More stories

  • in

    Analysis of long-term strategies of riparian countries in transboundary river basins

    Assume n countries ((nge 2)) are located in a transboundary river basin and they are the players of an evolutionary game in which the countries’ strategies concerning water sharing in the basin evolve over time. Each country can choose between a cooperative strategy or a non-cooperative strategy. The game’s interactions and players’ payoffs vary with the number n and the location of the countries within the river basin, specifically, in relation to whether they are upstream-located or downstream-located countries within the river basin. The probability of country i choosing a cooperative strategy is herein denoted by ({x}_{1}^{(i)}), (i=1, 2, dots , n), and there are ({2}^{n}) payoff sets for all the combinations of the countries’ strategies. This paper assesses the interactions between three countries sharing a transboundary river basin.Problem descriptionLet 1, 2, and 3 denote three countries sharing a transboundary river basin. Country 1 is upstream and countries 2 and 3 are located downstream. Country 1 can use maximum amount of the water of the river and choose not to share it with the downstream countries. This strategy, however, may trigger conflict with the two other countries of political, social, economic, security, and environmental natures. Instead, Country 1 can release excess water to be shared by Countries 2 and 3. Countries 2 and 3 are inclined to cooperate with Country 1 unless other benefits emerge by being non-cooperative with Country 1.There are two types of benefits and one type of cost in the payoff matrix of the assumed problem that are economic in nature. The first is a water benefit earned by a country from receiving the water from the transboundary river. The set of benefits related to water use includes economic benefits earned from agricultural, urban, and industrial development benefits. It should be noted that the water benefit for Country 1 means the economic benefit of consuming more water than its water right from the river. So, water benefits of Country 2 and 3 are the economic benefit of consuming excess water of upstream which is released by Country 1.The second is a potential benefit earned from the cooperative strategy of a country. Cooperation benefits stem from sustainability conditions like social interests, environmental benefits and political conjunctures such as international alliances and harmony from amicable interactions with neighboring countries. The parameters F and E (water benefit and potential benefit, respectively) encompass a number of benefit parameters; nevertheless, parameters were simplified to two benefit parameters to simplify the complexity of the water-sharing problem. Costs forced on other countries from non-cooperation by a country involves commercial, security, political, diplomatic, military, and environmental costs. Figure 1 displays the locations of three countries and their shifting interactions in a transboundary river basin.Figure 1Schematic of the transboundary river and riparian countries with their shifting interactions.Full size imageBasic assumptionsThe evolutionary game model of interactions between riparian countries in the transboundary river basin rests on the following assumptions:
    Assumption 1

    There are three countries (i.e., players) in the game of transboundary water sharing, each seeking to maximize its payoff from the game.

    Assumption 2

    Country 1 has two possible strategies. One is for Country 1 to release a specified amount of water to the downstream countries (this would be Country 1’s cooperative strategy). The cooperative strategy by Country 1 would produce benefits F2 and F3 to Countries 2 and 3, respectively. By being cooperative Country 1 would attain a benefit E1 called the potential benefit from cooperative responses from the downstream countries. The other strategy is for Country 1 to deny water to the downstream countries (this would be Country 1’s non-cooperative strategy), in which case Country 1 would earn the water benefit F1 from using water that would otherwise be released, but would forego the potential benefit E1. Moreover, by pursuing a non-cooperative strategy Country 1 would inflict a cost C1m to the downstream countries.

    Assumption 3

    There are two possible strategies for Country 2. One is for Country 2 to accept the behavior of Country 1 (this would be Country 2’s cooperative strategy), which would cause earning a potential benefit E2 to Country 2. Recall that if Country 2 acquiesces to Country 1’s cooperative behavior it would receive a benefit F2. Or, Country 2 may disagree with Country 1 (this would be Country 2’s non-cooperative strategy), in which case, Country 2 would lose benefit E2, and it would inflict a cost C2m to the other countries.

    Assumption 4

    Similar to Country 2, Country 3 has two possible strategies. One is for Country 3 to agree Country 1’s behavior (this would be Country 3’s cooperative strategy) attaining a potential benefit E3. Recall that if Country 3 agrees with Country 1’s cooperative behavior it would gain a benefit F3. Another strategy for Country 3 is to oppose Country 1 (this would be Country 3’s non-cooperative strategy) missing the benefit E3 and forcing a cost C3m to the other countries.
    Table 1 defines the benefits and costs that enter in the transboundary water-sharing game described in this work. The payoff to country (i=mathrm{1,2},3) depends on its own strategy and on the strategies of the other countries, and each country may choose to be cooperative or non-cooperative. The strategies of country (i) are denoted by 1 (cooperation) and 2 (non-cooperation). The probabilities of country (i)’s strategies are denoted by ({x}_{1}^{(i)}) and by ({x}_{2}^{(i)}), in which the former represents cooperation and the latter represents non-cooperation. Clearly, ({x}_{1}^{(i)})+ ({x}_{2}^{(i)}) = 1. The payoff to country (i=1, 2, 3) when the strategies of Countries 1, 2, 3 are (j, k,l), respectively, where (j, k,l) may take the value 1 (cooperation) or 2 (non-cooperation) is denoted by ({U}_{jkl}^{left(iright)}). Thus, for instance, the payoff to country (i=2) is represented by ({U}_{212}^{(2)}) when Countries 1 and 3 are non-cooperative and Country 2’s strategy is cooperative. Evidently, there are 23 payoffs to each country given there are three countries involved and each can be cooperative or non-cooperative. Table 2 shows the symbols for the payoffs that accrue to each country under the probable strategies.Table 1 Benefits and costs.Full size tableTable 2 Payoff matrix under cooperation or non-cooperation.Full size tableFormulation of the transboundary water-sharing strategies as an evolutionary gameThe expected payoff to country (i) is expressed by the following equation:$${U}^{(i)}=sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2} } {x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(i)} quad i=1, 2, 3$$
    (1)
    The following describe the expected payoffs of Country 1 when it acts cooperatively (({U}_{1}^{(1)})) or non-cooperatively (({U}_{2}^{(1)})):$${U}_{1}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{111}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{112}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{121}^{(1)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{122}^{(1)}$$
    (2)
    $${U}_{2}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{211}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{212}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{221}^{left(1right)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{222}^{left(1right)}$$
    (3)
    Therefore, the expected payoff of Country 1 is ({U}^{(1)}) which is equal to:$${U}^{(1)}={x}_{1}^{(1)}{U}_{1}^{(1)}+{x}_{2}^{(1)}{U}_{2}^{(1)}= sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2 } }{x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(1)}$$
    (4)
    The expected payoffs of Countries 2 and 3 can be similarly obtained as done for Country 1. The cooperative and non-cooperative expected payoffs of all countries can be expressed in terms of the payoffs listed in Table 1. The results are found in Appendix A.Replication dynamics equationsThe replication dynamics equations describe the time change of the probabilities of a player’s strategies. The replication dynamics equation of Countries (i) is denoted by ({G}^{(i)}left({x}_{1}^{(i)}right)) which is as follow22:$${G}^{(i)}left({x}_{1}^{(i)}right)=frac{d{x}_{1}^{(i)}}{dt}={x}_{1}^{(i)}left({U}_{1}^{(i)}-{U}^{(i)}right)$$
    (5)
    The replication dynamics equations of Countries 1, 2 and 3 are presented in Appendix B according to the benefits and costs showed in Table 1.Stability analysis of a country’s strategiesUnder the assumption of bounded rationality each country does not know which strategies may lead to the optimal solution in the game. Therefore, the countries’ strategies change over time until a stable (i.e., time-independent) solution named evolutionary stable strategy (ESS) is attained. The evolutionary stable theorem for replication dynamics equation states that a stable probability of cooperation ({x}_{1}^{(i)}) for country (i) occurs if the following conditions hold25: (1) ({G}^{(i)}left({x}_{1}^{(i)}right)=0), and (2) (d{G}^{(i)}left({x}_{1}^{(i)}right)/d{x}_{1}^{(i)} More

  • in

    Extending the natural adaptive capacity of coral holobionts

    1.Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).Article 

    Google Scholar 
    2.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    3.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    4.Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network, 2008).5.Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    6.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999). This paper projects loss and degradation of coral reefs on a global scale before it became common knowledge.
    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 

    Google Scholar 
    8.Porter, J. W. & Meier, O. W. Quantification of loss and change in Floridian reef coral populations. Am. Zool. 32, 625–640 (1992).Article 

    Google Scholar 
    9.Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).Article 

