Stable isotopes and predation marks shed new light on ammonoid habitat depth preferences
1.Landman, N. H. et al. (eds) Ammonoid Paleobiology (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.BookÂ
Google ScholarÂ
2.Klug, C. et al. (eds) Ammonoid Paleobiology: From Anatomy to Ecology (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.BookÂ
Google ScholarÂ
3.Klug, C. et al. (eds) Ammonoid Paleobiology: From Macroevolution to Paleogeography (Springer, 2015). https://doi.org/10.1007/978-94-017-9633-0.BookÂ
Google ScholarÂ
4.Ritterbush, K. A., Hoffmann, R., Lukeneder, A. & De Baets, K. Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. J. Zool. 292(4), 229â241. https://doi.org/10.1111/jzo.12118 (2014).ArticleÂ
Google ScholarÂ
5.Westermann, G. E. G. Ammonoid life and habitat. In Ammonoid Paleobiology (eds Landman, N. H. et al.) 607â707 (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.ChapterÂ
Google ScholarÂ
6.Lukeneder, A. Ammonoid habitats and life history. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 689â791 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.ChapterÂ
Google ScholarÂ
7.Hoffmann, R. et al. A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods. Gondwana Res. 67, 64â81. https://doi.org/10.1016/j.gr.2018.10.011 (2018).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
8.Hoffmann, R. et al. Recent advances in heteromorph ammonoid palaeobiology. Biol. Rev. Cambr. Philos. Soc. 96, 576â610. https://doi.org/10.1111/brv.12669 (2021).ArticleÂ
Google ScholarÂ
9.Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. & Takayanagi, Y. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31, 167â170 (2003).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
10.Moriya, K. Isotope signature of ammonoid shells. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 793â836 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_19.ChapterÂ
Google ScholarÂ
11.Sessa, J. A. et al. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. PNAS 112, 15562â15567. https://doi.org/10.1073/pnas.1507554112 (2015).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
12.Stevens, K., Mutterlose, J. & Wiedenroth, K. Stable isotope data (ÎŽ18O, ÎŽ13C) of the ammonite genus SimbirskitesâImplications for habitat reconstructions of extinct cephalopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 164â175. https://doi.org/10.1016/j.palaeo.2014.10.031 (2015).ArticleÂ
Google ScholarÂ
13.Surlyk, F., Dons, T., Clausen, C. K. & Higham, J. Upper Cretaceous. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Copestake, P. et al.) 213â233 (Geological Society of London, 2003).
Google ScholarÂ
14.Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L. & Surlyk, F. Late Cretaceous (late CampanianâMaastrichtian) sea surface temperature record of the Boreal Chalk Sea. Clim. Past 12, 429â438. https://doi.org/10.5194/cp-12-429-2016 (2016).ArticleÂ
Google ScholarÂ
15.Wilmsen, M. & Niebuhr, B. High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal component: Palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geol. Pol. 67, 47â74. https://doi.org/10.1515/agp-2017-0004 (2017).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
16.Birkelund, T. Ammonites from the Maastrichtian White Chalk of Denmark. Bull. Geol. Soc. Denmark 40, 33â81 (1993).ArticleÂ
Google ScholarÂ
17.Niebuhr, B. Late Campanian and Early Maastrichtian ammonites from the white chalk of Kronsmoor (northern Germany)âTaxonomy and stratigraphy. Acta Geol. Pol. 53, 257â281 (2003).
Google ScholarÂ
18.Kruta, I. & Landman, N. H. Injuries on Nautilus jaws: Implications for the function of ammonite aptychi. Veliger 50, 241â247 (2008).
Google ScholarÂ
19.Tanabe, K., Kruta, I. & Landman, N. H. Ammonoid buccal mass and jaw apparatus. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds Klug, C. et al.) 439â494 (Springer, 2015).
Google ScholarÂ
20.Kruta, I., Landman, N. H. & Cochran, J. K. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9, e87479. https://doi.org/10.1371/journal.pone.0087479 (2014).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
21.Machalski, M. Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: Taxonomy, evolution, and extinction. Acta Palaeontol. Pol. 50(4), 653â696 (2005).
Google ScholarÂ
22.Machalski, M. Correlation of shell and aptychus growth provides insights into the palaeobiology of a scaphitid ammonite. Palaeontology 64, 225â247. https://doi.org/10.1111/pala.12519 (2021).ArticleÂ
Google ScholarÂ
23.Dubicka, Z. & Peryt, D. Integrated biostratigraphy of Upper Maastrichtian chalk at CheĆm (SE Poland). Ann. Soc. Geol. Pol. 81, 185â197 (2011).
Google ScholarÂ
24.Dubicka, Z. & Peryt, D. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cret. Res. 37, 272â284. https://doi.org/10.1016/j.cretres.2012.04.009 (2012).ArticleÂ
Google ScholarÂ
25.Machalski, M. & Malchyk, O. Durophagous predation on late Maastrichtian (Cretaceous) scaphitid ammonites from Poland. In 10th International Symposium âCephalopodsâPresent and Pastâ, Program and Abstracts. MĂŒnstersche Forschungen zur Geologie und PalĂ€ontologie 110, 77â78 (2018).
Google ScholarÂ
26.Keupp, H. Sublethal punctures in body chambers of Mesozoic ammonites (forma Aegra fenestra n. f.), a tool to interpret synecological relationships, particularly predatorâprey interactions. PalĂ€ontol. Z. 80, 112â123. https://doi.org/10.1007/BF02988971 (2006).ArticleÂ
Google ScholarÂ
27.Mironenko, A. Sublethal injuries on the shells of Jurassic ammonites from Central Russia. In Jurassic Deposits of the Southern Part of the Moscow Syneclise and Their Fauna (eds Rogov, M. A. & Zakharov, V. A.) 183â208 (Transactions of the Geological Institute, GEOS, 2017) (in Russian).
