1.Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000363.pub2 (2004).Article
PubMed
PubMed Central
Google Scholar
2.Pluess, B. et al. Indoor residual spraying for preventing malaria (Review). Cochrane Rev. https://doi.org/10.1002/14651858.CD006657.pub2 (2010).Article
Google Scholar
3.WHO. Guidelines for malaria vector control. (World Health Organization, 2019). https://www.who.int/malaria/publications/atoz/9789241550499/en/. Accessed 08 Sept 2019.4.Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.Killeen, G. F. et al. Made-to-measure malaria vector control strategies: Rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar. J. 13(1), 146 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
6.Waite, J. L. et al. Increasing the potential for malaria elimination by targeting zoophilic vectors. Sci. Rep. 7, 40551 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Cooke, M. K. et al. A bite before bed’: Exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar. J. 14(1), 259 (2015).PubMed
PubMed Central
Article
Google Scholar
8.Milali, M. P., Sikulu-Lord, M. T. & Govella, N. J. Bites before and after bedtime can carry a high risk of human malaria infection. Malar. J. 16(1), 91 (2017).PubMed
PubMed Central
Article
Google Scholar
9.Pates, H. et al. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bull. Entomol. Res. 91(4), 289–296 (2001).CAS
PubMed
Article
Google Scholar
10.Costantini, C. et al. Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am. J. Trop. Med. Hyg. 58(1), 56–63 (1998).CAS
PubMed
Article
Google Scholar
11.Gillies, M. T. & DeMeillon, B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region) (South African Institute for Medical Research, 1968).
Google Scholar
12.Hamon, J. Les moustiques anthropophiles de la région de Bobo-Dioulasso (République de Haute-Volta): Cycles d’agressivité et variations saisonnières. Ann. Soc. Entomol. (1963).13.Nyarango, P. M. et al. A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar. J. 5(1), 33 (2006).PubMed
PubMed Central
Article
Google Scholar
14.WHO, World malaria report 2019, in Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019. Accessed 17 Dec 2019.15.Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. 18(6), e3000633 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7(2), 179–184 (1998).CAS
PubMed
Article
Google Scholar
17.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 113(33), 9268–9273 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
18.Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PloS Genet 10(3), e1004236 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
19.Kreppel, K. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10(1), 1–11 (2020).Article
CAS
Google Scholar
20.Moiroux, N. et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS ONE 9, e104967 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
21.Reddy, M. R. et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 10(1), 184–184 (2011).PubMed
PubMed Central
Article
Google Scholar
22.Rozendaal, J. et al. Behavioral responses of Anopheles darlingi in Suriname to DDT residues on house walls. J. Am. Mosq. Control Assoc. 5(3), 339–350 (1989).CAS
PubMed
Google Scholar
23.Mwangangi, J. M. et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar. J. 12(1), 1 (2013).Article
Google Scholar
24.Sougoufara, S. et al. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30(3), 365–368 (2016).CAS
PubMed
Article
Google Scholar
25.Moiroux, N. et al. Changes in Anopheles funestus biting behaviour following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 206, 1622–1629 (2012).CAS
PubMed
Article
Google Scholar
26.Matowo, N. S. et al. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: A report on design and field evaluation of the Mosquito Landing Box. Parasit. Vectors 6(1), 1–16 (2013).Article
Google Scholar
27.Russell, T. L. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 1 (2011).Article
Google Scholar
28.Sherrard-Smith, E. et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc. Natl. Acad. Sci. 116(30), 15086–15095 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18(1), 311 (2019).PubMed
PubMed Central
Article
Google Scholar
30.Bayili, K. et al. Evaluation of efficacy of Interceptor (R) G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid resistant Anopheles gambiae s.l. in Burkina Faso. Malar. J. 16, 9 (2017).Article
CAS
Google Scholar
31.Oumbouke, W. A. et al. Evaluation of an alpha-cypermethrin + PBO mixture long-lasting insecticidal net VEERALIN® LN against pyrethroid resistant Anopheles gambiae s.s.: an experimental hut trial in M’bé, central Côte d’Ivoire. Parasit. Vectors 12(1), 544 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Yaro, J. B. et al. A cohort study to identify risk factors for Plasmodium falciparum infection in Burkinabe children: Implications for other high burden high impact countries. Malar. J. 19(1), 371 (2020).MathSciNet
CAS
PubMed
PubMed Central
Article
Google Scholar
33.Dabire, K. et al. Anopheles funestus (Diptera: Culicidae) in a humid savannah area of western Burkina Faso: Bionomics, insecticide resistance status, and role in malaria transmission. J. Med. Entomol. 44(6), 990–997 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Badolo, A. et al. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: Resistance on the rise?. Malar. J. 11(1), 1 (2012).Article
Google Scholar
35.Hamon, J. et al. Présence dans le Sud-Ouest de la Haute-Volta d’une Population d’Anopheles gambiae” A” résistante au DDT (Organisation mondiale de la Santé, 1968).