    Google Scholar 
    10.Somerfield, P. J. et al. Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27, 951–965 (2008).Article 

    Google Scholar 
    11.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article 

    Google Scholar 
    12.Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Global Change Biol. https://doi.org/10.1111/gcb.14871 (2019).Article 

    Google Scholar 
    13.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 

    Google Scholar 
    14.Lesser, M. P. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 405–419 (Springer, 2011).15.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021). This paper demonstrates that algal symbionts cease photosynthate transfer to coral hosts under heat stress long before visual signs of bleaching (symbiont loss) become evident.Article 

    Google Scholar 
    16.Allen, M. R. et al. in Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 41–91 (IPCC, 2018).17.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).Article 

    Google Scholar 
    18.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).Article 

    Google Scholar 
    19.Durack, P.J., Wijffels, S.E. & Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455-458 (2012).Article 

    Google Scholar 
    20.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).Article 

    Google Scholar 
    21.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial Epidemiology of the Stony-Coral-Tissue-Loss Disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    22.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 

    Google Scholar 
    23.Nyström, M., Folke, C. & Moberg, F. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000).Article 

    Google Scholar 
    24.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2012).Article 

    Google Scholar 
    25.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sust. 7, 82–93 (2014).Article 

    Google Scholar 
    26.Thurber, R. L. V. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).Article 

    Google Scholar 
    27.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).Article 

    Google Scholar 
    28.Climate change widespread, rapid, and intensifying. IPCC (9 August 2021); https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr.29.Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).Article 

    Google Scholar 
    30.Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).Article 

    Google Scholar 
    31.Gattuso, J.-P. et al. Ocean solutions to address climate change and Its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    32.Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge (International Coral Reef Society and Future Earth Coasts, 2021) https://doi.org/10.53642/NRKY9386.33.Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).Article 

    Google Scholar 
    34.Zoccola, D. et al. The World Coral Conservatory (WCC): a Noah’s ark for corals to support survival of reef ecosystems. PLoS Biol. 18, e3000823 (2020).Article 

    Google Scholar 
    35.Kleinhaus, K. et al. Science, diplomacy, and the Red Sea’s unique coral reef: it’s time for action. Front. Mar. Sci. 7, 90 (2020).Article 

    Google Scholar 
    36.van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    37.Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).Article 

    Google Scholar 
    38.Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Article 

    Google Scholar 
    39.Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).Article 

    Google Scholar 
    40.Boström-Einarsson, L. et al. Coral restoration — a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).Article 

    Google Scholar 
    41.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020). This paper highlights the potential of mobile acute heat stress assays to resolve fine-scale differences in coral thermotolerance, suitable for large-scale identification of resilient genotypes/reefs for conservation and restoration approaches.Article 

    Google Scholar 
    42.Parkinson, J. E. et al. Molecular tools for coral reef restoration: beyond biomarker discovery. Conserv. Lett. 13, e12687 (2020).Article 

    Google Scholar 
    43.Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. https://doi.org/10.1111/mec.16064 (2021).Article 

    Google Scholar 
    44.Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).Article 

    Google Scholar 
    45.Sweet, M. & Brown, B. in Oceanography and Marine Biology — An Annual Review (eds Hughes R.N. et al.) 271–314 (CRC, 2016).46.Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020). This paper proposes microbiome flexibility as a mechanism to aid adaptation to environmental change and posits that capacity for dynamic restructuring of the microbiome is host specific.Article 

    Google Scholar 
    47.Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).Article 

    Google Scholar 
    48.Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    49.Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017). This paper provides the first putative link between bacterial community composition and coral heat tolerance.Article 

    Google Scholar 
    50.Morgans, C. A., Hung, J. Y., Bourne, D. G. & Quigley, K. M. Symbiodiniaceae probiotics for use in bleaching recovery. Restor. Ecol. 28, 282–288 (2020).Article 

    Google Scholar 
    51.Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Chang. 10, 254–259 (2020).Article 

    Google Scholar 
    52.Craggs, J. et al. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. Ecol. Evol. 7, 11066–11078 (2017).Article 

    Google Scholar 
    53.Camp, E. F., Schoepf, V. & Suggett, D. J. How can “super corals” facilitate global coral reef survival under rapid environmental and climatic change? Glob. Chang. Biol. 24, 2755–2757 (2018).Article 

    Google Scholar 
    54.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021). This paper reviews coral probiotics and critical assessment of applicability.Article 

    Google Scholar 
    55.Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).Article 

    Google Scholar 
    56.Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7 (2021).57.Devlin-Durante, M. K., Miller, M. W., Caribbean Acropora Research Group, Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646 (2016).Article 

    Google Scholar 
    58.Irwin, A. et al. Age and intraspecific diversity of resilient Acropora communities in Belize. Coral Reefs 36, 1111–1120 (2017).Article 

    Google Scholar 
    59.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014). This paper demonstrates that acclimation and adaptation contribute to coral thermal tolerance and climate resistance at about equal contribution.Article 

    Google Scholar 
    60.Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. USA 118, e2025435118 (2021).Article 

    Google Scholar 
    61.Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol. Ecol. 28, 3371–3382 (2019).Article 

    Google Scholar 
    62.Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article 

    Google Scholar 
    63.Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).Article 

    Google Scholar 
    64.Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl Acad. Sci. USA 118, e2023298118 (2021).Article 

    Google Scholar 
    65.Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, eaar8028 (2018).Article 

    Google Scholar 
    66.Durante, M. K., Baums, I. B., Williams, D. E., Vohsen, S. & Kemp, D. W. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol. Ecol. 28, 3208–3224 (2019).Article 

    Google Scholar 
    67.Rodríguez-Casariego, J. A. et al. Genome-Wide DNA Methylation Analysis Reveals a Conserved Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral Acropora cervicornis. Front. Mar. Sci. 7, 822 https://doi.org/10.3389/fmars.2020.560424 (2020).68.Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    69.Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).Article 

    Google Scholar 
    70.Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).Article 

    Google Scholar 
    71.Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286 (2016).Article 

    Google Scholar 
    72.Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).Article 

    Google Scholar 
    73.Prada, C. et al. Empty niches after extinctions increase population sizes of modern corals. Curr. Biol. 26, 3190–3194 (2016).Article 

    Google Scholar 
    74.Robitzch, V., Banguera-Hinestroza, E., Sawall, Y., Al-Sofyani, A. and Voolstra, C.R., 2015. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front. Mar. Sci. 2, 5 (2015).Article 

    Google Scholar 
    75.Van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    76.Vasquez Kuntz, K. L. et al. Juvenile corals inherit mutations acquired during the parent’s lifespan. Preprint at bioRxiv https://doi.org/10.1101/2020.10.19.345538 (2020).Article 

    Google Scholar 
    77.Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).Article 

    Google Scholar 
    78.Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).Article 

    Google Scholar 
    79.Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    80.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).Article 

    Google Scholar 
    81.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).Article 

    Google Scholar 
    82.Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    83.Morgan, K. M., Perry, C. T., Smithers, S. G., Johnson, J. A. & Daniell, J. J. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci. Rep. 6, 29616 (2016).Article 

    Google Scholar 
    84.Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article 

    Google Scholar 
    85.Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ‘memory’ in a reef coral? Mar. Biol. 162, 479–483 (2015).Article 

    Google Scholar 
    86.Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA 115, 13342–13346 (2018).Article 

    Google Scholar 
    87.Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).Article 

    Google Scholar 
    88.Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015). This paper demonstrates applicability of assisted evolution via selective breeding.Article 

    Google Scholar 
    89.van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23, 3437–3448 (2017).Article 

    Google Scholar 
    90.Fukami, H. et al. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427, 832–835 (2004).Article 

    Google Scholar 
    91.Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).Article 

    Google Scholar 
    92.Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).Article 

    Google Scholar 
    93.Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article 

    Google Scholar 
    94.Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).Article 

    Google Scholar 
    95.Cleves, P. A. et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc. Natl Acad. Sci. USA 117, 28899–28905 (2020).Article 

    Google Scholar 
    96.Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).Article 

    Google Scholar 
    97.Yetsko, K. et al. Genetic differences in thermal tolerance among colonies of threatened coral Acropora cervicornis: potential for adaptation to increasing temperature. Mar. Ecol. Prog. Ser. 646, 45–68 (2020).Article 

    Google Scholar 
    98.Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).Article 

    Google Scholar 
    99.D’Angelo, C. et al. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J. 9, 2551–2560 (2015).Article 

    Google Scholar 
    100.Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    101.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Article 

