences in Genbank, and the highest homology was found in Fusarium, and the sequence homology with Fusarium oxysporum reached 100%. The pathogen of pepper wilt was Fusarium oxysporum by means of morphological and molecular identification.Figure 1Typical symptoms and identification of pathogen strains of pepper Fusarium wilt in experimental sites. (A) At the late stage of Fusarium wilt, the whole plant withered and died; (B) the lateral root and taproot of the pepper turn brown and rot; (C) discoloration of vascular bundle in pepper stem after cutting; (D) after the isolated F. oxysporum was inoculated on the pepper, which showed the initial symptoms of wilt disease; (E) positive characteristics of F. oxysporum colony; (F) negative characteristics of colony; (G) sporulation peduncle in bottle shape; (H) large and small conidia.Full size imageCompared with CC9 treatment without biocontrol fungi MHT1134, the disease rate and disease index of pepper Fusarium wilt in TR1 and TR2 treatment were decreased. In TR1, the disease rate and disease index of pepper wilt decreased by 8.44% and 3.76%, respectively. In TR2, the disease rate and disease index of pepper wilt decreased by 57.69% and 63.02%, respectively. However, in the TR2 plots over 2018 and 2019, the disease rate and disease index decreased to 7.13% and 3.03%, which were 64.26% and 70.20%, respectively, less than in the CC9 plots. The control effect of MHT11341 on pepper wilt was 63.03% and 70.21% after one and two years of continuous cropping field, respectively (Table 1). The results indicated that the continuous application of a biocontrol strain further consolidated and improved the control effect.Table 1 Control effects of strain MHT1134 on Fusarium wilt in continuous pepper cropping fields.Full size tableEffects of strain MHT1134 on the physical and chemical properties of pepper rhizosphere soilSoil samples from different planting years showed differences in their physical and chemical properties. In particular, the contents of available phosphorus, available potassium and organic matter were significantly different between the soil planted for the first year and the soil continuously planted for 9 years (available phosphorus: F = 4.38 p = 0.03; available potassium: F = 2.94 p = 0.009; organic matter: F = 5.45 p = 0.02). With the increase in planting years, the organic matter and alkali-hydrolysable nitrogen contents in the soil showed decreasing trends. The organic matter content in the CC9 soil samples was 23.64% less than in the CC1 soil samples, and the alkali-hydrolysable nitrogen content was 45.2% less. The available phosphorus and available potassium levels did not show regular change trends, but the available potassium content in the CC9 soil was lower than in the CC1 soil.Compared with the CC9 soil samples, the alkali-hydrolysed nitrogen, organic matter, available phosphorus and available potassium contents in TR1 soil samples increased by 46.82%, 6.26%, 5.09% and 47.06%, respectively. The available potassium content increased most obviously, followed by alkali-hydrolysable nitrogen. The alkali-hydrolysable nitrogen, organic matter and available phosphorus contents decreased slightly in TR2, but were still higher than those in the CC9 soil samples. In addition, the available potassium content continued to increase by 20% after the application of biocontrol bacterium MHT1134 in the second year (Table 2).Table 2 Effects of MHT1134 on physical and chemical properties of the pepper rhizosphere soil.Full size tableEffects of strain MHT1134 on enzymatic activities in pepper rhizosphere soilBy comparing the activities of six kinds of enzymes in the five groups of soil samples, we found that all the activities, except for that of acid phosphatase, in the CC9 soil were lower than those in the CC1 soil. In TR1 and TR2, the activities of the six enzymes in the soil increased. The urease, dehydrogenase, acid phosphatase, catalase, invertase and acid protease activities increased by 9.04%, 4.42%, 29.02%, 9.35%, 17.83% and 6.83% in TR1, respectively, and by 18.60%, 20.26%, 22.86%, 18.87%, 16.59% and 14.30% in TR2, respectively (Fig. 2A–F). The results indicated that MHT1134 applications could improve the enzyme activities in the soil to different degrees. Moreover, the urease, dehydrogenase, catalase and acid protease activities in soil significantly increased after the continuous application of MHT1134.Figure 2Differences in the enzyme activities in the continuously cropped pepper rhizosphere soil after the application of strain MHT1134. Activity levels of (A) urease; (B) dehydrogenase; (C) acid phosphatase; (D) catalase; (E) invertase; and (F) acid protease. CC1, CC5 and CC9, represent the plots where pepper had been continuously planted for 1, 5 and 9 years, respectively, and TR1 and TR2 represent CC9 plots in which the MHT1134 biocontrol fermentation broth had been applied 1 and 2 years in advance, respectively.Full size imageMicrobial diversity and richnessThe sample dilution curve tended to be flat, and the fungal and bacterial diversity index table (Table 3) shows that the library coverage levels were greater than 99% and 98%, respectively. Together, they indicate that the OTU coverage of the soil samples is basically saturated; therefore, the OTUs reflect the species and structures of the fungal and bacterial communities in the samples. High-throughput sequencing results showed that 765,747 16S rRNA sequences and 1,012,237 ITS sequences were obtained from 15 samples of pepper rhizosphere soil subjected to five treatments. After data quality control, there were 35,362–72,498 bacterial 16S rRNA sequences and 54,007–74,562 fungal ITS sequences. In addition, using the 97% standard, the bacterial and fungal OTU numbers were 17,444–47,775 and 50,876–71,236, respectively.Table 3 Alpha-diversity indexes of fungi and bacteria in different continuous pepper cropping soils.Full size tableAlpha-diversity analysis of fungi and bacteriaThe changes in fungal and bacteria diversity are shown in Table 3. According to the Shannon index analysis, the species richness of fungi in CC1 was the highest (2.88). As the planting years increased, the Shannon index decreased gradually (2.71 in CC5 and 2.69 in CC9). Although ACE and Chao indexes, representing the species abundance of the community, did not show obvious increasing trends, in CC9, the values of the two indexes were significantly higher than in CC1, which indicated that as the planting years increased, the diversity of fungi in the pepper soil decreased, while the species abundance increased. As shown in Table 3, in TR1, the Simpson index, representing species dominance, and the Sobs index, representing species richness, increased significantly, and the Shannon index also increased. In TR2, the Shannon index increased significantly, while the values of other indexes decreased slightly. We hypothesised that after the first year of application, the strain MHT1134 colonised in large numbers, resulting in it being the dominant community species. After continuous application, the soil ecology had adjusted, and the diversity of soil fungi continued to increase. In general, the application of the biocontrol fungal MHT1134 increased the diversity of fungi in the pepper rhizosphere soil and decreased the dominance of some species.The changes in bacterial diversity and abundance in the pepper rhizosphere soil after different periods of continuous cropping are shown by the decreases in the Shannon and Sobs indexes decreased as the planting years increased, indicating that bacterial diversity and bacterial community richness decreased. Although ACE and Chao indexes representing the species abundance of the community did not show regular decreasing trends, in CC9, the values of the two indexes were significantly lower than in CC1, indicating that as the planting years increased, the diversity and richness of bacteria in the pepper soil decreased. Strain MHT1134 had no significant effect on the alpha-diversity index of soil bacteria in TR1, but Simpson, ACE and Chao indexes increased in TR2.Effects of MHT1134 on the microbial community structure in pepper rhizosphere soilAll the bacteria were classified into 352 genera and 23 phyla according to their 16S rRNA sequences, and all the fungi were classified into 6 phyla and 194 genera according to their ITS sequences. The top five phyla in terms of bacterial abundance were Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes and Nitrospirae. The top six phyla in terms of fungal abundance were Ascomycota, Zygomycota, Basidiomycota, Glomeromycota, Chytridiomycota and Rozellomycota.Effects of MHT1134 on fungal community structure in pepper rhizosphere soilThe effects of the biocontrol treatment on fungal phyla are shown in Fig. 3A. After treatment with MHT1134, the relative abundance of Ascomycota decreased significantly from 77.9 to 70.99%. The abundance of Basidiomycota increased significantly after the treatment, whereas it decreased with the continuous cropping time before the MHT1134 application. However, Zygomycota increased in abundance with the continuous cropping time. The abundance of strain MHT1134 increased significantly and then decreased by 1 year after treatment.Figure 3Fungal clustering accumulation map in pepper rhizosphere soil at the phylum (A) and genus (B) levels. CC1, CC5 and CC9, represent the plots where pepper had been continuously planted for 1, 5 and 9 years, respectively, and TR1 and TR2 represent CC9 plots in which the MHT1134 biocontrol fermentation broth had been applied 1 and 2 years in advance, respectively.Full size imageBy analysing the relative abundance of fungi of different genera in the soil, it was found that the fungi of several genera showed similar change trends in different soil treatments. The relative abundances of Fusarium, Gibberella and the alkali-resistant fungus Pseudallescheria in the soil increased along with continuous cultivation years (CC1  TR2). In addition, the trend was found for Trichoderma, Chaetomium and Mortierella, which declined as the planting years increased, but their relative abundance levels significantly increased in TR1 and significantly increased again in TR2 (Fig. 3B).Using Fusarium as the control, we analysed the variation trends of microorganisms in CC9, TR1 and TR2 soil samples. As shown in Fig. 4, the levels of three genera were positively correlated with the Fusarium change trend, Gibellulopsis, Giberella and Pseudallescheria, while three genera, Trichoderma, Chaetomium and Mortierella, were negatively correlated with Fusarium. Thus, the abundance levels of fungi in Gibellulopsis, Gibberella and Pseudallescheria were reduced after the MHT1134 application. Some species of Gibellulopsis are the pathogenic fungi that cause Verticillium wilt, and some species of Gibberella are the pathogenic fungi that cause gibberellic diseases. The abundance levels of Trichoderma, Chaetomium and Mortierella significantly increased after the application of strain MHT1134.Figure 4The relative abundances of the first 15 genera after the MHT1134 application. *0.01  CC5  > CC9), whereas the abundance of Actinobacteria in the soil increased significantly after the application of MHT1134 fermentation broth (CC9  More

