More stories

  • in

    Biosafety assessment of Acinetobacter strains isolated from the Three Gorges Reservoir region in nematode Caenorhabditis elegans

    Acinetobacter isolates from the TGR regionIn the TGR region, we isolated 21 Acinetobacter strains (one A. johnsonii, one A. haemolyticus and 19 Acinetobacter sp. strains) (Table S1). Based on phylogenetic analysis after 16S rRNA gene sequencing, these 21 isolates belong to the genus Acinetobacter, exhibiting a similarity of 95.38–99.93% with known Acinetobacter strains in GenBank (Table S1). In phylogenetic tree (N-J) constructed with both isolated and known Acinetobacter strains, these 21 isolates branched deeply with three Acinetobacter clusters consisting of important clinical Acinetobacter species, such as A. johnsonii H10 (FJ009371), A. junii NH88-14 (FJ447529), A. baumannii ATCC19606T (HE651907), A. lwoffii DSM2403T (X81665) and A. haemolyticus TTH04-1 (KF704077) (Fig. 1). Five reference Acinetobacter strains were selected and used21. Currently, the genus Acinetobacter comprises 68 species with validly-published names (https://apps.szu.cz/anemec/Classification.pdf, May 25, 2021). Among the named species, A. baumannii is the most studied species associated with clinical infections followed by the non-A. baumannii species A. haemolyticus, A. junii, A. johnsonii, and A. lwofii21.Figure 1A phylogenetic tree of 16S rRNA gene sequences showing position of isolates among species of genus Acinetobacter. Both isolates from the TGR region (the bold fonts) and reference strains used to infect Caenorhabditis elegans (the red fonts) are shown.Full size imageEffect of different Acinetobacter strains isolated from the TGR region and reference strains on lifespan of nematodesL4-larvae were exposed to different Acinetobacter strains for 24-h. Totally 21 Acinetobacter strains isolated from the TGR region and 5 reference strains of Acinetobacter species were used for the lifespan analysis. Based on the comparison of lifespan curves, exposure to Acinetobacter strains of AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC9, AC10, AC11, AC12, AC13, AC14, AC16, AC17, AC19, AC20, A. johnsonii H10, and A. haemolyticus TTH0-4 could not alter lifespan curve (Fig. 2). Similarly, Acinetobacter strains of AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC9, AC10, AC11, AC12, AC13, AC14, AC16, AC17, AC19, AC20, A. johnsonii, and A. haemolyticus also could not influence mean lifespan (Fig. 2). Different from these, the lifespan curves of nematodes exposed to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14, and A. lwoffii DSM 2403T were significantly (P  More

  • in

    Constraining the chronology and ecology of Late Acheulean and Middle Palaeolithic occupations at the margins of the monsoon

    1.Beyene, Y. et al. The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proc. Natl. Acad. Sci. USA 110, 1584–1591 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    2.Haslam, M. et al. Late Acheulean hominins at the marine isotope stage 6/5e transition in north-central India. Quat. Res. 75, 670–682 (2011).CAS 
    Article 

    Google Scholar 
    3.Carotenuto, F. et al. Venturing out safely: The biogeography of Homo erectus dispersal out of Africa. J. Hum. Evol. 95, 1–12 (2016).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).Article 

    Google Scholar 
    5.Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science (80-) 358, 65 (2017).Article 
    CAS 

    Google Scholar 
    6.Rogers, A. R., Harris, N. S. & Achenbach, A. A. Neanderthal-Denisovan ancestors interbred with a distantly related hominin. Sci. Adv. 6, 1–8 (2020).
    Google Scholar 
    7.Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173–176 (1997).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Rightmire, G. P. Brain size and encephalization in early to Mid-Pleistocene Homo. Am. J. Phys. Anthropol. 124, 109–123 (2004).PubMed 
    Article 

    Google Scholar 
    9.Rightmire, G. P. Later Middle Pleistocene Homo. in Handbook of Palaeoanthropology (eds. Henke, W. & Tattersall, I.) 2221–2242 (Springer, 2015).10.Lahr, M. M. The complex landscape of recent human evolution. Science (80-) 372, 995 (2021).Article 
    CAS 

    Google Scholar 
    11.Athreya, S. & Hopkins, A. Conceptual issues in hominin taxonomy: Homo heidelbergensis and an ethnobiological reframing of species. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24330 (2021).Article 
    PubMed 

    Google Scholar 
    12.Grun, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).PubMed 
    Article 

    Google Scholar 
    13.Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Hershkovitz, I. et al. The earliest modern humans outside Africa. Science (80-) 359, 456–459 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    15.Kolobova, K. A. et al. Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proc. Natl. Acad. Sci. U. S. A. 117, 2879–2885 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    17.Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 565, 640–644 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    18.Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Brown, P. et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Athreya, S. Modern human emergence in South Asia: A review of the fossil and genetic evidence. in Emergence and Diversity of Modern Human Behaviour in Paleolithic Asia (eds. Kaifu, Y., Izuho, M., Goebel, T., Sato, H. & Ono, A.). 61–79. (Texas A&M University Press, 2015).23.Patnaik, R. et al. New geochronological, paleoclimatological, and archaeological data from the Narmada Valley hominin locality, central India. J. Hum. Evol. 56, 114–133 (2009).PubMed 
    Article 

    Google Scholar 
    24.Pappu, S. et al. Early Pleistocene presence of Acheulian hominins in South India. Science 331, 1596–1599 (2011).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    25.Paddayya, K. et al. Recent findings on the Achuelian of the Hunsgi and Baichbal valleys, Karnataka, with special reference to the Isampur excavation and its dating. Curr. Sci. 83, 641–647 (2002).
    Google Scholar 
    26.Blinkhorn, J. & Petraglia, M. D. Environments and cultural change in the Indian subcontinent: Implications for the dispersal of Homo sapiens in the Late Pleistocene. Curr. Anthropol. 58, S463–S479 (2017).Article 

    Google Scholar 
    27.Benito-calvo, A., Barfod, D. N., Mchenry, L. J. & De, I. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia). J. Hum. Evolut. 2014, 26–38 (2014).Article 

    Google Scholar 
    28.De la Torre, I., Mora, R., Arroyo, A. & Benito-calvo, A. Acheulean technological behaviour in the Middle Pleistocene landscape of Mieso (East-Central Ethiopia ). J. Hum. Evol. 76, 1–25 (2014).PubMed 
    Article 

    Google Scholar 
    29.Shipton, C. et al. Acheulean technology and landscape use at Dawadmi, central Arabia. PLoS ONE 13, e200497 (2018).
    Google Scholar 
    30.Scerri, E. M. L. et al. The expansion of later Acheulean hominins into the Arabian Peninsula. Sci. Rep. 8, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    31.Brooks, A. S. et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science (80-) 360, 90–94 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    32.Valladas, H. et al. Dating the Lower to Middle Paleolithic transition in the Levant: A view from Misliya Cave, Mount Carmel, Israel. J. Hum. Evol. 65, 585–593 (2013).PubMed 
    Article 

    Google Scholar 
    33.Carmignani, L., Moncel, M. H. E., Fernandes, P. & Wilson, L. Technological variability during the Early Middle Palaeolithic in Western Europe: Reduction systems and predetermined products at the Bau de l’Aubesier and Payre (South-East France). PLoS ONE 12, e178550 (2017).Article 
    CAS 

    Google Scholar 
    34.Blinkhorn, J. et al. The first directly dated evidence for Palaeolithic occupation on the Indian coast at Sandhav, Kachchh. Quat. Sci. Rev. 224, 105975 (2019).Article 

    Google Scholar 
    35.Blinkhorn, J., Achyuthan, H., Petraglia, M. & Ditchfield, P. Middle Palaeolithic occupation in the Thar Desert during the Upper Pleistocene: the signature of a modern human exit out of Africa?. Quat. Sci. Rev. 77, 233–238 (2013).Article 
    ADS 

    Google Scholar 
    36.Petraglia, M. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    37.Petraglia, M. D., Ditchfield, P., Jones, S., Korisettar, R. & Pal, J. N. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quat. Int. 258, 119–134 (2012).Article 