Google Scholar
36.Hamon, J. et al. Présence dans le Sud-Ouest de la Haute-Volta de populations d’Anopheles funestus Giles résistantes à la dieldrine. Med. Trop. 28(2), 222–226 (1968).
Google Scholar
37.Toe, H. Characterisation of Insecticide Resistance in Anopheles gambiae from Burkina Faso and Its Impact on Current Malaria Control Strategies (University of Liverpool, 2015).
Google Scholar
38.Namountougou, M. et al. Insecticide resistance mechanisms in Anopheles gambiae complex populations from Burkina Faso, West Africa. Acta Trop. 197, 105054 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 10 (2014).Article
CAS
Google Scholar
40.Beier, J. C., Killeen, G. & Githure, J. I. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 61, 109–113 (1999).CAS
PubMed
Article
Google Scholar
41.Smith, D. L. et al. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438, 492–495 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
42.Killeen, G. F. et al. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect. Dis. 6, 161 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
43.Huho, B. et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int. J. Epidemiol. 42(1), 235 (2013).PubMed
PubMed Central
Article
Google Scholar
44.Robert, V. & Carnevale, P. Influence of deltamethrin treatment of bed nets on malaria transmission in the Kou valley, Burkina Faso. Bull. World Health Organ. 69(6), 735 (1991).CAS
PubMed
PubMed Central
Google Scholar
45.Dabire, K. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33(1), 70–75 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Epopa, P. S. et al. Seasonal malaria vector and transmission dynamics in western Burkina Faso. Malar. J. 18(1), 113 (2019).PubMed
PubMed Central
Article
Google Scholar
47.Dambach, P. et al. Nightly biting cycles of anopheles species in rural northwestern Burkina Faso. J. Med. Entomol. 55(4), 1027–1034 (2018).PubMed
PubMed Central
Article
Google Scholar
48.Guglielmo, F. et al. Quantifying variation in exposure risk to mosquito bites at the individual level in Burkina Faso. Malar. J. (2020)49.Edi, C. A. et al. Long-term trends in Anopheles gambiae insecticide resistance in Côte d’Ivoire. Parasit. Vectors 7(1), 500 (2014).PubMed
PubMed Central
Google Scholar
50.Fuseini, G. et al. Evaluation of the residual effectiveness of Fludora fusion WP-SB, a combination of clothianidin and deltamethrin, for the control of pyrethroid-resistant malaria vectors on Bioko Island, Equatorial Guinea. Acta Trop. 196, 42–47 (2019).CAS
PubMed
Article
Google Scholar
51.Rongsriyam, Y. & Busvine, J. Cross-resistance in DDT-resistant strains of various mosquitoes (Diptera, Culicidae). Bull. Entomol. Res. 65(3), 459–471 (1975).Article
Google Scholar
52.Chandre, F. et al. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull. World Health Organ. 77(3), 230–234 (1999).CAS
PubMed
PubMed Central
Google Scholar
53.Bagi, J. et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar. J. 14(1), 210 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
54.Robert, V., et al., Etude des taux de parturité et d’infection du complexe Anopheles gambiae dans la rizière de la vallée du Kou, Burkina Faso. Le paludisme en Afrique de l’Ouest, 1991: p. 17.55.Pombi, M. et al. The Sticky Resting Box, a new tool for studying resting behaviour of Afrotropical malaria vectors. Parasit. Vectors 7(1), 247 (2014).PubMed
PubMed Central
Article
Google Scholar
56.Gnémé, A. et al. Anopheline occurrence and the risk of urban malaria in the city of Ouagadougou, Burkina Faso. (2019).57.Akogbéto, M. C. et al. Blood feeding behaviour comparison and contribution of Anopheles coluzzii and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Alibori and Donga region, northern Benin, West Africa. Malar. J. 17(1), 307 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Wamae, P. M. et al. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Acta Trop. 150, 136–142 (2015).CAS
PubMed
Article
Google Scholar
59.Gillies, M. Age-groups and the biting cycle in Anopheles gambiae: A preliminary investigation. Bull. Entomol. Res. 48(3), 553–559 (1957).Article
Google Scholar