  • in

    Forest defoliator outbreaks alter nutrient cycling in northern waters

    1.Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).Article 
    CAS 

    Google Scholar 
    2.Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).CAS 
    Article 

    Google Scholar 
    3.Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).Article 

    Google Scholar 
    5.Williamson, C. E., Morris, D. P., Pace, M. L. & Olson, O. G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 44, 795–803 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).CAS 
    Article 

    Google Scholar 
    8.Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P. & Ackerman, J. D. The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ. Toxicol. Chem. 29, 2519–2528 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Hessen, D. O. Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5, 327–341 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Bergström, A. K., Blomqvist, P. & Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 50, 987–994 (2005).ADS 
    Article 

    Google Scholar 
    11.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).ADS 
    Article 

    Google Scholar 
    12.Mikkelson, K. M. et al. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21 (2013).CAS 
    Article 

    Google Scholar 
    13.Huber, C. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National park. J. Environ. Qual. 34, 1772–1779 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tokuchi, N., Ohte, N., Hobara, S., Kim, S.-J. & Masanori, K. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan. Hydrol. Process. 18, 2727–2736 (2004).ADS 
    Article 

    Google Scholar 
    15.Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).CAS 
    Article 

    Google Scholar 
    16.Mikkelson, K. M., Dickenson, E. R., Maxwell, R. M., McCray, J. E. & Sharp, J. O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Change 3, 218–222 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Rhoades, C. C. et al. Biogeochemistry of beetle-killed forests: explaining a weak nitrate response. Proc. Natl. Acad. Sci. 110, 1756–1760 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hollinger, D. Y. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70, 291–297 (1986).ADS 
    PubMed 
    Article 

    Google Scholar 
    19.Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).Article 

    Google Scholar 
    20.le Mellec, A., Gerold, G. & Michalzik, B. Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342, 393–403 (2011).CAS 
    Article 

    Google Scholar 
    21.Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carlisle, A., Brown, A. H. F. & White, E. J. Litter fall, leaf production and the effects of defoliation by tortrix viridana in a sessile Oak (Quercus Petraea) woodland. J. Ecol. 54, 65–85 (1966).Article 

    Google Scholar 
    23.Volney, W. J. A. & Fleming, R. A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82, 283–294 (2000).Article 

    Google Scholar 
    24.le Mellec, A., Habermann, M. & Michalzik, B. Canopy herbivory altering C to N ratios and soil input patterns of different organic matter fractions in a Scots pine forest. Plant Soil 325, 255–262 (2009).Article 
    CAS 

    Google Scholar 
    25.Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. BioScience 52, 335–341 (2002).Article 

    Google Scholar 
    26.Lovett, G. M. & Ruesink, A. E. Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133–138 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    27.Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in Oak mesocosms. Ecology 85, 3335–3347 (2004).Article 

    Google Scholar 
    28.Eimers, M. C., Watmough, S. A., Paterson, A. M., Dillon, P. J. & Yao, H. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 1682–1692 (2009).CAS 
    Article 

    Google Scholar 
    29.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS 
    Article 

    Google Scholar 
    30.Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).CAS 
    Article 

    Google Scholar 
    31.Madritch, M. D., Donaldson, J. R. & Lindroth, R. L. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol. Biochem. 39, 1192–1201 (2007).CAS 
    Article 

    Google Scholar 
    32.Hall, R. J., Skakun, R. S. & Aresenault, E. Remotely Sensed Data in the Mapping of Insect Defoliation. in Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches 85–111 (2007).33.Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article 

    Google Scholar 
    34.Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N. & Galloway, J. N. Change in acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water Air. Soil Pollut. 85, 535–540 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Eshleman, K. N. et al. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34, 2005–2116 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Reynolds, B. C., Hunter, M. D. & Crossley, D. A. Jr. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21, 74–78 (2000).
    Google Scholar 
    38.Lewis, G. P. & Likens, G. E. Changes in stream chemistry associated with insect defoliation in a Pennsylvania hemlock-hardwoods forest. Forest Ecol. Manag. 238, 199–211 (2007).Article 

