More stories

  • in

    An evaluation of multi-species empirical tree mortality algorithms for dynamic vegetation modelling

    1.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55. https://doi.org/10.1890/Es15-00203.1 (2015).Article 

    Google Scholar 
    2.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    3.Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3, 30–36 (2013).ADS 
    Article 

    Google Scholar 
    4.Taccoen, A. et al. Background mortality drivers of European tree species: climate change matters. Proc R Soc B-Biol Sci 286, 1–10. https://doi.org/10.1098/rspb.2019.0386 (2019).Article 

    Google Scholar 
    5.Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28. https://doi.org/10.1111/nph.15048 (2018).Article 
    PubMed 

    Google Scholar 
    6.Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol., 1–13. https://doi.org/10.1016/j.tree.2021.02. (2021).7.McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321. https://doi.org/10.1111/nph.12465 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Keane, R. E. et al. Tree mortality in gap models: application to climate change. Clim. Change 51, 509–540. https://doi.org/10.1023/A:1012539409854 (2001).Article 

    Google Scholar 
    9.Bircher, N., Cailleret, M. & Bugmann, H. The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol. Appl. 25, 1303–1318. https://doi.org/10.1890/14-1462.1 (2015).Article 
    PubMed 

    Google Scholar 
    10.Bugmann, H. et al. Tree mortality submodels drive long term forest dynamics: an assessment across 15 models from the stand to the global scale. Ecosphere 10, 1–22. https://doi.org/10.1002/ecs2.2616 (2019).Article 

    Google Scholar 
    11.Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci USA 111, 3280–3285. https://doi.org/10.1073/pnas.1222477110 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lines, E. R., Coomes, D. A. & Purves, D. W. Influences of forest structure, climate and species composition on tree mortality across the Eastern US. PLoS ONE 5, 1–12. https://doi.org/10.1371/journal.pone.0013212 (2010).CAS 
    Article 

    Google Scholar 
    13.Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453. https://doi.org/10.1126/science.1155359 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L. & Bugmann, H. Bayesian calibration of a growth-dependent tree mortality model to simulate the dynamics of European temperate forests. Ecol. Appl. 30, 1–17. https://doi.org/10.1002/eap.2021 (2020).Article 

    Google Scholar 
    15.Rowland, L., Martinez-Vilalta, J. & Mencuccini, M. Hard times for high expectations from hydraulics: predicting drought-induced forest mortality at landscape scales remains a challenge. New Phytol. 230, 1685–1687. https://doi.org/10.1111/nph.17317 (2021).Article 
    PubMed 

    Google Scholar 
    16.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690. https://doi.org/10.1111/gcb.13535 (2017).ADS 
    Article 

    Google Scholar 
    17.Bigler, C. & Bugmann, H. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 33, 210–221. https://doi.org/10.1139/X02-180 (2003).Article 

    Google Scholar 
    18.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540. https://doi.org/10.1002/eap.1668 (2018).Article 
    PubMed 

    Google Scholar 
    19.Weiskittel, A. R., Hann, D. W., Kershaw, J. A. & Vanclay, J. K. in Forest Growth and Yield Modeling Ch. 8, 139–155 (Wiley, 2011).20.Holzwarth, F., Kahl, A., Bauhus, J. & Wirth, C. Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 101, 220–230. https://doi.org/10.1111/1365-2745.12015 (2013).Article 

    Google Scholar 
    21.Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333. https://doi.org/10.1007/s10342-005-0085-3 (2005).Article 

    Google Scholar 
    22.Thrippleton, T., Hülsmann, L., Cailleret, M. & Bugmann, H. Projecting forest dynamics across Europe: potentials and pitfalls of empirical mortality algorithms. Ecosystems 23, 188–203. https://doi.org/10.1007/s10021-019-00397-3 (2020).Article 

    Google Scholar 
    23.Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4, 1–5. https://doi.org/10.3389/fpls.2013.00438 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Archambeau, J. et al. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric. For. Meteorol. 280, 1–12. https://doi.org/10.1016/j.agrformet.2019.107772 (2020).Article 

    Google Scholar 
    25.Luo, Y. & Chen, H. Y. H. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 99, 1470–1480. https://doi.org/10.1111/j.1365-2745.2011.01882.x (2011).Article 

    Google Scholar 
    26.Brzeziecki, B. & Kienast, F. Classifying the life-history strategies of trees on the basis of the grimian model. For. Ecol. Manage. 69, 167–187. https://doi.org/10.1016/0378-1127(94)90227-5 (1994).Article 

    Google Scholar 
    27.Valladares, F. & Niinemets, U. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 (2008).Article 

    Google Scholar 
    28.Kobe, R. K. & Coates, K. D. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 27, 227–236. https://doi.org/10.1139/x96-182 (1997).Article 

    Google Scholar 
    29.Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615. https://doi.org/10.1046/j.1365-2745.2002.00691.x (2002).Article 

    Google Scholar 
    30.Anderegg, L. D. L. & HilleRisLambers, J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Change Biol. 22, 1029–1045. https://doi.org/10.1111/gcb.13148 (2016).ADS 
    Article 

    Google Scholar 
    31.Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160 (2016).ADS 
    Article 

    Google Scholar 
    32.Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front Plant Sci 10, 1–19. https://doi.org/10.3389/fpls.2019.00307 (2019).Article 

    Google Scholar 
    33.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003 (2020).Article 

    Google Scholar 
    34.Vanoni, M., Cailleret, M., Hülsmann, L., Bugmann, H. & Bigler, C. How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession?. For. Ecol. Manage. 433, 606–617. https://doi.org/10.1016/j.foreco.2018.11.042 (2019).Article 

    Google Scholar 
    35.Huber, N., Bugmann, H. & Lafond, V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 11, 1–34. https://doi.org/10.1002/ecs2.3109 (2020).Article 

    Google Scholar 
    36.Bugmann, H. A simplified forest model to study species composition along climate gradients. Ecology 77, 2055–2074. https://doi.org/10.2307/2265700 (1996).Article 

    Google Scholar 
    37.Hülsmann, L., Bugmann, H. & Brang, P. How to predict tree death from inventory data – lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 47, 890–900. https://doi.org/10.1139/cjfr-2016-0224 (2017).Article 

    Google Scholar 
    38.Eid, T. & Tuhus, E. Models for individual tree mortality in Norway. For. Ecol. Manag. 154, 69–84. https://doi.org/10.1016/S0378-1127(00)00634-4 (2001).Article 

    Google Scholar 
    39.Monserud, R. A. & Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 113, 109–123. https://doi.org/10.1016/S0378-1127(98)00419-8 (1999).Article 