    Google Scholar 
    38.Clarkson, C. et al. Human occupation of northern India spans the Toba super-eruption ~74,000 years ago. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    39.Akhilesh, K. et al. Early Middle Palaeolithic culture in India around 385–172 ka reframes out of Africa models. Nature 554, 97–101 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    40.Dennell, R. The Palaeolithic Settlement of Asia. (Cambridge University Press, 2009).41.Chauhan, P. R. Human evolution in the center of the old world: An updated review of the South Asian Paleolithic. in Pleistocene Archaeology—Migration, Technology, and Adaptation (eds. Ono, R. & Pawlik, A.). 94625. (IntechOpen, 2020).42.Roberts, P., Blinkhorn, J. & Petraglia, M. D. A transect of environmental variability across South Asia and its influence on Late Pleistocene human innovation and occupation. J. Quat. Sci. 33, 285–299 (2018).Article 

    Google Scholar 
    43.Goudie, A., Allchin, B. & Hegde, K. The former extensions of the Great Indian Sand desert. Geogr. J. 139, 243–257 (1973).Article 

    Google Scholar 
    44.Blinkhorn, J. The gateway to the oriental zone: Environmental change and palaeolithic behaviour in the Thar Desert. Quat. Int. 596, 79–92 (2021).Article 

    Google Scholar 
    45.Gaillard, C., Misra, V. N., Rajaguru, S. N., Raju, D. R. & Raghavan, H. Acheulian occupation at Singi Talav in the Thar Desert: A preliminary report on 1981 excavation. Bull. Deccan Coll. Res. Inst. 44, 141–152 (1985).
    Google Scholar 
    46.Raghavan, H., Gaillard, C. & Rajaguru, S. N. Genesis of Calcretes from the Calc-pan site of Singi Talav near a micromorphological approach. Geoarchaeology 6, 151–168 (1991).Article 

    Google Scholar 
    47.Misra, V. N. & Rajaguru, S. N. Palaeoenvironments and prehistory of the Thar Desert, Rajasthan, India. in South Asian Archaeology 1985. 296–320. (Scandinavian Institute of Asian Studies Occasional Papers, 1989).48.Misra, V. Geoarchaeology of the Thar desert, northwest India. Mem. Soc. India 210–230 (1995).49.Gaillard, C. Contribution à la Connaissance du Paléolithique Inférieur-Moyen en Inde. (Université de Provence, 1993).50.Gaillard, C., Mishra, S., Singh, M., Deo, S. & Abbas, R. Lower and Early Middle Pleistocene Acheulian in the Indian sub-continent. Quat. Int. 223–224, 234–241 (2010).Article 

    Google Scholar 
    51.Gaillard, C., Mishra, S., Singh, M., Deo, S. & Abbas, R. Reply to: “Comment on ‘lower and early Middle Pleistocene Acheulian in the Indian sub-continent’” by P. Chauhan. Quat. Int. 223–224, 260–264 (2010).Article 

    Google Scholar 
    52.Kailath, A. J. et al. Electron spin resonance characterization of calcretes from Thar desert for dating applications. Radiat. Meas. 32, 371–383 (2000).CAS 
    Article 

    Google Scholar 
    53.Chauhan, P. R. Comment on ‘Lower and Early Middle Pleistocene Acheulian in the Indian sub-continent’ by Gaillard et al. (2009) (Quaternary International). Quat. Int. 223–224, 248–259 (2010).54.Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A. & Schwartz, D. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 213–229 (1997).Article 

    Google Scholar 
    55.Diester-Haass, L., Schrader, H. J. & Thiede, J. Sedimentological and paleoclimatological investigations of two pelagic ooze cores off Cape Barbas, North-West Africa. Meteorol. Forshungergebnisse 16, 19–66 (1973).
    Google Scholar 
    56.Twiss, P. C. Predicted world distribution of C3 and C4 grass phytoliths. in Phytolith Systematics: Emerging Issues (eds. Rapp, G. R. & Mullholland, S. C.). 113–128. (Springer, 1992).57.Breecker, D. O., Sharp, Z. D. & McFadden, L. D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bull. Geol. Soc. Am. 121, 630–640 (2009).CAS 
    Article 

    Google Scholar 
    58.Szabo, B. J., McKinney, C., Dalbey, T. S. & Paddayya, K. On the age of the Acheulian culture of the Hunsgi-Baichbal Valleys, Peninsular India. Bull. Deccan Coll. Postgrad. Res. Inst. 50, 317–321 (1990).
    Google Scholar 
    59.Atkinson, T. J., Brown, P. J., Powar, N. J. & Kale, V. S. The Acheulian horizon at Chirki-Nevasa and its chronological implications. Bull. Deccan Coll. Postgrad. Res. Inst. 36, 3–14 (1990).
    Google Scholar 
    60.Deo, S. G., Joglekar, J. J. & Rajaguru, S. N. Geomorphic context of two acheulian sites in semi-arid peninsular India: Inferring palaeoenvironment and chronology. Quat. Int. 480, 166–177 (2018).Article 

    Google Scholar 
    61.Blinkhorn, J. A new synthesis of evidence for the Upper Pleistocene occupation of 16R Dune and its southern Asian context. Quat. Int. 300, 282–291 (2013).Article 

    Google Scholar 
    62.Baskaran, M., Maratheb, A. R., Rajagurub, S. N. & Somayajulu, B. L. K. Geochronology of Palaeolithic cultures in the Hiran Valley, Saurashtra, India. J. Archaeol. Sci. 13, 505–514 (1986).Article 

    Google Scholar 
    63.Jain, M., Tandon, S. K. & Bhatt, S. C. Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India. J. Earth Syst. Sci. 113, 453–471 (2004).Article 
    ADS 

    Google Scholar 
    64.Juyal, N., Chamyal, L. S., Bhandari, S., Bhushan, R. & Singhvi, A. K. Continental record of the southwest monsoon during the last 130 ka : evidence from the southern margin of the Thar Desert, India. Quat. Sci. Rev. 25, 2632–2650 (2006).Article 
    ADS 

    Google Scholar 
    65.Ajithprasad, P. Early Middle Palaeolithic: A transition phase between the Upper Acheulian and Middle Palaeolithic cultures in the Orsang Valley, Gujarat. Man Environ. 30, 1–11 (2005).
    Google Scholar 
    66.Bednarik, R. G., Kumar, G., Watchman, A. & Roberts, R. G. Preliminary results of the EIP Project. Rock Art Res. 22, 147–197 (2005).
    Google Scholar 
    67.Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert. India. Quat. Res. (United States) 87, 298 (2017).CAS 

    Google Scholar 
    68.Gaillard, C. & Rajaguru, S. N. Revisiting the Acheulian site of Singi Talav at Didwana (Rajasthan) 35 years. in Rethinking the Past: A Tribute to Professor V. N. Misra (ed. Deo, S. G.). 25–39. https://doi.org/10.7765/9780719098451.00013 (Indian Society for Prehistoric and Quaternary Studies, 2017).69.d’Errico, F., Gaillard, C. & Misra, V. N. Collection of non-utilitarian objects by Homo erectus in India. in Hominidae: Proceedings of the 2nd International Congress of Human Paleontology (ed. Giacobini, G.). 237–239. (Jaca Book, 1989).70.Key, A. J. M., Jarić, I. & Roberts, D. L. Modelling the end of the Acheulean at global and continental levels suggests widespread persistence into the Middle Palaeolithic. Hum. Soc. Sci. Commun. 8, 1–12 (2021).Article 

    Google Scholar 
    71.Wasson, R. J., Smith, G. I. & Agrawala, D. P. Late Quaternary sediments, minerals and inferred geochemical history of Didwana Lake, Thar Dessert, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 46, 345–372 (1984).CAS 
    Article 

    Google Scholar 
    72.Jakher, G. R., Bhargava, S. C. & Sinha, R. K. Comparative limnology of Sambhar and Didwana lakes (Rajasthan, NW India). Saline Lakes 67, 245–256 (1990).Article 