    Google Scholar 
    39.Wilkinson, G. M., Walter, J., Fleck, R. & Pace, M. L. Beyond the trends: the need to understand multiannual dynamics in aquatic ecosystems. Limnol. Oceanogr. Lett. 5, 281–286 (2020).Article 

    Google Scholar 
    40.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    41.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
    Article 

    Google Scholar 
    42.Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.ICP Waters contributors. Dataset: trends in annual surface water chemistry for acid-sensitive regions in Europe and North America (1990 to 2012). ICP-Waters Programme Centre (2020).45.Christenson, L. M., Lovett, G. M., Mitchell, M. J. & Groffman, P. M. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131, 444–452 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    46.Bormann, F. H. & Likens, G. E. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. (Springer Science & Business Media, 2012).47.I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 160361 (2016).Article 
    CAS 

    Google Scholar 
    48.Hillstrom, M., Meehan, T. D., Kelly, K. & Lindroth, R. L. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO 2 and O 3. Plant Soil 336, 75–85 (2010).CAS 
    Article 

    Google Scholar 
    49.Tranvik, L., Olofsson, H. & Bertilsson, S. Photochemical effects on bacterial degradation of dissolved organic matter in lake water. in Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology 193–200 (Atlantic Canada Society for Microbial Ecology Halifax, Canada, 1999).50.Bowden, R. D. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75 (2014).Article 

    Google Scholar 
    51.Lovett, G. M., Hart, J. E., Christenson, L. M. & Jones, C. G. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117, 513–516 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    52.Lovett, G. M., Arthur, M. A., Weathers, K. C. & Griffin, J. M. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13, 1188–1200 (2010).CAS 
    Article 

    Google Scholar 
    53.Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12, 635–643 (2006).ADS 
    Article 

    Google Scholar 
    54.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    55.Giardina, C. P., Ryan, M. G., Hubbard, R. M. & Binkley, D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65, 1272–1279 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    57.Huber, C., Baumgarten, M., Göttlein, A. & Rotter, V. Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut. Focus 4, 391–414 (2004).CAS 
    Article 

    Google Scholar 
    58.Griffin, J. M., Turner, M. G. & Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Ecol. Manag 261, 1077–1089 (2011).Article 

    Google Scholar 
    59.Turner, J. & Long, J. N. Accumulation of organic matter in a series of Douglas-fir stands. Can. J. Res. 5, 681–690 (1975).Article 

    Google Scholar 
    60.Turner, J. Nutrient cycling in Douglas-fir with respect to age and nutrient status. Ann. Bot. 42, 159–170 (1981).Article 

    Google Scholar 
    61.Gosz, J. R., Likens, G. E. & Bormann, F. H. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53, 770–784 (1972).Article 

    Google Scholar 
    62.Bridges, J. R. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7, 131–137 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Morehouse, K., Johns, T., Kaye, J. & Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Foresr Ecol. Manag. 255, 2698–2708 (2008).Article 

    Google Scholar 
    64.Guseva, S. et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Syst. Sci. 24, 697–715 (2020).ADS 
    Article 

    Google Scholar 
    65.Watkins, E. M., Schindler, D. W., Turner, M. A. & Findlay, D. Effects of solar ultraviolet radiation on epilithic metabolism, and nutrient and community composition in a clear-water boreal lake. Can. J. Fish. Aquat. Sci. 58, 12 (2001).Article 

    Google Scholar 
    66.Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).PubMed 
    Article 

    Google Scholar 
    67.Currie, D. J. & Kalff, J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29, 298–310 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Rochelle-Newall, E. et al. Impacts of elevated atmospheric CO 2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community. Aquat. Sci. 80, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    69.Larsen, S., Andersen, T. & Hessen, D. O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Change Biol. 17, 1186–1192 (2011).ADS 
    Article 

    Google Scholar 
    70.Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390 (2020).PubMed 
    Article 

    Google Scholar 
    71.Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 1–33 (2014).Article 

    Google Scholar 
    72.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).PubMed 
    Article 

    Google Scholar 
    73.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 
    Article 

    Google Scholar 
    74.Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. Rep. 4, 35–50 (2018).
    Google Scholar 
    75.Karlsson, J. et al. Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr. 57, 1042–1048 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007 (2015).ADS 
    Article 

    Google Scholar 
    77.Ministry of Natural Resources and Forestry (MNRF). Provincial Digital Elevation Model – Version 3.0. (2013).78.Wang, L. & Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 20, 193–213 (2006).CAS 
    Article 

    Google Scholar 
    79.Candau, J.-N., Fleming, R. A. & Hopkin, A. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can. J. Res. 28, 1733–1741 (1998).Article 

    Google Scholar 
    80.Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 

    Google Scholar 
    81.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).82.Ontario Ministry of Natural Resources and Forestry – Provincial Mapping Unit. Ontario Integrated Hydrology Data. (2011).83.Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. https://peerj.com/preprints/913v1 (2015) https://doi.org/10.7287/peerj.preprints.913v1.84.Robinson, N. P. et al. A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017).ADS 
    Article 

    Google Scholar 
    85.Eklundh, L., Jönsson, P. & Kuusk, A. Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Adv. Space Res. 39, 119–124 (2007).ADS 
    Article 

    Google Scholar 
    86.Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).ADS 
    Article 

    Google Scholar 
    87.Olsson, P.-O., Heliasz, M., Jin, H. & Eklundh, L. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences (2017) https://doi.org/10.5194/bg-14-1703-2017.88.Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).ADS 
    Article 

    Google Scholar 
    89.GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. (Open Source Geospatial Foundation, 2020).90.Etten, R. J. H. & J. van. raster: Geographic analysis and modeling with raster data. (2012).91.Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. Relationships between leaf area index and landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70, 52–68 (1999).ADS 
    Article 

    Google Scholar 
    92.Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. (2016).93.Ministry of Natural Resources and Forestry. Dataset: Ontario Land Cover Compilation v.2.0. Ont. GeoHub (2020).94.Ontario Ministry of Environment. Handbook of Analytical Methods for Environmental Samples – Volumes 1 and 2. (1983).95.Dillon, P. J. & Molot, L. A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. Biogeosci. 110, (2005).96.Skjelkvåle, B. & others. ICP Waters Programme Manual 2010 (ICP Waters Report 105/2010). (2010).97.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).98.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020). More

  • in

    Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth

    Experimental set-upThe experiment was performed in the MOBICOS mesocosm facility, a container-based laboratory platform34 located by the river Holtemme in Wernigerode, central Germany (51° 49′ 00.7″ N, 10° 43′ 29.26″ E). See Weitere et al.35 for detailed water quality data at this station. Each experimental unit consisted of a rectangular flume (62 cm long, 14 cm high and 8 cm wide) constantly supplied with water from the river Holtemme, with a flow rate of 1000 L h−1 per flume. The water was filtered by a self-cleaning filter with a mesh size of 50 µm in order to remove larger particles without removing most unicellular organisms. The water level in each flume was 7.5 cm. At the bottom of each flume was a tray containing 30 white ceramic tiles (2.3 × 2.3 cm), disposed in three rows of ten tiles each, and a smaller tray containing nine additional tiles, disposed in three rows of three tiles each. The tiles served as substrates for periphyton growth. Vertical nets were placed at both ends of each flume to prevent grazers from leaving the experimental facility.The study consisted of a fully factorial experiment, in which two levels of phosphorus supply (high, P+, versus low, P−) were crossed with two levels of light intensity above the flumes (high, L+, versus low, L−) and with grazer presence (G+) and absence (G−), for a total of eight treatments: P+L+G+, P+L+G−, P+L−G+, P+L−G−, P−L+G+, P−L+G−, P−L−G+, and P−L−G−. In the P− treatments, the water flowing in the flumes was kept at ambient P concentration, which was below detection limit ( More

