More stories

  • in

    Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community

    1.Kannenberg, S. A., Schwalm, C. R. & Anderegg, W. R. L. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol. Lett. 23, 891–901 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Padisak, J. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary)—a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol. 80, 217–230 (1992).Article 

    Google Scholar 
    3.Power, D. A. et al. What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol. Direct 10, 69 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (eds. Field, C.B. et al.) 109–230 (Cambridge University Press, 2017).7.Pappas, C., Mahecha, M. D., Frank, D. C., Babst, F. & Koutsoyiannis, D. Ecosystem functioning is enveloped by hydrometeorological variability. Nat. Ecol. Evol. 1, 1263–1270 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Hawkes, C. V. & Keitt, T. H. Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–625 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    10.Ochoa‐Hueso, R. et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob. Chang. Biol. 24, 2818–2827 (2018).11.Bastida, F. et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob. Chang. Biol. 23, 4185–4203 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Evans, S. E., Wallenstein, M. D. & Burke, I. C. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? Ecology 95, 110–122 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Rousk, J., Smith, A. R. & Jones, D. L. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. Glob. Chang. Biol. 19, 3872–3884 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Meisner, A., De Deyn, G. B., de Boer, W. & van der Putten, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl Acad. Sci. USA 110, 9835–9838 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.de Nijs, E. A., Hicks, L. C., Leizeaga, A., Tietema, A. & Rousk, J. Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought. Glob. Chang. Biol. 25, 1005–1015 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol. 201, 916–927 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 5, 22 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).CAS 
    Article 

    Google Scholar 
    22.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688, (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Mol. Biol. Rev. 53, 121–147 (1989).CAS 

    Google Scholar 
    25.Whitfield, G. B., Marmont, L. S. & Howell, P. L. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front. Microbiol. 6, 471 (2015).26.Byrd, M. S. et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 73, 622–638 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.El Zoeiby, A., Sanschagrin, F. & Levesque, R. C. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47, 1–12 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Lebre, P. H., De Maayer, P. & Cowan, D. A. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol. 15, 285–296 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).31.Seidl, R., Donato, D. C., Raffa, K. F. & Turner, M. G. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proc. Natl Acad. Sci. USA 113, 13075–13080 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585 (2020).33.Meisner, A., Jacquiod, S., Snoek, B. L., ten Hooven, F. C. & van der Putten, W. H. Drought legacy effects on the composition of soil fungal and prokaryote communities. Front. Microbiol. 9, 294 (2018).34.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190112 (2020).CAS 
    Article 

    Google Scholar 
    35.Isobe, K., Bouskill, N. J., Brodie, E. L., Sudderth, E. A. & Martiny, J. B. H. Phylogenetic conservation of soil bacterial responses to simulated global changes. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190242 (2020).CAS 
    Article 

    Google Scholar 
    36.Barberán, A., Caceres Velazquez, H., Jones, S. & Fierer, N. Hiding in plain sight: mining bacterial species records for phenotypic trait information. mSphere 2, e00237–17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bouskill, N. J. et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 7, 384 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Taketani, R. G. et al. Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microb. Ecol. 73, 153–161 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 11, 2691 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Taniguchi, T., Kitajima, K., Douhan, G. W., Yamanaka, N. & Allen, M. F. A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA. Mycorrhiza 28, 665–677 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Ren, C. et al. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol. Biochem. 116, 4–10 (2018).CAS 
    Article 

    Google Scholar 
    43.Furze, J. R. et al. Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecol. Evol. 7, 3443–3454 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Deveautour, C., Donn, S., Power, S. A., Bennett, A. E. & Powell, J. R. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol. Ecol. 27, 2152–2163 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Dijkstra, F. A., He, M., Johansen, M. P., Harrison, J. J. & Keitel, C. Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biol. Biochem. 82, 135–142 (2015).CAS 
    Article 

    Google Scholar 
    47.Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C–N cycles in a climate change world. Sci. Rep. 9, 10968 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Sleator, R. D. & Hill, C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26, 49–71 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Warren, C. R. Response of osmolytes in soil to drying and rewetting. Soil Biol. Biochem. 70, 22–32 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Bouskill, N. J. et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7, 525 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    51.Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Malik, A. A. et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 14, 2236–2247 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Nunan, N., Raynaud, X. & Schmidt, H. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190249 (2020).54.Li, J. et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 13, 2162–2172 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Grigulis, K. et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57 (2013).Article 

    Google Scholar 
    57.Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA 109, 14058–14062 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Huang, S. et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the Southeast China. Soil Biol. Biochem. 123, 242–249 (2018).CAS 
    Article 

    Google Scholar 
    60.López-Ballesteros, A. et al. Enhancement of the net CO2 release of a semiarid grassland in SE Spain by rain pulses. J. Geophys. Res. Biogeosci. 121, 52–66 (2016).Article 
    CAS 

    Google Scholar 
    61.Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    62.Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).63.de Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Teste, F. P. et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Canarini, A., Merchant, A. & Dijkstra, F. A. Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere 2, 85–97 (2016).67.Canarini, A. & Dijkstra, F. A. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol. Biochem. 81, 195–203 (2015).68.Morecroft, M. D. et al. Changing precipitation patterns alter plant community dynamics and succession in an ex-arable grassland. Funct. Ecol. 18, 648–655 (2004).Article 

    Google Scholar 
    69.Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    70.Allison, S. D. et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94, 714–725 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Walker, T. W. N. et al. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nat. Ecol. Evol. 4, 101–108 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Bahn, M., Knapp, M., Garajova, Z., Pfahringer, N. & Cernusca, A. Root respiration in temperate mountain grasslands differing in land use. Glob. Chang. Biol. 12, 995–1006 (2006).ADS 
    Article 

    Google Scholar 
    74.Bahn, M. et al. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences 7, 2147 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Schmitt, M., Bahn, M., Wohlfahrt, G., Tappeiner, U. & Cernusca, A. Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences 7, 2297 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Estiarte, M. et al. Few multiyear precipitation–reduction experiments find a shift in the productivity–precipitation relationship. Glob. Chang. Biol. 22, 2570–2581 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth—Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).CAS 
    Article 

    Google Scholar 
    78.Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. & Kaiser, P. Methods in soil biology. Bull. Inst. Pasteur 4, 311–312 (1996).
    Google Scholar 
    80.Kuo, S. Phosphorus. In Methods of Soil Analysis, Part 3 (eds. Sparks, D. L. et al.) Ch. 32, 869–919 (SSSA, 1996).81.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    82.Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).CAS 
    Article 

    Google Scholar 
    83.Doyle, A., Weintraub, M. N. & Schimel, J. P. Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci. Soc. Am. J. 68, 669–676 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).CAS 
    Article 

    Google Scholar 
    85.Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald- Lachouani, P. & Wanek, W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci. Soc. Am. J. 74, 1018–1027 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Jones, D. L., Owen, A. G. & Farrar, J. F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem. 34, 1893–1902 (2002).CAS 
    Article 

    Google Scholar 
    87.Prommer, J. et al. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE 9, e86388 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Kaiser, C., Frank, A., Wild, B., Koranda, M. & Richter, A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol. Biochem. 42, 1650–1652 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kaiser, C. et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29, 303–310 (1999).CAS 
    Article 

    Google Scholar 
    91.Ngosong, C., Gabriel, E. & Ruess, L. Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J. Lipids 2012, 236807 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Quideau, S. A. et al. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp. 2016, 54360 (2016).93.García-Orenes, F., Morugán-Coronado, A., Zornoza, R., Cerdà, A. & Scow, K. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS ONE 8, e80522–e80522 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Herbold, C. et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6, 731 (2015).95.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    96.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 315–322 (Academic Press, 1990).98.Paymaneh, Z., Sarcheshmehpour, M., Bukovská, P. & Jansa, J. Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought? Symbiosis 79, 269–283 (2019).99.Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Tedersoo, L. & Lindahl, B. Fungal identification biases in microbiome projects. Environ. Microbiol. Rep. 8, 774–779 (2016).PubMed 
    Article 

    Google Scholar 
    101.Krüger, M., Stockinger, H., Krüger, C. & Schüßler, A. DNA‐based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. 183, 212–223 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    102.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Bengtsson‐Palme, J. et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).
    Google Scholar 
    104.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).PubMed 
    Article 

    Google Scholar 
    109.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2017).110.McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Chen, L. et al. GMPR: a robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600–e4600 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    113.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).114.Kozak, M. & Piepho, H. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop Sci. 204, 86–98 (2018).Article 

    Google Scholar 
    115.Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).ADS 
    Article 

    Google Scholar 
    116.Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).
    Google Scholar 
    117.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    118.Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Czech, L. & Stamatakis, A. Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples. PLoS ONE 14, e0217050–e0217050 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.McMurdie, P. J. & Paulson, J. N. biomformat: An interface package for the BIOM file format. R/Bioconductor Package, version 1.0.0. (Bioconductor, 2015). More

  • in

    Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems

    1.Living Planet Report 2020: Bending the Curve on Biodiversity Loss (WWF, 2020).2.Routledge Handbook of Agricultural Biodiversity (Routledge, 2017).3.Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article 

    Google Scholar 
    4.Jarvis, D. I. et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl Acad. Sci. USA 105, 5326–5331 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.The State of the World’s Biodiversity for Food and Agriculture (FAO Commission on Genetic Resources for Food and Agriculture, 2019); https://doi.org/10.4060/ca3129en6.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).Article 

    Google Scholar 
    10.Altieri, M. A. & Nicholls, C. I. Biodiversity and Pest Management in Agroecosystems (Food Products, 2004).11.McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Beillouin, D., Ben-Ari, T. & Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 4, 123001 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Stomph, T. J. et al. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Adv. Agron. 160, 1–50 (2020).Article 

    Google Scholar 
    14.Raseduzzaman, M. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).Article 