    Google Scholar 
    40.Dursky, J. Modellierung der Absterbeprozesse in Rein- und Mischbeständen aus Fichte und Buche. Allg. Forst- u. Jagdztg. 168, 131–134 (1997).
    Google Scholar 
    41.Trasobares, A., Pukkala, T. & Muna, J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61, 9–24, doi:https://doi.org/10.1051/forset:2003080 (2004).42.Crecente-Campo, F., Soares, P., Tome, M. & Dieguez-Aranda, U. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For. Ecol. Manage. 260, 1965–1974. https://doi.org/10.1016/j.foreco.2010.08.044 (2010).Article 

    Google Scholar 
    43.Palahi, M., Pukkala, T., Miina, J. & Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60, 1–10, https://doi.org/10.1051/forest:2002068 (2003).44.Bravo-Oviedo, A., Sterba, H., del Rio, M. & Bravo, F. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P-sylvestris L. For. Ecol. Manag. 222, 88–98, doi:https://doi.org/10.1016/j.foreco.2005.10.016 (2006).45.Fridman, J. & Ståhl, G. A three-step approach for modelling tree mortality in Swedish forests. Scand. J. For. Res. 16, 455–466. https://doi.org/10.1080/02827580152632856 (2001).Article 

    Google Scholar 
    46.Wunder, J. et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests. Oikos 117, 815–828. https://doi.org/10.1111/j.0030-1299.2008.16371.x (2008).Article 

    Google Scholar 
    47.Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manage. 261, 1203–1213. https://doi.org/10.1016/j.foreco.2010.12.035 (2011).Article 

    Google Scholar 
    48.Bigler, C. & Bugmann, H. Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14, 902–914. https://doi.org/10.1890/03-5011 (2004).Article 

    Google Scholar 
    49.Larocque, G. R., Archambault, L. & Delisle, C. Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures. Ecol. Model. 222, 2570–2583. https://doi.org/10.1016/j.ecolmodel.2010.08.035 (2011).Article 

    Google Scholar 
    50.Timofeeva, G. et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 37, 1028–1041. https://doi.org/10.1093/treephys/tpx041 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23, 4788–4797. https://doi.org/10.1111/gcb.13724 (2017).ADS 
    Article 

    Google Scholar 
    52.Levesque, M. et al. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Change Biol. 19, 3184–3199. https://doi.org/10.1111/gcb.12268 (2013).ADS 
    Article 

    Google Scholar 
    53.Rigling, A. et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240. https://doi.org/10.1111/gcb.12038 (2013).ADS 
    Article 

    Google Scholar 
    54.Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy Econ 92, 119–127. https://doi.org/10.1016/j.forpol.2018.04.009 (2018).Article 

    Google Scholar 
    55.Mina, M. et al. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 54, 389–401. https://doi.org/10.1111/1365-2664.12772 (2017).Article 

    Google Scholar 
    56.Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87, 665–684. https://doi.org/10.1002/ecm.1272 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Blattert, C., Lemm, R., Thees, O., Lexer, M. J. & Hanewinkel, M. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79, 391–409. https://doi.org/10.1016/j.ecolind.2017.04.025 (2017).Article 

    Google Scholar 
    58.Haeler, E. et al. Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecol. 36, 89–104. https://doi.org/10.1007/s10980-020-01115-4 (2021).Article 

    Google Scholar 
    59.Das, A. J., Stephenson, N. L. & Davis, K. P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97, 2616–2627. https://doi.org/10.1002/ecy.1497 (2016).Article 
    PubMed 

    Google Scholar 
    60.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556. https://doi.org/10.2307/1310665 (1987).Article 

    Google Scholar 
    61.Huber, N., Bugmann, H. & Lafond, V. Global sensitivity analysis of a dynamic vegetation model: model sensitivity depends on successional time, climate and competitive interactions. Ecol. Model. 368, 377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013 (2018).Article 

    Google Scholar 
    62.Portier, J. et al. “Latent reserves”: a hidden treasure in National Forest Inventories. J. Ecol. 109, 369–383. https://doi.org/10.1111/1365-2745.13487 (2021).Article 

    Google Scholar 
    63.Kunstler, G. et al. Demographic performance of European tree species at their hot and cold climatic edges. J. Ecol. 109, 1041–1054. https://doi.org/10.1111/1365-2745.13533 (2021).Article 

    Google Scholar 
    64.Gutierrez, A. G., Snell, R. S. & Bugmann, H. Using a dynamic forest model to predict tree species distributions. Glob. Ecol. Biogeogr. 25, 347–358. https://doi.org/10.1111/geb.12421 (2016).Article 

    Google Scholar 
    65.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872. https://doi.org/10.2307/2258570 (1972).Article 

    Google Scholar 
    66.Bugmann, H. A review of forest gap models. Clim. Change 51, 259–305. https://doi.org/10.1023/A:1012525626267 (2001).Article 

    Google Scholar 
    67.Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22. https://doi.org/10.2307/2256497 (1947).Article 

    Google Scholar 
    68.Shugart, H. H. & Smith, T. M. A review of forest patch models and their application to global change research. Clim. Change 34, 131–153. https://doi.org/10.1007/BF00224626 (1996).ADS 
    Article 

    Google Scholar 
    69.Monserud, R. A. Simulation of forest tree mortality. Forest Science 22, 438–444. https://doi.org/10.1093/forestscience/22.4.438 (1976).Article 

    Google Scholar 
    70.IPCC. Climate Change 2014: Impacts, adaptation, and vulnerability, Pt A: global and sectoral aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt A: Global and Sectoral Aspects, 1-1131, doi:https://doi.org/10.1017/CBO9781107415379 (2014).71.Manusch, C., Bugmann, H., Heiri, C. & Wolf, A. Tree mortality in dynamic vegetation models: a key feature for accurately simulating forest properties. Ecol. Model. 243, 101–111. https://doi.org/10.1016/j.ecolmodel.2012.06.008 (2012).Article 