  • in

    Bottlenose dolphins (Tursiops truncatus) aggressive behavior towards other cetacean species in the western Mediterranean

    1.Norris, K. S. & Dohl, T. P. The Structure and Functions of Cetacean Schools (1979).2.Frantzis, A. & Herzing, D. L. Mixed-species associations of striped dolphins (Stenella coeruleoalba), short-beaked common dolphins (Delphinus delphis), and Risso’s dolphins (Grampus griseus) in the Gulf of Corinth (Greece, Mediterranean Sea).” Aquatic Mammals 28.2 (2002): 188–197.3.Crossman, C., Barrett-Lennard, L. & Taylor, E. Population structure and intergeneric hybridization in harbour porpoises Phocoena phocoena in British Columbia, Canada. Endang. Species. Res. 26, 1–12 (2014).Article 

    Google Scholar 
    4.Espada, R., Olaya-Ponzone, L., Haasova, L., Martín, E. & García-Gómez, J. C. Hybridization in the wild between Tursiops truncatus (Montagu 1821) and Delphinus delphis (Linnaeus 1758). PLoS ONE 14, e0215020 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Herzing, D. L., Moewe, K. & Brunnick, B. J. Interspecies interactions between Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus, on Great Bahama Bank Bahamas. Aquat. Mamm. 29, 335–341 (2003).Article 

    Google Scholar 
    6.Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–80 (1996).
    Google Scholar 
    7.Herzing, D. L. & Johnson, C. M. Interspecific interactions between Atlantic spotted dolphins (Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) in the Bahamas 1985–1995. Aquat. Mamm. 23, 85–99 (1997).
    Google Scholar 
    8.Orr, J. R. & Harwood, L. A. Possible aggressive behavior between a narwhal (Monodon monoceros) and a beluga (Delphinapterus leucas). Mar. Mamm. Sci. 14, 182–185 (1998).Article 

    Google Scholar 
    9.Puig-Lozano, R. et al. Retrospective study of traumatic intra-interspecific interactions in stranded cetaceans, Canary Islands. Front. Vet. Sci. 7, 107 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Shane, S. Relationship between pilot whales and Risso’s dolphins at Santa Catalina Island, California, USA. Mar. Ecol. Prog. Ser. 123, 5–11 (1995).ADS 
    Article 

    Google Scholar 
    11.Haelters, J. & Everaarts, E. Two cases of physical interaction between white-beaked dolphins (Lagenorhynchus albirostris) and juvenile harbour porpoises (Phocoena phocoena) in the southern North Sea. Aquat. Mamm. 37, 198 (2011).Article 

    Google Scholar 
    12.Jepson, P. D. & Baker, J. R. Bottlenosed dolphins (Tursiops truncatus) as a possible cause of acute traumatic injuries in porpoises (Phocoena phocoena). Vet. Rec. 143, 614–615 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Patterson, I. A. P., Reid, R. J., Wilson, B., Grellier, K. & Ross, H. M. Evidence for infanticide in bottlenose dolphins: An explanation for violent interactions with harbour porpoises?. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1167–1170 (1998).CAS 
    Article 

    Google Scholar 
    14.Ross, H. M. & Wilson, B. Violent interactions between bottlenose dolphins and harbour porpoises. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 283–286 (1996).ADS 
    Article 

    Google Scholar 
    15.Wilson, B., Reid, R. J., Grellier, K., Thompson, P. M. & Hammond, P. S. Considering the temporal when managing the spatial: A population range expansion impacts protected areas-based management for bottlenose dolphins. Anim. Conserv. 7, 331–338 (2004).Article 

    Google Scholar 
    16.Alonso, J. M., López, A., González, A. F. & Santos, M. B. Evidence of violent interactions between bottlenose dolphin (Tursiops truncatus) and other cetacean species in NW Spain. In Proceedings of the 14th Annual Conference of The European Cetacean Society (2000).17.López, A. & Rodriguez, A. Agresion de arroas (Tursiops truncatus) a toniña (Phocoena phocoena). Eubalaena 6, 23–27 (1995).
    Google Scholar 
    18.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. 24, 95–106 (2021).Article 

    Google Scholar 
    19.Parsons, K. M., Durban, J. W. & Claridge, D. E. Male-male aggression renders bottlenose dolphin (Tursiops truncatus) unconscious. Aquat. Mamm. 29, 360–362 (2003).Article 

    Google Scholar 
    20.Robinson, K. P. Agonistic intraspecific behavior in free-ranging bottlenose dolphins: Calf-directed aggression and infanticidal tendencies by adult males. Mar. Mamm. Sci. 30, 381–388 (2014).Article 

    Google Scholar 
    21.Scott, E. M., Mann, J., Watson-Capps, J. J., Sargeant, B. L., & Connor, R. C. Aggression in bottlenose
    dolphins: evidence for sexual coercion, male-male competition, and female tolerance through analysis of tooth-rake
    marks and behaviour. Behaviour 21–44 (2005).22.Díaz López, B., López, A., Methion, S. & Covelo, P. Infanticide attacks and associated epimeletic behaviour in free-ranging common bottlenose dolphins (Tursiops truncatus). J. Mar. Biol. Assoc. 98, 1159–1167 (2018).Article 

    Google Scholar 
    23.Cotter, M. P., Maldini, D. & Jefferson, T. A. “Porpicide” in California: Killing of harbor porpoises (Phocoena phocoena) by coastal bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 28, E1–E15 (2012).Article 

    Google Scholar 
    24.Forney, K. A. Environmental models of cetacean abundance: Reducing uncertainty in population trends. Conserv. Biol. 14, 1271–1286 (2000).Article 

    Google Scholar 
    25.Gowans, S., Würsig, B. & Karczmarski, L. The social structure and strategies of delphinids: predictions based on an ecological framework. In Advances in Marine Biology Vol. 53, 195–294 (Elsevier, 2007).26.Miller, E. H. Territorial behavior. In Encyclopedia of marine mammals 1156–1166 (Academic Press, 2009).27.Díaz López, B. Bottlenose dolphins and aquaculture: Interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Mar. Biol. 159, 2161–2172 (2012).Article 

    Google Scholar 
    28.Bearzi, G., Piwetz, S. & Reeves, R. R. Odontocete adaptations to human impact and vice versa. In Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 211–235 (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-030-16663-2_10.Chapter 