    Google Scholar 
    15.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 1.1. Harvard Dataverse v.3 (Harvard Dataverse, 2019).17.You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    18.Tedesco, P. A. et al. Data Descriptor: a global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sibhatu, K. T., Krishna, V. V. & Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl Acad. Sci. USA 2015, 201510982 (2015).
    Google Scholar 
    20.Allen, T., Prosperi, P., Cogill, B. & Flichman, G. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 73, 498–508 (2014).PubMed 
    Article 

    Google Scholar 
    21.Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Dwivedi, S. L. et al. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci. 22, 842–856 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Frison, E. A. et al. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3, 238–253 (2011).Article 

    Google Scholar 
    24.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    25.Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016); https://doi.org/10.2788/79918226.Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
    Google Scholar 
    27.Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).Article 

    Google Scholar 
    28.Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).PubMed 
    Article 

    Google Scholar 
    29.A Global Database for the Distributions of Crop Wild Relatives v.1.12 (Centro Internacional de Agricultura Tropical, 2018); https://doi.org/10.15468/jyrthk30.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (Univ. of Illinois Press, 1949).31.Milla, R. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).Article 

    Google Scholar 
    32.Hoelzel, A. R., Bruford, M. W. & Fleischer, R. C. Conservation of adaptive potential and functional diversity. Conserv. Genet. 20, 1–5 (2019).Article 

    Google Scholar 
    33.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).
    Google Scholar 
    35.Shackelford, G. et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88, 1002–1021 (2013).PubMed 
    Article 

    Google Scholar 
    36.Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rader, R. et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J. Appl. Ecol. 51, 1544–1553 (2014).Article 

    Google Scholar 
    38.Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. & Grace, P. Conservation agriculture and ecosystem services: an overview. Agric. Ecosyst. Environ. 187, 87–105 (2014).Article 

    Google Scholar 
    39.Altieri, M. A. & Nicholls, C. I. Agroecology and the emergence of a post COVID-19 agriculture. Agric. Human Values 37, 525–526 (2020).Article 

    Google Scholar 
    40.Gemmill-Herren, B. Closing the circle: an agroecological response to COVID-19. Agric. Human Values 37, 613–614 (2020).Article 

    Google Scholar 
    41.Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Swaminathan, M. S. in In Search of Biohappiness: Biodiversity and Food, Health and Livelihood Security (eds Sardar, D. & Yun, A.) Ch. 9 (World Scientific, 2015).43.Brown, C., Alexander, P., Arneth, A., Holman, I. & Rounsevell, M. Achievement of Paris climate goals unlikely due to time lags in the land system. Nat. Clim. Change 9, 203–208 (2019).ADS 
    Article 

    Google Scholar 
    44.Love, B. & Spaner, D. Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agric. 31, 53–82 (2007).Article 

    Google Scholar 
    45.Zimmerer, K. S. et al. The biodiversity of food and agriculture (agrobiodiversity) in the Anthropocene: research advances and conceptual framework. Anthropocene 25, 100192 (2019).Article 

    Google Scholar 
    46.Béné, C. et al. Global map and indicators of food system sustainability. Sci. Data 6, 279 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Béné, C. et al. Global drivers of food system (un)sustainability: a multi-country correlation analysis. PLoS ONE 15, e0231071 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Hickey, G. M., Pouliot, M., Smith-Hall, C., Wunder, S. & Nielsen, M. R. Quantifying the economic contribution of wild food harvests to rural livelihoods: a global-comparative analysis. Food Policy 62, 122–132 (2016).Article 

    Google Scholar 
    49.Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (Bioversity International, 2017).50.The Agrobiodiversity Index Methodology Report Version 1.0 (Bioversity International, 2018).51.Guidelines for the Preparation of the Country Reports for the State of the World’s Biodiversity for Food and Agriculture (SOWBFA) (FAO, 2013); https://doi.org/10.5812/jjm.3480452.Juventia, S. D. et al. Text mining national commitments towards agrobiodiversity conservation and use. Sustainability 12, 715 (2020).Article 

    Google Scholar 
    53.Singh, R. K., Murty, H. R., Gupta, S. K. & Dikshit, A. K. An overview of sustainability assessment methodologies. Ecol. Indic. 9, 189–212 (2009).Article 

    Google Scholar 
    54.Gan, X. et al. When to use what: methods for weighting and aggregating sustainability indicators. Ecol. Indic. 81, 491–502 (2017).Article 

    Google Scholar 
    55.Gómez-Limón, J. A. & Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 69, 1062–1075 (2010).Article 

    Google Scholar 
    56.Nardo, M., Saisana, M., Saltelli, A. & Tarantola, S. Tools for Composite Indicators Building (Joint Research Centre of the European Commission, 2005).57.Wilson, M. C. & Wu, J. The problems of weak sustainability and associated indicators. Int. J. Sustain. Dev. World Ecol. 24, 44–51 (2017).Article 

    Google Scholar 
    58.Blaser, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 1, 234–239 (2018).Article 

    Google Scholar 
    59.Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistics Division, 2012); https://unstats.un.org/unsd/methodology/m49/60.De Mendiburu, F. Una Herramienta de Analisis Estadistico para la Investigacion Agricola (Universidad Nacional de Ingenieria (UNI-PERU), 2009).61.Dinno, A. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package v.1.3.4 (CRAN, 2017).62.Warner, R. M. Applied Statistics: From Bivariate Through Multivariate Techniques (SAGE, 2008).63.R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018); https://www.r-project.org/64.Jones, S. K. et al. Agrobiodiversity Index Scores for 80+ Countries (Harvard Dataverse, 2020); https://doi.org/10.7910/DVN/SKZSQD65.Kennedy, G. et al. in Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (ed Bailey, A.) 23–52 (Bioversity International, 2017).66.Minimum Dietary Diversity for Women: A Guide for Measurement (FAO, FHI, 2016).67.Ojiewo, C., Tenkouano, C., Hughes, J. & Keatinge, J. D. H. in Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health (eds Fanzo, J. et al.) 291–302 (Routledge, 2013).68.Snyder, L. D., Gómez, M. I. & Power, A. G. Crop varietal mixtures as a strategy to support insect pest control, yield, economic, and nutritional services. Front. Sustain. Food Syst. 4, 60 (2020).Article 

    Google Scholar 
    69.Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B 286, 20191189 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 6187–6192 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Khumairoh, U., Lantinga, E. A., Schulte, R. P. O., Suprayogo, D. & Groot, J. C. J. Complex rice systems to improve rice yield and yield stability in the face of variable weather conditions. Sci. Rep. 8, 14746 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article 

    Google Scholar 
    73.Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Martin, A. R. & Isaac, M. E. Functional traits in agroecology: advancing description and prediction in agroecosystems. J. Appl. Ecol. 55, 5–11 (2018).Article 

    Google Scholar 
    75.Stark, J. C. & Thornton, M. in Potato Production Systems (eds Stark, J. et al.) 87–100 (Springer International, 2020).76.Taylor, M., Jaenicke, H., Hunter, D., McGregor, A. & Lyon, G. Diversity for sustaining livelihoods: examples, constraints and lessons learnt. Acta Hortic. 1101, 105–112 (2015).Article 

    Google Scholar 
    77.Mulumba, J. W. et al. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 157, 70–86 (2012).Article 

    Google Scholar 
    78.Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2014, e328 (2014).Article 

    Google Scholar 
    79.Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).Article 

    Google Scholar 
    80.Maxted, N., Dulloo, M. E. & Ford Lloyd, B. Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement (CABI, 2016).81.Li, Y. et al. Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front. Plant Sci. 9, 190 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota

    1.Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Zhou, Z., Pan, J., Wang, F., Gu, J.-D. & Li, M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol. Rev. 42, 639–655 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    4.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Zhou, Z., Liu, Y., Li, M. & Gu, J.-D. Two or three domains: a new view of tree of life in the genomics era. Appl. Microbiol. Biotechnol. 102, 3049–3058 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Jahn, U. et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new Insights into a unique, intimate association of two archaea. J. Bacteriol. 190, 1743–1750 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Beam, J. P. et al. Ancestral absence of electron transport chains in patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wang, H. et al. Different microbial distributions in the Yellow River delta. Desalination Water Treat. 75, 70–78 (2017).Article 

    Google Scholar 
    13.Lipsewers, Y. A., Hopmans, E. C., Sinninghe Damsté, J. S. & Villanueva, L. Potential recycling of thaumarchaeotal lipids by DPANN Archaea in seasonally hypoxic surface marine sediments. Org. Geochem. 119, 101–109 (2018).CAS 
    Article 

    Google Scholar 
    14.Ding, J. et al. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front. Microbiol. 8, 1012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chen, Y., Liu, Y. & Wang, X. Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl. Microbiol. Biotechnol. 101, 3379–3391 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Liu, X. et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6, 102 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ortiz-Alvarez, R. & Casamayor, E. O. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ. Microbiol. Rep. 8, 210–217 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Schuchmann, K., Chowdhury, N. P. & Müller, V. Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front. Microbiol. 9, 2911 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Wittkamp, F., Senger, M., Stripp, S. T. & Apfel, U.-P. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem. Commun. 54, 5934–5942 (2018).CAS 
    Article 

    Google Scholar 
    23.Westphal, L., Wiechmann, A., Baker, J., Minton, N. P. & Müller, V. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J. Bacteriol. 200, 1 (2018).Article 

    Google Scholar 
    24.Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9, 401 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Martijn, J. et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat. Commun. 11, 5490 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).28.Nyirabuhoro, P. et al. Seasonal variability of conditionally rare taxa in the water column bacterioplankton community of subtropical reservoirs in China. Microb. Ecol. 80, 14–26 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    31.Schröder, C., Selig, M. & Schönheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161, 460–470 (1994).
    Google Scholar 
    32.Chhabra, S. R. et al. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 278, 7540–7552 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Weimer, P. J. & Zeikus, J. G. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33, 289–297 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat. Commun. 11, 3939 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Zhang, C.-J. et al. Prokaryotic diversity in mangrove sediments across Southeastern China fundamentally differs from that in other biomes. mSystems 4, 29 (2019).
    Google Scholar 
    41.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinform. 36, 10.7.1–10.7.20 (2011).Article 