    Google Scholar 
    72.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia

    Study sitesWe conducted this study in three protected areas in Sabah, Malaysian Borneo: Danum Valley Conservation Area (DVCA), the Lower Kinabatangan Wildlife Sanctuary (LKWS), and Tabin Wildlife Reserve (TWR) (Fig. 4). The minimum and maximum daily temperatures and annual precipitation among the three study sites did not differ significantly (annual temperature: 22–33 ℃, annual precipitation 2400–3100 mm; Mitchell37; Matsuda et al.39; South East Asia Rainforest Research Partnership Unpublished data. https://www.searrp.org/) although there is no recent precise climate data of TWR.Figure 4Location of the three study sites in Borneo.Full size imageThe DVCA (4° 50′–5° 05′ N, 117° 30′–117° 48′ E) is a Class I Protection Forest Reserve established by the Sabah state government in 1996 and managed by the Sabah Foundation (Yayasan Sabah Group) covering 438 km2. Approximately 90% of the area is comprised of mature lowland evergreen dipterocarp forests34. The study area is an old-growth forest surrounding the Borneo Rainforest Lodge (5° 01′ N, 117° 44′ E), a tourist lodging facility.The LKWS (5° 10′–5° 50′ N, 117° 40′–118° 30′ E), is located along the Kinabatangan River, which is the longest river flowing to the east coast, reaching 560 km inland and with a catchment area of 16,800 km2. Designated as a wildlife sanctuary and gazetted in 2005, the LKWS consists of ten forest blocks totaling 270 km2, comprised of seasonal and tidal swamp forests, permanent freshwater swamps, mangrove forests, and lowland dipterocarp forests35,36. The southern area of the Menanggul River is extensively covered by secondary forest. However, the northern area has been deforested for oil palm (Elaeis guineensis) plantations, except for a protected zone along the river. The TWR (5° 05′–5° 22′ N, 118° 30′–118° 55′ E) is located approximately 50 km northeast of Lahad Datu, eastern Sabah, and covers approximately 1225 km2.The TWR is exclusively surrounded by large oil palm plantations. Most parts of the TWR were heavily logged in the 1970s and the 1980s, leaving mainly regenerating mixed dipterocarp tropical rainforests dominated by pioneer species such as Neolamarckia cadamba and Macaranga bancana37,38. The study area was near the Sabah Wildlife Department base camp located on the western boundary of the TWR (5° 11′ N, 118° 30′ E). The study area includes heavily logged secondary forests and a small patchy old forest (0.74 km2).Data collectionWe set up 15, 30, and 28 infrared-triggered sensor cameras (Bushnell, Trophy Cam TM) in the DVCA (July 2010–August 2011 and May 2014–December 2016), LKWS (July 2010–December 2014) and TWR (May 2010–June 2012), respectively. As a result, the cumulative number of camera operation days in DVCA, LKWS, and TWR were 14,134, 18,265, and 4980, for a total of 37,379 days. Although it was impossible to record the animals during certain months because of adverse weather conditions, such as heavy rain, flooding, battery failure, other malfunctions mainly caused by insects nesting inside the cameras, or logistical problems, the cameras remained continuously activated. Due to these reasons, camera operating days differed among the cameras in each site. In this study, we used photos of animals, and we did not handle animals directly. All cameras were placed at heights of 30–50 cm above the forest floor and were tied to tree trunks using fabric belts to reduce damage to the trees.Because the terrain and level of regulations to conduct this study differed by the study site, we employed different layouts of camera stations at each study site. In the DVCA, T. K. and three trained assistants placed 15 cameras along six forest trails totaling 9000 m, which were established and maintained by the tourist lodging facility. Because it was prohibited to establish new trails and to place cameras at sites where tourism activity would be disturbed in the study area; therefore, the trails that were longer than 1 km and relatively easily accessible were selected as camera locations to maintain consistency of trail characteristics. Cameras were placed on each trail at 50 m intervals, alternating right and left to avoid bias of photo-capture frequency caused by terrain differences. Each station was at least 25 m away from each other on the different trails (Fig. 5a). The operating days differed among the 15 cameras, i.e., mean = 942.2; SD = 152.0; range = 682–1229.Figure 5Maps of camera locations at each study site. (a) Trails and camera stations at DVCA; (b1) trails and camera stations and (b2) trail locations at LKWS; (c) a trail and camera stations at TWR.Full size imageIn the LKWS, I. M. and two trained assistants had planned to install 30 cameras, but a maximum of only 27 cameras were in operation during the study period in the LKWS, probably owing to malfunctions caused by high humidity and rain in the tropical rainforest. All cameras were placed on the trails in the riverine forest along the Menanggul River. As part of a project on the primates of the riverine forests along the Menanggul River and to assist their observation and tracking in the swampy habitat in the LKWS39, trails 200–500 m long and 1 m wide were established at 500 m intervals on both sides of the river. Of the 16 trails, we selected ten trails that were all 500 m long and placed three cameras at the points from the riverbank to the inland forest in each trail, that is, 10 m, 250 m and 500 m from the riverbank (Fig. 5b1); cameras were set up 50 m away from the trails (Fig. 5b2). Consequently, the number of operating days differed among 30 cameras, i.e., mean = 608.8; SD = 531.4; range = 28–1315.In the TWR, M. N. and A. M placed 28 and three cameras on camera stations created by overlaying a 750 × 500 m grid in May and August 2010, respectively. Cameras were placed at each grid point at 250 m intervals (Fig. 5c). The operating days differed significantly among the 28 cameras, that is, mean = 177.9; SD = 123.2; range = 26–539.Temporal activity analysisWe defined non-independent photo capture events as consecutive photos of the same or different individuals of the same species taken within a 30-min interval and removed these photos from the analysis. We plotted the activity patterns of each species using a von Mises kernel40,41 using the package activity42 in R version 4.0.243. We estimated the activity level of animals with more than ten independent photo-capture events as indicated in the previous studies26,44. For our analysis, we pooled the images from all study sites if the photo number of a species was less than 10 in any study locations. If that was not the case, we used the package activity42 to compare species activity levels across the three research sites using a Wald test with Bonferroni correction for multiple pairwise comparisons. When there were significant differences, we separately estimated activity levels by the study sites. When there were no significant differences among the sites, we pooled the photo numbers to estimate activity levels.We divided a day into three periods: nighttime (19:00–04:59 h local time (GMT + 8)); daytime (07:00–16:59 h); and twilight (05:00–06:59 h and 17:00–18:59 h). During the study period, twilight hours essentially corresponded to 1 h between sunset and sunrise, at 5:54–6:25 and 17:50–18:25 in DVCA, 5:51–6:23 and 17:47–18:25 in LKWS, and 5:50–6:21 and 17:46–18:22 in TWR (data from https://www.timeanddate.com). After converting the time data of each photo-capture event into radians, we fitted a circular kernel density distribution estimated by 10,000 bootstrap resampling to radian time data, and we estimated the percentage of active time in each period. We then categorized the activity patterns of photo-captured carnivore species into four categories: nocturnal (active at night); crepuscular (active during twilight periods); diurnal (active during daytime); and cathemeral (active in all periods). We defined the activity pattern of the species as showing a statistically higher proportion of photo-captures at nighttime, daytime, and twilight periods than at other periods, such as nocturnal, diurnal, and crepuscular, respectively. When photo-capture proportions showed no differences among the three periods, we defined the activity pattern as cathemeral. For species with substantial sample size (50  More