Google ScholarÂ
28.Moriya, K. Evolution of habitat depth in the Jurassic-Cretaceous ammonoids. PNAS 112, 15540â15541. https://doi.org/10.1073/pnas.1520961112 (2015).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
29.LeszczyĆski, K. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geol. Q. 56, 363â386. https://doi.org/10.7306/gq.1028 (2012).ArticleÂ
Google ScholarÂ
30.Jurkowska, A. & Ćwierczewska-GĆadysz, E. New model of Si balance in the Late Cretaceous epicontinental European Basin. Global Planet. Change 186, 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 (2020).ArticleÂ
Google ScholarÂ
31.MĂŒller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243â2261. https://doi.org/10.1029/2018GC007584 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
32.Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D. & Remin, Z. Integrated biostratigraphy of the Santonian through Maastrichtian (Upper Cretaceous) of extra-Carpathian Poland. Acta Geol. Pol. 66, 321â358. https://doi.org/10.1515/agp-2016-0016 (2016).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
33.Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cret. Res. 46, 232â256. https://doi.org/10.1016/j.cretres.2013.08.006 (2013).ArticleÂ
Google ScholarÂ
34.Tagliavento, M., Lauridsen, B. W. & Stemmerik, L. Episodic dysoxia during Late Cretaceous cyclic chalk-marl depositionâEvidence from framboidal pyrite distribution in the upper Maastrichtian RĂžrdal Mb., Danish Basin. Cret. Res. 106, 104223. https://doi.org/10.1016/j.cretres.2019.104223 (2020).ArticleÂ
Google ScholarÂ
35.Dubicka, Z., Wierzbowski, H. & Wierny, W. Oxygen and carbon isotope records of Upper Cretaceous foraminifera from Poland: Vital and microhabitat effects. Palaeogeogr. Palaeoclimatol. Palaeoecol. 500, 33â51. https://doi.org/10.1016/j.palaeo.2018.03.029 (2018).ArticleÂ
Google ScholarÂ
36.Klompmaker, A. A., Waljaard, N. A. & Fraaije, R. H. B. Ventral bite marks in Mesozoic ammonoids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 245â257. https://doi.org/10.1016/j.palaeo.2009.06.013 (2009).ArticleÂ
Google ScholarÂ
37.Fraaye, R. H. B. Late Cretaceous swimming crabs: Radiation, migration, competition, and extinction. Acta Geol. Pol. 46, 269â278 (1996).
Google ScholarÂ
38.Caldwell, R. L. & Dingle, H. Stomatopods. Sci. Am. 234, 80â89 (1976).ADSÂ
ArticleÂ
Google ScholarÂ
39.Dunstan, A. J., Ward, P. D. & Marshall, N. J. Vertical distribution and migration patterns of Nautilus pompilius. PLoS ONE 6, e16311. https://doi.org/10.1371/journal.pone.0016311 (2011).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
40.Ward, P., Dooley, F. & Barord, G. J. Nautilus: Biology, systematics, and paleobiology as viewed from 2015. Swiss J. Palaeontol. 135, 169â185. https://doi.org/10.1007/s13358-016-0112-7 (2016).ArticleÂ
Google ScholarÂ
41.Landman, N. H., Cobban, W. A. & Larson, N. L. Mode of life and habitat of scaphitid ammonites. Geobios 45, 87â98. https://doi.org/10.1016/j.geobios.2011.11.006 (2012).ArticleÂ
Google ScholarÂ
42.Peterman, D. J. et al. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios 60, 79â98. https://doi.org/10.1016/j.geobios.2020.04.004 (2021).ArticleÂ
Google ScholarÂ
43.Tsujita, C. J. & Westermann, G. Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 135â160. https://doi.org/10.1016/S0031-0182(98)00090-X (1998).ArticleÂ
Google ScholarÂ
44.Fraaije, R. H. B., Van Bakel, B. W. M., Jagt, J. W. M. & Viegas, P. A. The rise of a novel, plankton-based marine ecosystem during the Mesozoic: A bottom-up model to explain new higher-tier invertebrate morphotypes. BoletĂn de la Sociedad Geol. Mexicana 70, 187â200. https://doi.org/10.18268/bsgm2018v70n1a11 (2018).ArticleÂ
Google ScholarÂ
45.Alldredge, A. L. & King, J. M. The distance demersal zooplankton migrate above the benthos: Implications for predation. Marine Biol. 84, 253â260. https://doi.org/10.1007/BF00392494 (1985).ArticleÂ
Google ScholarÂ
46.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Pal. Electron. 4, 1â9 (2001).
Google ScholarÂ
47.Anderson, T. F. & Arthur, M. A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems. In Stable Isotopes in Sedimentary Geology, The Society of Economic Paleontologists and Mineralogists Short Course Vol. 10 (eds Arthur, M. A. et al.) 1â151 (SEPM, 1983). https://doi.org/10.2110/scn.83.01.0000.ChapterÂ
Google ScholarÂ
48.Coplen, T. B., Kendall, C. & Hopple, J. Comparison of stable isotope reference samples. Nature 302, 236â238. https://doi.org/10.1038/302236a0 (1983).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
49.McLennan, S. M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Rev. Mineral. 21, 169â200 (1989).CASÂ
Google ScholarÂ
50.Webb, G. E. & Kamber, B. S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557â1565. https://doi.org/10.1016/S0016-7037(99)00400-7 (2000).ADSÂ
CASÂ
ArticleÂ
Google Scholar More