    Google Scholar 
    45.Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Zou, D. et al. Genomic characteristics of a novel species of ammonia-oxidizing archaea from the Jiulong River Estuary. Appl. Environ. Microbiol. 86, 1 (2020).Article 

    Google Scholar 
    47.Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Benson, D. A. et al. GenBank. Nucleic Acids Res. 28, 15–18 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    58.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inf. Int. Conf. Genome Inf. 23, 205–211 (2009).
    Google Scholar 
    66.Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates, and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Saier, M. H., Reddy, V. S., Tamang, D. G. & Västermark, A. The transporter classification database. Nucleic Acids Res. 42, D251–D258 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    71.Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 29, 1152–1163 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Zendo https://doi.org/10.5281/zenodo.3672835 (2020).74.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Huang, W.-C. et al. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota. figshare https://doi.org/10.6084/m9.figshare.14459535 (2021).79.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Steenwyk, J. L., Iii, T. J. B., Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Sheridan, P. O. et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat. Commun. 11, 5494 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    Article 

    Google Scholar 
    88.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Zulkower, V. & Rosser, S. DNA features viewer: a sequence annotation formatting and plotting library for Python. Bioinformatics 36, 4350–4352 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Seemann, T. barrnap 0.9: rapid ribosomal RNA prediction https://github.com/tseemann/barrnap (2013).94.Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system

    1.Strange RN, Scott PR. Plant disease: a threat to global food security. Annu Rev Phytopathol. 2005;43:83–116.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Savary S, Bregaglio S, Willocquet L, Gustafson D, Mason D’Croz D, Sparks A, et al. Crop health and its global impacts on the components of food security. Food Secur. 2017;9:311–27.Article 

    Google Scholar 
    4.Garrett KA, Alcalá-Briseño RI, Andersen KF, Buddenhagen CE, Choudhury RA, Fulton JC, et al. Network analysis: a systems framework to address grand challenges in plant pathology. Annu Rev Phytopathol. 2018;56:559–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Pautasso M, Xu X, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L. Disease spread in small-size directed trade networks: the role of hierarchical categories. J Appl Ecol. 2010;47:1300–9.Article 

    Google Scholar 
    6.Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354:751–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Yang C, Zhang X, Fan H, Li Y, Hu Q, Yang R, et al. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol. 2019;84:103270.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT, Adak G, et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis. 2015;61:305–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, et al. Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes. J Clin Microbiol. 2016;54:333–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science. 2013;341:1514–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Richards VP, Velsko IM, Alam T, Zadoks RN, Manning SD, Pavinski Bitar PD, et al. Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae. Mol Biol Evol. 2019;36:2572–90.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mellor KC, Petrovska L, Thomson NR, Harris K, Reid SWJ, Mather AE. Antimicrobial resistance diversity suggestive of distinct Salmonella Typhimurium sources or selective pressures in food-production animals. Front Microbiol. 2019;10:708.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, et al. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Micro Genom. 2016;2:e000089.
    Google Scholar 
    14.Perez-Quintero AL, Ortiz-Castro M, Lang JM, Rieux A, Wu G, Liu S, et al. Genomic acquisitions in emerging populations of Xanthomonas vasicola pv. vasculorum infecting corn in the United States and Argentina. Phytopathology. 2020;110:1161–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.McCann HC, Li L, Liu Y, Li D, Pan H, Zhong C, et al. Origin and evolution of the kiwifruit canker pandemic. Genome Biol Evol. 2017;9:932–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, et al. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J. 2020;14:492–505.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Straub C, Colombi E, McCann H. Population genomics of bacterial plant pathogens. Phytopathology. 2021. https://doi.org/10.1094/PHYTO-09-20-0412-RVW.18.Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Ann Rev Phytopathol. 2014;52:19–43.CAS 
    Article 

    Google Scholar 
    19.Weisberg AJ, Davis EW, Tabima JF, Belcher MS, Miller M, Kuo C, et al. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science. 2020;368:eaba5256.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol. 2004;27:755–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, et al. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol Plant Pathol. 2015;16:907–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.VanSickle J, Weldon R. The economic impact of bacterial leaf spot on the tomato industry. Tomato Inst Proc. 2009:30–31 https://plantpath.ifas.ufl.edu/rsol/RalstoniaPublications_PDF/Tomato_Institute_Proceedings_09.pdf.23.Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, et al. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLOS One. 2012;7:e42036.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L, Nguyen NS, et al. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology. 2018;108:1402–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K, El-Morsy G, et al. Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology. 1998;88:33–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, et al. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol. 2015;81:1520–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.United States Department of Agriculture. National Agricultural Statistics Service. Washington, DC: United States Department of Agriculture; 2019.28.Klein-Gordon JM, Xing Y, Garrett KA, Abrahamian P, Paret ML, Minsavage GV, et al. Assessing changes and associations in the Xanthomonas perforans population across Florida commercial tomato fields via a state-wide survey. Phytopathology. 2021;111:1029–1041.29.Vallad GE, Timilsina S, Adkison H, Potnis N, Minsavage G, Jones J, et al. A recent survey of xanthomonads causing bacterial spot of tomato in Florida provides insights into management strategies. Tomato Inst Proc. 2013:25–27 https://swfrec.ifas.ufl.edu/docs/pdf/veghort/tomato-institute/proceedings/ti13_proceedings.pdf.30.Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, et al. Multiple recombination events drive the current genetic structure of Xanthomonas perforans in Florida. Front Microbiol. 2019;10:448.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Burlakoti R, Hsu C, Chen J, Wang J. Population dynamics of Xanthomonads associated with bacterial spot of tomato and pepper during twenty-seven years across Taiwan. Plant Dis. 2018;102:1348–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Araújo ER, Costa JR, Ferreira MASV, Quezada-Duval AM. Widespread distribution of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant Pathol. 2017;66:159–68.Article 
    CAS 

    Google Scholar 
    33.Jones JB, Pohronezny KL, Stall RE, Jones JP. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology. 1986;76:430–4.Article 

    Google Scholar 
    34.Sijam K, Chang CJ, Gitaitis RD. An agar medium for the isolation and identification of Xanthomonas campestris pv. vesicatoria from seed. Phytopathology. 1991;81:831–4.Article 

    Google Scholar 
    35.Abrahamian P, Timilsina S, Minsavage GV, Potnis N, Jones JB, Goss EM, et al. Molecular epidemiology of Xanthomonas perforans outbreaks in tomato plants from transplant to field as determined by single-nucleotide polymorphism analysis. Appl Environ Microbiol. 2019;85:e01220–01219.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Abrahamian P, Sharma A, Jones J, Vallad GE. Dynamics and spread of bacterial spot epidemics in tomato transplants grown for field production. Plant Dis. 2021 in press.37.Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLOS One. 2015;10:e0128036.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Tudor-Nelson SM, Minsavage GV, Stall RE, Jones JB. Bacteriocin-like substances from tomato race 3 strains of Xanthomonas campestris pv. vesicatoria. Bacteriology. 2003;93:1415–21.CAS 

    Google Scholar 
    39.Schwartz A, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, et al. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015;6:535.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinform. 2009;25:2078–9.Article 
    CAS 

    Google Scholar 
    43.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS One. 2014;9:e112963.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–d677. D1CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2019;37:291–4.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput Biol. 2015;11:e1004041.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018;3:93.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013;30:1224–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Csardi G, Nepusz T. The igraph software package for complex network research. 2006; InterJ., Complex Systems:1695.57.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.58.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Canteros BI, Minsavage GV, Jones JB, Stall RE. Diversity of plasmids in Xanthomonas campestris pv. vesicatoria. Phytopathology. 1995;85:1482–6.Article 

    Google Scholar 
    60.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013. https://arxiv.org/abs/1303.3997.61.Broad Institute: Picard. http://broadinstitute.github.io/picard/ 2019.62.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 2012. https://arxiv.org/abs/1207.3907.63.Garrison, E, Kronenberg, ZN, Dawson, ET, Pedersen, BS, Prins, P. Vcflib and tools for processing the VCF variant call format. BioRxiv. 2021.64.Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;27:718–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.R Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.68.RStudio Team. RStudio: Integrated Development for R. Boston, MA: RStudio Inc.; 2016.69.Knaus B, Grünwald NJ. vcfR: a package to manipulate and visualize variant call format data in R. Mol Ecol Res. 2017;17:44–53.CAS 
    Article 

    Google Scholar 
    70.Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinform. 2008;24:1403–5.CAS 
    Article 

    Google Scholar 
    71.Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Grünwald NJ, Kamvar ZN, Everhart SE. Population genetics and genomics in R: Discriminant analysis of principal components (DAPC). 2020. https://grunwaldlab.github.io/Population_Genetics_in_R/DAPC.html.73.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.74.Tabima JF, Knaus B, Grünwald NJ. Population genetics and genomics in R: GBS analysis. 2020. https://grunwaldlab.github.io/Population_Genetics_in_R/gbs_analysis.html.75.Dray S, Dufour A. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.Article 

    Google Scholar 
    76.Kamvar ZN, Everhart SE, Grünwald NJ. Population genetics and genomics in R: AMOVA. 2020. https://grunwaldlab.github.io/Population_Genetics_in_R/AMOVA.html.77.Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Lischer HE, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012;28:298–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Newberry EA, Bhandari R, Minsavage GV, Timilsina S, Jibrin MO, Kemble J, et al. Independent evolution with the gene flux originating from multiple Xanthomonas species explains genomic heterogeneity in Xanthomonas perforans. Appl Environ Microbiol. 2019;85:e00885–19.81.Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, et al. Genomic inference of recombination-mediated evolution in Xanthomonas euvesicatoria and X. perforans. Appl Environ Microbiol. 2018; 84:e00136–18. More