  • in

    Spatiotemporal origin of soil water taken up by vegetation

    1.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341, 1085–1089 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schlesinger, W. H. & Jasechko, S. Agricultural and forest meteorology transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).ADS 
    Article 

    Google Scholar 
    5.Dawson, T. E. & Pate, J. S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107, 13–20 (1996).ADS 
    Article 

    Google Scholar 
    6.Voltas, J., Devon, L., Maria Regina, C. & Juan Pedro, F. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol. 208, 1031–1041 (2015).Article 

    Google Scholar 
    7.Grossiord, C. et al. Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree Physiol. 39, 55–63 (2018).Article 

    Google Scholar 
    8.Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jiménez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).ADS 
    Article 

    Google Scholar 
    10.Evaristo, J. & McDonnell, J. J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep. 7, 44110 (2017).ADS 
    Article 

    Google Scholar 
    11.Barbeta, A. & Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci Rep. 7, 10580 (2017).ADS 
    Article 

    Google Scholar 
    12.Jobbágy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).Article 

    Google Scholar 
    13.Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Ellsworth, P. Z. & Sternberg, L. S. L. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 551, 538–551 (2015).Article 

    Google Scholar 
    15.Sohel, S. Spatial and Temporal Variation of Sources of Water Across Multiple Tropical Rainforest Trees. PhD thesis, Univ. Queensland (2019).16.Williams, D. G. & Ehleringer, J. R. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537 (2000).
    Google Scholar 
    17.Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R., T. W. & Goldsmith, G. R. Seasonal origins of soil water used by trees. Hydrol. Earth Syst. Sci. 23, 1199–1210 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    18.David, T. S. et al. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27, 793–803 (2007).CAS 
    Article 

    Google Scholar 
    19.Zencich, S. J., Froend, R. H., Turner, J. V. & Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131, 8–19 (2002).ADS 
    Article 

    Google Scholar 
    20.Naumburg, E., Mata-Gonzalez, R., Hunter, R. G. & Martin, D. W. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manage. 35, 726–740 (2005).Article 

    Google Scholar 
    21.Snyder, K. A. & Williams, D. G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 105, 227–240 (2000).ADS 
    Article 

    Google Scholar 
    22.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    23.Eleringer J. R. & Dawson T. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 1073–1082 (1992).24.Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507–559 (2002).Article 

    Google Scholar 
    25.Rothfuss, Y. & Javaux, M. Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods. Biogeosciences 14, 2199–2224 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Orlowski, N. et al. Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrol. Earth Syst. Sci. 22, 3619–3637 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Chen, Y. et al. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proc. Natl Acad. Sci. USA 117, 33345–33350 (2021).ADS 
    Article 

    Google Scholar 
    28.Pastorello, G., Trotta, C., Canfora, E. & Al., E. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    29.Zhao, Y. & Wang, L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: a stable isotope analysis. Forests 9, 1–21 (2018).
    Google Scholar 
    30.Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, (2012).31.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    Article 

    Google Scholar  More

  • in

    Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Treves, A. & Karanth, K. U. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    3.Linnell, J. D. C. & Boitani, L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 23, 80–91 (2011).
    Google Scholar 
    4.Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    5.Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392 (2007).Article 

    Google Scholar 
    6.Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).8.Noss, A. J. et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 12, 9 (2003).
    Google Scholar 
    9.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 11 (1998).Article 

    Google Scholar 
    10.Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J. & Kelly, M. J. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere 10, e02792 (2019).Article 

    Google Scholar 
    11.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148–154 (2004).Article 

    Google Scholar 
    12.Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture. (Elsevier, 2014).
    Google Scholar 
    14.Chandler, R. B. & Clark, J. D. Spatially explicit integrated population models. Methods Ecol. Evol. 5, 1351–1360 (2014).Article 

    Google Scholar 
    15.Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).16.Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx 50, 742–752 (2016).Article 

    Google Scholar 
    17.Müller, J. et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 177, 210–217 (2014).Article 

    Google Scholar 
    18.Bull, J. K. et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 17, 1229–1234 (2016).Article 

    Google Scholar 
    19.Walston, J. et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 8, e1000485 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 42, 289–312 (1997).Article 

    Google Scholar 
    21.Bunnefeld, N., Linnell, J. D. C., Odden, J., van Duijn, M. A. J. & Andersen, R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 270, 31–39 (2006).
    Google Scholar 
    22.Gaillard, J.-M., Nilsen, E. B., Odden, J., Andrén, H. & Linnell, J. D. C. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 83, 107–115 (2014).PubMed 
    Article 

    Google Scholar 
    23.Nilsen, E. B., Linnell, J. D. C., Odden, J., Samelius, G. & Andrén, H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol. (Warsz.) 57, 217–223 (2012).Article 

    Google Scholar 
    24.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).Article 

    Google Scholar 
    25.Cailleret, M., Heurich, M. & Bugmann, H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014).Article 

    Google Scholar 
    26.Heurich, M. et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem?. PLoS ONE 10, e0120960 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.van Beeck Calkoen, S. T. S. et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 451, 117483 (2019).Article 

    Google Scholar 
    28.Wölfl, M. et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 46, 181–194 (2001).Article 

    Google Scholar 
    29.Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).30.Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).Article 

    Google Scholar 
    31.Belotti, E. et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE 10, e0138139 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    33.Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 267, 381 (2005).Article 

    Google Scholar 
    34.Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    35.Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).Article 

    Google Scholar 
    37.Weingarth, K. et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).Article 

    Google Scholar 
    38.Pollock, K. H. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 46, 752 (1982).Article 

    Google Scholar 
    39.Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.40.Ergon, T. & Gardner, B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014).Article 

    Google Scholar 
    41.Schaub, M. & Royle, J. A. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 5, 1316–1326 (2014).Article 

    Google Scholar 
    42.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).
    Google Scholar 
    43.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    44.Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf.45.Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).Article 

    Google Scholar 
    46.Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    47.O’Brien, T. G. Abundance, density and relative abundance: A conceptual framework. In Camera Traps in Animal Ecology (eds O’Connell, A. F. et al.) 71–96 (Springer Japan, 2011). https://doi.org/10.1007/978-4-431-99495-4_6.Chapter 

    Google Scholar 
    48.Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, 2016).
    Google Scholar 
    49.Augustine, B. C. et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 62, 80–90 (2020).Article 