    Google Scholar 
    29.Bonizzoni, S. et al. Fish farming and its appeal to common bottlenose dolphins: Modelling habitat use in a Mediterranean embayment: Fish farming appeal to bottlenose dolphins. Aquatic Conserv. Mar. Freshw. Ecosyst. 24, 696–711 (2014).Article 

    Google Scholar 
    30.Díaz López, B. Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: Some underwater observations. Aquat. Mamm. 32, 305–310 (2006).Article 

    Google Scholar 
    31.Díaz López, B., Marini, L. & Polo, F. The impact of a fish farm on a bottlenose dolphin population in the Mediterranean Sea. Thalassas 21, 65–70 (2005).
    Google Scholar 
    32.Piroddi, C., Bearzi, G. & Christensen, V. Marine open cage aquaculture in the eastern Mediterranean Sea: A new trophic resource for bottlenose dolphins. Mar. Ecol. Prog. Ser. 440, 255–266 (2011).ADS 
    Article 

    Google Scholar 
    33.Díaz López, B. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior. Curr. Zool. 55, 243–248 (2009).Article 

    Google Scholar 
    34.Castellote, M., Brotons, J. M., Chicote, C., Gazo, M. & Cerdà, M. Long-term acoustic monitoring of bottlenose dolphins, Tursiops truncatus, in marine protected areas in the Spanish Mediterranean Sea. Ocean Coast. Manag. 113, 54–66 (2015).Article 

    Google Scholar 
    35.Aznar, F. et al. Long-term changes (1990–2012) in the diet of striped dolphins Stenella coeruleoalba from the western Mediterranean. Mar. Ecol. Prog. Ser. 568, 231–247 (2017).ADS 
    Article 

    Google Scholar 
    36.Calzada, N., Aguilar, A., Grau, E. & Lockyer, C. Patterns of growth and physical maturity in the western Mediterranean striped dolphin, Stenella coeruleoalba (Cetacea: Odontoceti). Can. J. Zool. 75, 632–637 (1997).Article 

    Google Scholar 
    37.Meissner, A. M., MacLeod, C. D., Richard, P., Ridoux, V. & Pierce, G. Feeding ecology of striped dolphins, Stenella coeruleoalba, in the north-western Mediterranean Sea based on stable isotope analyses. J. Mar. Biol. Assoc. 92, 1677–1687 (2012).CAS 
    Article 

    Google Scholar 
    38.Chen, I., Watson, A. & Chou, L.-S. Insights from life history traits of Risso’s dolphins (Grampus griseus) in Taiwanese waters: Shorter body length characterizes northwest Pacific population. Mar. Mamm. Sci. 27, E43–E64 (2011).Article 

    Google Scholar 
    39.Barnett, J. et al. Postmortem evidence of interactions of bottlenose dolphins (Tursiops truncatus) with other dolphin species in south-west England. Vet. Rec. 165, 441–444 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Townsend, F. I. & Staggs, L. Atlas of Skin Diseases of Small Cetaceans (Todd Speakman, 2020).
    Google Scholar 
    41.Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: Predation to co-existence. Mamm. Rev. 21, 151–180 (1991).Article 

    Google Scholar 
    42.Weller, D. W. et al. Observations of an interaction between sperm whales and short-finned pilot whales in the Gulf of Mexico. Mar. Mamm. Sci. 12, 588–594 (1996).ADS 
    Article 

    Google Scholar 
    43.Baird, R. W. An interaction between Pacific white-sided dolphins and a neonatal harbor porpoise. Mammalia 62, 129–133 (1998).
    Google Scholar 
    44.Wedekin, L. L., Daura-Jorge, F. G. & Simoes-Lopes, P. C. An aggressive interaction between bottlenose dolphins (Tursiops truncatus) and estuarine dolphins (Sotalia guianensis) in southern Brazil. Aquat. Mamm. 30, 391–397 (2004).Article 

    Google Scholar 
    45.Campbell-Malone, R. et al. Gross and histologic evidence of sharp and blunt trauma in north Atlantic right whales (Eubalaena glacialis) killed by vessels. J. Zoo Wildl. Med. 39, 37–55 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moore, M. et al. Criteria and case definitions for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma. Dis. Aquat. Org. 103, 229–264 (2013).CAS 
    Article 

    Google Scholar 
    47.Read, A. & Murray, K. Gross Evidence of Human-Induced Mortality in Small Cetaceans (2000).48.Gozalbes, P. et al. Cetáceos y tortugas marinas en la Comunitat Valenciana. 20 años de seguimiento (2010).49.Gómez de Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. 88, 1185–1192 (2008).Article 

    Google Scholar 
    50.Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E. & Hammond, P. S. Habitat preference modelling as a conservation tool: Proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 495–521 (2005).Article 

    Google Scholar 
    51.Gannier, A. Diel variations of the striped dolphin distribution off the French Riviera (Northwestern Mediterranean Sea). Aquat. Mamm. 25, 123–134 (1999).
    Google Scholar 
    52.Blanco, C., Aznar, J. & Raga, J. A. Cephalopods in the diet of the striped dolphin Stenella coeruleoalba from the western Mediterranean during an epizootic in 1990. J. Zool. 237, 151–158 (1995).Article 

    Google Scholar 
    53.Archer II, F. I. Striped dolphin: Stenella coeruleoalba. In Encyclopedia of Marine Mammals 1127–1129 (Academic Press, 2009).54.Fraija-Fernández, N. et al. Long term boat-based surveys in the Central Spanish Mediterranean (2003–2013): Cetacean diversity and distribution. In Proceeding of the 29th Conference of the European Cetacean Society (2015).55.Blanco, C., Salomón, O. & Raga, J. A. Diet of the bottlenose dolphin (Tursiops truncatus) in the western Mediterranean Sea. J. Mar. Biol. Assoc. 81, 1053–1058 (2001).Article 

    Google Scholar 
    56.Praca, E. & Gannier, A. Ecological niches of three teuthophageous odontocetes in the northwestern Mediterranean Sea. Ocean Sci. 4, 49–59 (2008).ADS 
    Article 

    Google Scholar 
    57.Bearzi, G., Fortuna, C. M. & Reeves, R. R. Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea. Mamm. Rev. 39, 92–123 (2009).Article 

    Google Scholar 
    58.Epperly, S. P. et al. Beach strandings as an indicator of at-sea mortality of sea turtles. Bull. Mar. Sci. 59(2), 289–297 (1996).
    Google Scholar 
    59.Peltier, H. et al. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Ind. 18, 278–290 (2012).Article 

    Google Scholar 
    60.Martínez-Cedeira, J. A. et al. How many strand? Offshore marking and coastal recapture of cetacean carcasses. In Abstract Book—25th Conference of the European Cetacean Society 332 (2011).61.Gulland, F. M., Dierauf, L. A. & Whitman, K. L. CRC Handbook of Marine Mammal medicine (CRC Press, 2018).
    Google Scholar 
    62.Isidoro-Ayza, M. et al. Brucella ceti infection in dolphins from the Western Mediterranean sea. BMC Vet. Res. 10, 206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rubio-Guerri, C. et al. Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish Mediterranean sea. BMC Vet. Res. 9, 106 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kuiken, T. & Hartmann, M. G. Proceedings of the First ECS Workshop on Cetacean Pathology: Dissection Techniques and Tissue Sampling. Vol. 17 (1991).65.Geraci, J. R. & Lounsbury, V. J. Marine Mammals Ashore: A Field guide for Strandings (National Aquarium in Baltimore, 2005).
    Google Scholar 
    66.Pugliares, K. R. et al. Marine Mammal Necropsy: An Introductory Guide for Stranding Responders and Field Biologists (Woods Hole Oceanographic Institution, 2007) https://doi.org/10.1575/1912/1823.Book 