    Google Scholar 
    102.Craggs, J., Guest, J., Bulling, M. & Sweet, M. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Sci. Rep. 9, 12984 (2019).Article 

    Google Scholar 
    103.Quigley, K. M. et al. Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Front. Mar. Sci. 8, 161 (2021).Article 

    Google Scholar 
    104.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018). This paper provides a revised coral symbiont taxonomy and shows that Symbiodiniaceae diversification coincides with the radiation of reef-building corals.Article 

    Google Scholar 
    105.Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 75–87 (1990).
    Google Scholar 
    106.Trench, R. K. Microalgal–invertebrate symbiosis, a review. Endocytobiosis Cell Res. 9, 135–175 (1993).
    Google Scholar 
    107.Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020). https://doi.org/10.1201/9780429277375-7.108.Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).Article 

    Google Scholar 
    109.Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633.e3 (2018).Article 

    Google Scholar 
    110.Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).Article 

    Google Scholar 
    111.González-Pech, R. A., Bhattacharya, D., Ragan, M. A. & Chan, C. X. Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol. Evol. 34, 799–806 (2019).Article 

    Google Scholar 
    112.Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).Article 

    Google Scholar 
    113.Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).Article 

    Google Scholar 
    114.Turnham, K. E., Wham, D. C., Sampayo, E. & LaJeunesse, T. C. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. https://doi.org/10.1038/s41396-021-01007-8 (2021).Article 

    Google Scholar 
    115.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    116.LaJeunesse, T. C., Smith, R. T., Finney, J. & Oxenford, H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc. R. Soc. B Biol. Sci. 276, 4139–4148 (2009).Article 

    Google Scholar 
    117.Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893–1905 (2017).Article 

    Google Scholar 
    118.Quigley, K. M., Baker, A. C., Coffroth, M. A., Willis, B. L. & van Oppen, M. J. H. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 111–151 (Springer International, 2018).119.Ziegler, M., Arif, C. & Voolstra, C. R. in Coral Reefs of the Red Sea (eds Voolstra, C. R. & Berumen, M. L.) 69–89 (Springer International, 2019).120.Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745 (2017).Article 

    Google Scholar 
    121.Hume, B. C. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).Article 

    Google Scholar 
    122.Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3, e1602047 (2017).Article 

    Google Scholar 
    123.Baumgarten, S. et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 14, 704 (2013).Article 

    Google Scholar 
    124.Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 

    Google Scholar 
    125.Liew, Y. J., Li, Y., Baumgarten, S., Voolstra, C. R. & Aranda, M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 13, e1006619 (2017).Article 

    Google Scholar 
    126.Warner, M. E. & Suggett, D. J. in The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 489–509 (Springer International, 2016).127.Levin, R. A. et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 3032 (2016).Article 

    Google Scholar 
    128.Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).Article 

    Google Scholar 
    129.Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).Article 

    Google Scholar 
    130.Thornhill, D. J., Howells, E. J., Wham, D. C., Steury, T. D. & Santos, S. R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol. Ecol. 26, 2640–2659 (2017).Article 

    Google Scholar 
    131.LaJeunesse, T. C. et al. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, 785–800 (2010).Article 

    Google Scholar 
    132.Parkinson, J. E. et al. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol. 8, 665–680 (2016).Article 

    Google Scholar 
    133.Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).Article 

    Google Scholar 
    134.Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 10, 2693–2701 (2016).Article 

    Google Scholar 
    135.Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J. 12, 161–172 (2018).Article 

    Google Scholar 
    136.Mies, M., Sumida, P. Y. G., Rädecker, N. & Voolstra, C. R. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front. Ecol. Evol. 5, 56 https://www.frontiersin.org/article/10.3389/fevo.2017.00056 (2017).137.Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).Article 

    Google Scholar 
    138.Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).Article 

    Google Scholar 
    139.National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019). This book reviews restoration interventions, detailing latest emerging technologies and approaches.140.Quigley, K. M., Randall, C. J., van Oppen, M. J. H. & Bay, L. K. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Article 

    Google Scholar 
    141.McIlroy, S. E. et al. The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J. Phycol. 52, 1114–1124 (2016).Article 

    Google Scholar 
    142.Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W. & Fitt, W. K. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Bio. Ecol. 338, 50–56 (2006).Article 

    Google Scholar 
    143.Coffroth, M. A., Lewis, C. F., Santos, S. R. & Weaver, J. L. Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr. Biol. 16, R985–R987 (2006).Article 

    Google Scholar 
    144.Fujise, L. et al. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol. Ecol. 30, 343–360 (2021).Article 

    Google Scholar 
    145.Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).Article 

    Google Scholar 
    146.Chen, J. E., Barbrook, A. C., Cui, G., Howe, C. J. & Aranda, M. The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods. PLoS ONE 14, e0211936 (2019).Article 

    Google Scholar 
    147.Sheykhali, S. et al. Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Sci. Rep. 10, 9783 (2020).Article 

    Google Scholar 
    148.Quigley, K. M., Bay, L. K. & Willis, B. L. Leveraging new knowledge of Symbiodinium community regulation in corals for conservation and reef restoration. Mar. Ecol. Prog. Ser. 600, 245–253 (2018).Article 

    Google Scholar 
    149.LaJeunesse, T. C. et al. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B: Biol. Sci. 277, 2925–2934 (2010).Article 

    Google Scholar 
    150.Poland, D. M. & Coffroth, M. A. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36, 119–129 (2017).Article 

    Google Scholar 
    151.Sampayo, E. M. et al. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci. Rep. 6, 36271 (2016).Article 

    Google Scholar 
    152.Abrego, D., van Oppen, M. J. H. & Willis, B. L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 18, 3532–3543 (2009).Article 

    Google Scholar 
    153.Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).Article 

    Google Scholar 
    154.Qin, Z. et al. Diversity of Symbiodiniaceae in 15 coral species from the Southern South China Sea: potential relationship with coral thermal adaptability. Front. Microbiol. 10, 2343 (2019).Article 

    Google Scholar 
    155.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).Article 

    Google Scholar 
    156.Lim, E.-P. et al. Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the Southern Annular Mode. Sci. Rep. 9, 17044 (2019).Article 

    Google Scholar 
    157.Pollock, F. J. et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5, e3732 (2017).Article 

    Google Scholar 
    158.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).Article 

    Google Scholar 
    159.Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).Article 

    Google Scholar 
    160.Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).Article 

    Google Scholar 
    161.Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).Article 

    Google Scholar 
    162.Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).Article 

    Google Scholar 
    163.Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).Article 

    Google Scholar 
    164.Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).Article 

    Google Scholar 
    165.Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).Article 

    Google Scholar 
    166.Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).Article 

    Google Scholar 
    167.Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).Article 

    Google Scholar 
    168.Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).Article 

    Google Scholar 
    169.Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus. Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).Article 

    Google Scholar 
    170.Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).Article 

    Google Scholar 
    171.Sharp, K. H., Sneed, J. M., Ritchie, K. B., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine roseobacter strain. Biol. Bull. 228, 98–107 (2015).Article 

    Google Scholar 
    172.Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).Article 

    Google Scholar 
    173.Sunagawa, S. et al. Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2009).Article 

    Google Scholar 
    174.Ushijima, B., Smith, A., Aeby, G. S. & Callahan, S. M. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS ONE 7, e46717 (2012).Article 

    Google Scholar 
    175.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).Article 

    Google Scholar 
    176.Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).Article 

    Google Scholar 
    177.Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).Article 

    Google Scholar 
    178.Mueller, E. A., Wisnoski, N. I., Peralta, A. L. & Lennon, J. T. Microbial rescue effects: how microbiomes can save hosts from extinction. Funct. Ecol. 34, 2055–2064 (2020).Article 

    Google Scholar 
    179.Leite, D. C. A. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).Article 

    Google Scholar 
    180.Fragoso Ados Santos, H. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 

    Google Scholar 
    181.Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).Article 

    Google Scholar 
    182.Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).Article 

    Google Scholar 
    183.Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).Article 

    Google Scholar 
    184.Assis, J. M. et al. Delivering Beneficial Microorganisms for Corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).Article 

    Google Scholar 
    185.Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10, 1236–1243 (2017).Article 

    Google Scholar 
    186.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).Article 

    Google Scholar 
    187.Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).Article 

    Google Scholar 
    188.Brussaard, C. P. D., Baudoux, A.-C. & Rodríguez-Valera, F. in The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential (eds Stal, L. J. & Cretoiu, M. S.) 155–183 (Springer International, 2016).189.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).Article 