    Google Scholar 
    73.Sinha, R. et al. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 233, 252–270 (2006).Article 

    Google Scholar 
    74.Sinha, R. & Raymahashay, B. C. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment. Geol. 166, 59–71 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    75.Deotare, B. C. et al. Palaeoenvironmental history of Bap-Malar and Kanod playas of western Rajasthan, Thar desert. J. Earth Syst. Sci. 113, 403–425 (2004).Article 
    ADS 

    Google Scholar 
    76.Roy, P. D., Sinha, R., Smykatz-Kloss, W., Singhvi, A. K. & Nagar, Y. C. Playas of the Thar Desert: Mineralogical and geochemical archives of Late Holocene climates. Asian J. Earth Sci. 1, 43–61 (2008).Article 
    CAS 

    Google Scholar 
    77.Achyuthan, H., Kar, A. & Eastoe, C. Late Quaternary-Holocene lake-level changes in the eastern margin of the Thar Desert, India. J. Paleolimnol. 38, 493–507 (2007).Article 
    ADS 

    Google Scholar 
    78.Dhir, R. P. et al. Multiple episodes of aggradation and calcrete formation in Late Quaternary aeolian sands, Central Thar Desert, Rajasthan, India. J. Asian Earth Sci. 37, 10–16 (2010).Article 
    ADS 

    Google Scholar 
    79.Juyal, N., Chamyal, L., Bhandari, S., Bhushan, R. & Singhvi, A. Continental record of the southwest monsoon during the last 130 ka: Evidence from the southern margin of the Thar Desert, India. Quat. Sci. Rev. 25, 2632–2650 (2006).Article 
    ADS 

    Google Scholar 
    80.Giosan, L. et al. Fluvial landscapes of the Harappan civilization. Proc. Natl. Acad. Sci. 109, E1688–E1694 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Achyuthan, H., Quade, J., Roe, L. & Placzek, C. Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. Quat. Int. 162, 50–60 (2007).Article 

    Google Scholar 
    82.Sharma, K., Bhatt, N., Shukla, A. D., Cheong, D. K. & Singhvi, A. K. Optical dating of late Quaternary carbonate sequences of Saurashtra, western India. Quat. Res. (United States) 87, 133–150 (2017).CAS 

    Google Scholar 
    83.Blinkhorn, J., Achyuthan, H., Jaiswal, M. & Singh, A. K. The first dated evidence for Middle-Late Pleistocene fluvial activity in the central Thar Desert. Quat. Sci. Rev. 250, 106656 (2020).Article 

    Google Scholar 
    84.Singhvi, A. K. et al. A ~200 ka record of climatic change and dune activity in the Thar Desert, India. Quat. Sci. Rev. 29, 3095–3105 (2010).Article 
    ADS 

    Google Scholar 
    85.Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert, India. Quat. Res. 87, 298–313 (2017).CAS 
    Article 

    Google Scholar 
    86.Shipton, C. Hierarchical organization in the Acheulean to Middle Palaeolithic transition at Bhimbetka, India. Camb. Archaeol. J. 26, 601–618 (2016).Article 

    Google Scholar 
    87.Shipton, C. et al. Generativity, hierarchical action and recursion in the technology of the Acheulean to Middle Palaeolithic transition: A perspective from Patpara, the Son Valley, India. J. Hum. Evol. 65, 93–108 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Potts, R. et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science (80-) 360, 86–90 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    89.Tryon, C. A. & Mcbrearty, S. Tephrostratigraphy of the bedded tuff member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later middle Pleistocene. Quatern. Res. 65, 492–507 (2006).Article 
    ADS 

    Google Scholar 
    90.Tryon, C. A., McBrearty, S. & Texier, P.-J. Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity. African Archaeol. Rev. 22, 199–229 (2006).Article 

    Google Scholar 
    91.Zaidner, Y. & Weinstein-Evron, M. The emergence of the Levallois technology in the Levant: A view from the Early Middle Paleolithic site of Misliya Cave. Israel. J. Hum. Evol. 2020, 102785 (2020).Article 

    Google Scholar 
    92.Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in papuans. Cell 177, 1010-1021.e32 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53-61.e9 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Sankararaman, S. et al. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans report the combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    95.Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    96.Blott, S. J. & Pye, K. Technical communication Gradistat : A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26, 1237–1248 (2001).Article 
    ADS 

    Google Scholar 
    97.Keeling, P. S. Some experiments on the low-temperature removal of carbonaceous material from clays. Clay Miner. Bull. 62, 155–158 (1962).Article 
    ADS 

    Google Scholar 
    98.Ball, D. F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15, 84–92 (1964).CAS 
    Article 

    Google Scholar 
    99.Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).CAS 

    Google Scholar 
    100.Bengtsson, L. & Enell, M. Chemical analysis. in Handbook of Holocene Paleoecology and Paleohydrology (eds. Bengtsson, L., Enell, M. & Berglund, B. E.) 423–454 (Wiley, 1986).101.Juggins, S. rioja: Anlaysis of Quaternary science data. R Doc. 1–58 (2015).102.Team, R. D. C. R: A Language and Environment for Statistical Computing. http://www.r-project.org (2020).103.Parker, A. An index of weathering for silicate rocks. Geol. Mag. 107, 501–504 (1970).CAS 
    Article 
    ADS 

    Google Scholar 
    104.Nesbitt, H. W. & Young, G. M. Formation and diagenesis of weathering profiles. J. Geol. 2, 129–147 (1989).Article 
    ADS 

    Google Scholar 
    105.Piperno, D. R. Phytolith Analysis: An Archaeological and Geological Perspective. (Academic Press, 1988).106.Twiss, P. A Curmudgeon’s view of grass phytolithology. in Phytoliths: Applications in Earth Sciences and Human History (ed. Meunier, J. D.) 7–25 (A.A. Balkema Publishers, 2001).107.Eksambekar, S. Contribution of the Study of Phytoliths to Bioarchaeology. (Deccan College PGRI, 2002).108.Durcan, J., King, E. G. & Duller, G. A. T. DRAC : Dose rate and age calculator for trapped charge dating DRAC : Dose rate and age calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).Article 

    Google Scholar 
    109.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    110.Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).Article 
    CAS 

    Google Scholar 
    111.Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    112.Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).Article 
    ADS 

    Google Scholar 
    113.Bolton, C. T. et al. A 500,000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure. Quat. Sci. Rev. 77, 167–180 (2013).Article 
    ADS 

    Google Scholar  More

  • in

    Rewetting does not return drained fen peatlands to their old selves

    1.Schoock, M. Tractatus de turffis ceu cespitibus bituminosis: quo multa, ab aliis hactenus aut neglecta, aut minus diligenter examinata, accuratius aliquanto excutiuntur. [A treatise on peats as bituminous sods] (Cöllen, Groningen, 1658).2.Tanneberger, F. et al. Towards net zero CO2 in 2050: An emission reduction pathway for organic soils in Germany. Mires Peat 27, 1–17, https://doi.org/10.19189/MaP.2020.SNPG.StA.1951 (2021).Article 

    Google Scholar 
    3.Klimkowska, A. et al. Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits. PLOS One 14, e0215645, https://doi.org/10.1371/journal.pone.0215645 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Emsens, W.-J. et al. Recovery of fen peatland microbiomes and predicted functional profiles after rewetting. ISME J. 14, 1701–1712, https://doi.org/10.1038/s41396-020-0639-x (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Lamers, L. P. M. et al. Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach. Biol. Rev. 90, 182–203, https://doi.org/10.1111/brv.12102 (2015).PubMed 
    Article 

    Google Scholar 
    6.Findorff, J. C. Beiträge und Fragmente zu einem Moorkatechismus/von Jürgen Christian Findorff und Anmerkungen von F. Brüne, K. Lilienthal und F. Overbeck. [Contributions and fragments to a peatland catechism from Jürgen Christian Findorff with remarks from F. Brüne, K. Lilienthal and F. Overbeck] (Stalling, Oldenburg, 1764, published 1937).7.Kirpotin, S. N. et al. Great Vasyugan Mire: How the world’s largest peatland helps addressing the world’s largest problems. Ambio 71, 618, https://doi.org/10.1007/s13280-021-01520-2 (2021).Article 