    Google Scholar 
    67.Long, D. J. & Jones, R. E. White shark predation and scavenging on cetaceans in the eastern North Pacific Ocean. In Great White Sharks: The Biology of Carcharodon carcharias 293–307 (1996).68.Rubio-Guerri, C. et al. Simultaneous diagnosis of Cetacean morbillivirus infection in dolphins stranded in the Spanish Mediterranean sea in 2011 using a novel Universal Probe Library (UPL) RT-PCR assay. Vet. Microbiol. 165, 109–114 (2013).PubMed 
    Article 

    Google Scholar 
    69.Van Devanter, D. R. et al. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 34, 1666–1671 (1996).CAS 
    Article 

    Google Scholar 
    70.Alton, G. G., Jones, L. M., Angus, R. D. & Verger, J. M. Techniques for the Brucellosis Laboratory (Institut National de la Recherche Agronomique (INRA), 1988).
    Google Scholar  More

  • in

    Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach

    1.Schäferna, K. Amphipoda balcanica, spolu s poznámkami o jiných sladkovodních Amphipodech. Mem. Soc. R. Sci. Boheme Prague 12, 1–111 (1922).
    Google Scholar 
    2.Martynov, A. B. Zur Kenntnis der Amphipoden der Krim. Zool. Jahrb. 60, 573–606 (1931).
    Google Scholar 
    3.Karaman, S. L. Beitrag zur Kenntni s der Susswasseramphiopden. Bull. Soc. Scien Skoplje IX, 93–107 (1931).
    Google Scholar 
    4.Schellenberg, A. Schlussel und Diagnosen der dem Susswasser-Gammarus nahestehenden Einheiten ausschlisslich der Arten des Baikalsees und Australiens. Zool. Anz. 117, 267–280 (1937).
    Google Scholar 
    5.Barnard, J. L. & Karaman, S. G. Classificatory revisions in gammaridean amphipoda (Crustacea), Part 2. Proc. Biol. Soc. Wash. 95, 167–187 (1982).
    Google Scholar 
    6.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (CrustaceaAmphipoda): Part I: Gammarus pulex-group and related species. Bijdr Dierkd 47, 1–97 (1977).Article 

    Google Scholar 
    7.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea Amphipoda): Part II: Gammarus roeseli-group and related species. Bijdr Dierkd 47, 165–196 (1977).Article 

    Google Scholar 
    8.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda): Part III: Gammarus balcanicus-group and related species. Bijdr Dierkd 57, 207–260 (1987).Article 

    Google Scholar 
    9.Jażdżewski, K. Remarks on Gammarus lacustris G.O. Sars, 1863, with description of Gammarus varsoviensis n. sp. Bijdr Dierkd 45, 71–86 (1975).Article 

    Google Scholar 
    10.Jażdżewski, K. & Konopacka, A. Gammarus leopoliensis nov. sp. (Crustacea, Amphipoda) from Eastern Carpathians. Bull. Zoölogisch Museum 11, 185–196 (1989).
    Google Scholar 
    11.Karaman, G. S. New species of the family Gammaridae from Ohrid Lake basin, Gammarus sketi, n. sp., with emphasis on the subterranean members of genus Gammarus Fabr. (Contribution to the knowledge of the Amphipoda 191). Glasnik Odjeljenja prirodnih nauka, Crnogorska akademija nauka i umjetnosti 7, 53–71 (1989).
    Google Scholar 
    12.Iannilli, V. & Ruffo, S. Apennine and Sardinian species of Gammarus, with the description of Gammarus elvirae n. sp. (Crustacea Amphipoda, Gammaridae). Boll. Acc. Gioenia Sci. Nat 35, 519–532 (2002).
    Google Scholar 
    13.Alther, R., Fišer, C. & Altermatt, F. Description of a widely distributed but overlooked amphipod species in the European Alps. Zool. J. Linn Soc.-Lond. https://doi.org/10.1111/zoj.12477 (2016).Article 

    Google Scholar 
    14.Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc.-Lond. 20, 1–14. https://doi.org/10.1093/zoolinnean/zlw025 (2017).Article 

    Google Scholar 
    15.Hupalo, K., Mamos, T., Wrzesinska, W. & Grabowski, M. First endemic freshwater Gammarus from Crete and its evolutionary history-an integrative taxonomy approach. PeerJ 6, e4457. https://doi.org/10.7717/peerj.4457 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. Nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).Article 

    Google Scholar 
    17.Hou, Z., Sket, B. & Li, S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics https://doi.org/10.1111/cla.12055 (2014).Article 

    Google Scholar 
    18.Hou, Z. & Sket, B. A review of Gammaridae (Crustacea: Amphipoda): The family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc.-Lond. 176, 323–348. https://doi.org/10.1111/zoj.12318 (2016).Article 

    Google Scholar 
    19.Sket, B. & Hou, Z. Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy. ABS 61 (2018).20.Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).Article 
    PubMed 

    Google Scholar 
    21.Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zoolog. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).Article 

    Google Scholar 
    22.Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).Article 

    Google Scholar 
    24.Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).Article 

    Google Scholar 
    25.Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1038/s41598-020-73739-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Meier, R. & Wheeler, Q. D. in The New Taxonomy (ed Q. D. Wheeler) 256 (CRC Press, 2008).27.Coleman, C. O. Taxonomy in times of the taxonomic impediment: Examples from the community of experts on amphipod crustaceans. J. Crustacean Biol. 35, 729–740. https://doi.org/10.1163/1937240x-00002381 (2015).Article 

    Google Scholar 
    28.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    29.Kondracki, J. Karpaty. (WSiP, 1989).30.Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).Article 

    Google Scholar 
    31.Balint, M. et al. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas 189–205 (Springer, 2011).Book 

    Google Scholar 
    32.Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front Zool. https://doi.org/10.1186/1742-9994-9-22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 60, 373–389. https://doi.org/10.1002/tax.602008 (2011).Article 

    Google Scholar 
    34.Hájková, P. et al. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene 25, 702–715. https://doi.org/10.1177/0959683614566251 (2015).ADS 
    Article 

    Google Scholar 
    35.Malicky, H. Chorological patterns and biome types of European Trichoptera and other freshwater insects. Arch. Hydrobiol. 96, 223–244 (1983).
    Google Scholar 
    36.Malicky, H. Arealdynamik und Biomgrundtypen am Beispiel der Köcherfliegen (Trichoptera). Entom Basi 22, 235–259 (2000).
    Google Scholar 
    37.Keresztes, L., Kolcsár, L.-P., Török, E. & Dénes, A.-L. in The Carpathians as speciation centres and barriers: From case studies to general patterns (eds L Keresztes & B. Markó) 168 (Cluj University Press, 2011).38.Bozáová, J., Čiamporová Zat’ovičová, Z., Čiampor, F., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).Article 

