Secondary predation constrains DNA-based diet reconstruction in two threatened shark species
1.Diaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2020).Article
CAS
Google Scholar
2.Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2, 188–196 (2020).Article
Google Scholar
3.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).PubMed
PubMed Central
Article
Google Scholar
4.IUCN. International Union for Conservation of Nature Annual Report 2018. (Gland, Switzerland, 2018).5.Walker, T. I., Hudson, R. J. & Gason, A. S. Catch evaluation of target, by-product and by-catch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. J. Northwest Atlantic Fishery Sci. 35, 505–530 (2005).Article
Google Scholar
6.Braccini, M., Van Rijn, J. & Frick, L. High post-capture survival for sharks, rays and chimaeras discarded in the main shark fishery of Australia?. PLoS ONE 7(1–9), e32547 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Sumpton, W. D., Taylor, S. M., Gribble, N. A., McPherson, G. & Ham, T. Gear selectivity of large-mesh nets and drumlines used to catch sharks in the Queensland shark control program. Afr. J. Mar. Sci. 33, 37–43 (2011).Article
Google Scholar
8.Broadhurst, M. K. & Cullis, B. R. Mitigating the discard mortality of non-target, threatened elasmobranchs in bather-protection gillnets. Fisheries Res. 222, 105435 (2020).Article
Google Scholar
9.Stevens, J. D. & Wayte, S. E. Case study: The bycatch of pelagic sharks in Australia’s tuna longline fisheries. In Sharks of the Open Ocean; Biology, Fisheries and Conservation (eds Camhi, M. D. et al.) 260–267 (Blackwell Publishing, 2009).
Google Scholar
10.Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31(5), 395–407 (2016).PubMed
Article
Google Scholar
11.Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).PubMed
PubMed Central
Article
Google Scholar
12.Raoult, V., Broadhurst, M. K., Peddemors, V. M., Williamson, J. E. & Gaston, T. F. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. J. Fish Biol. 95, 1430–1440 (2019).PubMed
Article
Google Scholar
13.Raoult, V. et al. Predicting geographic ranges of marine animal populations using stable isotopes: A case study of great hammerhead sharks in eastern Australia. Front. Mar. Sci. 7, 594636 (2020).Article
Google Scholar
14.Chapman, D. D. & Gruber, S. H. A further observation of the prey-handling behavior of the great hammerhead shark, Sphyrna mokarran: Predation upon the spotted eagle ray, Aetobatus narinari. Bull. Mar. Sci. 70, 947–952 (2002).
Google Scholar
15.Cliff, G. Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 8. The great hammerhead shark Sphyrna mokarran (Rüppell). S. Afr. J. Mar. Sci. 15, 105–114 (1995).Article
Google Scholar
16.Strong, W. R., Snelson, F. F. & Gruber, S. H. Hammerhead shark predation on stingrays: An observation of prey handling on Sphyrna mokarran. Copeia 3, 836–840 (1990).Article
Google Scholar
17.Mourier, J., Planes, S. & Buray, N. Trophic interactions at the top of the coral reef food chain. Coral Reefs 32, 285–285 (2013).ADS
Article
Google Scholar
18.Roemer, R. P., Gallagher, A. J. & Hammerschlag, N. Shallow water tidal flat use and associated specialized foraging behavior of the great hammerhead shark (Sphyrna mokarran). Mar. Freshw. Behav. Physiol. 49, 235–249 (2016).Article
Google Scholar
19.Gallagher, A. J. & Klimley, A. P. The biology and conservation status of the large hammerhead shark complex: The great, scalloped and smooth hammerheads. Rev. Fish Biol. Fisheries 28, 777–794 (2018).Article
Google Scholar
20.Barry, K. P., Condrey, R. E., Driggers, W. B. & Jones, C. M. Feeding ecology and growth of neonate and juvenile blacktip sharks Carcharhinus limbatus in the Timbalier-Terrebone Bay complex, LA, U.S.A. J. Fish Biol. 73, 650–662 (2008).Article
Google Scholar
21.Tavares, R. Occurrence, diet and growth of juvenile blacktip sharks, Carcharhinus limbatus, from Los Roques Archipelago National Park, Venezuela. Carib. J. Sci. 44, 291–302 (2008).Article
Google Scholar
22.Plumlee, J. D. & Wells, R. J. D. Feeding ecology of three coastal shark species in the northwest Gulf of Mexico. Mar. Ecol. Prog. Ser. 550, 163–174 (2016).ADS
CAS
Article
Google Scholar
23.Young, J. W. et al. The trophodynamics of marine top predators: Current knowledge, recent advances and challenges. Deep Sea Res. Part II 113, 170–187 (2015).Article
Google Scholar
24.Leigh, S. C., Papastamatiou, Y. & German, D. P. The nutritional physiology of sharks. Rev. Fish Biol. Fisheries 27, 561–585 (2017).Article
Google Scholar
25.Amundsen, P.-A. & Sánchez-Hernández, J. Feeding studies take guts—critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 95, 1364–1373 (2019).PubMed
Article
Google Scholar
26.Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).PubMed
Article
Google Scholar
27.Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article
Google Scholar
28.Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS
PubMed
Article
Google Scholar
29.Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).PubMed
Article
Google Scholar
30.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA for Biodiversity Research and Monitoring (Oxford University Press, 2018).