    Google Scholar 
    190.Messyasz, A. et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.555474 (2020).Article 

    Google Scholar 
    191.Thurber, R. L. V. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).Article 

    Google Scholar 
    192.Sweet, M. & Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 147, 136–144 (2017).Article 

    Google Scholar 
    193.Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017). This paper reviews the role of viruses in coral holobiont biology.Article 

    Google Scholar 
    194.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).Article 

    Google Scholar 
    195.Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).Article 

    Google Scholar 
    196.Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).Article 

    Google Scholar 
    197.Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).Article 

    Google Scholar 
    198.Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).Article 

    Google Scholar 
    199.Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).Article 

    Google Scholar 
    200.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).Article 

    Google Scholar 
    201.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).Article 

    Google Scholar 
    202.Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).Article 

    Google Scholar 
    203.Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).Article 

    Google Scholar 
    204.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article 

    Google Scholar 
    205.Brüwer, J. D., Agrawal, S., Liew, Y. J., Aranda, M. & Voolstra, C. R. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 17, 174 (2017).Article 

    Google Scholar 
    206.Jacquemot, L. et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front. Microbiol. 9, 2501 (2018).Article 

    Google Scholar 
    207.Efrony, R., Loya, Y., Bacharach, E. & Rosenberg, E. Phage therapy of coral disease. Coral Reefs 26, 7–13 (2007).Article 

    Google Scholar 
    208.Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).Article 

    Google Scholar 
    209.Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of coral white plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009).Article 

    Google Scholar 
    210.Atad, I., Zvuloni, A., Loya, Y. & Rosenberg, E. Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs 31, 665–670 (2012).Article 

    Google Scholar 
    211.Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).Article 

    Google Scholar 
    212.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).Article 

    Google Scholar 
    213.Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44 (2007).Article 

    Google Scholar 
    214.Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).Article 

    Google Scholar 
    215.Soffer, N., Zaneveld, J. & Vega Thurber, R. Phage–bacteria network analysis and its implication for the understanding of coral disease. Environ. Microbiol. 17, 1203–1218 (2015).Article 

    Google Scholar 
    216.Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).Article 

    Google Scholar 
    217.Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).Article 

    Google Scholar 
    218.Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    219.Allard, S. M. et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems https://doi.org/10.1128/mSystems.00658-20 (2020).Article 

    Google Scholar 
    220.Zickfeld, K. et al. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).Article 

    Google Scholar 
    221.Humanes, A. et al. A framework for selectively breeding corals for assisted evolution. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432469 (2021).Article 

    Google Scholar 
    222.National Academies of Sciences, Engineering, and Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).223.Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).Article 

    Google Scholar 
    224.Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).Article 

    Google Scholar 
    225.Suggett, D. J., Edmondson, J., Howlett, L. & Camp, E. F. Coralclip®: a low-cost solution for rapid and targeted out-planting of coral at scale. Restor. Ecol. 28, 289–296 (2020).Article 

    Google Scholar 
    226.Woesik, R. et al. Differential survival of nursery-reared Acropora cervicornis outplants along the Florida reef tract. Restor. Ecol. 29, e13302 (2021).Article 

    Google Scholar 
    227.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).Article 

    Google Scholar 
    228.Ladd, M. C., Shantz, A. A., Bartels, E. & Burkepile, D. E. Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar. Ecol. Prog. Ser. 572, 129–139 (2017).Article 

    Google Scholar 
    229.Goergen, E. A. & Gilliam, D. S. Outplanting technique, host genotype, and site affect the initial success of outplanted Acropora cervicornis. PeerJ 6, e4433 (2018).Article 

    Google Scholar 
    230.Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).Article 

    Google Scholar 
    231.Craggs, J., Guest, J., Davis, M. & Sweet, M. Completing the life cycle of a broadcast spawning coral in a closed mesocosm. Invertebr. Reprod. Dev. 64, 244–247 (2020).Article 

    Google Scholar 
    232.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).Article 

    Google Scholar 
    233.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. The active spread of adaptive variation for reef resilience. Ecol. Evol. 9, 11122–11135 (2019).Article 

    Google Scholar 
    234.Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).Article 

    Google Scholar 
    235.Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).Article 

    Google Scholar 
    236.Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).Article 

    Google Scholar 
    237.Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).Article 

    Google Scholar 
    238.Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 24, e474–e484 (2018).Article 

    Google Scholar 
    239.Camp, E. F. et al. Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39, 701–716 (2020).Article 

    Google Scholar 
    240.Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).Article 

    Google Scholar 
    241.Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).Article 

    Google Scholar 
    242.Hagedorn, M. & Spindler, R. The reality, use and potential for cryopreservation of coral reefs. Adv. Exp. Med. Biol. 753, 317–329 (2014).Article 

    Google Scholar 
    243.Hagedorn, M. et al. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated caribbean populations using cryopreserved sperm. Cold Spring Harb. Lab. https://doi.org/10.1101/492447 (2018).Article 

    Google Scholar 
    244.Hagedorn, M., Spindler, R. & Daly, J. Cryopreservation as a tool for reef restoration: 2019. Adv. Exp. Med. Biol. 1200, 489–505 (2019).Article 

    Google Scholar 
    245.Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714 (2018).Article 

    Google Scholar 
    246.Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    247.Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 9, e959 (2020).Article 

    Google Scholar 
    248.Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases? Trends Ecol. Evol. 24, 378–385 (2009).Article 

    Google Scholar  More

  • in

    Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc

    1.Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article 

    Google Scholar 
    3.Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).Article 

    Google Scholar 
    4.Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).6.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    7.Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article 

    Google Scholar 
    9.Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).Article 

    Google Scholar 
    10.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    12.Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).Article 

    Google Scholar 
    13.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article 

    Google Scholar 
    14.Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    15.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    16.Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).Article 

    Google Scholar 
    17.Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).Article 

    Google Scholar 
    19.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).20.Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).ADS 
    Article 

    Google Scholar 
    21.Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).ADS 
    Article 

    Google Scholar 
    22.Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).23.Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).Article 

    Google Scholar 
    25.Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).
    Google Scholar 
    26.Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).27.Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).28.Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).
    Google Scholar 
    29.Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).30.Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).
    Google Scholar 
    31.Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).ADS 
    Article 

    Google Scholar 
    32.Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).Article 

    Google Scholar 
    33.Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).Article 

    Google Scholar 
    34.Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).35.Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).36.Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
    Google Scholar 
    37.Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).38.Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).39.Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).
    Google Scholar 
    40.Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).41.Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).42.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    43.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    44.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    45.Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).
    Google Scholar 
    46.Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).
    Google Scholar 
    47.Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).48.Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).
    Google Scholar 
    49.Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).Article 

    Google Scholar 
    50.Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).Article 

    Google Scholar 
    51.Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).52.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).53.Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).Article 

    Google Scholar 
    54.Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).Article 

    Google Scholar 
    56.Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).Article 

    Google Scholar 
    57.Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).Article 

    Google Scholar 
    58.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).59.Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).Article 

    Google Scholar 
    61.McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).Article 

    Google Scholar 
    62.Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).63.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).Article 

    Google Scholar 
    64.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).Article 

    Google Scholar 
    65.Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).66.Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).
    Google Scholar 
    67.Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020). More

  • in

    Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera

    1.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycl. 2002;16:1–21.Article 
    CAS 

    Google Scholar 
    2.Lampitt RS, Salter I, John D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycl. 2009;23:GB1010.Article 
    CAS 

    Google Scholar 
    3.Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 2006;443:93–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Piña-Ochoa E, Hogslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, et al. Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiida. Proc Natl Acad Sci USA. 2010;107:1148–53.PubMed 
    Article 

    Google Scholar 
    5.Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, et al. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol. 2019;21:125–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delaca TE, Karl DM, Lipps JH. Direct use of dissolved organic-carbon by agglutinated benthic foraminifera. Nature. 1981;289:287–9.CAS 
    Article 

    Google Scholar 
    7.Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, et al. Ecological significance of benthic foraminifera: C-13 labelling experiments. Mar Ecol Prog Ser. 2000;202:289–95.Article 

    Google Scholar 
    8.LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM, Giovani ME, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep. 2018;8:1–12.CAS 
    Article 

    Google Scholar 
    9.Tsuchiya M, Chikaraishi Y, Nomaki H, Sasaki Y, Tame A, Uematsu K, et al. Compound-specific isotope analysis of benthic foraminifer amino acids suggests microhabitat variability in rocky-shore environments. Ecol Evol. 2018;8:8380–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Glock N, Roy AS, Romero D, Wein T, Weissenbach J, Revsbech NP, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA. 2019;116:2860–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Woehle C, Roy AS, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A novel eukaryotic denitrification pathway in foraminifera. Curr Biol. 2018;28:1–8.Article 
    CAS 