    Google Scholar 
    50.Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 11, 9236 (2021).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Avgan, B., Zimmermann, F., Güntert, M., Arıkan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 20, 217–221 (2014).Article 

    Google Scholar 
    52.Mengüllüoğlu, D., Ambarlı, H., Berger, A. & Hofer, H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 8, 9451–9463 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    54.Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article 

    Google Scholar 
    55.Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    57.Engleder, T. et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 65, 17 (2019).Article 

    Google Scholar 
    58.Heurich, M. et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE 11, e0158449 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Andrén, H. & Liberg, O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE 10, e0120570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    61.Wikenros, C. et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7, 9059 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    62.Helldin, J. O., Liberg, O. & Glöersen, G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 270, 657–663 (2006).Article 

    Google Scholar 
    63.Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).Article 

    Google Scholar 
    64.Linnell, J. D. C., Kaczensky, P., Wotschikowsky, U., Lescureux, N. & Boitani, L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 29, 978–985 (2015).PubMed 
    Article 

    Google Scholar  More

  • in

    A toxic ‘tide’ is creeping over bountiful Arctic waters

    .readcube-buybox { display: none !important;}

    Toxic algae are likely to begin blooming more frequently in Arctic waters as the climate and the ocean warm1.



    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02715-z

    References1.Anderson, D. M. et al. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107387118 (2021).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Spatiotemporal origin of soil water taken up by vegetation
    Article 06 OCT 21

    Fund natural-history museums, not de-extinction
    Correspondence 05 OCT 21

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Jobs

    Research Fellow/Postdoc

    TUM CREATE Ltd
    Singapore, Singapore

    Postdoctoral Scientist (Immunogenetics)

    The Pirbright Institute
    Pirbright, United Kingdom

    PhD Student (gn) Neuroimmunology

    University Hospital of Muenster (UKM), WWU
    Münster, Germany

    Summer Fleming Scholar Internship

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States More

  • in

    Phytoplankton biodiversity and the inverted paradox

    Inverted paradoxNeutral theory can reproduce properties of terrestrial biodiversity observed at local (e.g., an island) or metacommunity (i.e., a set of interacting communities linked by dispersal of species) scales, particularly ranked species abundance curves (i.e., histograms of species abundance ordered along the x-axis from most to least common) [14]. Central to neutral theory is the interplay between ‘stochastic exclusion’ and either immigration or speciation. Stochastic exclusion is the reduction in biodiversity caused by random deaths and abundance-dependent replacement and, if not countered by other processes, ultimately leads to only a single remaining species [14]. Immigration of species into a local community or speciation within the metacommunity offset stochastic exclusion and maintain biodiversity [14]. This relationship is illustrated in Fig. 1 by simulated time-series of phytoplankton diversity for three populations at steady-state with 10,000, 100,000, and 1,000,000 total individuals and an initial condition of 10,000 species each (Fig. 1) (Methods). Subjection of these populations to 50% random mortality per generation and replacement in proportion to the relative abundance of remaining species results in an eventual rate of decrease in diversity that is equivalent across population sizes (Fig. 1; dashed black lines), eventually yielding the expected final equilibrium of a single species. When a small rate of immigration is added to this simulation (here, 0.03% or 0.3% per generation), complete stochastic exclusion is replaced by steady-state diversities that vary in direct proportion to population size and immigration rate (Fig. 1; colored dashed and dotted lines). Similar considerations led Hubbell [14] to earlier propose in his “Unified Neutral Theory” a fundamental biodiversity number, θ, controlling both species richness and relative abundance:$$theta ,=, 2Jupsilon$$
    (1)
    where J is the total number of individuals in the community and υ the rate of immigration (local) or speciation (metacommunity).Fig. 1: Phytoplankton biodiversity following purely stochastic processes.Red, blue, and green = phytoplankton populations (J) of 10,000, 100,000, and 1,000,000 individuals, respectively (Methods). Colored solid lines = species richness in the absence of immigration (υ). Colored dashed and dotted lines = species richness for υ values of 0.03% and 0.3% per generation. Black dashed line = mean rate of decline for the primary phase of stochastic exclusion (slope of this line is the same for all three populations). Blue and green downturned triangles = threshold for the two larger populations where diversity begins to decline rapidly because a sufficient number of species have been reduced to an abundance where extinction within a generation becomes likely.Full size imageIn addition to illustrating the balance between stochastic exclusion and immigration into a local phytoplankton community, Fig. 1 shows that significant decreases in species richness only ensue after a subpopulation of species within a community has been sufficiently decimated in number that their remaining individuals might be lost through random mortality within a generation. In our simulations, this threshold is demarked by the downturn in species richness for the populations of 100,000 and 1,000,000 individuals (Fig. 1; blue and green triangles). The significance of stochastic exclusion is thus dependent on the relation between extant species number and size of the physically-homogenized community. With respect to the latter property, typical horizontal eddy diffusion values for the upper ocean are O(103 m2 s−1), implying that the length scale for mixing in 1 day is O(1000 m). Typical number concentrations for phytoplankton of different species in the ocean range from More