  • in

    Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom

    Field samplingWe collected samples once per week over four weeks at the Antarctic sea ice edge, in McMurdo Sound, Antarctica (December 28, 2014 “GOS-927”; January 6 “GOS-930”, 15 “GOS-933”, and 22 “GOS-935”, 2015; as previously described in [27]). Sea water (150–250 l) was pumped sequentially through three filters of decreasing size (3.0, 0.8, and 0.1 μm, 293 mm Supor filters). Separate filter sets were acquired for metagenomic, metatranscriptomic, and metaproteomic analyses, over the course of ∼3 h, each week (36 filters in total). Filters for nucleic acid analyses were preserved with a sucrose-based buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 8.0) with RNAlater (Life Technologies, Inc.). Filters for protein analysis were preserved in the same sucrose-based buffer but without RNAlater. Filters were flash frozen in liquid nitrogen in the field and subsequently stored at −80 °C until processed in the laboratory.Metagenomic and metatranscriptomic sequencingWe used metagenomics and metatranscriptomics to obtain reference databases of potential proteins for metaproteomics. We additionally used a database assembled from a similarly processed metatranscriptomic incubation experiment [28], conducted with source water from the January 15, 2015 time point (these samples were collected on a 0.2 μm Sterivex filter and processed as previously described).For samples from the GOS-927, GOS-930, GOS-933, and GOS-935 filters, RNA was purified from a DNA and RNA mixture [29]. In total, 2 µg of the DNA and RNA mixture was treated with 1 µl of DNase (2 U/µl; Turbo DNase, TURBO DNase, Thermo Fisher Scientific), followed by processing with an RNA Clean and Concentrator kit (Zymo Research). An Agilent TapeStation 2200 was used to observe and verify the quality of RNA. In total, 200 ng of total RNA was used as input for rRNA removal using Ribo-Zero (Illumina) with a mixture of plant, bacterial, and human/mouse/rat Removal Solution in a ratio of 2:1:1. An Agilent TapeStation 2200 was used to subsequently observe and verify the quality of rRNA removal from total RNA. rRNA-deplete total RNA was used for cDNA synthesis with the Ovation RNA-Seq System V2 (TECAN, Redwood City, USA). DNA was extracted for metagenomics from the field samples (GOS-927, GOS-930, GOS-933, and GOS-935) according to [29]. RNase digestion was performed with 10 µl of RNase A (20 mg/ml) and 6.8 μl of RNase T1 (1000 U/µl), which were added to 2 µg of genomic DNA and RNA mixture in a total volume of 100 µl, followed by 1 h incubation at 37 °C and subsequent ethanol precipitation in −20 °C overnight.Samples of double stranded cDNA and DNA were fragmented using a Covaries E210 system with the target size of 400 bp. In total, 100 ng of fragmented cDNA or DNA was used as input into the Ovation Ultralow System V2 (TECAN, Redwood City, USA), following the manufacturer’s protocol. Ampure XP beads (Beckman Coulter) were used for final library purification. Library quality was analyzed on a 2200 TapeStation System with Agilent High Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). Twelve DNA and 18 cDNA libraries were combined into two pools with concentration 4.93 and 4.85 ng/µl, respectively. Resulting library pools were subjected to one lane of 150 bp paired-end HiSeq 4000 sequencing (Illumina). Prior to sequencing, each library was spiked with 1% PhiX (Illumina) control library. Each lane of sequencing resulted in between 106,000 and 111,000 Mbp total and 6900–12,000 Mbp and 4800–6900 Mbp for individual DNA or cDNA libraries, respectively.Metagenomic and metatranscriptomic bioinformaticsMetagenomic and metatranscriptomic data were annotated with the same pipelines. Briefly, adapter and primer sequences were filtered out from the paired reads, and then reads were quality trimmed to Phred33. rRNA reads were identified and removed with riboPicker [30]. We then assembled reads into transcript contigs using CLC Assembly Cell, and then we used FragGeneScan to predict open reading frames (ORFs) [31]. ORFs were functionally annotated using Hidden Markov models and blastp against PhyloDB [32]. Annotations which had low mapping coverage were filtered out (less than 50 reads total over all samples), as were proteins with no blastp hits and no known domains. For each ORF, we assigned a taxonomic affiliation based on Lineage Probability Index taxonomy [32, 33]. Taxa were assigned using two different reference databases: NCBI nt and PhyloDB [32]. Unless otherwise specified, we used taxonomic assignments from PhyloDB, because of the good representation of diverse marine microbial taxa.ORFs were clustered by sequence similarity using Markov clustering (MCL) [34]. Sequences were assigned MCL clusters by first running blastp for all sequences against each other, where the query was the same as the database. The MCL algorithm was subsequently used with the input as the matrix of E-values from the blastp output, with default parameters for the MCL clustering. MCL clusters were then assigned consensus annotations based on KEGG, KO, KOG, KOG class, Pfam, TIGRFAM, EC, GO, annotation enrichment [28, 32, 35,36,37,38,39]. Proteins were assigned to coarse-grained protein pools (ribosomal and photosynthetic proteins) based on these annotations. For assignment, we used a greedy approach, such that a protein was assigned a coarse-grained pool if at least one of these annotation descriptions matched our search strings (we also manually examined the coarse grains to ensure there were no peptides that mapped to multiple coarse-grained pools). For photosynthetic proteins, we included light harvesting proteins, chlorophyll a-b binding proteins, photosystems, plastocyanin, and flavodoxin. For ribosomal proteins, we just included the term “ribosom*” (where the * represents a wildcard character), and excluded proteins responsible for ribosomal synthesis.Sample preparation and LC-MS/MSWe extracted proteins from the samples by first performing a buffer exchange from the sucrose-buffer to an SDS-based extraction buffer, after which proteins were extracted from each filter individually (as previously described) [27]. After extraction and acetone-based precipitation, we prepared samples for liquid chromatography tandem mass spectrometry (LC-MS/MS). Precipitated protein was first resuspended in urea (100 µl, 8 M), after which we measured the protein concentration in each sample (Pierce BCA Protein Assay Kit). We then reduced, alkylated, and enzymatically digested the proteins: first with 10 µl of 0.5 M dithiothreitol for reduction (incubated at 60 °C for 30 min), then with 20 µl of 0.7 M iodoacetamide (in the dark for 30 min), diluted with ammonium bicarbonate (50 mM), and finally digested with trypsin (1:50 trypsin:sample protein). Samples were then acidified and desalted using C-18 columns (described in detail in ref. [40]).To characterize each metaproteomic sample, we employed one-dimensional liquid chromatography coupled to the mass spectrometer (VelosPRO Orbitrap, Thermo Fisher Scientific, San Jose, California, USA; detailed in [40]). For each injection, protein concentrations were equivalent across sample weeks, but different across filter sizes. We had higher amounts of protein on the largest filter size (3.0 μm) and less on the smaller filters, so we performed three replicate injections per 3.0 µm filter sample, and two replicate filter injections for 0.8 and 0.1 µm filters. We used a non-linear LC gradient totaling 125 min. For separation, peptides eluted through a 75 µm by 30 cm column (New Objective, Woburn, MA), which was self-packed with 4 µm, 90 A, Proteo C18 material (Phenomenex, Torrance, CA), and the LC separation was conducted with a Dionex Ultimate 3000 UHPLC (Thermo Scientific, San Jose, CA).LC-MS/MS bioinformatics—database searching, configuration, and quantificationMetaproteomics requires a database of potential protein sequences to match observed mass spectra with known peptides. Because we had sample-specific metagenome and metatranscriptome sequencing for each metaproteomic sample, we assessed various database configurations, including those that we predict would be suboptimal, to examine potential options for future metaproteomics researchers. We used five different configurations, described below. In each case, we appended a database of common contaminants (Global Proteome Machine Organization common Repository of Adventitious Proteins). We evaluated the performance of different database configurations based on the number of peptides identified (using a peptide false discovery rate of 1%).In order to make these databases (Table 1), we performed three separate assemblies on (1) the metagenomic reads (from samples GOS-927, GOS-930, GOS-933, and GOS-935), (2) metatranscriptomic reads (from samples GOS-927, GOS-930, GOS-933, and GOS-935), and (3) metatranscriptomic reads from a concurrent metatranscriptomic experiment, started at the location where GOS-933 was taken [28]. Database configurations were created by subsetting from these assemblies. The first configuration was “one-sample database”, constructed to represent the scenario where only one sample was used for metagenomic and metatranscriptomic sequencing (we chose the first sampling week). Specifically, this was done by subsetting and including ORFs from the metagenomic and metatranscriptomic assemblies if reads from this time point were present in that sample (reads mapped as in [28]), and then removing redundant protein sequences (P. Wilmarth, fasta utilities). The second configuration was the “sample-specific database”, where each metaproteomic sample had one corresponding database (prepared from both metagenome and metatranscriptome sequencing completed at the same sampling site), also done by subsetting ORFs from the metagenomic and metatranscriptomic assemblies as described above. The third configuration was pooling databases across size fractions—such that all metagenomic and metatranscriptomic sequences across the same filter sizes (e.g., 3.0 µm) were combined. ORFs were subsetted from the metagenomic and metatranscriptomic assemblies as above. The fourth and fifth configurations are from the concurrent metatranscriptomic experiment [28]. The fourth configuration (“metatranscriptome experiment (T0)”) was the metatranscriptome of the in situ microbial community (i.e., at the beginning of the experiment). This database was created by subsetting from the “metatranscriptome experiment (all)” assembly. Finally, the fifth configuration was the metatranscriptome of all experimental treatments pooled together (two iron levels, three temperatures; “metatranscriptome experiment (all)”). The overlap between databases (potential tryptic peptides) in different samples is presented graphically in Supplementary Figs. S1–S3.Table 1 Characteristics of the five different database configurations we used for metaproteomic database searches.Full size tableAfter matching mass spectra with peptide sequences for each database configuration (MSGF + with OpenMS, with a 1% false discovery rate at the peptide level; [41, 42]), we used MS1 ion intensities to quantify peptides. Specifically, we used the FeatureFinderIdentification approach, which cross-maps identified peptides from one mass spectrometry experiment to unidentified features in another experiment—increasing the number of peptide quantifications [43]. This approach requires a set of experiments to be grouped together (i.e., which samples should use this cross-mapping?). We grouped samples based on their filter sizes (including those samples that are replicate injections). First, mass spectrometry runs within each group were aligned using MapAlignerIdentification [44], and then FeatureFinderIdentification was used for obtaining peptide quantities.After peptides have been identified and quantified, we mapped them to proteins or MCL clusters of proteins, which have corresponding functional annotations (KEGG, KO, KOG, Pfams, TIGRFAM; [28, 32, 35,36,37,38,39]). Functional annotations were used in three separate analyses. (1) Exploring the overall functional changes in microbial community metabolism, we mapped peptides to MCL clusters—groups of proteins with similar sequences. These clusters have consensus annotations based on the annotations of proteins found within the clusters (described in detail in [28]). For this section, we only used peptides that uniquely map to MCL clusters. (2) We restricted the second analysis to two protein groups: ribosomal and photosynthetic proteins. For this analysis, we mapped peptides to one of these protein groups if at least one annotation mapped to the protein group (via string matching with keywords). This approach is “greedy” because does not exclude peptides if they also correspond with other functional groupings, but this is necessary because of the difficulties in comparing various annotation formats. (3) The last analysis for functional annotations was for targeted proteins, and we only mapped functions to peptides where the peptides uniquely identify a specific protein (e.g., plastocyanin).Code for the database setup and configuration, database searching, and peptide quantification is open source (https://github.com/bertrand-lab/ross-sea-meta-omics).LC-MS/MS bioinformatics—normalizationNormalization is an important aspect of metaproteomics: it influences all inferred peptide abundances. Typically, the abundance of a peptide is normalized by the sum of all identified peptide abundances. We use the term normalization factor for the inferred sum of peptide abundances. Note that the apparent abundance of observed peptides is dependent on the database chosen. In theory, if fewer peptides are observed because of a poorly matching database, this will decrease the normalization factor, and those peptides that are observed will appear to increase in abundance. It is not known how much this influences peptide quantification in metaproteomics.For each database configuration, we separately calculated normalization factors. We then correlated the sum of observed peptide abundances with each other. To get a database-independent normalization factor, we used the sum of total ion current (TIC) for each mass spectrometry experiment (using pyopenms; [45]), and also examined the correlation with database-dependent normalization factors. If normalization factors are highly correlated with each other, that would indicate database choice does not impact peptide quantification. Using TIC for normalization may have drawbacks, particularly if there are differences in contamination, or amounts of non-peptide ions across samples.Defining proteomic mass fractionProtein abundance can be calculated in two ways: (1) the number of copies of a protein (independent of a proteins’ mass), or (2) the total mass of the protein copies (the sum of peptides). We refer to the latter as a proteomic mass fraction. For example, to calculate a diatom-specific, ribosomal mass fraction, we sum all peptide abundances that are diatom- and ribosome-specific, and divide by the sum of peptide abundances that are diatom-specific. Note that this is slightly different to other methods, like the normalized spectral abundance factor, which normalizes for total protein mass (via protein length; [46]).Combining estimates across filter sizesOrganisms should separate according to their sizes when using sequential filtration with decreasing filter pore sizes. In practise, however, organisms can break because of pressure during filtration, and protein is typically present for large phytoplankton on the smallest filter size and vice versa. We used a simple method for combining observations across filter sizes, weighted by the number of observations per filter. We begin with the abundance of a given peptide, which was only considered present if it was observed across all injections of the same sample. We calculated the sum of observed peptide intensities (i.e., the normalization factor), and divided all peptide abundances by this normalization factor. Normalized peptide abundances are then averaged across replicate injections. If we are estimating the ribosomal mass fraction of the diatom proteome, we first normalize the diatom-specific peptide intensities as a proportion of diatom biomass (i.e., divide all diatom-specific peptides by the sum of all diatom-specific peptides). We then summed all diatom-normalized peptides intensities that are unique to both diatoms and ribosomal proteins, which would give us the ribosomal proportion of the diatom proteome. Yet, we typically would obtain multiple estimates of, for example, ribosomal mass fraction of diatoms, on different filters. We combined the three values by multiplying each by a coefficient that represents a weight for each observation (specific to a filter size). These coefficients sum to one, and are calculated by summing the total number of peptides observed at a time point for a filter, and dividing by the total number of peptides observed across filters (but within each time point). For example, if we observed 100 peptides that are diatom- and ribosome-specific, and 90 of these peptides were on the 3.0 µm filter and only ten were on the 0.8 μm filter, we would multiply the 3.0 µm filter estimate by 0.9 and the 0.8 µm filter by 0.1. This method uses all available information about proteome composition across different filter sizes (similar to [47]).When we estimate the proteomic mass fraction of a given protein pool, we do not need to adjust for the total protein on each filter. This is because this measurement is independent of total protein. However, for merging estimates of total relative abundance of different organisms across filters, we needed to additionally weight the abundance estimate by the amount of protein on each filter. Therefore, in addition to the weighting scheme described above, we multiplied taxon abundance estimates by the total protein on each filter divided by the total protein across filters on a given day.LC-MS/MS simulationWe used simulations of metaproteomes and LC-MS/MS to (1) quantify biases associated with inferring coarse-grained proteomes from metaproteomes, and (2) to mitigate these biases in our inferences. Specifically, we asked the question: how does sequence diversity impact quantification of coarse-grained proteomes from metaproteomes? Consider a three organism microbial community. If two organisms are extremely similar, there will be very few peptides that can uniquely map to those organisms, resulting in underestimated abundance. The third organism would also be underestimated, but to a lesser degree, unless it had a completely unique set of peptides. A similar outcome is anticipated with differences in sequence diversity across protein groups, such that highly conserved protein groups will be underestimated.Our mass spectrometry simulations offer a unique perspective on this issue: we know the “true” metaproteome, and we can compare this with an “inferred” metaproteome. We simulated variable numbers of taxonomic groups, each with different protein pools of variable sequence diversity. From this simulated metaproteome, we then simulated LC-MS/MS-like sampling of peptides. Complete details of the mass spectrometry simulation are available in [48] and the Supplementary materials. The only difference between this model and that presented in [48] is here we include dynamic exclusion. The ultimate outcomes from these simulations were (1) identifying which circumstances lead to biased inferences about proteomic composition, and (2) determining the underpinnings of these biases.Cofragmentation bias scores for peptidesWe recently developed a computational model (“cobia”) that predicts a peptides’ risk for interference by sample complexity (more specifically, by cofragmentation of multiple peptides; [48]). This study showed that coarse-grained taxonomic and functional groupings are more robust to bias, and that this model can also be used to estimate bias. We ran cobia with the sample-specific databases, which produces a “cofragmentation score”—a measure of risk of being subject to cofragmentation bias. Specifically, the retention time prediction method used was RTPredict [49] with an “OLIGO” kernel for the support vector machine. The parameters for the model were: 0.008333 (maximum injection time); 3 (precursor selection window); 1.44 (ion peak width); and 5 (degree of sparse sampling). Code for running this analysis, as well as the corresponding input parameter file, is found at https://github.com/bertrand-lab/ross-sea-meta-omics.Description of previously published datasets analyzedWe leveraged several previously published datasets to compare our metaproteomic results. Specifically, we used proteomic data of phytoplankton cultures of Phaeocystis antarctica and Thalassiosira pseudonana [27, 50], and of cultures of Escherichia coli under 22 different culture conditions [51]. Coarse-grained proteomic estimates were also compared with previously published targeted metaproteomic data [27]. More