    Google Scholar 
    12.Gooday A. Meiofaunal foraminiferans from the bathyal porcupine seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res Part A Oceanogr Res Pap. 1986;33:1345–73.Article 

    Google Scholar 
    13.Pascal P-Y, Dupuy C, Richard P, Mallet C, Telet EAC, Niquilb N. Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr. 2009;54:1048–59.CAS 
    Article 

    Google Scholar 
    14.Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol. 2019;95:fiz046.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr. 2002;47:1569–80.CAS 
    Article 

    Google Scholar 
    16.Pillet L, de Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. 2011;162:394–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cesbron F, Geslin E, Le Kieffre C, Jauffrais T, Nardelli MP, Langlet D, et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: cellular organization, oxygen fluxes and potential ecological implications. J Foraminifer Res. 2017;47:268–78.Article 

    Google Scholar 
    18.Jauffrais T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–26.Article 

    Google Scholar 
    19.Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–11.CAS 
    Article 

    Google Scholar 
    20.Clark KB, Jensen KR, Stirts HM. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 1990;33:339–45.
    Google Scholar 
    21.Rumpho ME, Dastoor F, Manhart J, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. The structure and function of plastids. 23. New York: Advances in Photosynthesis and Respiration; 2006. p. 451–73.Chapter 

    Google Scholar 
    22.Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395:98–105.CAS 
    Article 

    Google Scholar 
    23.Hansen PJ, Fenchel T. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res. 2006;2:169–77.Article 

    Google Scholar 
    24.Hansen PJ, Ojamäe K, Berge T, Trampe EC, Nielsen LT, Lips I, et al. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    25.Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer; 2015. p. 465–500.Chapter 

    Google Scholar 
    26.Stoecker DK, Johnson MD, deVargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Micro Ecol. 2009;57:279–310.Article 

    Google Scholar 
    27.Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123:29–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Park MG, Park JS, Kim M, Yih W. Plastids dynamics during survival of Dinophysis caudate without its ciliate prey. J Phycol. 2008;44:1154–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Alexander SP, Banner FT. The functional relationship between skeleton and cytoplasm in Haynesina germanica (Ehrenberg). J Foraminifer Res. 1984;14:159–70.Article 

    Google Scholar 
    30.Bernhard JM, Alve E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammens fjord (Norway): Response to anoxia. Mar Micropaleontol. 1996;28:5–17.Article 

    Google Scholar 
    31.Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–65.CAS 
    Article 

    Google Scholar 
    32.Bernhard JM, Buck KR, Farmer MA, Bowser SS. The Santa Barbara Basin is a symbiosis oasis. Nature. 2000;403:77–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Correia MJ, Lee JJ. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis. 2000;29:343–55.
    Google Scholar 
    34.Lee JJ, Lanners E, Ter Kuile B. The retention of chloroplasts by the foraminifera Elphidium crispum. Symbiosis. 1988;5:45–60.CAS 

    Google Scholar 
    35.Cedhagen T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia. 1991;33:17–30.Article 

    Google Scholar 
    36.Correia MJ, Lee JJ. Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis. 2002;32:15–26.
    Google Scholar 
    37.Correia MJ, Lee JJ. How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis. 2002;32:27–37.
    Google Scholar 
    38.Goldstein ST, Bernhard JM, Richardson EA. Chloroplast sequestration in the foraminifer Haynesina germanica: application of high pressure freezing and freeze substitution. Microsc Microanal. 2004;10:1458–9.Article 

    Google Scholar 
    39.Jauffrais T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62.Article 

    Google Scholar 
    40.Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, et al. Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera). J Euk Microbiol. 2015;62:454–69.PubMed 
    Article 

    Google Scholar 
    41.Tsuchiya M, Miyawaki S, Oguri K, Toyofuku T, Tame A, Uematsu K, et al. Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in Planoglabratella opercularis (Foraminifera, Rhizaria). Front Mar Sci. 2020;7:585.Article 

    Google Scholar 
    42.Jauffrais T, Jesus B, Méléder V, Geslin E. Functional xanthophyll cycle and pigment content of a kleptoplastic benthic foraminifer: Haynesina germanica. PLOS ONE. 2017;12:e0172678.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Austin HA, Austin WE, Paterson DM. Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. 2005;57:68–73.Article 

    Google Scholar 
    44.Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, et al. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124:331–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol. 2008;44:909–22.PubMed 
    Article 

    Google Scholar 
    46.Shi LX, Theg SM. The chloroplast protein import system: From algae to trees. Biochim Biophys Acta. 2013;1833:314–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.de Vries J, Habicht J, Woehle C, Huang C, Christa G, Waegele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5:2540–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cruz S, Cartaxana P, Newcomer R, Dionísio G, Calado R, Serôdio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015;5:1–8.
    Google Scholar 
    49.Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol. 2019;222:jeb202580.PubMed 
    Article 

    Google Scholar 
    50.Petrou K, Ralph P, Nielsen D. A novel mechanism for host-mediated photoprotection in endosymbiotic foraminifera. ISME J. 2017;11:453–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Darling KF, Schweizer M, Knudsen KL, Evans KM, Bird C, Roberts A, et al. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2016;129:1–23.Article 

    Google Scholar 
    52.Kühl M, Polerecky L. Functional and structural imaging of aquatic phototrophic microbial communities and symbioses. Aquat Microb Ecol. 2008;53:99–118.53.Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proc Third ERTS Symp. 1973;1:309–17.
    Google Scholar 
    54.Barillé L, Mouget JL, Méléder V, Rosa P, Jesus B. Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ. 2011;115:1034–42.Article 

    Google Scholar 
    55.Kazemipour F, Launeau P, Méléder V. Microphytobenthos biomass mapping using the optical model of diatom biofilms: application to hyperspectral images of Bourgneuf Bay. Remote Sens Environ. 2012;127:1–13.Article 

    Google Scholar 
    56.Meleder V, Barille L, Launeau P, Carrere V, Rince Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens Environ. 2003;88:386–400.Article 

    Google Scholar 
    57.Serôdio J, Pereira S, Furtado J, Silva R, Coelho H, Calado R. In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem Photobiol Sci. 2010;9:68–77.PubMed 
    Article 

    Google Scholar 
    58.Jesus B, Mouget J-L, Perkins RG. Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol. 2008;44:1349–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Jesus B, Rosa P, Mouget JL, Méléder V, Launeau P, Barillé L. Spectral-radiometric analysis of taxonomically mixed microphytobenthic biofilms. Remote Sens Environ. 2014;140:196–205.Article 

    Google Scholar 
    60.Louchard EM, Reid RP, Stephens CF, Davis CO, Leathers RA, Downes TV, et al. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express. 2002;10:1573–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Perkins RG, Williamson CJ, Brodie J, Barillé L, Launeau P, Lavaud J, et al. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging. Sci Rep. 2016;6:1–14.Article 
    CAS 

    Google Scholar 
    62.Trampe E, Kolbowski J, Schreiber U, Kühl M. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol. 2011;158:1667–75.CAS 
    Article 

    Google Scholar 
    63.Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD. Coral photobiology studied with a new imaging pulse imaging pulse amplitude modulated fluorometer. J Phycol. 2005;41:335–42.Article 

    Google Scholar 
    64.Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplancton. J Mar Res. 1980;38:687–701.
    Google Scholar 
    65.Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Progr Ser S. 2001;223:1–14.Article 

    Google Scholar 
    66.Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 1986;5:153–64.Article 

    Google Scholar 
    67.Elzhov TV, Mullen KM, Spiess A-N, Bolker B minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016 R package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm.68.LeKieffre C, Spangenberg JE, Mabilleau G, Escrig S, Meibom A, Geslin E. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLOS ONE. 2017;12:e0177604.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bernhard JM. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontol. 2000;46:38–46.
    Google Scholar 
    70.Nomaki H, Bernhard JM, Ishida A, Tsuchiya M, Uematsu K, Tame A, et al. Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    71.Eaton JW, Moss B. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.Article 

    Google Scholar 
    72.Schneider CA, Rasband WS, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.CAS 
    Article 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2017, Vienna, Austria. URL https://www.R-project.org/.74.Schneider LK, Anestis K, Mansour J, Anschütz AA, Gypens N, Hansen PJ, et al. A dataset on trophic modes of aquatic protists. Biodivers Data J. 2020;8:e56648.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Banner FT, Culver SJ. Quaternary Haynesina n. gen. and paleogene Protelphidium Haynes; their morphology, affinities and distribution. J Foraminifer Res. 1978;8:177–207.Article 