    Google Scholar 
    8.Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91, https://doi.org/10.4155/cmt.13.77 (2014).CAS 
    Article 

    Google Scholar 
    9.Xu, J., Morris, P. J., Liu, J. & Holden, J. Hotspots of peatland-derived potable water use identified by global analysis. Nat. Sustain. 1, 246–253, https://doi.org/10.1038/s41893-018-0064-6 (2018).CAS 
    Article 

    Google Scholar 
    10.Joosten, H., Tanneberger, F. & Moen, A. (eds). Mires and peatlands of Europe. Status, distribution and conservation (Schweizerbart Science Publishers, Stuttgart, 2017).11.Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R. (eds). Peatland restoration and ecosystem services (Cambridge University Press, Cambridge, 2016).12.Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071, https://doi.org/10.1038/s41467-018-03406-6 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Joosten, H. & Clarke, D. Wise use of mires and peatlands. Background and principles including a framework for decision-making (Internat. Mire Conservation Group, Totnes, 2002).14.Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644, https://doi.org/10.1038/s41467-020-15499-z (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Erkens, G., van der Meulen, M. J. & Middelkoop, H. Double trouble: subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 24, 551–568, https://doi.org/10.1007/s10040-016-1380-4 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Tiemeyer, B. & Kahle, P. Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils. Biogeosciences 11, 4123–4137, https://doi.org/10.5194/bg-11-4123-2014 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Minayeva, T., Bragg, O. & Sirin, A. Peatland biodiversity and its restoration. In Peatland restoration and ecosystem services, (eds Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R.) pp. 44–62 (Cambridge University Press, Cambridge, 2016).18.Janssen, J. A. M. et al. European red list of habitats (Publications Office of the European Union, 2016).19.Mrotzek, A., Michaelis, D., Günther, A., Wrage-Mönnig, N. & Couwenberg, J. Mass balances of a drained and a rewetted peatland: on former losses and recent gains. Soil Syst. 4, 16, https://doi.org/10.3390/soilsystems4010016 (2020).CAS 
    Article 

    Google Scholar 
    20.Zerbe, S. et al. Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany. Environ. Manag. 51, 1194–1209, https://doi.org/10.1007/s00267-013-0048-2 (2013).ADS 
    Article 

    Google Scholar 
    21.Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947, https://doi.org/10.1038/s41558-019-0615-5 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    22.IPCC. Global warming of 1.5 °C (IPCC, Geneva, Switzerland, 2018).23.Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient-A meta study. Hydrol. Process 33, 101–114, https://doi.org/10.1002/hyp.13314 (2019).ADS 
    Article 

    Google Scholar 
    24.Franz, D., Koebsch, F., Larmanou, E., Augustin, J. & Sachs, T. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen. Biogeosciences 13, 3051–3070, https://doi.org/10.5194/bg-13-3051-2016 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: the high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091, https://doi.org/10.1029/2018GL077747 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Zak, D. & Gelbrecht, J. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85, 141–151, https://doi.org/10.1007/s10533-007-9122-2 (2007).CAS 
    Article 

    Google Scholar 
    27.Emsens, W.-J., Aggenbach, C. J. S., Smolders, A. J. P., Zak, D. & van Diggelen, R. Restoration of endangered fen communities: the ambiguity of iron-phosphorus binding and phosphorus limitation. J. Appl. Ecol. 54, 1755–1764, https://doi.org/10.1111/1365-2664.12915 (2017).CAS 
    Article 

    Google Scholar 
    28.Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675, https://doi.org/10.1111/avsc.12519 (2020).Article 

    Google Scholar 
    29.Zak, D. et al. Unraveling the importance of polyphenols for microbial carbon mineralization in rewetted riparian peatlands. Front. Environ. Sci. 7; https://doi.org/10.3389/fenvs.2019.00147 (2019).30.Henneberg, A., Sorrell, B. K. & Brix, H. Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. N. Phytol. 196, 799–806, https://doi.org/10.1111/j.1469-8137.2012.04303.x (2012).CAS 
    Article 

    Google Scholar 
    31.Agethen, S., Sander, M., Waldemer, C. & Knorr, K.-H. Plant rhizosphere oxidation reduces methane production and emission in rewetted peatlands. Soil Biol. Biochem 125, 125–135, https://doi.org/10.1016/j.soilbio.2018.07.006 (2018).CAS 
    Article 

    Google Scholar 
    32.Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In Bryophyte biology, (eds Shaw, A. J. & Goffinet, B.), pp. 312–343 (Cambridge University Press, Cambridge, 2002).33.Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat, 1–28; https://doi.org/10.19189/MaP.2016.OMB.222 (2016).34.Kotowski, W., Thörig, W., van Diggelen, R. & Wassen, M. J. Competition as a factor structuring species zonation in riparian fens – a transplantation experiment. Appl. Veg. Sci. 9, 231–240, https://doi.org/10.1111/j.1654-109X.2006.tb00672.x (2006).Article 

    Google Scholar 
    35.Frantz, D. FORCE—Landsat+ Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 11, 1124, https://doi.org/10.3390/rs11091124 (2019).ADS 
    Article 

    Google Scholar 
    36.Körner, C., Stöcklin, J., Reuther-Thiébaud, L. & Pelaez-Riedl, S. Small differences in arrival time influence composition and productivity of plant communities. N. Phytol. 177, 698–705, https://doi.org/10.1111/j.1469-8137.2007.02287.x (2008).Article 

    Google Scholar 
    37.Fritz, C., Campbell, D. I. & Schipper, L. A. Oscillating peat surface levels in a restiad peatland, New Zealand-magnitude and spatiotemporal variability. Hydrological Process. 22, 3264–3274, https://doi.org/10.1002/hyp.6912 (2008).ADS 
    Article 

    Google Scholar 
    38.Loisel, J. & Yu, Z. Surface vegetation patterning controls carbon accumulation in peatlands. Geophys. Res. Lett. 40, 5508–5513, https://doi.org/10.1002/grl.50744 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Proc. R. Soc. Lond. B Biol. Sci. 375, 20190685, https://doi.org/10.1098/rstb.2019.0685 (2020).CAS 
    Article 

    Google Scholar 
    40.Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900, https://doi.org/10.1038/ngeo1323 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Hobbs, R. J., Higgs, E. S. & Hall, C. M. Defining novel ecosystems. In Novel Ecosystems. Intervening in the New Ecological World Order (eds Hobbs, R. J., Higgs, E. S. & Hall, C.) 1st ed., Vol. 24, pp. 58–60 (Wiley-Blackwell, s.l., 2013).42.Bonnett, S. A. F., Ross, S., Linstead, C. & Maltby, E. A review of techniques for monitoring the success of peatland restoration. Natural England Commissioned Reports, Number 086 and Natural England Technical Information Note TIN097. http://publications.naturalengland.org.uk/publication/46013 (2011).43.Schwieger, S. et al. Wetter is better: Rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 45, 279, https://doi.org/10.1007/s10021-020-00570-z (2020).CAS 
    Article 

    Google Scholar 
    44.Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935, https://doi.org/10.5194/bg-18-917-2021 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033, https://doi.org/10.1080/01431160600589179 (2006).ADS 
    Article 

    Google Scholar 
    46.Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180, https://doi.org/10.1111/avsc.12191 (2016).Article 

    Google Scholar 
    47.Euro+Med 2006+. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. https://www.europlusmed.org. Accessed 25-Feb-2021.48.Hodgetts, N. G. et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 42, 1–116, https://doi.org/10.1080/03736687.2019.1694329 (2020).Article 

    Google Scholar 
    49.Jansen, F. & Dengler, J. Plant names in vegetation databases – a neglected source of bias. J. Veg. Sci. 21, 1179–1186, https://doi.org/10.1111/j.1654-1103.2010.01209.x (2010).Article 