  • in

    Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon

    1.Lalli, C. & Parsons, T. R. Biological Oceanography: An Introduction (Elsevier, 1997).
    Google Scholar 
    2.Mackas, D. L., Denman, K. L. & Abbott, M. R. Plankton patchiness: Biology in the physical vernacular. Bull. Mar. Sci. 37, 652–674 (1985).
    Google Scholar 
    3.Kjerfve, B. & Magill, K. E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 88, 187–199 (1989).ADS 
    Article 

    Google Scholar 
    4.Kjerfve, B. Chapter 1, Coastal lagoons. In Elsevier Oceanography Series Vol. 60 (ed. Kjerfve, B.) 1–8 (Elsevier, 1994).
    Google Scholar 
    5.McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Carr, M.-E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res. Part II 49, 59–80 (2001).ADS 
    Article 

    Google Scholar 
    7.Chavez, F. P. & Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 83, 80–96 (2009).ADS 
    Article 

    Google Scholar 
    8.Schubert, H. & Telesh, I. Estuaries and coastal lagoons. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 483–509 (Springer Netherlands, 2017). https://doi.org/10.1007/978-94-007-0668-2_13.Chapter 

    Google Scholar 
    9.Pecqueur, D. et al. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673, 13–27 (2011).CAS 
    Article 

    Google Scholar 
    10.Deininger, A. et al. Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res. 119, 40–50 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar. Coast. Shelf Sci. 57, 73–85 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Huang, J., Gao, J. & Hörmann, G. Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42, 7–18 (2012).CAS 
    Article 

    Google Scholar 
    13.Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).ADS 
    Article 

    Google Scholar 
    14.Dube, A., Jayaraman, G. & Rani, R. Modelling the effects of variable salinity on the temporal distribution of plankton in shallow coastal lagoons. J. Hydro-environ. Res. 4, 199–209 (2010).Article 

    Google Scholar 
    15.Pulina, S., Satta, C. T., Padedda, B. M., Sechi, N. & Lugliè, A. Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons. Estuar. Coast. Shelf Sci. 212, 95–104 (2018).ADS 
    Article 