    Google Scholar 
    76.Hansen HJ, Lykke-Andersen AL. Wall structure and classification of fossil and recent elphidiid and nonionid Foraminifera. Foss Strat. 1976;10:1–37.
    Google Scholar 
    77.Hottinger L, Reiss Z, Langer M. Spiral canals of some Elphidiidae. Micropaleontol. 2001;47:5–34.
    Google Scholar 
    78.Lee J. On a piece of chalk – Update. J Euk Microbiol. 1993;40:395–410.CAS 
    Article 

    Google Scholar 
    79.Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, et al. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci. 2015;153:29–37.CAS 
    Article 

    Google Scholar 
    80.Jauffrais T, Drouet S, Turpin V, Méléder V, Jesus B, Cognie B, et al. Growth and biochemical composition of a microphytobenthic diatom (Entomoneis paludosa) exposed to shorebird (Calidris alpina) droppings. J Exp Mar Biol Ecol. 2015;469:83–92.CAS 
    Article 

    Google Scholar 
    81.Jauffrais T, Jesus B, Méléder V, Turpin V, Russo ADAPG, Raimbault P, et al. Physiological and photophysiological responses of the benthic diatom Entomoneis paludosa (Bacillariophyceae) to dissolved inorganic and organic nitrogen in culture. Mar Biol. 2016;163:1–14.CAS 
    Article 

    Google Scholar 
    82.Meleder V, Laviale M, Jesus B, Mouget JL, Lavaud J, Kazemipour F, et al. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J Photochem Photobio B-Biol. 2013;129:115–24.CAS 
    Article 

    Google Scholar 
    83.Knight R, Mantoura RFC. Chlorophyll and carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser. 1985;23:241–9.CAS 
    Article 

    Google Scholar 
    84.Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.CAS 
    Article 

    Google Scholar 
    85.Olaizola M, Yamamoto HY. Short term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol. 1994;30:606–12.CAS 
    Article 

    Google Scholar 
    86.Lavaud J, Rousseau B, Etienne A-L. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol. 2004;40:130–7.Article 

    Google Scholar 
    87.Ventura P, Calado G, Jesus B. Photosynthetic efficiency and kleptoplast pigment diversity in the sea slug Thuridilla hopei (Vérany, 1853). J Exp Mar Biol Ecol. 2013;441:105–9.CAS 
    Article 

    Google Scholar 
    88.Martin R, Walther P, Tomaschko KH. Variable retention of kleptoplast membranes in cells of sacoglossan sea slugs: plastids with extended, shortened and non-retained durations. Zoomorphology. 2015;134:523–9.Article 

    Google Scholar 
    89.Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, et al. The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2020;155:101726.Article 

    Google Scholar  More

  • in

    Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations

    Conjugative plasmids confer important traits to microbial communities, with both deleterious and beneficial effects on human health, the environment, and biotechnology [1,2,3]. The spread of virulence and resistance to antimicrobial agents [1, 2] and the facilitation of specific pollutant biotransformations exemplify the importance of conjugative plasmids [3, 4]. Understanding the mechanisms governing the transfer and spread of conjugative plasmids is therefore critically important. Although substantial research efforts have been made toward understanding the molecular mechanisms and biological determinants of plasmid conjugation [5], the underlying driving forces from physical and ecological aspects remain unclear.Many microbial communities exist in environments that are periodically or continuously exposed to unsaturated water conditions. For example, the communities residing in the vadose zone of soils are periodically exposed to saturated conditions after rainfall events and irrigation, and thereafter to unsaturated conditions upon soil draining. The microbial communities inhabiting the outer surfaces of various hosts such as skin, teeth, leaves, or roots also experience frequent hydration dynamics. The air-water interfaces of such soil particles or host surfaces are subject to water evaporation when the ambient relative humidity (RH) is More

  • in

    Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink

    Climate dataThermal profiles showed considerable diel variation at each field location (Fig. 3). Soil temperatures on the ground surface fluctuated the most, reaching maximum temperature (Mt Ginini, 45.5 °C; Piccadilly Circus first season, 46.5 °C; Piccadilly Circus second season, 46.0 °C; Cooma, 42.1 °C; Dartmouth, 47.5 °C) during the day (1330–1730 h) and dropping to low level (Mt Ginini, 4.0 °C; Piccadilly Circus first season, 8.5 °C; Piccadilly Circus second season, 6.5 °C; Cooma, 7 °C; Dartmouth 12.5 °C) at night (2330–0400 h) (ANOVA, F4, 6521 = 279.4, P  More

  • in

    Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes

    1.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).
    Google Scholar 
    2.Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167. https://doi.org/10.1038/s41598-019-38843-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Price, P. W. Strategies for egg production. Evolution 28(1), 76–84 (1974).PubMed 
    Article 

    Google Scholar 
    4.Roff, D. A. The Evolution of Life Histories. Theory and analysis (Chapman and Hall, 1992).
    Google Scholar 
    5.Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974).Article 

    Google Scholar 
    6.Durrant, K. et al. Comparative morphological trade-offs between pre- and post-copulatory sexual selection in Giant hissing cockroaches (Tribe: Gromphadorhini). Sci. Rep. 6, 36755. https://doi.org/10.1038/srep36755 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Timi, J. T., Lanfranchi, A. L. & Poulin, R. Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola?. Parasitol. Res. 95, 1–4 (2005).PubMed 
    Article 

    Google Scholar 
    8.Cavaleiro, F. I. & Santos, M. J. Egg number–egg size: An important trade-off in parasite life history strategies. Int. J. Parasitol. 44, 173–182 (2014).PubMed 
    Article 

    Google Scholar 
    9.Poulin, R. Clutch size and egg size in free-living and parasitic copepods: A comparative analysis. Evolution 49(2), 325–336 (1995).PubMed 
    Article 

    Google Scholar 
    10.Caley, M. J., Schwarzkoff, L. & Shine, R. Does total reproductive effort evolve independently of offspring size?. Evolution 55(6), 1245–1248 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McGinty, N. et al. Anthropogenic climate change impacts on copepod trait biogeography. Glob. Change Biol. 27, 1431–1442 (2021).ADS 
    Article 

    Google Scholar 
    12.Ianora, A., Miralto, A. & Halsband-Lenk, C. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Prog. Oceanogr. 72, 195–213 (2007).ADS 
    Article 

    Google Scholar 
    13.Uye, S. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).ADS 
    Article 

    Google Scholar 
    14.Guisande, C., Sanchez, J., Maneiro, I. & Miranda, A. Trade-off between offspring number and offspring size in the marine copepod Euterpina acutifrons at different food concentrations. Mar. Ecol. Prog. Ser. 143, 37–44 (1996).ADS 
    Article 

    Google Scholar 
    15.Liang, D. & Uye, S. Seasonal reproductive biology of the egg-carrying calanoid copepod Pseudocalanus marinus in a eutrophic inlet of the Inland Sea of Japan. Mar. Biol. 128, 409–414 (1997).Article 

    Google Scholar 
    16.Hämäläinen, A. et al. Fitness consequences of peak reproductive effort in a resource pulse system. Sci. Rep. 7, 9335 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Souissi, S. & Souissi, A. Promotion of the development of sentinel species in the water column: Example using body size and fecundity of the egg-bearing calanoid copepod Eurytemora affinis. Water 13, 1442. https://doi.org/10.3390/w13111442 (2021).Article 

    Google Scholar 
    18.Madhupratap, M., Nehring, S. & Lenz, J. Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar. Biol. 125, 77–87 (1996).Article 

    Google Scholar 
    19.Katajisto, T., Viitasalo, M. & Koski, M. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser. 163, 133–143 (1998).ADS 
    Article 

    Google Scholar 
    20.Walsh, M. R. The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integr. Comp. Biol. 53(4), 713–722 (2013).PubMed 
    Article 

    Google Scholar 
    21.Glippa, O., Denis, L., Lesourd, S. & Souissi, S. Seasonal fluctuations of the copepod resting egg bank in the middle Seine estuary, France: Impact on the nauplii recruitment. Estuar. Coast. Shelf Sci. 142, 60–67 (2014).ADS 
    Article 

    Google Scholar 
    22.Jamieson, C. D. & Santer, B. Maternal aging in the univoltine freshwater copepod Cyclops kolensis: variation in egg sizes, egg development times, and naupliar development times. Hydrobiologia 510, 75–81 (2003).Article 