  • in

    Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China

    Temporal variation and dynamic analysis of eucalyptus forestsData from the 1st-9th NFIs suggested that the total area of eucalyptus plantations had started to increase since 1973 (Table 1). In 1973–1976, Eucalyptus plantations only existed in Guangxi and Guangdong (including Hainan) in China with a total area of 23.0 × 104 hectares, taking up 0.38% of total forest area in China. The stock volume was 372.0 × 104 m3, about 0.04% of that in China. In 2014–2018, the eucalyptus plantation area increased to 546.74 × 104 hectares, about 24 times of that in 1973–1976. The growing stock has increased to 21,562.90 × 104 m3 in 2014–2018 which increased about 58 times from 1973–1976.Table 1 Eucalyptus plantation area and stand volume in different time periods by province.Full size tableThe stock volume per unit area of eucalyptus plantations did not increase significantly from 1973–2008, ranging from 14–30 m3/hectares, but it increased rapidly from 2009 to 2018, reaching 39.43 m3/hectares. This increase occurred because China started to focus and value the development of eucalyptus plantations. As a. result, plantations expanded rapidly, and the need for eucalyptus with greater trunk radius increased. The extended harvest cycle of eucalyptus plantations, not the rise of eucalyptus productivity, caused the increase in stock volume per unit area29,30,31.Based on CFLDM, the distribution of eucalyptus plantations in 2003 and 2016 are mapped (Fig. 1a,b). It suggests that the distribution of eucalyptus plantations extended from Leizhou Peninsula, Guangdong and Hainan Province to the north (Guangxi, Hunan, and Guizhou provinces), east (Fujian and Jiangxi provinces), and west (Yunan and Sichuan provinces). This is consistent with data from the NFIs. The widespread expansion of eucalyptus also leads to several regions with clustered plantations.Figure 1Distribution of eucalyptus in the south of China [(a) 2003; (b) 2016]. This figure was created by spatially overlaying spatial sample plots data from National Forest Inventory (NFI) and patch vectors data from China Forest-Land Database Map (CFLDM), (a) shows that the point data are from 6th NFIs eucalyptus sample plots and the polygon vector data are from the 2003 CFLDM; (b) shows that the point data are from 9th NFIs eucalyptus sample plots and the polygon vector data are from the 2016 CFLDM. The extents of eucalyptus plantations is mainly concerned with 11 provinces (e.g. Zhejiang, Fujian, Guangdong, Guangxi) in Southern China.Full size imageChanges in spatial distributionBased on the database of sample plots (including climate and elevation data) and sampled eucalyptus, we analyze the distribution of eucalyptus plantations, and how it is affected by elevation and climate conditions. It is found that most eucalyptus plantations are within the region of 110°23′–120°5′E and 18°21′–30°39′N. The annual mean temperature within this region ranges from 11 to 25 °C with an average of 19.5 °C, and the annual precipitation ranges from 600 to 2000 mm with an average of 1455 mm. Elevation in this region is 0–2500 m with an average of 338 m.To find out the most suitable conditions for eucalyptus growth and its plantation management, we classify this region based on their elevation and climate conditions. The classification is done separately and independently for each factor (i.e., elevation, temperature, and precipitation). In terms of elevation, the region is assigned to seven grades from below 300 m to 2100 m with an interval of 300 m in between (i.e., below 300 m, 300–600 m, 600–900 m, 900–1200 m, 1200–1500 m, 1500–1800 m, 1800–2100 m). Land with elevation above 2100 mm has limited eucalyptus plantations, and thus is not taken into consideration. Similar criterion is applied to the classification based on annual mean temperature and annual precipitation. The grades are from 11 to 25 °C within an interval of 2 °C for temperature and 600–2000 mm with an interval of 200 mm for precipitation.We examine how the eucalyptus forest area changes with these factors. This is done by plotting the eucalyptus plantation area within a certain group against the corresponding grade number (Fig. 2). Eucalyptus is mostly distributed below 300 m, reaching an area of 301.1 × 104 hectares and counting for 67.58% of the total eucalyptus plantation area in China. Eucalyptus occurs rarely in areas with elevation above 900 m.Figure 2Area of eucalyptus plantations in China based on grades defined in text.Full size imageEucalyptus is sensitive to temperature, and its distribution is limited within areas with annual mean temperature below 19 °C. Eucalyptus is mostly distributed within areas with annual mean temperature of 19–21 °C. Areas with annual mean temperature within this range have a total of 291.49 × 104 hectares eucalyptus plantations, approximately 65.43% of all eucalyptus plantations in China. This result is slightly different from previous studies3,5, which suggests that eucalyptus prefers areas with mean annual temperature above 20 °C.Eucalyptus has a high tolerance to annual precipitation. Eucalyptus plantations can be found in areas with annual precipitation ranging from 600–2000 mm. It should be noted that this is related to irrigation conditions in production and management. However, in areas with annual precipitation below 600 mm, Eucalyptus plantations are extremely rare. Areas with annual precipitation of 1400–1600 mm (and without considering other factors) have the largest portion of eucalyptus plantations, whose total area reaches 146.49 × 104 hectares. This accounts for about 32.94% of total eucalyptus plantations in China.Productivity analysis of eucalyptusVariability in mean productivityEucalyptus annual productivity for each province based on the 5th to 9th NFIs (no digitized data for the 1th to 4th NFIs) is calculated, which includes 3564 sample plots (Table 2). Among which, 769 sample plots had been harvested at the time of the survey, and to remove the influence of these 769 sample plots, their data were removed during the productivity of the eucalyptus age-productivity relationship graph (see Fig. 3), which shows that the period of maximum productivity for eucalyptus lasts for approximately 2–3 years. Its productivity declines rapidly after 10 years of growth. Therefore, the harvest cycle of eucalyptus is normally 4–5 years. After coppicing and growing for another 4–5 years, Eucalyptus will be harvested again, which will be followed by its replanting.Table 2 Basic sample plot statistics (quantity, mean and maximum annual productivity) of eucalyptus plantations by province from the 5th to 9th NFIs.Full size tableFigure 3Relationship between age and productivity of eucalyptus sample plots.Full size imageVariability in eucalyptus productivityEucalyptus productivity for each province based on the 5th to 9th NFIs is calculated and shown in Table 2. It can be seen that from 1994 to 2018, mean and maximum productivities of eucalyptus plantations have increased. This is especially show for Guangxi and Fujian Provinces during 2009–2018. The averaged productivity of eucalyptus plantations in China increased from 4.14 to 8.57 m3 hm−2 a−1 from 1994–1998 to 2014–2018, which can be explained by the improved management of eucalyptus plantations (e.g., high soil fertility for newly cultivated lands and improved ability for irrigation) and their expansion.Data from the 5th to 9th NFIs suggest that a lot of sampled plots were no longer used for growing eucalyptus before the next inventory (Table 3). There were 226, 273, 687, and 109 eucalyptus plots in the 5th, 6th, 7th, 8th inventories, respectively, and in the corresponding next NFI (6th, 7th, 8th, 9th), only 150, 179, 544, and 848 of these sample plots were left unabandoned. This suggests that 33.63%, 34.43%, 20.82%, and 22.63% of the plots were abandoned before the next inventory. New plots have been included in each inventory, but large portions of these plots were abandoned as well. There are 123, 508, and 552 new eucclyptus plots in the 6th, 7th, 8th inventories, and 76, 413, and 433 of them were left unabandoned in the next inventories. The land abandonment rates for them are 38.21%, 18.70%, 21.56%, respectively.Table 3 Quantity of newly-cultivated, retained, and abandoned sample plots during different NFIs.Full size tableWe examine how the productivity changes with time for eucalyptus plantations that have been operated for more than 20 years. From the 5th to 9th NFIs, we find 55 and 38 such (operating for more than 25 and 20 years, respectively; Table 4). It is found that the productivity of eucalyptus is relatively low in the first 5 years of its growing. The productivity increases in the 5th–10th years, and reaches its peak after 10–15 years of growing eucalyptus. For land that have been continuously growing eucalytptus for 15–25 years or more, the productivity decreases significantly. This is due to the decrease in soil fertility.Table 4 Relationship between Continuous planting time and Mean productivity of reserved and newly-cultivated eucalyptus sample plots during different NFIs (unit: m3 hm−2 a−1).Full size tableMost (~ 90%) of the sample plots have mean annual productivity below 10 m3 hm−2 a−1 (Fig. 4). The productivity reaches its peak after 10–15 years of growing eucalyptus (mean annual average: 7.0175 m3 hm−2 a−1), and starts to decrease afterwards. Statistical model (Table 5) is established between productivity and age of eucalyptus plots. The results suggest that eucalyptus productivity follows a consistent pattern: it increases with time until a peak and then decrease (Fig. 5), and this applies to the old, newly-included plots and their average. The statistical model also agrees to the observed data, suggesting that the productivity peak is reached 10–15 years after the planting of eucalyptus, and the productivity reaches its minimum or even zero after 50 years of growing eucalyptus continuously.Figure 4Distribution of mean annual productivity for sample plot from different NFIs.Full size imageTable 5 Productivity prediction model of multi-stage reserved and increase eucalyptus sample plots.Full size tableFigure 5Statistical model showing how mean annual productivity of eucalyptus sample plots changes with time.Full size imageSoil fertility variation of eucalyptus plantationsHow eucalyptus affects soil fertility is not well-studied. Here, based on 948 sample points from Tang32, which includes monitoring of soil fertility of eucalyptus plantations from 1993 to 2018, we report and study the temporal soil fertility