    Google Scholar 
    16.Millet, B. & Cecchi, P. Wind-induced hydrodynamic control of the phytoplankton biomass in a lagoon ecosystem. Limnol. Oceanogr. 37, 140–146 (1992).ADS 
    Article 

    Google Scholar 
    17.Souchu, P. et al. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar. Ecol. Prog. Ser. 218, 141–152 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Paphitis, D. & Collins, M. B. Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont. Shelf Res. 25, 2350–2365 (2005).ADS 
    Article 

    Google Scholar 
    19.Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Hemraj, D. A., Hossain, A., Ye, Q., Qin, J. G. & Leterme, S. C. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation. Sci. Rep. 7, 44441 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bec, B., Husseini Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).CAS 
    Article 

    Google Scholar 
    26.Collos, Y. et al. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61, 68–75 (2009).ADS 
    Article 

    Google Scholar 
    27.Collos, Y. et al. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550(1), 83–93 (2005).CAS 
    Article 

    Google Scholar 
    28.Gangnery, A. et al. Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau Lagoon (Méditerranée, France). Aquaculture 215, 267–290 (2003).Article 

    Google Scholar 
    29.Pernet, F. et al. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 68, 20–32 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).ADS 
    Article 

    Google Scholar 
    31.Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).Article 

    Google Scholar 
    32.Jones, K. J. & Gowen, R. J. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuar. Coast. Shelf Sci. 30, 557–567 (1990).ADS 
    Article 

    Google Scholar 
    33.Bosak, S., Godrijan, J. & Šilović, T. Dynamics of the marine planktonic diatom family Chaetocerotaceae in a Mediterranean coastal zone. Estuar. Coast. Shelf Sci. 180, 69–81 (2016).ADS 
    Article 

    Google Scholar 
    34.Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: A matter of temporal scale. Freshw. Biol. 56, 1949–1961 (2011).Article 

    Google Scholar 
    35.Rynearson, T. A., Flickinger, S. A. & Fontaine, D. N. Metabarcoding reveals temporal patterns of community composition and realized thermal niches of Thalassiosira spp. (Bacillariophyceae) from the Narragansett Bay long-term plankton time series. Biology 9, 19 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    36.Delaney, M. P. Effects of temperature and turbulence on the predator–prey interactions between a heterotrophic flagellate and a marine bacterium. Microb. Ecol. 45, 218–225 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Peter, K. H. & Sommer, U. Phytoplankton cell size: Intra- and interspecific effects of warming and grazing. PLoS One 7, e49632 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.van Donk, E. & Kilham, S. S. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26, 40–50 (1990).Article 

    Google Scholar 
    39.Stelzer, C.-P. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? In Rotifera VIII: A Comparative Approach (eds Wurdak, E. et al.) 349–353 (Springer Netherlands, 1998).Chapter 

    Google Scholar 
    40.Arandia-Gorostidi, N., Weber, P. K., Alonso-Sáez, L., Morán, X. A. G. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME 11, 641–650 (2017).CAS 
    Article 

    Google Scholar 
    41.Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Sci. 503, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    42.Käse, L. et al. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?. PLoS One 16, e0244817 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M. & Shalapyonok, L. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res. Part II 47, 3249–3272 (2000).ADS 
    Article 

    Google Scholar 
    44.Vidussi, F. et al. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 56, 206–218 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Balas, L. & Özhan, E. Three-dimensional modelling of stratified coastal waters. Estuar. Coast. Shelf Sci. 54, 75–87 (2002).ADS 
    Article 

    Google Scholar 
    46.Dalu, T., Richoux, N. B. & Froneman, P. W. Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. S. Afr. J. Bot. 107, 31–38 (2016).Article 

    Google Scholar 
    47.Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato?. Biol. Rev. 92, 1011–1026 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, 1994).Book 

    Google Scholar 
    49.Litchman, E., de TezanosPinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, 2010).Chapter 

    Google Scholar 
    50.Unrein, F., Gasol, J. M., Not, F., Forn, I. & Massana, R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME 8, 164–176 (2014).CAS 
    Article 

    Google Scholar 
    51.Polimene, L. et al. Modelling a light-driven phytoplankton succession. J. Plankton Res. 36, 214–229 (2014).CAS 
    Article 

    Google Scholar 
    52.Hatzaki, M. et al. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 27, 9272–9289 (2014).ADS 
    Article 

    Google Scholar 
    53.Mostajir, B. et al. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44, 586–596 (1999).ADS 
    Article 

    Google Scholar 
    54.Lacuna, D. G. & Uye, S.-I. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. J. Plankton Res. 23, 143–156 (2001).Article 

    Google Scholar 
    55.Halac, S. et al. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19, 1671–1686 (1997).CAS 
    Article 

    Google Scholar 
    56.Souchu, P. et al. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can. J. Fish. Aquat. Sci. 67, 743–753 (2010).CAS 
    Article 

    Google Scholar 
    57.Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).Article 

    Google Scholar 
    58.Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E. & Weichart, G. Phytoplankton of the North Sea and its dynamics: A review. Neth. J. Sea Res. 26, 295–331 (1990).Article 

    Google Scholar 
    59.Derolez, V. et al. Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 241, 106810 (2020).Article 

    Google Scholar 
    60.Yool, A., Martin, A. P., Fernández, C. & Clark, D. R. The significance of nitrification for oceanic new production. Nature 447, 999–1002 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Constantin, S., Constantinescu, Ș & Doxaran, D. Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data. J. Mar. Syst. 170, 10–21 (2017).Article 

    Google Scholar 
    62.de Jorge, V. N. & van Beusekom, J. E. E. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40, 776–778 (1995).ADS 
    Article 

    Google Scholar 
    63.Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: Consequences for microphytobenthos resuspension phenomenon. PLoS One 7, e44155 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Madoni, P. Benthic ciliates in Adriatic Sea lagoons. Eur. J. Protistol. 42, 165–173 (2006).PubMed 
    Article 

    Google Scholar 
    65.Cruz, J. et al. Plankton community and copepod production in a temperate coastal lagoon: What is changing in a short temporal scale?. J. Sea Res. 157, 101858 (2020).Article 

    Google Scholar 
    66.Audouin, J. Hydrologie de l’étang de Thau. Rev. Trav. Inst. Pêches Marit. 26, 5–104 (1962).
    Google Scholar 
    67.Byun, D. S., Wang, X. H. & Holloway, P. E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuar. Coast. Shelf Sci. 59, 185–196 (2004).ADS 
    Article 

    Google Scholar 
    68.Stefanidou, N., Genitsaris, S., Lopez-Bautista, J., Sommer, U. & Moustaka-Gouni, M. Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments. Front. Microbiol. 9, 2444 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xu, N. et al. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9, 13–17 (2010).Article 

    Google Scholar 
    70.Greenwald, G. M. & Hurlbert, S. H. Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. In Saline Lakes V (ed. Hurlbert, S. H.) 307–335 (Springer Netherlands, 1993).Chapter 

    Google Scholar 
    71.Fiandrino, A., Giraud, A., Robin, S. & Pinatel, C. Validation d’une méthode d’estimation des volumes d’eau échangés entre la mer et les lagunes et définition d’indicateurs hydrodynamiques associés (2012).72.Mostajir, B., Mas, S., Parin, D. & Vidussi, F. High-Frequency physical, biogeochemical and meteorological data of Coastal Mediterranean Thau Lagoon Observatory. SEANOE (2018).73.Données Publiques de Météo-France—Accueil. https://donneespubliques.meteofrance.fr/.74.Kraberg, A., Baumann, M. & Dürselen, C.-D. Coastal phytoplankton: Photo guide for Northern European seas (Univerza v Ljubljani, 2010).
    Google Scholar 
    75.Bérard-Therriault, L., Poulin, M. & Bossé, L. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires Canadian Special Publication of Fisheries and Aquatic Sciences No. 128 (NRC Research Press, 1999).
    Google Scholar  More

  • in

    Raspberry ketone diet supplement reduces attraction of sterile male Queensland fruit fly to cuelure by altering expression of chemoreceptor genes

    1.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54. https://doi.org/10.1111/j.1744-7348.2010.00448.x (2011).Article 

    Google Scholar 
    2.Jessup, A. J. et al. in Area-Wide Control of Insect Pests: From Research to Field Implementation (eds M. J. B. Vreysen, A. S. Robinson, & J. Hendrichs) 685–697 (Springer Netherlands, 2007).3.HIA. Australian Horticulture Statistics Handbook 2019/20. Horticulture Innovation Australia Limited (2020).4.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159. https://doi.org/10.1111/eea.12180 (2014)5.Knipling, E. F. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males. J. Econ. Entomol. 48, 459–462. https://doi.org/10.1093/jee/48.4.459 (1955).Article 

    Google Scholar 
    6.Shelly, T. & McInnis, D. Sterile Insect Technique and Control of Tephritid Fruit Flies: Do Species With Complex Courtship Require Higher Overflooding Ratios?. Ann. Entomol. Soc. Am. 109, 1–11. https://doi.org/10.1093/aesa/sav101 (2015).CAS 
    Article 

    Google Scholar 
    7.Hendrichs, J. & Robinson, A. in Encyclopedia of Insects (Second Edition) (eds Vincent H. Resh & Ring T. Cardé) 953–957 (Academic Press, 2009).8.Dominiak, B., Clifford, C. S. & Nielsen, S. G. Queensland fruit fly (Bactrocera tryoni Froggatt) attraction to and chemical analysis of male annihilation blocks using three concentratios of cuelure at Dubbo, NSW, Australia. Plant Prot. Q. 24, 157–160 (2009).9.Dominiak, B. C., Ekman, J. & Broughton, S. Mass trapping and other management option for mediterranean fruit fly and Queensland fruit fly in Australia. Gen. Appl. Entomol. 44, 1–8 (2016).
    Google Scholar 
    10.Khan, M. A. M. et al. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt). Sci. Rep. 7, 13366. https://doi.org/10.1038/s41598-017-13843-w (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Vargas, R. I., Shelly, T. E., Leblanc, L. & Piñero, J. C. in Vitamins & Hormones Vol. 83 (ed Gerald Litwack) Ch. 23, 575–595 (Academic Press, 2010).12.Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management. J. Pest. Sci. 87, 385–405. https://doi.org/10.1007/s10340-014-0577-3 (2014).Article 