    Google Scholar 
    50.Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    51.Jurasinski, G. & Kreyling, J. Upward shift of alpine plants increases floristic similarity of mountain summits. J. Veg. Sci. 18, 711–718 (2007).Article 

    Google Scholar 
    52.R Core Team. R: a language and environment for statistical computing. R version 4.0.2 (R Foundation for Statistical Computing. URL http://www.R-project.org, Vienna, Austria, 2020).53.Tanneberger, F. et al. The peatland map of Europe. Mires Peat, 1–17; https://doi.org/10.19189/MaP.2016.OMB.264 (2017). More

  • in

    Prediction of habitat suitability for Patrinia sibirica Juss. in the Southern Urals

    1.Addison, P. F. et al. Practical solutions for making models indispensable in conservation decision-making. Divers. Distrib. 19, 490–502 (2013).Article 

    Google Scholar 
    2.Bosso, L. et al. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): Evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203 (2018).Article 

    Google Scholar 
    3.Lentini, P. et al. Using fossil records to inform reintroduction of the kakapo as a refugee species. Biol. Cons. 217, 157–165 (2018).Article 

    Google Scholar 
    4.Krasheninnikov, I. M. Analysis of the Southern Urals relict flora in connection with the Pleistocene vegetation history and paleogeography. Sovetskaya Bot. 4, 16–45 (1937) (in Russian).
    Google Scholar 
    5.Gorchakovsky, P. L. & Shurova, E.A. Rare and Endangered Plants of Urals and Cis-Urals 208–209 (Nauka, 1982) (in Russian).6.Gorchakovsky, P.L. The Plant World of the Ural High Mountains 283–285 (Nauka, 1975) (in Russian).7.Red Book of the Chelyabinsk Oblast: Animals, Plants, Fungi. 391 (ed A. V. Lagunov) (2017) (in Russian).8.Red Book of the Republic of Bashkortostan. Plants and Fungi 227 (ed B. M. Mirkin) (MediaPrint, 2011) (in Russian).9.Damschen, E. I. et al. Endemic plant communities on special soils: Early victims or hardy survivors of climate change?. J. Ecol. 100, 1122–1130 (2012).Article 

    Google Scholar 
    10.Spasojevic, M. J., Damschen, E. I. & Harrison, S. Patterns of seed dispersal syndromes on serpentine soils, examining the roles of habitat patchiness, soil infertility and correlated functional traits. Plant Ecol. Divers. 7, 401–410 (2014).Article 

    Google Scholar 
    11.Abdullina, L. A. Introduction of some rare medicinal plants in the Ufa Botanical Garden. In: Biodiversity of the Ural’s flora and adjacent territories: Proceedings of the All-Russian Conference with international participation. 319–320 (Goshchitskiy, 2012) (in Russian).12.Rossington, N., Yost, J. & Ritter, M. Water availability influences species distributions on serpentine soils. Madroño 65, 68–79 (2018).Article 

    Google Scholar 
    13.Byrne, M. et al. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs. Biol. Rev. 94, 753–772 (2018).Article 

    Google Scholar 
    14.Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: Irresistible force meets immovable object?. Trends Ecol. Evol. 35, 367–376 (2020).Article 

    Google Scholar 
    15.Khotinskii, N. A., Nemkova, V. K. & Surova, T. G. Main stages of Ural vegetation and climate development in Holocene. Archaeol. Issues Urals 16, 145–153 (1982) (in Russian).
    Google Scholar 
    16.Shiyatov, S. G. Experience in using old photographs for studying changes in forest vegetation at its upper limit. Floristic and Geobotanical Studies in the Urals 76–109 (1983) (in Russian).17.Moiseev, P. A., Shiyatov, S. G. & Grigor’yev, A. A. Climatogenic Dynamics of Woody Vegetation at the Upper Limit of Its Distribution on the Bolshoy Taganay Ridge over the Past Century 113–119 (ed V.A. Mukhin) (UrO RAS, 2016) (in Russian).18.Grigor’ev, A. A. et al. The advance of woody and shrub vegetation to the mountains and changes in the composition of tundra communities (Poperechnaya mountain, the Zigalga mountain range in the Southern Urals). J. Sib. Federal Univ. Biol. 11, 218–236 (2018) (in Russian).Article 

    Google Scholar 
    19.Brecka, A. F., Shahi, C. & Chen, H. Y. Climate change impacts on boreal forest timber supply. For. Policy Econ. 92, 11–21 (2018).Article 

    Google Scholar 
    20.Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015).Article 

    Google Scholar 
    21.Jarnevich, C. S. et al. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).Article 

    Google Scholar 
    22.Global Biodiversity Information Facility (GBIF). Occurrence Download https://doi.org/10.15468/dl.fswlyt (2019).23.Knyazev, M. S. Rock flora of river valleys in the Urals. Botanicheskii Zhurnal 103, 695–726 (2018) (in Russian).
    Google Scholar 
    24.Karimova, O. A., Mustafina, A. N. & Golovanov, Y. Age structure of coenopopulations of Patrinia sibirica (Valerianaceae) in South Ural. Plant Resour. 52, 49–65 (2016) (in Russian).
    Google Scholar 
    25.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).Article 

    Google Scholar 
    26.Bamford, A. J. et al. Trade-offs between specificity and regional generality in habitat association models: A case study of two species of African vulture. J. Appl. Ecol. 46, 852–860 (2009).Article 

    Google Scholar 
    27.Telyatnikov, M. Y. Syntaxonomy of dryas tundra and kobresia cryophytic meadows of the East Sayan. Plant World Asian Russia 1, 48–63 (2014) (in Russian).
    Google Scholar 
    28.Zibzeyev, E. G. & Nedovesova, T. A. Syntaxa of Dryas tundra of West Sayan mountains. Turczaninowia 17, 38–59 (2014) (in Russian).Article 

    Google Scholar 
    29.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9 (2014).Article 

    Google Scholar 
    30.Karger, D. N., Conrad, O. & Böhner, J. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    31.McSweeney, C. F. et al. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2015).Article 

    Google Scholar 
    32.Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).ADS 
    Article 

    Google Scholar 
    33.Hof, A. R. & Allen, A. M. An uncertain future for the endemic Galliformes of the Caucasus. Sci. Total Environ. 651, 725–735 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).ADS 
    Article 

    Google Scholar 
    35.Volodin, E. M., Dianskii, N. A. & Gusev, A. V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 46(4), 414–431. https://doi.org/10.1134/S000143381004002X (2010).Article 

    Google Scholar 
    36. Bentsen M. et al. The Norwegian Earth System Model NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013 (2013).ADS 
    Article 

    Google Scholar 
    37.Watanabe S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model. Dev. Discuss. 4(4), 845–872. https://doi.org/10.5194/gmd-4-845-2011 (2011).ADS 
    Article 

    Google Scholar 
    38.Danielson, J. J., Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). Garretson: U.S. Geological Survey 26 (2011).39.Poggio, L. et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).Article 

    Google Scholar 
    40.Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/ (2020).41.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    42.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    43.Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).Article 

    Google Scholar 
    44.Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Ahmed, N. et al. Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia. Ecol. Process. 10, 1–16 (2021).Article 

    Google Scholar  More

  • in

    Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge.