    Google Scholar 
    23.Kiørboe, T. & Sabatini, M. Reproduction and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16(10), 1353–1366 (1994).Article 

    Google Scholar 
    24.Hirst, A. G. & Kiørboe, T. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230, 195–209 (2002).ADS 
    Article 

    Google Scholar 
    25.Andersen, M. C. & Nielson, T. G. Hatching rate of the egg carrying estuarine copepod Eurytemora affinis. Mar. Ecol. Prog. Ser. 160, 283–289 (1997).ADS 
    Article 

    Google Scholar 
    26.Winkler, G., Dodson, J. J. & Lee, C. E. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol. Ecol. 17, 415–430 (2008).PubMed 
    Article 

    Google Scholar 
    27.Devreker, D. et al. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuar. Coast. Shelf Sci. 89, 245–255 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Ban, S. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J. Plankton Res. 16, 721–735 (1994).Article 

    Google Scholar 
    29.Devreker, D., Souissi, S., Winkler, G., Forget-Leray, J. & Leboulenger, F. Effects of salinity and temperature on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J. Exp. Mar. Biol. Ecol. 368, 113–123 (2009).Article 

    Google Scholar 
    30.Dur, G. et al. An individual based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol. Model. 220, 1073–1089 (2009).Article 

    Google Scholar 
    31.Michalec, F.-G. et al. Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J. Plankton Res. 32(6), 805–813 (2010).Article 

    Google Scholar 
    32.Michalec, F.-G., Holzner, M., Menu, D., Hwang, J.-S. & Souissi, S. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat. Toxicol. 138–139, 129–138 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    33.Souissi, A., Souissi, S. & Hwang, J.-S. Evaluation of the copepod Eurytemora affinis life history response to temperature and salinity increases. Zool. Stud. 55, e4. https://doi.org/10.6620/ZS.2016.55-04 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Souissi, A., Souissi, S. & Hansen, B. W. Physiological improvement in the copepod Eurytemora affinis through thermal and multigenerational selection. Aquac. Res. 47, 2227–2242 (2016).Article 

    Google Scholar 
    36.Souissi, A., Souissi, S., Devreker, D. & Hwang, J.-S. Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar. Biol. 157, 851–861 (2010).Article 

    Google Scholar 
    37.Heinle, D. R. & Flemer, D. A. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Mar. Biol. 31, 235–247 (1975).Article 

    Google Scholar 
    38.Hirche, H.-J. Egg production of Eurytemora affinis—effect of K-strategy. Estuar. Coast. Shelf Sci. 35, 395–407 (1992).ADS 
    Article 

    Google Scholar 
    39.Crawford, P. & Daborn, G. R. Seasonal variations in body size and fecundity in a copepod of turbid estuaries. Estuaries 9(2), 133–141 (1986).Article 

    Google Scholar 
    40.IPCC Climate change The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 2007 (Cambridge University Press, 2007).
    Google Scholar 
    41.Guisande, C. & Gliwicz, Z. M. Egg size and clutch size in 2 Daphnia species grown at different food levels. J. Plankton Res. 14, 997–1007 (1992).Article 

    Google Scholar 
    42.Carrière, Y. & Roff, D. A. The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 102, 389–396 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    43.Beyrend-Dur, D., Souissi, S., Devreker, D., Winklerd, G. & Hwang, J.-S. Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): Salinity effects. J. Plankton Res. 31(7), 713–728 (2009).Article 

    Google Scholar 
    44.Dur, G. & Souissi, S. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France). Est. Coast Shelf Sci. 200, 311–323 (2018).ADS 
    Article 

    Google Scholar 
    45.Mouny, P. & Dauvin, J. C. Environmental control of mesozooplankton communities in the Seine estuary (English Channel). Oceanol. Acta 25, 13–22 (2002).Article 

    Google Scholar 
    46.Mouny, P., Dauvin, J. C., Bessineton, C., Elkaim, B. & Simon, S. Biological components from the Seine estuary: first results. Hydrobiologia 373(374), 333–347 (1998).Article 

    Google Scholar 
    47.Dur, G., Jimenez-Melero, R., Beyrend-Dur, D., Hwang, J.-S. & Souissi, S. Individual-based model of the phenology of egg-bearing copepods application to Eurytemora affinis from the Seine estuary, France. Ecol. Model. 269, 21–36 (2013).Article 

    Google Scholar 
    48.Cailleaud, K. et al. Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquat. Tox. 112, 228–231 (2011).Article 
    CAS 

    Google Scholar 
    49.Mahjoub, M.-S., Souissi, S., Michalec, F.-G., Schmitt, F. G. & Hwang, J.-S. Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). J. Plankton Res. 33(7), 1095–1103 (2011).Article 

    Google Scholar 
    50.Lee, C. E. Rapid and repeated invasion of freshwater by the copepod Eurytemora affinis. Evolution 53(5), 1423–1434 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The population genomic structure of green turtles (Chelonia mydas) suggests a warm-water corridor for tropical marine fauna between the Atlantic and Indian oceans during the last interglacial

    Alfaro-Nunez A, Bertelsen MF, Bojesen AM, Rasmussen I, Zepeda-Mendoza L, Olsen MT et al. (2014) Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles. BMC Evol Biol 14:206PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C et al. (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Amos B, Hoelzel AR (1991). Long-term preservation of whale skin for DNA analysis. Rep Int Whal Comm Spec Issue 13:99–103Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376–8PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ball RM, Neigel JE, Avise JC (1990) Gene genealogies within the organismal pedigrees of random-mating populations. Evolution 44:360–370PubMed 
    PubMed Central 

    Google Scholar 
    Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell CDL, Parsons J, Austin TJ, Broderick AC, Ebanks-Petrie G, Godley BJ (2005) Some of them came home: the Cayman Turtle Farm headstarting project for the green turtle Chelonia mydas. Oryx 39:137–148Article 

    Google Scholar 
    Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating and interpreting FST: The impact of rare variants. Genome Res 23:1514–1521CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128CAS 
    PubMed 
    Article 

    Google Scholar 
    Bjorndal KA, Bolten AB, Chaloupka MY (2000) Green turtle somatic growth model: evidence for density dependence. Ecol Appl 10:269–282
    Google Scholar 
    Bjorndal KA, Bolten AB, Chaloupka M, Saba VS, Bellini C, Marcovaldi MAG et al. (2017) Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Glob Change Biol 23:4556–4568Article 

    Google Scholar 
    Bourjea J, Lapegue S, Gagnevin L, Broderick D, Mortimer JA, Ciccione S et al. (2007) Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol Ecol 16:175–186CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowen BW, Abreu-Grobois FA, Balazs GH, Kamezaki N, Limpus CJ, Ferl RJ (1995) Trans-Pacific migrations of the loggerhead turtle (Caretta caretta) demonstrated with mitochondrial DNA markers. Proc Natl Acad Sci 92:3731–3734CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen BW, Clark AM, Abreu-Grobois FA, Chaves A, Reichart HA, Ferl RJ (1997) Global phylogeography of the ridley sea turtles (Lepidochelys spp.) as inferred from mitochondrial DNA sequences. Genetica 101:179–189CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowen BW, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS et al. (2016) Comparative phylogeography of the ocean planet. Proc Natl Acad Sci 113:7962–7969CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyle MC, FitzSimmons NN, Limpus CJ, Kelez S, Velez-Zuazo X, Waycott M (2009) Evidence for transoceanic migrations by loggerhead sea turtles in the southern Pacific Ocean. Proc R Soc B 276:1993–1999CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradshaw PJ, Broderick AC, Carreras C, Fuller W, Snape RTE, Wright LI et al. (2018) Defining conservation units with enhanced molecular tools to reveal fine scale structuring among Mediterranean green turtle rookeries. Biol Conserv 222:253–260Article 

    Google Scholar 
    Carr AF, Carr MH, Meylan AB (1978). The ecology and migrations of sea turtles, 7. The West Caribbean green turtle colony. Bull Am Mus Nat Hist 162:1–46Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182CAS 

    Google Scholar 
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The last glacial maximum. Science 325:710–714CAS 
    PubMed 
    Article 

    Google Scholar 
    Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM et al. (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. GSA Bull 104:814–828Article 

    Google Scholar 
    Dahl-Jensen D, Albert MR, Aldahan A, Azuma N, Balslev-Clausen D, Baumgartner M et al. (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–494CAS 
    Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Domingues RR, Hilsdorf AWS, Shivji MM, Hazin FVH, Gadig OBF (2018) Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev Fish Biol Fish 28:213–227Article 