    Google Scholar 
    13.Shelly, T. E. Consumption of methyl eugenol by male Bactrocera dorsalis (Diptera: Tephritidae): low incidence of repeat feeding. Florida Entomologist 77, 201–208 (1994).CAS 
    Article 

    Google Scholar 
    14.Shelly, T. E. Trapping male oriental fruit flies (Diptera: Tephritidae): does feeding on a natural source of methyl eugenol reduce capture probability?. Florida Entomologist 83, 109–111 (2000).Article 

    Google Scholar 
    15.Tan, K. H., & Toong, Y. C. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J. Chem. Ecol. 28, 1161–1172 (2002).16.Shelly, T. E. Evaluation of a Genetic Sexing Strain of the Oriental Fruit Fly as a Candidate for Simultaneous Application of Male Annihilation and Sterile Insect Techniques (Diptera: Tephritidae). J. Econ. Entomol. 113, 1913–1921. https://doi.org/10.1093/jee/toaa099 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Joseph, R. M. & Carlson, J. R. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends in genetics : TIG 31, 683–695. https://doi.org/10.1016/j.tig.2015.09.005 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Venthur, H., & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 9, 1. https://doi.org/10.3389/fphys.2018.01163 (2018).19.Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev. Entomol. 58, 373–391. https://doi.org/10.1146/annurev-ento-120811-153635 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Zheng, W. et al. Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis. Int. J. Mol. Sci. 14, 14936 (2013).Article 

    Google Scholar 
    21.Siciliano, P. et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem. Mol. Biol. 48, 51–62. https://doi.org/10.1016/j.ibmb.2014.02.005 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Siciliano, P. et al. Sniffing Out Chemosensory Genes from the Mediterranean Fruit Fly, Ceratitis capitata. Plos One 9, e85523https://doi.org/10.1371/journal.pone.0085523 (2014)23.Campanini, E. B. & de Brito, R. A. Molecular evolution of Odorant-binding proteins gene family in two closely related Anastrepha fruit flies. BMC Evol. Biol. 16, 198–198. https://doi.org/10.1186/s12862-016-0775-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Park, K., et al. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila have different implications for their functions. Vol. 300 (2000).25.Shanbhag, S. R. et al. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc. Res. Tech. 55, 297–306. https://doi.org/10.1002/jemt.1179 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Wu, Z. et al. Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis. PloS One 10, e0129794-e0129794.https://doi.org/10.1371/journal.pone.0129794 (2015)27.Liu, Z., Smagghe, G., Lei, Z. & Wang, J.-J. Identification of male- and female-specific olfaction genes in antennae of the Oriental Fruit Fly (Bactrocera dorsalis). PLoS ONE 11, e0147783–e0147783. https://doi.org/10.1371/journal.pone.0147783 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Zhang, J. et al. Identification and expression profiles of novel odorant binding proteins and functional analysis of OBP99a in Bactrocera dorsalis. Arch. Insect Biochem. Physiol. 98, e21452. https://doi.org/10.1002/arch.21452 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Cheng, J. et al. Identification and expression analysis of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax. PeerJ Preprints 6, e27297v1. https://doi.org/10.7287/peerj.preprints.27297v1 (2018).30.Kumaran, N., Prentis, P. J., Mangalam, K. P., Schutze, M. K. & Clarke, A. R. Sexual selection in true fruit flies (Diptera: Tephritidae): transcriptome and experimental evidences for phytochemicals increasing male competitive ability. Mol. Ecol. 23, 4645–4657. https://doi.org/10.1111/mec.12880 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Liu, H. et al. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci. Rep. 7, 15894. https://doi.org/10.1038/s41598-017-15893-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Kumaran, N. et al. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni. Genome biology and evolution 10, 94–107.https://doi.org/10.1093/gbe/evx257 (2017)33.Idrees, A. et al. Protein baits, volatile compounds and irradiation influence the expression profiles of odorant-binding protein genes in Bactrocera dorsalis (Diptera: Tephritidae). Appl. Ecol. Environ. Res. 15, 1883–1899 (2017).Article 

    Google Scholar 
    34.Pavlidi, N. et al. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci. Rep. 7, 42633. https://doi.org/10.1038/srep42633 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Arya, G. H. et al. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40, 233–243. https://doi.org/10.1093/chemse/bjv001 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Akter, H., Adnan, S., Morelli, R., Rempoulakis, P. & Taylor, P. W. Suppression of cuelure attraction in male Queensland fruit flies provided raspberry ketone supplements as immature adults. PLoS ONE 12, e0184086. https://doi.org/10.1371/journal.pone.0184086 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gilchrist, A. S. et al. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species. BMC Genomics 15, 1153. https://doi.org/10.1186/1471-2164-15-1153 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Fleischer, J. & Krieger, J. Insect pheromone receptors—Key elements in sensing intraspecific chemical signals. Front. Cell. Neurosci. 12. https://doi.org/10.3389/fncel.2018.00425 (2018).39.Liu, Z. et al. An antennae-specific odorant-binding protein is involved in Bactrocera dorsalis Olfaction. Front. Ecol. Evol. 8.https://doi.org/10.3389/fevo.2020.00063 (2020).40.Tan, K. H. Recaptures of feral Bactrocera dorsalis and B. umbrosa (Diptera: Tephritidae) males after feeding on methyl eugenol. Bull. Entomol. Res. 110, 15–21, https://doi.org/10.1017/S0007485319000208 (2019).41.Liu, L. et al. Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39, 133–146. https://doi.org/10.1016/s0896-6273(03)00394-5 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Swarup, S., Huang, W., Mackay, T. F. C. & Anholt, R. R. H. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci USA 110, 1017–1022. https://doi.org/10.1073/pnas.1220168110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    43.Vijayan, V., Thistle, R., Liu, T., Starostina, E. & Pikielny, C. W. Drosophila pheromone-sensing neurons expressing the ppk25 Ion channel subunit stimulate male courtship and female receptivity. PLoS Genet. 10, e1004238. https://doi.org/10.1371/journal.pgen.1004238 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140–1151. https://doi.org/10.1016/j.cell.2012.03.045 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Khan, M. A. M. et al. Raspberry ketone accelerates sexual maturation and improves mating performance of sterile male Queensland fruit fly, Bactrocera tryoni (Froggatt). Pest Manag. Sci. 75, 1942–1950. https://doi.org/10.1002/ps.5307 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Weldon, C. W., Perez-Staples, D. & Taylor, P. W. Feeding on yeast hydrolysate enhances attraction to cue-lure in Queensland fruit flies, Bactrocera tryoni. Entomol. Experim. et Applicata 129, 200–209. https://doi.org/10.1111/j.1570-7458.2008.00768.x (2008)47.Najar-Rodriguez, A. J., Galizia, C. G., Stierle, J. & Dorn, S. Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J. Exp. Biol. 213, 3388 (2010).CAS 
    Article 

    Google Scholar 
    48.Bertschy, C., Turlings, T. C., Bellotti, A. C. & Dorn, S. Chemically-mediated attraction of three parasitoid species to mealybug-infested cassava leaves. Florida Entomologist 80, 383–395 (1997).Article 

    Google Scholar 
    49.Butler, D. G., Cullis, B. R., Gilmour, A. R. & Gogel, B. J. (Queensland Department of Primary Industries and Fisheries, Australia, 2009).50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Zhao, Q.-Y. et al. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinf. 12, S2. https://doi.org/10.1186/1471-2105-12-S14-S2 (2011).CAS 
    Article 

    Google Scholar 
    52.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. https://doi.org/10.1093/bioinformatics/bti610 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902. https://doi.org/10.1038/nbt.2931 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Al-Shahrour, F., Díaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580. https://doi.org/10.1093/bioinformatics/btg455 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43, e47–e47. https://doi.org/10.1093/nar/gkv007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Contrasting effects of the COVID-19 lockdown on urban birds’ reproductive success in two cities