Google Scholar
31.Barbato, M., Kovacs, T., Coleman, M., Broadhurst, M. & de Bruyn, M. Metabarcoding of stomach-content analyses: Comparing tissue and ethanol preservative-derived DNA. Ecol. Evol. 9(5), 2678–2687 (2019).PubMed
PubMed Central
Article
Google Scholar
32.Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).ADS
CAS
Article
Google Scholar
33.Bessey, C. et al. DNA metabarcoding assays reveal a diverse prey assemblage for Mobula rays in the Bohol Sea, Philippines. Ecol. Evol. 9(5), 2459–2474 (2019).PubMed
PubMed Central
Article
Google Scholar
34.Clarke, L. J., Trebilco, R., Walters, A., Polanowski, A. M. & Deagle, B. E. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen Axis. Deep Sea Res. Part II Top. Stud. Oceanogr. 174, 104494 (2020).CAS
Google Scholar
35.Sousa, L. L. et al. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Sci. Rep. 6, 28762 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Takahashi, M. et al. Partitioning of diet between species and life history stages of sympatric and cryptic snappers (Lutjanidae) based on DNA metabarcoding. Sci. Rep. 10(1), 1–13 (2020).Article
CAS
Google Scholar
37.Yoon, T.-H. et al. Metabarcoding analysis of the stomach contents of the Antarctic Toothfish (Dissostichus mawsoni) collected in the Antarctic Ocean. PeerJ 5, e3977 (2017).PubMed
PubMed Central
Article
Google Scholar
38.Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).PubMed
PubMed Central
Article
Google Scholar
39.Varennes, Y.-D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls: The potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).CAS
PubMed
Article
Google Scholar
40.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2(7), 150088 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
41.Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7(14), 5435–5453 (2017).PubMed
PubMed Central
Article
Google Scholar
42.Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4, 558–565 (2013).Article
Google Scholar
43.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
44.Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8(1), 1–11 (2017).Article
CAS
Google Scholar
45.Mousavi-Derazmahalleh, M., Stott, A., Lines, R., Peverley, G., Nester, G., Simpson, T., Zawierta, M., De La Pierre, M., Bunce, M., & Christophersen, C. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA (eDNA) sequences exploiting Nextflow and Singularity. Mol. Ecol. Resour. 21, 1697–1704 (2020).Article
CAS
Google Scholar
46.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).MATH
Book
Google Scholar
47.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2017).48.Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).49.Compagno, L. J. V. Sharks of the Order Carcharhiniformes (Princeton University Press, 1988).
Google Scholar
50.Johnsen, P. B. & Teeter, J. H. Behavioral responses of the bonnethead shark (Sphyrna tiburo) to controlled olfactory stimulation. Mar. Behav. Phys. 11, 283–291 (1985).Article
Google Scholar
51.Nakaya, K. Hydrodynamic function of the head in the hammerhead sharks (Elasmobranchii: Sphyrinidae). Copeia 2, 330–336 (1995).Article
Google Scholar
52.Leray, M., Agudelo, N., Mills, S. C. & Meyer, C. P. Effectiveness of annealing blocking primers versus restriction enzymes for characterization of generalist diets: unexpected prey revealed in the gut contents of two coral reef fish species. PLoS ONE 8(4), e58076 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
53.Leray, M., Meyer, C. P. & Mills, S. C. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047 (2015).PubMed
PubMed Central
Article
Google Scholar
54.Van Zinnicq Bergmann, M. P. M. et al. Elucidating shark diets with DNA metabarcoding from cloacal swabs. Mol. Ecol. Resour. 21, 1056–1067 (2021).PubMed
Article
CAS
Google Scholar More