    Google Scholar 
    Dray S, Dufour A-B (2007) The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 22:1–20.Article 

    Google Scholar 
    Duncan KM, Martin AP, Bowen BW, Couet HGD (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards S, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854CAS 
    PubMed 

    Google Scholar 
    Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW (1996) Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Mol Ecol 5:473–483CAS 
    PubMed 
    Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Felsenstein J (2006) Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Mol Biol Evol 23:691–700CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Felsenstein J, Churchill GA (1996) A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    FitzSimmons NN, Limpus CJ, Norman JA, Goldizen AR, Miller JD, Moritz C (1997) Philopatry of male marine turtles inferred from mitochondrial DNA markers. Proc Natl Acad Sci 94:8912–8917CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gaither MR, Bernal MA, Fernandez-Silva I, Mwale M, Jones SA, Rocha C et al. (2015) Two deep evolutionary lineages in the circumtropical glasseye Heteropriacanthus cruentatus (Teleostei, Priacanthidae) with admixture in the south-western Indian Ocean. J Fish Biol 87:715–727CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gaither MR, Bowen BW, Bordenave T-R, Rocha LA, Newman SJ, Gomez JA et al. (2011). Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific barrier with contemporary overlap in the coral triangle. BMC Evol Biol 11:189Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W et al. (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goshe LR, Avens L, Scharf FS, Southwood AL (2010) Estimation of age at maturation and growth of Atlantic green turtles (Chelonia mydas) using skeletochronology. Mar Biol 157:1725–1740Article 

    Google Scholar 
    Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G et al. (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hamann M, Godfrey MH, Seminoff JA, Arthur K, Barata PCR, Bjorndal KA et al. (2010) Global research priorities for sea turtles: informing management and conservation in the 21st century. Endanger Species Res 11:245–269Article 

    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jensen MP, Dalleau M, Gaspar P, Lalire M, Jean C, Ciccione S et al. (2020) Seascape genetics and the spatial ecology of juvenile green turtles. Genes 11:278CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Jensen MP, FitzSimmons NN, Bourjea J, Hamabata T, Reece J, Dutton PH (2019) The evolutionary history and global phylogeography of the green turtle (Chelonia mydas). J Biogeogr 46:1–11.Article 

    Google Scholar 
    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Karl SA, Bowen BW, Avise JC (1992) Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci. Genetics 131:163–173CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelleher J, Etheridge AM, McVean G (2016) Efficient coalescent simulation and genealogical analysis for large sample sizes. PLOS Comput Biol 12:e1004842PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kiessling W, Simpson C, Beck B, Mewis H, Pandolfi JM (2012) Equatorial decline of reef corals during the last Pleistocene interglacial. Proc Natl Acad Sci 109:21378–21383CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komoroske LM, Miller MR, O’Rourke SM, Stewart KR, Jensen MP, Dutton PH (2019) A versatile Rapture (RAD-Capture) platform for genotyping marine turtles. Mol Ecol Resour 19:497–511PubMed 
    Article 

    Google Scholar 
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G et al. (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kukla GJ, Bender ML, de Beaulieu J-L, Bond G, Broecker WS, Cleveringa P et al. (2002) Last interglacial climates. Quat Res 58:2–13Article 

    Google Scholar 
    Lahanas PN, Bjorndal KA, Bolten AB, Encalada SE, Miyamoto MM, Valverde RA et al. (1998) Genetic composition of a green turtle (Chelonia mydas) feeding ground population: evidence for multiple origins. Mar Biol 130:345–352Article 

    Google Scholar 
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Latch EK, Dharmarajan G, Glaubitz JC, Rhodes Jr OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302Article 

    Google Scholar 
    Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol Syst 39:63–91Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Linck EB, Battey CJ (2019) Minor allele frequency thresholds strongly affect population structure inference with genomic datasets. Mol Ecol Resour 19:639–647CAS 
    PubMed 
    Article 

    Google Scholar 
    Ludt WB, Rocha LA (2015) Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J Biogeogr 42:25–38Article 

    Google Scholar 
    Malinsky M, Trucchi E, Lawson DJ, Falush D (2018) RADpainter and fineRADstructure: population inference from RADseq data. Mol Biol Evol 35:1284–1290CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maruki T, Lynch M (2017) Genotype calling from population-genomic sequencing data. G3 Genes Genomes Genet 7:1393–1404CAS 

    Google Scholar 
    Meylan AB, Bowen BW, Avise JC (1990) A genetic test of the natal homing versus social facilitation models for green turtle migration. Science 248:724–727CAS 
    PubMed 
    Article 

    Google Scholar 
    Miles A, Murillo R, Ralph P, Harding N, Pisupati R, Rae S et al. (2017). cggh/scikit-allel: v1.3.2. ZenodoMonzón-Argüello C, López-Jurado LF, Rico C, Marco A, López P, Hays GC et al. (2010) Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J Biogeogr 37:1752–1766Article 

    Google Scholar 
    Naro-Maciel E, Reid BN, Alter SE, Amato G, Bjorndal KA, Bolten AB et al. (2014) From refugia to rookeries: phylogeography of Atlantic green turtles. J Exp Mar Biol Ecol 461:306–316Article 

    Google Scholar 
    Patrício AR, Formia A, Barbosa C, Broderick AC, Bruford M, Carreras C et al. (2017) Dispersal of green turtles from Africa’s largest rookery assessed through genetic markers. Mar Ecol Prog Ser 569:215–225Article 

    Google Scholar 
    Peeters FJC, Acheson R, Brummer G-JA, De Ruijter WPM, Schneider RR, Ganssen GM et al. (2004) Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430:661–665CAS 
    PubMed 
    Article 

    Google Scholar 
    Penven P, Lutjeharms JRE, Marchesiello P, Roy C, Weeks SJ (2001) Generation of cyclonic eddies by the Agulhas Current in the lee of the Agulhas Bank. Geophys Res Lett 28:1055–1058Article 

    Google Scholar 
    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pillans B, Chappell J, Naish TR (1998) A review of the Milankovitch climatic beat: template for Plio–Pleistocene sea-level changes and sequence stratigraphy. Sediment Geol 122:5–21CAS 
    Article 

    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Reece JS, Castoe TA, Parkinson CL (2005) Historical perspectives on population genetics and conservation of three marine turtle species. Conserv Genet 6:235–251Article 

    Google Scholar 
    Reid BN, Naro‐Maciel E, Hahn AT, FitzSimmons NN, Gehara M (2019) Geography best explains global patterns of genetic diversity and post-glacial co-expansion in marine turtles. Mol Ecol 28:3358–3370PubMed 
    PubMed Central 

    Google Scholar 
    Roberts MA, Schwartz TS, Karl SA (2004) Global population genetic structure and male-mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite loci. Genetics 166:1857–1870CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171Article 

    Google Scholar 
    Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Scally A, Durbin R (2012) Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 13:745–753CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Seminoff JA (2004). Chelonia mydas. IUCN Red List Threat Species 2004: e.T4615A11037468Seminoff JA, Allen CD, Balazs GH, Dutton PH, Eguchi T, Haas HL et al. (2015). Status review of the green turtle (Chelonia mydas) under the U.S. Endangered Species Act. NOAA Technical Memorandum, NOAA-NMFS-SWFSC-539. 571ppStrasburg JL, Rieseberg LH (2010) How robust are ‘isolation with migration’ analyses to violations of the im model? A simulation study. Mol Biol Evol 27:297–310CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Taberlet P, Fumagalli L, Wust‐Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Teske PR, Von Der Heyden S, McQuaid CD, Barker NP (2011) A review of marine phylogeography in southern. Afr South Afr J Sci 107:43–53
    Google Scholar 
    Van der Zee JP, Christianen MJA, Nava M, Velez-Zuazo X, Hao W, Bérubé M et al. (2019) Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas. Sci Rep 9:14392Wallace BP, DiMatteo AD, Hurley BJ, Finkbeiner EM, Bolten AB, Chaloupka MY et al. (2010) Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales. PLoS ONE 5:e15465PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang J (2017) The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol Ecol Resour 17:981–990CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z et al. (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45:701–706CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450Article 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Willing E-M, Dreyer C, van Oosterhout C (2012) Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 7:e42649–7CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM et al. (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Article 

    Google Scholar 
    Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941Article 

    Google Scholar 
    Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CAS 
    PubMed 
    Article 

    Google Scholar  More