variation for eucalyptus plantations. After 25 years of growing eucalyptus, acidification of the corresponding lands persists. The pH value changed to 4.63 in 2018, a 4.14% decrease compared to that in1993. The organic content within the soil reached its minimum of 17.98 g/kg in 2018, a decrease of 23.19% compared to 1993. Total nitrogen content of the investigated samples changed from 2.11 to 1.98 g/kg, and total phosphorus content decreased from 1.12 to 0.75 g/kg. The temporal variation of potassium does not change in a consistent pattern with time. Alkaline hydrolysis of nitrogen and available potassium content in 2018 are significantly lower than those in 1993. From more to less, the rank of soil fertility indicator affiliation polygon area is 1993  > 1998  > 2003  > 2013  > 2018  > 2008. The rank of soil fertility index is 1993  > 1998  > 2018  > 2003  > 2013  > 2008. It decreased first, and then increased. The minimum soil fertility (0.475) was reached in 2008 (22.51), which is smaller than that in 1993. The soil fertility decreases at the greatest rate after 15 years of growing eucalyptus. This argument from Tang32 is consistent with this work (Table 6). Soil fertility generally decreases with the age of eucalyptus plantations.Table 6 Evolutionary characteristics of soil chemical indicators in eucalyptus plantation forests.Full size tableIn addition, Parfitt et al.33 studied the variation of soil fertility of pine plantations in New Zealand for a period of 20 years, and found that long-term successive rotations lead to an increase of the soil C/N ratio. Carbon is lost at a speed much greater than nitrogen. Successive rotations of eucalyptus lead to environmental issues such as decrease in soil fertility and ecological diversity and soil erosion. These would limit the sustainable management of eucalyptus plantations34,35,36,37,38,39,40.Abandonment of sample plotsWe find that many sample plots were not used for growing eucalyptus anymore after each inventory. The abandonment rate is high, ranging from 18.7 to 38.21%. The 226 eucalyptus sample plots in the 5th inventory decreased to 103 (the others are abandoned) during the 7th inventory, and the land abandonment rate was 31.33%. In the 8th and 9th inventories, the abandonment rates are 30.10% and 23.61%, respectively. The cumulative land abandonment rates are 33.63%, 54.43%, 68.15%, and 75.66% after 5, 10, 15, and 20 years of growing eucalyptus, respectively (Table 7).Table 7 Quantity (rates) of retained and abandoned sample plots after certain periods of plantation management.Full size tableThere are a total of 1843 eucalyptus plots from the 5th to 9th NFIs. In the last NFI, there are 1282 sampled plots still growing eucalyptus, and the rest 561 plots are abandoned. The averaged land abandonment rates of these plots every 5 years are 23.92%, 24.26% (43.52% cumulatively), 32.10% (68.48% cumulatively), and 23.61% (75.66% cumulatively) over 5, 10, 15, and 20 years, respectively.These data suggest that the abandonment rate of eucalyptus plantations reaches its peak (about one third) after 15 years of operation. For other time intervals (i.e., 5, 10, and 20 years), the rate remains at around 25%. This is related to the management of eucalyptus plantations in the south of China: the first eucalyptus harvest cycle is about 6 years. The second generation of eucalyptus reproduces by division propagation (sprout naturally) with 4 years of harvest cycle, and the third generation follows the same pattern. These amount to 15–16 years-long period for plantation management. Eucalyptus requires stubble-cleaning after twice of division propagations (sprout reproduction), and needs to be re-planted. This is consistent with the timing of abandonment rate peak as stated above. It is highly likely that the eucalyptus plantations are abandoned due to the low soil fertility, and plantation managers or land owners decide to stop growing eucalyptus as a result.A simple statistical model (second-order polynomial) is established between eucalyptus plantations abandonment rate and time (Fig. 6), which suggests that all plantations will stop growing eucalyptus after 50 years, and the corresponding lands will be used for other purposes. The expansion of eucalyptus plantations relies on sustained cultivation of new lands (land reclamation). The total area of eucalyptus plantations reached 5,647,400 hectares in the 9th NFI, but only 4.29% of them (that) have been continuously growing eucalyptus since the 5th NFL (i.e., 24.34% of the plots from the 5th NFI are kept).Figure 6Statistical model showing how abandonment and replanting rates of eucalyptus plantations change with time.Full size imageThere are two main reasons to explain the loss of eucalyptus plantations. The land might be taken over for non-agricultural use (e.g., infrastructure and building construction), or they could be used for growing other crops. The latter is help for soil fertility restoration and soil microorganism readjustment. As most eucalyptus plantations in China are cultivated on lands with poor growing conditions, most of them were abandoned voluntarily by the land owner or plantation manager as stated earlier.After harvest, eucalyptus plantations could be reused for the continuation of eucalyptus growing or used for other purposes (e.g., growing other crops). The plots that were temporarily not used for growing eucalyptus could be used for re-growing it under certain conditions after a certain time period. We investigate the replanting rate of the 561 abandoned eucalyptus plantations, and study whether the abandoned plantations are used for growing other outcrops, and, if so, the corresponding tree species (Tables 8, 9, 10, 11). The 6th NFI data suggests that there are 76 plots abandoned after the 5th NFI. Their replanting rates are 2.63%, 7.89% (10.53% cumulatively), 0.00% (10.53% cumulatively), and 5.26% (15.79% cumulatively) within every 5 years, and after 5, 10, and 15 years of abandonment. For all the 561 abandoned plots, replanting rates are 9.09%, 5.53% (cumulatively 14.62% within 10 years), 0.53% (cumulatively 15.15% within 15 years), 5.26% (cumulatively 15.86% within 20 years) within every 5 years, and after 5, 10, and 15 years of abandonment. These suggest that about five sixth of the abandoned plots had not replanted eucalyptus for at least 20 years since abandonment.Table 8 Land use of eucalyptus plantation sample plots during different NFIs.Full size tableTable 9 Temporal change of tree species planted in sample plots.Full size tableTable 10 Replanting rate of eucalyptus plantations.Full size tableTable 11 Productivity of plantations that have replanted eucalyptus.Full size tableA simple statistical model is established between replanting rate and time (second-order polynomial) based on the current data (Fig. 5). It suggests that the replanting rates after 30 and 50 years are around 20% and 30%, respectively. These suggest that if the plantation management does not improve significantly, it would be difficult to maintain the current supply of eucalyptus and areal distribution of its plantations in the long term. It is necessary to rely on both land rotation and cultivation of new lands to maintain the current supply of eucalyptus.The NFI data suggests that very few eucalyputs plots are turned to non-plantation purposes. The exception is from the 6th NFI in which 34.21% of plots have been used for other purposes after harvest. This rate is below 20% for all other inventory data. A lot of abandoned eucalyptus plantations are still used as plantations, and they are for growing eucalyptus, and the rate of regrowing eucalyptus tends to remain low for a long period of time (below one sixth after 20 years based on current data). This is because eucalyptus grows fast with high productivity, and it has high demand for soil fertility and water. Land rotation is necessary after a few harvest cycles to restore the soil fertility, which would take relatively long period of time before the land becomes suitable to regrow euccalyptus. Among the 561 abandoned eucalyptus plots, broad-leaf and economic tree species are the most commonly planted species after stop growing eucalyptus (e.g., rubber tree and Lychee; 18.54% and 18.36%; Table 9). The greater variability of land use for the abandoned plots suggests greater management intensity. Afforestation with eucalyptus is dominated by short rotation period (harvest cycle). Frequently modifying tree species planted within plantations helps maintain a high productivity of the land.
    Carbon storage and fixation of eucalyptus plantationsVariability in carbon storageBased on the 9th NFI data and Eqs. (2–8), we calculate the BEF of eucalyptus in each province (Table 12). The results suggest that the BEF ranges from 0.982–1.652 with a weighted average of 1.236 (weight determined by stock volume).Table 12 BEF of eucalyptus by province.Full size tableCalculation from Eqs. (9) and (10) suggests that the total carbon storage (excluding harvest volume) of eucalyptus in China is 2.40 TgC (1973–1976, 1Tg = 1012 g), 4.14 TgC (1977–1981), 2.73 TgC (1984–1988), 5.42 TgC (1989–1993), 9.73 TgC (1994–1998), 12.58 TgC (1999–2003), 28.90 TgC (2004–2008), 98.61 TgC (2009–2013), and 133.00 TgC (2014–2018) in different time periods in the past 45 years (Table 13).Table 13 Eucalyptus carbon density and storage by province.Full size tableThe carbon storage of eucalyptus increased rapidly in the past 45 years especially since the end of last century. This is due to the rapid expansion of eucalyptus plantations in China, and its carbon storage in 2014–2018 is 55.42 times of that in 1973–1976. The carbon density per square hectometer also increases from 5.22 MgC (1 Mg = 106 g) in 1973–1976 to 12.16 MgC in 2014–2018, about 2.33 times of the former.Carbon fixationThe mean annual productivity of eucalyptus is 8.57 m3 hm−2 a−1 in 2014–2018 based on the 9th NFI. This is a lot greater compared to other species widely planted in the same areas (Pinus massoniana Lamb.: 2.91 m3 hm−2 a−1; Cunninghamia lanceolata Lamb.: 3.93 m3 hm−2 a−1). Using the stock volume biomass method with BEF being 1.2336 (from previous calculation) and carbon storage coefficient of 0.5, the mean annual carbon fixed by eucalyptus is 5.29 t hm−2 a−1, which are about 2.95 and 2.18 times that of Pinus massoniana Lamb. (1.79 t hm−2 a−1) and Cunninghamia lanceolata Lamb. (2.42 t hm−2 a−1), respectively. This shows that eucalyptus is characterized by high biomass productivity and high carbon fixation capability. It thus plays an important role in maintaining the carbon balance in China. More