    Bioactive composition analysisThe main bioactive components in the three products are listed in Table 1. The main chemical constitutes of DL and LT were quite similar; although significant differences were noted in indicators such as protein (DL  > LT, difference = 8.22, P  DL, difference = 1.79, P  LT, difference = 4.07, P  0.05) of the samples. Among the bioactive constitutes, only POL contents in LT and DL were significantly lower (P  DR (1.90%). Compared with DL and LT, the DR exhibited significantly higher POL, increased by 50.21% (P  More

  • in

    Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian

    1.Raup, D. M. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. U. S. A. 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).Article 

    Google Scholar 
    4.Tozer, E. T. Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol. Rundschau 71, 1077–1104 (1982).ADS 
    Article 

    Google Scholar 
    5.Hallam, A. Major bio-events in the Triassic and Jurassic. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser O.H.) 265–283 (Springer, 1996).6.Brayard, A. et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Stanley, S. M. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 106, 15264–15267 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Friesenbichler, E., Hautmann, M., Nützel, A., Urlichs, M. & Bucher, H. Palaeoecology of Late Ladinian (Middle Triassic) benthic faunas from the Schlern/Sciliar and Seiser Alm/Alpe di Siusi area (South Tyrol, Italy). Pal. Z. 93, 1–29 (2019).
    Google Scholar 
    10.Zhao, X. et al. Recovery of lacustrine ecosystems after the end-Permian mass extinction. Geology 48, 609–613 (2020).ADS 
    Article 

    Google Scholar 
    11.Friesenbichler, E., Hautmann, M. & Bucher, H. The main stage of recovery after the end-Permian mass extinction: Taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic. PeerJ 9, e11654 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Twitchett, R. J. Incompleteness of the Permian-Triassic fossil record: A consequence of productivity decline?. Geol. J. 36, 341–353 (2001).Article 

    Google Scholar 
    13.Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7, 233–238 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Hu, S. et al. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. London B 278, 2274–2282 (2011).
    Google Scholar 
    15.Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Widmann, P. et al. Dynamics of the largest carbon isotope excursion during the Early Triassic biotic recovery. Front. Earth Sci. 8, 196 (2020).ADS 
    Article 

    Google Scholar 
    17.Brayard, A. et al. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 374–395 (2006).Article 

    Google Scholar 
    18.Jattiot, R. et al. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters. Palaeontology 61, 881–904 (2018).Article 

    Google Scholar 
    19.Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).Article 

    Google Scholar 
    20.Zhang, L. et al. The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria. Earth Sci. Rev. 195, 7–36 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Goudemand, N. et al. Dynamic interplay between climate and marine biodiversity upheavals during the Early Triassic Smithian -Spathian biotic crisis. Earth Sci. Rev. 195, 169–178 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Kashiyama, Y. & Oji, T. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: Paleoecologic and paleobiogeographic implications. Pal. Res. 8, 199–218 (2004).Article 

    Google Scholar 
    23.Hautmann, M. et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44, 71–85 (2011).Article 

    Google Scholar 
    24.Hofmann, R. et al. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57, 547–589 (2014).Article 

    Google Scholar 
    25.Foster, W. J. et al. Early Triassic benthic invertebrates from the Great Bank of Guizhou, South China: Systematic palaeontology and palaeobiology. Pap. Pal. 5, 613–656 (2019).Article 

    Google Scholar 
    26.Hautmann, M. et al. Competition in slow motion: The unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58, 871–901 (2015).Article 

    Google Scholar 
    27.Schaeffer, B., Mangus, M. & Laudon, L. R. An Early Triassic fish assemblage from British Columbia. Bull. AMNH. 156, article 5. (1976).28.Tintori, A., Hitij, T., Jiang, D., Lombardo, C. & Sun, Z. Triassic actinopterygian fishes: the recovery after the end-Permian crisis. Integr. Zool. 9, 394–411 (2014).PubMed 
    Article 

    Google Scholar 
    29.Neuman, A. G. Fishes from the Lower Triassic portion of the Sulphur Mountain Formation in Alberta, Canada: Geological context and taxonomic composition. Can. J. Earth Sci. 52, 557–568 (2015).ADS 
    Article 

    Google Scholar 
    30.Romano, C. et al. Permian-Triassic Osteichthyes (bony fishes): Diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Qiu, X. et al. The Early Triassic Jurong fish fauna, South China: Age, anatomy, taphonomy, and global correlation. Glob. Planet. Change 180, 33–50 (2019).ADS 
    Article 

    Google Scholar 
    32.Li, Q. & Liu, J. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Commun. Biol. 3, 63 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Sci. Adv. 4, eaat5091 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Lucas, S. G., Krainer, K. & Milner, A. R. C. The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 109–117 (2007).
    Google Scholar 
    36.Caravaca, G. et al. Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol. Mag. 155, 1305–1329 (2018).ADS 
    Article 

    Google Scholar 
    37.Brayard, A., Jenks, J. F., Bylund, K. G. & the Paris Biota team. Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios 54, 13–36 (2019).Article 

    Google Scholar 
    38.Lucas, S. G. & Orchard, M. J. Triassic lithostratigraphiy and biostratigraphy North of Currie, Elko County, Nevada. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 119–126 (2007).
    Google Scholar 
    39.Guex, J. et al. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie (Lausanne) 49, (2010).40.Doguzhaeva, L. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA: A squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Pal. Pol. 63, 341–355 (2018).
    Google Scholar 
    41.Laville, T., Smith, C. P. A., Forel, M.-B., Brayard, A. & Charbonnier, S. Review of Early Triassic Thylacocephala. Riv. Italiana Pal. Sed. 127, 73–101 (2021).
    Google Scholar 
    42.Charbonnier, S., Brayard, A. & the Paris Biota team. New thylacocephalans from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 37–43 (2019).Article 

    Google Scholar 
    43.Roopnarine, P. Graphs, networks, extinction and paleocommunity food webs. Nat. Prec. https://doi.org/10.1038/npre.2010.4433.1 (2010).Article 

    Google Scholar 
    44.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    45.Shi, G. R. & Zwan, L.-P. A mixed mid-Permian marine fauna from the Yanji area, northeastern China: A paleobiogeographical reinterpretation. Isl. Arc. 5, 386–395 (1996).Article 

    Google Scholar 
    46.Chen, Z.-Q., Tong, J., Liao, Z.-T. & Chen, J. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath. Glob. Planet. Change 73, 123–140 (2010).ADS 
    Article 

    Google Scholar 
    47.Massare, J. A. & Callaway, J. M. Cymbospondylus (Ichthyosauria: Shastasauridae) from the Lower Triassic Thaynes Formation of southeastern Idaho. J. Vertebr. Paleontol. 14, 139–141 (1994).Article 

    Google Scholar 
    48.Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: The predators’ perspective. PLoS ONE 9, e88987 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Song, H. et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–742 (2011).ADS 
    Article 

    Google Scholar 
    50.Brayard, A., Gueriau, P., Thoury, M., Escarguel, G. & the Paris Biota team. Glow in the dark: Use of synchrotron μXRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 71–79 (2019).Article 

    Google Scholar 
    51.Iniesto, M., Thomazo, C. & Fara, E. Deciphering the exceptional preservation of the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 81–93 (2019).Article 

    Google Scholar 
    52.Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skrif. 5, 3–34 (1948).
    Google Scholar 
    53.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. An. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    54.Romano, C., Kogan, I., Jenks, J., Jerjen, I. & Brinkmann, W. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bull. Geosci. 3, 543–570. https://doi.org/10.3140/bull.geosci.1337 (2012).Article 

    Google Scholar 
    55.Horton, J. D. The State Geologic Map Compilation (SGMC) Geodatabase of the conterminous United States: US Geological Survey data release. US Geol. Surv. https://doi.org/10.5066/F7WH2N65 (2017).Article 

    Google Scholar 
    56.Kummel, B. The Thaynes Formation, Bear Lake Valley, Idaho. Am. J. Sci. 241, 316–332 (1943).ADS 
    Article 

    Google Scholar 
    57.Kummel, B. Triassic stratigraphy of Southeastern Idaho and adjacent areas. U. S. Geol. Surv. Prof. Pap. 254H, 165–194 (1954).
    Google Scholar 
    58.Brayard, A., Brühwiler, T., Bucher, H. & Jenks, J. Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52, 471–481 (2009).Article 

    Google Scholar 
    59.Brayard, A. et al. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J. Palaeontol. 132, 141–219 (2013).Article 

    Google Scholar 
    60.Jenks, J. et al. Ammonoid biostratigraphy of the Early Spathian Columbites parisianus zone (Early Triassic) at Bear Lake Hot Springs Idaho. New Mexico Mus. Natl. Hist. Sci. Bull. 61, 268–283 (2013).
    Google Scholar  More