60.Bayoh, M. et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit. Vectors 7, 380 (2014).PubMed
Article
Google Scholar
61.Sougoufara, S. et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: A new challenge to malaria elimination. Malar. J. 13, 125 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
62.Meyers, J. I. et al. Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island. Malar. J. 15(1), 1 (2016).MathSciNet
Article
Google Scholar
63.Bayoh, M. N. et al. Anopheles gambiae: Historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 9(1), 62 (2010).PubMed
PubMed Central
Article
Google Scholar
64.Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: An observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit. Vectors 11(1), 544 (2018).PubMed
PubMed Central
Article
Google Scholar
65.Main, B. J. et al. The genetic basis of host choice and resting behavior in the major African malaria vector Anopheles arabiensis. BioRxiv 2016, 044701 (2016).
Google Scholar
66.Coluzzi, M. et al. Behavioral divergences between mosquitos with different inversion karyotypes in polymorphic populations of Anopheles gambiae complex. Nature 266, 832–833 (1977).ADS
CAS
PubMed
Article
Google Scholar
67.Elanga-Ndille, E. et al. The G119S Acetylcholinesterase (Ace-1) target site mutation confers carbamate resistance in the major malaria vector Anopheles gambiae from cameroon: A challenge for the coming IRS implementation. Genes 10(10), 790 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
68.Toé, K. H. et al. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16(1), 146 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
69.Finda, M. F. et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE 14(6), e0217414 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
70.INSD. Annuaire sttistique 2018 Burkina Faso: Institut national de la statistique et de la démographie (2019).71.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. (2021).72.OpenStreetMap. OpenStreetMap contributors. https://www.openstreetmap.org. (2021).73.Benedict, M. Q. Care and maintenance of anopheline mosquito colonies. In The Molecular Biology of Insect Disease Vectors 3–12 (Springer, 1997).Chapter
Google Scholar
74.WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes: 2nd edition. (World Health Organization, 2016). http://www.who.int/malaria.75.WHO. Supplies for Monitoring Insecticide Resistance in Disease Vectors. (World Health Organization: Parasitic Diseases and Vector Control (PVC)/Communicable Disease Control, Prevention and Eradication (CPE), 2001).76.M.W. Service. Mosquito Ecology Field Sampling Methods (Elsevier Science Publishers, 1993).Book
Google Scholar
77.Kreppel, K. S. et al. Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors. Parasit. Vectors 8(1), 1–5 (2015).Article
Google Scholar
78.Gillies, M. & Coetzee, M. A Supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). (1987).79.Fanello, C., Santolamazza, F. D. & DellaTorre, A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medi. Vet. Entomol. 16(4), 461–464 (2002).CAS
Article
Google Scholar
80.Sanou, A. et al. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar. J. 18(1), 386 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Wirtz, R. et al. ELISA method for detecting Plasmodium falciparum circumsporozoite antibody. Bull. World Health Organ. 67(5), 535 (1989).CAS
PubMed
PubMed Central
Google Scholar
82.WHO. Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. 84–85 (WHO Division of Malaria and other Parasitic Diseases, 1975).83.Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Organ. 30(2), 241 (1964).CAS
PubMed
PubMed Central
Google Scholar
84.Beier, J. C. et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J. Med. Entomol. 25(1), 9–16 (1988).ADS
CAS
PubMed
Article
Google Scholar
85.Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70(5), 486–498 (2004).PubMed
Article
Google Scholar
86.Team, R.C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.87.Wood, S. & Wood, M.S. The mgcv package. https://www.R-project.org/ (2007).88.Bates, D. et al. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014). More