    Google Scholar 
    39.Copilas-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).Article 
    PubMed 

    Google Scholar 
    40.Grabowski, M. & Mamos, T. Contact Zones, Range Boundaries, and Vertical Distribution of Three Epigean Gammarids (Amphipoda) in the Sudeten and Carpathian Mountains (Poland). Crustaceana 84, 153–168. https://doi.org/10.1163/001121611×554328 (2011).Article 

    Google Scholar 
    41.Jażdżewski, K. Morfologia, taksonomia i występowanie w Polsce kiełży z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). 185 (Acta Universitatis Lodziensis, 1975).42.Jażdżewski, K. & Konopacka, A. Notes on the Gammaridean Amphipoda of the Dniester River Basin and Eastern Carpathians. Crustaceana. Supplement, 72–89 (1988).43.Zieliński, D. Life History of Gammarus balcanicus Schäferna, 1922 from the Bieszczady Mountains (Eastern Carpathians, Poland). Crustaceana 68(1), 61–72 (1995).Article 

    Google Scholar 
    44.Zieliński, D. Life Cycle and Altitude Range of Gammarus leopoliensis Jażdżewski & Konopacka, 1989 (Amphipoda) in South-Eastern Poland. Crustaceana 71 (1998).45.Konopacka A., Jażdżewski K., Jędryczkowski W. In Monografie Bieszczadzkie, vol. VII (ed. Pawłowski, J.) (2000).46.Straškraba, M. Předběžná zpráva o rozšíření rodu Gammarus v ČSR. Věstník Československé Společnosti Zoologické 17, 212–227 (1953).
    Google Scholar 
    47.Straškraba, M. Beitrag zur Kenntnis der Amphipodenfauna Karpatenrusslands (USSR). Věstník Československé Společnosti Zoologické 21, 256–272 (1957).
    Google Scholar 
    48.Micherdziński, W. Kiełże rodzaju Gammarus Fabricius (Amphipoda) w wodach Polski. Acta Zoologica Cracoviensia 4, 527–637 (1959).
    Google Scholar 
    49.Straškraba, M. Amphipoden der Tschechoslovakei nach den Sammlungen von. Prof. Hrabě. I. Věstník Československé Společnosti Zoologické 26, 117–145 (1962).50.Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).Article 
    PubMed 

    Google Scholar 
    51.Tzedakis, P. C., Emerson, B. C. & Hewitt, G. M. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704. https://doi.org/10.1016/j.tree.2013.09.001 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Harl, J., Duda, M., Kruckenhauser, L., Sattmann, H. & Haring, E. In Search of Glacial Refuges of the Land Snail Orcula dolium (Pulmonata, Orculidae): An Integrative Approach Using DNA Sequence and Fossil Data. PLoS ONE 9, e96012. https://doi.org/10.1371/journal.pone.0096012 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Juřičková, L., Horáčková, J. & Ložek, V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Res. 82, 222–228. https://doi.org/10.1016/j.yqres.2014.01.015 (2014).ADS 
    Article 

    Google Scholar 
    54.Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).Article 

    Google Scholar 
    55.Zasadni, J. & Kłapyta, P. The tatra mountains during the last glacial maximum. J. Maps 10, 440–456. https://doi.org/10.1080/17445647.2014.885854 (2014).Article 

    Google Scholar 
    56.Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshwater Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).CAS 
    Article 

    Google Scholar 
    57.Ratnasingham, S. & Hebert, P. Bold: The barcode of life data system. Mol. Ecol. Not. 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).CAS 
    Article 

    Google Scholar 
    58.Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. STOTEN 678, 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004 (2007).Article 
    PubMed 

    Google Scholar 
    61.Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536. https://doi.org/10.2307/2413694 (1997).Article 

    Google Scholar 
    63.Nosil, P. Speciation with gene flow could be common. Mol. Ecol. 17, 2103–2106. https://doi.org/10.1111/j.1365-294X.2008.03715.x (2008).Article 
    PubMed 

    Google Scholar 
    64.Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499. https://doi.org/10.1016/j.tig.2015.07.002 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. .Biol 215, 403–410. https://doi.org/10.1006/jmbi.1990.9999 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Xia, X. DAMBE5: A comprehensive software package for data analysis. Mol. Biol. Evol. 30, 1720–1728. https://doi.org/10.1093/molbev/mst064 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. https://doi.org/10.1007/bf01731581 (1980).Article 
    PubMed 

    Google Scholar 
    72.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evol. Int. J. Org. Evol. 39, 783–791 (1985).Article 

    Google Scholar 
    73.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. Plos Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42. https://doi.org/10.1186/s12862-017-0890-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    79.Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0–18/r45 Available from: http://R-Forge.R-project.org/projects/splits/ (2009).80.Team, R. C. R: A language and environment for statistical computing, https://www.R-project.org/ (2020).81.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467. https://doi.org/10.1007/s00285-016-1034-0 (2017).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    84.Jones, G., Aydin, Z. & Oxelman, B. DISSECT: An assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31, 991–998. https://doi.org/10.1093/bioinformatics/btu770 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543. https://doi.org/10.1371/journal.pone.0089543 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707. https://doi.org/10.1111/2041-210X.12199 (2014).Article 

    Google Scholar 
    87.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).Article 

    Google Scholar 
    89.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    90.Flot, J. F., Couloux, A. & Tillier, S. Haplowebs as a graphical tool for delimiting species: A revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol. Biol. 10, 1. https://doi.org/10.1186/1471-2148-10-372 (2010).Article 

    Google Scholar 
    91.Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989. https://doi.org/10.1086/319501 (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Spöri, Y. & Flot, J.-F. HaplowebMaker and CoMa: Two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol. Evol. 11, 1434–1438. https://doi.org/10.1111/2041-210X.13454 (2020).Article 

    Google Scholar  More

  • in

    The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

    1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science (80-). 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Janzen, H. H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004).CAS 
    Article 

    Google Scholar 
    3.Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U. & Kandeler, E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40, 1496–1505 (2008).CAS 
    Article 

    Google Scholar 
    4.Kosugi, Y. et al. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric. For. Meteorol. 147, 35–47 (2007).ADS 
    Article 

    Google Scholar 
    5.Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. Soil Carbon Dyn. Integr. Methodol. https://doi.org/10.1017/CBO9780511711794.009 (2010).Article 

    Google Scholar 
    6.Musselman, R. C. & Fox, D. G. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manag. Assoc. 41, 798–807 (1991).CAS 
    Article 

    Google Scholar 
    7.Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 363, 815–830 (2008).CAS 
    Article 

    Google Scholar 
    8.Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 220, 242–258 (2005).Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G. & Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 74, 281–303 (1996).ADS 
    Article 

    Google Scholar 
    10.Hassink, J. A model of the physical protection of organic matter in soils the capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87 (1997).CAS 
    Article 