  • in

    Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats

    1.Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).Article 

    Google Scholar 
    5.Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269. https://doi.org/10.1038/nature04887 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Schindler, D. E. & Scheuerell, M. D. Habitat coupling in lake ecosystems. Oikos 98, 177–189 (2002).Article 

    Google Scholar 
    9.Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Conway-Cranos, L. et al. Stable isotopes and oceanographic modeling reveal spatial and trophic connectivity among terrestrial, estuarine, and marine environments. Mar. Ecol. Prog. Ser. 533, 15–28 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Dias, E., Morais, P., Cotter, A. M., Antunes, C. & Hoffman, J. C. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Mar. Ecol. Prog. Ser. 554, 21–34 (2016).ADS 
    Article 

    Google Scholar 
    12.Hobson, K. A., Ambrose, W. G. Jr. & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: Insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).ADS 
    Article 

    Google Scholar 
    13.Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.McPeek, M. A. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am. Nat. 148, S124–S138 (1996).Article 

    Google Scholar 
    16.Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Rossman, S. et al. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary. Oecologia 178, 415–425 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Rossman, S. et al. Foraging habits in a generalist predator: Sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 155–168 (2015).CAS 
    Article 

    Google Scholar 
    21.Sargeant, B. L. & Mann, J. Developmental evidence for foraging traditions in wild bottlenose dolphins. Anim. Behav. 78, 715–721 (2009).Article 

    Google Scholar 
    22.Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).Article 

    Google Scholar 
    23.Silva, M. A. et al. Ranging patterns of bottlenose dolphins living in oceanic waters: Implications for population structure. Mar. Biol. 156, 179–192 (2008).Article 

    Google Scholar 
    24.Tobeña, M. et al. Inter-island movements of common bottlenose dolphins Tursiops truncatus among the Canary Islands: Online catalogues and implications for conservation and management. Afr. J. Mar. Sci. 36, 137–141 (2014).Article 

    Google Scholar 
    25.Wells, R. S. & Scott, M. D. Encyclopedia of Marine Mammals 249–255 (Elsevier, 2009).Book 

    Google Scholar 
    26.Wells, R. S. et al. Ranging patterns of common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 159–180 (2017).Article 

    Google Scholar 
    27.Zolman, E. S. Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River estuary, Charleston County, South Carolina, USA. Mar. Mamm. Sci. 18, 879–892 (2002).Article 

    Google Scholar 
    28.Wilson, R. M. et al. Niche differentiation and prey selectivity among common bottlenose dolphins (Tursiops truncatus) sighted in St. George Sound, Gulf of Mexico. Front. Mar. Sci. 4, 235 (2017).Article 

    Google Scholar 
    29.Wells, R. S. Primates and Cetaceans 149–172 (Springer, 2014).Book 

    Google Scholar 
    30.Urian, K. W., Hofmann, S., Wells, R. S. & Read, A. J. Fine-scale population structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida. Mar. Mamm. Sci. 25, 619–638 (2009).Article 

    Google Scholar 
    31.Wilson, R., Nelson, J., Balmer, B., Nowacek, D. & Chanton, J. Stable isotope variation in the northern Gulf of Mexico constrains bottlenose dolphin (Tursiops truncatus) foraging ranges. Mar. Biol. 160, 2967–2980 (2013).Article 

    Google Scholar 
    32.Mullin, K. D. et al. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS ONE 12, e0186265 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Di Giacomo, A. B. & Ott, P. H. Long-term site fidelity and residency patterns of bottlenose dolphins (Tursiops truncatus) in the Tramandaí Estuary, southern Brazil. Latin Am. J. Aquat. Mamm. 11, 155–161 (2017).Article 

    Google Scholar 
    34.Bailey, H. & Thompson, P. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. J. Anim. Ecol. 75, 456–465 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Torres, L. G. & Read, A. J. Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Mar. Mamm. Sci. 25, 797–815 (2009).Article 

    Google Scholar 
    36.Berens McCabe, E. J., Gannon, D. P., Barros, N. B. & Wells, R. S. Prey selection by resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Mar. Biol. 157, 931–942 (2010).Article 

    Google Scholar 
    37.Jaureguizar, A. J., Ruarte, C. & Guerrero, R. A. Distribution of age-classes of striped weakfish (Cynoscion guatucupa) along an estuarine–marine gradient: Correlations with the environmental parameters. Estuar. Coast. Shelf Sci. 67, 82–92 (2006).ADS 
    Article 

    Google Scholar 
    38.Antonio, E. S. et al. Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient. Estuar. Coast. Shelf Sci. 112, 86–97 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Cloyed, C. S. & Eason, P. K. Different ecological conditions support individual specialization in closely related, ecologically similar species. Evol. Ecol. 30, 379–400 (2016).Article 

    Google Scholar 
    40.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & Dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wissel, B., Gaçe, A. & Fry, B. Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86, 2751–2762 (2005).Article 

    Google Scholar 
    42.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    43.Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).Article 

    Google Scholar 
    44.Barratclough, A. et al. Health assessments of common bottlenose dolphins (Tursiops truncatus): Past, present, and potential conservation applications. Front. Vet. Sci. 6, 444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1, 246–254 (2004).Article 

    Google Scholar 
    46.Hohn, A. et al. Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 235–252 (2017).Article 

    Google Scholar 
    47.Sinclair, C. et al. Remote biopsy field sampling procedures for cetaceans used during the Natural Resource Damage Assessment of the MSC252 Deepwater Horizon Oil Spill. (2015).48.Hansen, L. J. et al. Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast. Sci. Total Environ. 319, 147–172 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    50.Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data. J. Anim. Ecol. 84, 861–870 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cloyed, C. et al. Interaction of dietary and habitat niche breadth influences cetacean vulnerability to environmental disturbance. Ecosphere 12, e03759 (2021).Article 

    Google Scholar 
    53.Sweeting, C., Polunin, N. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cloyed, C. S., DaCosta, K. P., Hodanbosi, M. R. & Carmichael, R. H. The effects of lipid extraction on δ13C and δ15N values and use of lipid-correction models across tissues, taxa and trophic groups. Methods Ecol. Evol. 11, 751–762 (2020).Article 

    Google Scholar 
    55.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).Article 

    Google Scholar 
    57.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article 

    Google Scholar 
    58.Team, R. C. R: A language and environment for statistical computing. (2013).59.Lusseau, D. et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Ingram, S. N. & Rogan, E. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar. Ecol. Prog. Ser. 244, 247–255 (2002).ADS 
    Article 

    Google Scholar 
    61.Balmer, B. et al. Extended movements of common bottlenose dolphins (Tursiops truncatus) along the northern Gulf of Mexico’s central coast. Gulf Mexico Sci. 33, 8 (2016).Article 

    Google Scholar 
    62.Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol. 29, 369–374 (2011).Article 

    Google Scholar 
    63.Balmer, B. et al. Ranging patterns, spatial overlap, and association with dolphin morbillivirus exposure in common bottlenose dolphins (Tursiops truncatus) along the Georgia, USA coast. Ecol. Evol. 8, 12890–12904. https://doi.org/10.1002/ece3.4727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rossi-Santos, M. R., Wedekin, L. L. & Monteiro-Filho, E. L. Residence and site fidelity of Sotalia guianensis in the Caravelas River Estuary, eastern Brazil. J. Mar. Biol. Assoc. UK 87, 207 (2007).Article 

    Google Scholar 
    65.Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: Important metrics for management. Oryx 48, 370–377 (2014).Article 

    Google Scholar 
    66.Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. & Sims, D. W. Foraging success of biological Lévy flights recorded in situ. Proc. Natl. Acad. Sci. USA. 109, 7169–7174 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    69.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MaCleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    70.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: Stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS 
    Article 

    Google Scholar 
    71.Ward-Paige, C. A., Britten, G. L., Bethea, D. M. & Carlson, J. K. Characterizing and predicting essential habitat features for juvenile coastal sharks. Mar. Ecol. 36, 419–431 (2015).ADS 
    Article 

