Emergent transcriptional adaption facilitates convergent succession within a synthetic community
Convergence is a common feature of evolution and has great effect on the succession of microbial communities. For natural microbial communities such as the microbiome of gut [1], soil [2], sediment [3], rhizosphere [4], and phyllosphere [5], convergence generally means that different communities converge towards a similar species composition, which is accompanied by species loss and acquisition. Such a convergence can be reproduced in simplified synthetic communities [6,7,8], or even in single-species populations, in which convergence can still be achieved at sub-species level [9, 10]. Unlike the convergence of natural microbial community, those experiments carried out in a sterile laboratory environment only involves the loss of species. Specifically, the main manifestation of convergence in the synthetic community containing stably coexisting species lies in that the relative proportion of species tend to become consistent [7, 8]. Nonetheless, synthetic community opens a window for us to investigate the ecological mechanism. Previous studies of synthetic communities have revealed that the convergence of bacterial community can be regulated by pH [11], mortality [12], and particularly nutrient availability [13, 14]. Most existing studies focus on the changes in species proportions, but there is a lack of in-depth understanding of the gene expression changes driven by the community species interaction.In this study, we constructed a synthetic community with two model microorganisms, Escherichia coli K-12 (EC) and Pseudomonas putida KT2440 (PP), and reproduced a convergent community assembly in closed broth-culture system. In monocultures, the growth curves of both E. coli and P. putida fitted well with the bacterial growth model, and fell into a logarithmic phase at the first 4 h of bacterium culture and a stationary phase at subsequent 20 h (after the first 4 h) (Fig. 1a). When same quantities of bacteria were grown in cocultures, their quantities were basically similar to those in monocultures, particularly in the logarithmic phase (Fig. 1b–d). By contrast, the quantities of minority species in cocultures continued to increase, and they were close to the quantities in monocultures at 24 h post co-cultivation (Fig. 1b–d). Besides, statistical analysis showed that the quantities of P. putida in all three cocultures were overall greater than that in monoculture, while E. coli quantities were no more than its monoculture (Fig. 1b–d), suggesting that P. putida has a negative effect on the growth of E. coli, but E. coli promotes that of P. putida.Fig. 1: Convergence of community structure and gene expression.a–d Growth curves of E. coli and P. putida in monoculture (a) and the “1:1000”, “1:1”, “1000:1” cocultures (b–d). In b–d subplots, the growth curves of monocultures were placed on the background layer (dashed lines), and the significant differences in cell quantity between coculture and corresponding monoculture were shown (ns, non-significant; *p More