    Google Scholar 
    11.Saidy, A. R. et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174, 104–110 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Mueller, K. E. et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111, 601–614 (2012).CAS 
    Article 

    Google Scholar 
    13.Mulder, J., De Wit, H. A., Boonen, H. W. J. & Bakken, L. R. Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water Air. Soil Pollut. 130, 989–994 (2001).ADS 
    Article 

    Google Scholar 
    14.Gruba, P. & Socha, J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 447, 105–114 (2019).Article 

    Google Scholar 
    15.Chrzan, A. Zawartość wybranych metali ciężkich w glebie i faunie glebowej. Proc. ECOpole. 7, 23–26 (2013).
    Google Scholar 
    16.Ampoorter, E., Van Nevel, L., De Vos, B., Hermy, M. & Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 260, 1664–1676 (2010).Article 

    Google Scholar 
    17.Meriano, M., Eyles, N. & Howard, K. W. F. Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J. Contam. Hydrol. 107, 66–81 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Barbier, L., Suaire, R., Durickovic, I., Laurent, J. & Simonnot, M. O. Is a road stormwater retention pond able to intercept deicing salt?. Water Air. Soil Pollut. 229, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    19.Willmert, H. M., Osso, J. D., Twiss, M. R. & Langen, T. A. Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. J. Environ. Manag. 225, 215–223 (2018).CAS 
    Article 

    Google Scholar 
    20.General Directorate for National Roads and Motorways. Detailed technical specifications. Winter maintenance of the road network administered by the General Directorate for National Roads and Motorways, Lublin Branch in the years: 2012÷2016 (in Polish). (2012).21.Durickovic, I. NaCl material for winter maintenance and its environmental effect. Salt Earth https://doi.org/10.5772/intechopen.86907 (2020).Article 

    Google Scholar 
    22.General Directorate for National Roads and Motorways. We’ll recap the winter of 2019/2020 and explain what road maintenance is all about (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/37500/Podsumujemy-zime-20192020-i-wyjasnimy-o-co-chodzi-w-utrzymaniu-drog. Accessed on October 20, 2021.23.General Directorate for National Roads and Motorways. Ready for all weather. The 2020/2021 winter season has begun (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/40259/Gotowi-na-kazda-pogode-Zaczal-sie-sezon-zimowy-20202021. Accessed on October 20, 2021.24.General Directorate for National Roads and Motorways. Average annual daily traffic (AADT) at measuring points in 2015 on state roads (in Polish). (2015). https://www.archiwum.gddkia.gov.pl/pl/2551/GPR-2015. Accessed on October 20, 2021.25.QGIS Association. QGIS Geographic Information System. (2021). http://www.qgis.org Accessed on October 20, 2021.26.Woś, A. The Climate of Poland (in Polish) (Polish Scientific Publishers PWN, 1999).
    Google Scholar 
    27.Polish State Forests. Nature and forest conditions of Suchedniów Forest Inspectorate (in Polish). A report. (2011). https://suchedniow.radom.lasy.gov.pl/documents/11058/18775352/warunki+przyrodniczo-lesne.pdf Accessed on October 20, 2021.28.Hopkins, D. W. Carbon mineralization. In Soil Sampling and Methods of Analysis (eds. Carter, M. R. & Gregorich, E. G.) (CRC Press, 2008).29.Buurman, P., van Lagen, B. & Velthorst, E. J. Manual for Soil and Water Analysis (Backhuys Publishers, 1996).
    Google Scholar 
    30.R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed on October 20, 2021..31.Navrátil, T. et al. Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Appl. Geochem. 75, 63–75 (2016).Article 
    CAS 

    Google Scholar 
    32.Gruba, P., Pietrzykowski, M. & Pasichnyk, D. Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland. Sci. Total Environ. 647, 141–148 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Kupka, D., Kania, M., Pietrzykowski, M., Łukasik, A. & Gruba, P. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the vicinity of roadways. Water Air Soil Pollut. 232, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    35.Borchers, J. G. & Perry, A. D. The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Can. J. For. Res. 22, 298–305 (1992).CAS 
    Article 

    Google Scholar 
    36.Chantigny, M. H., Angers, D. A., Kaiser, K. & Kalbitz, K. Extraction and characterization of dissolved organic matter. In Soil Sampling and Methods of Analysis (eds. Carter, M. & Gregorich, E. G.) (CRC Press, 2008).37.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Grigalaviciene, I., Rutkoviene, V. & Marozas, V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish J. Environ. Stud. 14, 109–115 (2005).CAS 

    Google Scholar 
    39.Bäckström, M., Bäckman, L., Folkeson, L., Karlsson, S. & Lind, B. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res. 38, 720–732 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A. & Ganei, S. A. Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ. Monit. Assess. 190, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    41.Doelman, P. & Haanstra, L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79, 317–327 (1984).CAS 
    Article 

    Google Scholar 
    42.Hattori, H. Influence of heavy metals on soil mcrobial activities. Soil Sci. Plant Nutr. 38, 93–100 (1992).CAS 
    Article 

    Google Scholar 
    43.Gülser, F. & Erdoǧan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 145, 127–133 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Lofgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).ADS 
    Article 

    Google Scholar 
    45.Mason, C. F., Norton, S. A., Fernandez, I. J. & Katz, L. E. Deconstruction of the chemical effects of road salt on stream water chemistry. J. Environ. Qual. 28, 82–91 (1999).CAS 
    Article 

    Google Scholar 
    46.Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).CAS 
    Article 

    Google Scholar 
    47.Rhodes, A. L. & Guswa, A. J. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci. Total Environ. 545–546, 525–545 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M. & Elsen, T. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 17–31 (2008).Article 

    Google Scholar 
    49.Berggren, D., Mulder, J. & Westerhof, R. Prolonged leaching of mineral forest soils with dilute HCl solutions: The solubility of Al and soil organic matter. Eur. J. Soil Sci. 49, 305–316 (1998).CAS 
    Article 

    Google Scholar 
    50.Prenzel, J. & Schulte-Bisping, H. Some chemical parameter relations in a population of German forest soils. Geoderma 64, 309–326 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Reuss, J. O., Walthall, P. M., Roswall, E. C. & Hopper, R. W. E. Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils. Soil Sci. Soc. Am. J. 54, 374–380 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Hobbie, S. E. et al. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 10, 999–1018 (2007).CAS 
    Article 

    Google Scholar 
    53.Scheel, T., Jansen, B., Van Wijk, A. J., Verstraten, J. M. & Kalbitz, K. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?. Eur. J. Soil Sci. 59, 1122–1132 (2008).CAS 
    Article 

    Google Scholar 
    54.Lützow, M. V. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445 (2006).Article 
    CAS 

    Google Scholar 
    55.Gruba, P. & Socha, J. Effect of parent material on soil acidity and carbon content in soils under silver fir (Abies alba Mill.) stands in Poland. CATENA 140, 90–95 (2016).CAS 
    Article 

    Google Scholar 
    56.Gruba, P. & Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 511, 655–662 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).Article 

    Google Scholar  More