    Google Scholar 
    72.Rogers, K. M. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 46, 821–827 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lee, S. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon-and nitrogen-stable isotopes. Mar. Ecol. Progress Ser. 205, 1–10 (2000).ADS 
    Article 

    Google Scholar 
    74.Grady, J. R. Properties of sea grass and sand flat sediments from the intertidal zone of St. Andrew Bay, Florida. Estuaries 4, 335 (1981).Article 

    Google Scholar 
    75.Poulakis, G. R., Blewett, D. A. & Mitchell, M. E. The effects of season and proximity to fringing mangroves on seagrass-associated fish communities in Charlotte Harbor, Florida. Gulf Mexico Sci. 21, 3 (2003).Article 

    Google Scholar 
    76.Borrell, A., Vighi, M., Genov, T., Giovos, I. & Gonzalvo, J. Feeding ecology of the highly threatened common bottlenose dolphin of the Gulf of Ambracia, Greece, through stable isotope analysis. Mar. Mamm. Sci. 37, 98–110 (2021).Article 

    Google Scholar 
    77.Gibbs, S. E., Harcourt, R. G. & Kemper, C. M. Niche differentiation of bottlenose dolphin species in South Australia revealed by stable isotopes and stomach contents. Wildl. Res. 38, 261–270 (2011).CAS 
    Article 

    Google Scholar 
    78.Lenes, J. M. & Heil, C. A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. Plankton Res. 32, 1421–1431 (2010).CAS 
    Article 

    Google Scholar 
    79.Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Barros, N. B. & Odell, D. K. In The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) Ch. 16, 309–328 (Academic Press, 1990).81.Lane, S. M. et al. Reproductive outcome and survival of common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the Deepwater Horizon oil spill. Proc. R. Soc. B Biol. Sci. 282, 20151944 (2015).Article 
    CAS 

    Google Scholar 
    82.Smith, C. R. et al. Slow recovery of Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013–2014), with evidence of persistent lung disease and impaired stress response. Endanger. Species Res. 33, 127–142 (2017).Article 

    Google Scholar 
    83.McDonald, T. L. et al. Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 193–209 (2017).ADS 
    Article 

    Google Scholar 
    84.Trustees, D. N. Deepwater Horizon oil spill: final programmatic damage assessment and restoration plant (PDARP) and final programmatic environmental impact statement (PEIS). (2016).85.Carmichael, R. H., Graham, W. M., Aven, A., Worthy, G. & Howden, S. Were multiple stressors a ‘perfect storm’ for northern Gulf of Mexico bottlenose dolphins (Tursiops truncatus) in 2011?. PLoS ONE 7, e41155 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Booth, C. & Thomas, L. In Oceans. 179–192 (Multidisciplinary Digital Publishing Institute).87.Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Rossman, S. et al. Retrospective analysis of bottlenose dolphin foraging: A legacy of anthropogenic ecosystem disturbance. Mar. Mamm. Sci. 29, 705–718 (2013).CAS 

    Google Scholar 
    89.Schwacke, L. H. et al. Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex-and class-structured population model. Endanger. Species Res. 33, 265–279 (2017).Article 

    Google Scholar 
    90.McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Schwacke, L. H. et al. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. Environ. Sci. Technol. 48, 93–103 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    93.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    94.Kenworthy, M. D. et al. Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape. Can. J. Fish. Aquat. Sci. 75, 1990–1998 (2018).CAS 
    Article 

    Google Scholar 
    95.Fitzgerald, D. M., Kulp, M., Penland, S., Flocks, J. & Kindinger, J. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River Delta. Sedimentology 51, 1157–1178 (2004).ADS 
    Article 

    Google Scholar 
    96.Habib, E. et al. Assessing effects of data limitations on salinity forecasting in Barataria basin, Louisiana, with a Bayesian analysis. J. Coast. Res. 2007, 749–763 (2007).Article 

    Google Scholar 
    97.Eleuterius, C. K. Geographical definition of Mississippi Sound. Gulf Caribb. Res. 6, 179–181 (1978).
    Google Scholar 
    98.Lucas, K. L. & Carter, G. A. Decadal changes in habitat-type coverage on Horn Island, Mississippi, USA. J. Coast. Res. 26, 1142–1148 (2010).Article 

    Google Scholar 
    99.Ichiye, T. & Jones, M. L. On the hydrography of the St. Andrew Bay system, Florida 1. Limnol. Oceanogr. 6, 302–311 (1961).ADS 
    Article 

    Google Scholar 
    100.Morgan, S. G. Plasticity in reproductive timing by crabs in adjacent tidal regimes. Mar. Ecol. Prog. Ser. 139, 105–118 (1996).ADS 
    Article 

    Google Scholar 
    101.Livingston, R. et al. Modelling oyster population response to variation in freshwater input. Estuar. Coast. Shelf Sci. 50, 655–672 (2000).ADS 
    Article 

    Google Scholar 
    102.Twichell, D. et al. Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida. Estuar. Coast. Shelf Sci. 88, 385–394 (2010).ADS 
    Article 

    Google Scholar 
    103.Chen, Z., Hu, C., Conmy, R. N., Muller-Karger, F. & Swarzenski, P. Colored dissolved organic matter in Tampa Bay, Florida. Mar. Chem. 104, 98–109 (2007).CAS 
    Article 

    Google Scholar 
    104.Julian, P. & Estevez, E. D. In Proceedings of the Tampa Bay Area Scientific Information Symposium, BASIS 5: Using Our Knowledge to Shape Our Future. 27–33.105.Adams, A. J. & Blewett, D. A. Spatial patterns of estuarine habitat type use and temporal patterns in abundance of juvenile permit, Trachinotus falcatus, in Charlotte Harbor, Florida. Gulf Caribb. Res. 16, 129–139 (2004).Article 

    Google Scholar 
    106.Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’. (2019). More

  • in

    Replicated, urban-driven exposure to metallic trace elements in two passerines

    1.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).Article 
    CAS 

    Google Scholar 
    2.Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article 

    Google Scholar 
    4.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).Article 

    Google Scholar 
    5.Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed 
    Article 

    Google Scholar 
    6.Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).PubMed 
    Article 

    Google Scholar 
    7.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    8.Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    9.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    10.Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article 

    Google Scholar 
    13.Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).Chapter 

    Google Scholar 
    14.Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    16.Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).Chapter 

    Google Scholar 
    18.Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).PubMed 
    Article 

    Google Scholar 
    19.Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).Chapter 

    Google Scholar 
    20.McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).Article 

    Google Scholar 
    21.Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).Article 

    Google Scholar 
    22.Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).CAS 
    Article 

    Google Scholar 
    30.Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).CAS 
    Article 

    Google Scholar 
    38.Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).
    Google Scholar 
    41.Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).Article 

    Google Scholar 
    42.Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).
    Google Scholar 
    43.Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
    Google Scholar 
    44.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).
    Google Scholar 
    45.Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).Article 

    Google Scholar 
    46.Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).Article 

    Google Scholar 
    47.Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).Article 

    Google Scholar 
    48.Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).PubMed 
    Article 

    Google Scholar 
    49.Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).PubMed 
    Article 

    Google Scholar 
    50.Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).52.Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).Chapter 

    Google Scholar 
    54.Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).Article 

    Google Scholar 
    55.Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).
    Google Scholar 
    56.Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).Article 

    Google Scholar 
    57.Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).MATH 

    Google Scholar 
    58.Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    59.Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).Article 

    Google Scholar 
    60.Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).CAS 
    Article 

    Google Scholar 
    64.Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).
    Google Scholar 
    66.Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).Article 

    Google Scholar 
    68.Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).Article 

    Google Scholar 
    70.Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).ADS 
    Article 

    Google Scholar 
    73.Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).Article 
    PubMed 

    Google Scholar 
    74.Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).Article 

    Google Scholar 
    75.Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).Article 

    Google Scholar 
    76.Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    81.Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).Chapter 

    Google Scholar 
    82.Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).CAS 
    Article 

    Google Scholar 
    84.Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).PubMed 
    Article 

    Google Scholar 
    86.Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).
    Google Scholar  More