  • in

    Fund natural-history museums, not de-extinction

    CORRESPONDENCE
    05 October 2021

    Fund natural-history museums, not de-extinction

    Corrie S. Moreau

     ORCID: http://orcid.org/0000-0003-1139-5792

    0
    &

    Jessica L. Ware

     ORCID: http://orcid.org/0000-0002-4066-7681

    1

    Corrie S. Moreau

    Cornell University, Ithaca, New York, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jessica L. Ware

    American Museum of Natural History, New York City, New York, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The only way to study extinct species is by leveraging the irreplaceable collections of natural-history museums. It is unfortunate, then, that instead of supporting these often imperilled institutions, private investors are spending millions on attempts to resurrect species. For example, the US start-up firm Colossal Laboratories and Biosciences, co-founded by synthetic biologist George Church, is exploring such feats.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 598, 32 (2021)
    doi: https://doi.org/10.1038/d41586-021-02710-4

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Ecology

    Evolution

    Latest on:

    Ecology

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Why stem cells might save the northern white rhino
    Outlook 29 SEP 21

    Fine-root traits in the global spectrum of plant form and function
    Article 29 SEP 21

    Evolution

    The genetic symphony underlying evolution of the brain’s prefrontal cortex
    News & Views 01 OCT 21

    Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis
    Article 01 OCT 21

    Closest known relatives of virus behind COVID-19 found in Laos
    News 24 SEP 21

    Jobs

    Postdoctoral Fellow- Molecular Oncology

    Georgetown University
    Washington, DC, United States

    POSTDOCOTRAL RESEARCH SCIENTIST

    Columbia University Medical Center (CUMC), CU
    New York, NY, United States

    Postdoctoral Fellow in Deep Learning and Neuroimaging

    The University of Texas Health Science Center at San Antonio (UT Health Science Center at San Antonio)
    San Antonio, TX, United States

    Associate or Senior Editor (Human Genetics/Genomics), Nature Communications

    Springer Nature
    London, United Kingdom More