    Data collectionData on the birds’ reproductive success and the number of humans present at nest sites were collected as part of a long-term, ongoing monitoring project in Hungary, in which we investigate the impacts of urbanization on populations of great tits. The great tit is an insectivorous passerine bird that is widespread across the Western Palearctic, occupies both urban and forest habitats, readily accepts nestboxes, and shares many important ecological traits with other tit or chickadee species also occurring in urban habitats27. These traits make this species an ideal model organism for studying the effects of the anthropause on wildlife in different environments.Study sitesWe monitored breeding great tit populations and also collected human presence data in two urban areas and at one forest study site. In one of the urban sites, Veszprém (47°05′17.29″N, 17°54′29.66″E; human population: c. 56,000; the monitoring scheme started in 2013), the nestboxes were placed in public green spaces (public parks, university campuses, a bus station, and a cemetery) that are surrounded by built-up areas and roads, and experience frequent anthropogenic disturbance. At the other urban size, Budapest (47°30′27.4″N, 19°01′03.4″E; the capital city of Hungary, human population: c. 1.75 million; the monitoring scheme started in 2019), the nestboxes were placed in two public urban parks, located c. 400 m from each other in the city core area and separated by high-traffic roads. The parks are freely accessible to residents and are heavily embedded within the urban matrix. At both urban sites, most of the nestboxes are distributed along paths or walking trails. Even though the two cities greatly differ in their size and human population, our urban study plots in both cities have similar general characteristics: these are surrounded by built-up areas, are at a similar distance (c. 3–4 km) from the nearest forested areas (for Veszprém, this is the forest at Vilma-puszta: 47°05′06.7″N, 17°51′51.4″E; for Budapest, this is the forest at Normafa: 47°30′27.7″N 18°57′51.1″E), and nests also experienced a similar level of human disturbance in the pre-COVID reference period (Fig. 1b). The forest site, Szentgál (47°06′39.75″N, 17°41′17.94″E; the monitoring scheme started in 2013), is a mature woodland, dominated by beech (Fagus sylvatica) and hornbeam (Carpinus betulus), located 3 km away from the nearest human habitation (Szentgál, human population: c. 2.800), c. 20 km and 110 km away from Veszprém and Budapest, respectively. There are no paved roads in the forest, and the area is relatively free from human disturbance although it experiences occasional hunting and logging activity.Human presence around nestsTo quantify human presence at our study sites for 2020 and the reference years we counted the number of humans (motorized vehicles excluded) during each nest check, for 30 s, in the proximity of the nestboxes (for similar approach see Corsini et al. 2019). The number of humans was recorded within a 50-m radius of the nestboxes between 2013 and 2018 (Veszprém, Szentgál), and within a 15-m radius distance in 2019–2020 (all sites). We changed the counting distance in 2019 due to methodological reasons following28. However, to be able to compare the human presence data of 2020 in Veszprém and Szentgál to that recorded in earlier years, in 2020 we performed the counts with both the 15-m and the 50-m radius distances at these two sites. Thus, for 2020 in Veszprém, we have human presence data both for the 50-m and the 15-m radius areas that were used in the forest-city and the between-cities comparisons, respectively (see below). For each year and study site, we used human presence data only from seasonally first broods (defined below), and only from nests where there were either already eggs or nestlings in the nest, resulting in 9.4 ± 3.6 (mean ± SD) observations per brood which is a reliable indicator of human presence28.Birds’ reproductive successWe monitored nestboxes each year at least twice a week from mid-March to early June to record laying and hatching dates, clutch size, hatching success, and the number of nestlings in active great tit nests. We ringed nestlings at day 14–16 post-hatch (i.e. a few days before fledging; hatching day of the first chick = day 1) with a numbered metal ring and also recorded their body mass (to the nearest 0.1 g), tarsus length (to the nearest 0.1 mm and following Svensson’s ‘alternative’ method29) and wing length (from the bend of the wing to the longest primary; to nearest 1 mm). Shortly after the expected date of fledging we carefully examined the nest material to identify and count the number of chicks that died after ringing (due to e.g. starvation, predation) that we included in the calculation of nestling survival (detailed below). The aim of this is to get a more accurate estimate for the number of offspring that could indeed fledge from the nest. The number of broods (nestlings) that suffered partial or complete mortality between ringing and fledging were: n = 6 (13) in Budapest (2019–2020), n = 70 (152) in Veszprém (2013–2020), and n = 25 (83) in the Szentgál forest.From these data we determined clutch size (the maximum number of eggs observed in a brood), hatching success (the proportion of chicks hatched / eggs laid), the number of fledglings, and nestling survival (the proportion of fledged young / hatched chicks). The number of fledglings (i.e. the number of young fledged successfully) was calculated as the number of chicks ringed minus the number of chicks found dead in the nest after the ringing. We involved only seasonally first breeding attempts (as this period overlapped with the lockdown period; detailed at the Statistical analyses), and defined first broods as follows. In our study system breeding great tits are captured on their nests and receive a unique combination of colour rings. Active nests are also routinely equipped with a small, concealed video camera enabling us to reliably identify over 80% of breeding individuals each year30. Thus, relying on this setup, we considered a clutch as a first breeding attempt of a pair if it was initiated before the date of the first egg laid in the earliest second clutch at that site by an individually identifiable (i.e. colour-ringed) female that successfully raised her first clutch (i.e. fledged at least one young) in that year.Air pollution and meteorological conditionsTo describe the levels of traffic-related air pollution (nitrogen dioxide [NO2], nitrogen oxides [NOX] and ozone [O3]) and the meteorological conditions (temperature and precipitation) at the two urban study sites (Veszprém and Budapest), we used data provided by the Hungarian Air Quality Monitoring Network and the Hungarian Meteorological Service, respectively. To better understand which aspect of the anthropause might have affected great tits’ breeding success we thus assessed if the lockdown affected air pollution levels differently at the two urban study sites (compared to 2019), or if weather conditions showed different fluctuations between 2019 and 2020 at the two cities. For more details on the statistical analyses and results, see ESM: Sect. 1.Statistical analysesThe duration of the official restrictions on human mobility (lockdown) spanned between 28 March–4 May in Veszprém (calendar date: 88–125; 01 January = 1) and 28 March–18 May (88–139) in Budapest. During this period people were allowed to leave their homes e.g. to run essential errands including individual sport and recreational activities in public green spaces, although with keeping at least 1.5 m from each other (social distancing). Very importantly, from the point of view of our study, the period of movement restrictions had almost completely overlapped with the seasonally first breeding attempts (from egg-laying to fledging) of great tits at both urban sites. The date of laying the 1st egg (calendar date, mean ± SD) in Veszprém was 94.2 ± 6.4, while in Budapest 97 ± 7.8; the date of chick ringing and measuring in Veszprém was 128 ± 5.3, while in Budapest: 133 ± 9.1. Thus, we decided not to exclude any first broods based on the date in order to maximize our sample size. Similarly, the period from which we involved human presence data was also strongly overlapped with the duration of the movement restrictions in both cities. Therefore, in Veszprém, the calendar dates of the first and the last human count at each nest were 87–108 (median: 100) and 121–142 (median: 132), respectively, while in Budapest 87–128 (median: 98) and 118–155 (median: 128).Human presence around nestsIn accordance with our first objective (forest-city comparisons), we explored if the lockdown in 2020 caused any changes in human disturbance around the great tit nests. To do so, we compared the number of humans (50-m radius of the nests) between 2020 and the 2013–2018 reference period, separately for the forest (Szentgál) and urban (Veszprém) study sites. Note that in 2019, we did not collect data on human presence within a 50-m radius at Veszprém and Szentgál (see above: Data collection), therefore 2019 was not included in the reference period of this analysis. We, however, also compared human presence in Veszprém between 2019 and 2020 using the 15-m radius data which indicates a change that is consistent with the differences found using the 50-m radius data (detailed below).First, we built generalized linear mixed-effects (GLM, lme4 R package) models with Poisson error distribution with the number of humans as the response variable, including year as a fixed factor and nestbox ID as random factor to control for non-independence of the data. Next, we extracted the mean values (least-squares means; package emmeans31) and associated standard errors for each year as estimated by the model. We computed the mean of these yearly mean estimates for the 2013–2018 reference period (i.e. calculated a single overall mean describing the whole reference period) and compared this long-term mean to the mean estimate of 2020 by calculating the linear contrast between them (with the ‘contrast’ function of the emmeans package), and expressed linear contrasts as 2020 minus the reference period.For our second objective (between-cities comparisons), we compared the changes in human disturbance around the nestboxes at the two urban study sites, Veszprém and Budapest, using the number of humans recorded within the 15-m radius of the active nests in 2019 and 2020. We analysed the data from Budapest and Veszprém separately and built generalized linear mixed-effects models with Poisson error distribution with the number of humans (15-m radius of the nests) as the response variable, including year as a fixed factor and nestbox ID as random factor to control for non-independence.Birds’ reproductive successWe used data from 2019 (reference; for justification see below in this section) and 2020 (lockdown). First, we constructed separate linear models to analyse each component of reproductive success (response variables), and for the forest-city and the between-cities comparisons. We used linear models (LM) for clutch size and the number of fledglings, generalized linear models (GLM, with quasi-binomial error distribution) for hatching success and nestling survival, and linear-mixed effects models (LME) for nestling body size traits (body mass, tarsus length, and wing length). Models on nestling body size traits contained nestlings’ age at ringing as a confounding variable (three-level factor: 14, 15, or 16 d of age) and brood ID as a random factor to control for the non-independence of chicks raised in the same brood. Finally, these models always contained a habitat (Veszprém or Szentgál) × year (2019 or 2020) interaction term for forest-city comparisons and a city (Budapest or Veszprém) × year (2019 or 2020) interaction term for between-cities comparisons. We checked assumptions of residuals’ normality and homogeneity of variance by inspecting the residuals plots which were respected for all models.Next, to test the prediction for our first objective (forest-city comparisons), we extracted the mean values (least-squares means) and associated standard errors of each response variable for each habitat × year combination as estimated by the linear model’s interaction. Then, from these estimates, we calculated habitat contrasts, i.e. the mean forest-city difference (forest minus urban) for each year (i.e. for 2019 and 2020), and compared the mean habitat contrast for the 2019 reference year to the mean habitat contrast of 2020; for similar approach see14,32,33.For our second objective (between-cities comparisons), we followed the same procedure as for the forest-city comparisons (detailed above) except that here we compared the differences between cities (Budapest minus Veszprém) in 2020 and 2019. These full models (i.e. for the forest-city and between-cities comparisons) are presented in Table S1–S2 (ESM: Sect. 2).In our study, we chose 2019 as a reference year for multiple reasons. First, because this was temporally the closest year without a lockdown. Second, because for Budapest we have monitoring data only from 2019 to 2020, using 2019 and 2020 in all analyses makes the results more comparable. Finally, although we have monitoring data from a total of eight years (2013–2020) for Szentgál (forest site) and Veszprém (urban site), for the forest-city comparisons we did not include years before 2019 in the reference because we noticed a negative trend in birds’ reproductive success throughout the study years (Fig. S3). This trend was especially apparent in the forest population, and may have reduced the forest-city difference by the end of the study period. Indeed, 2019 and 2020 were amongst the poorest years and resulted in a very similar reproductive success between both years within both habitats (Fig. S3). Because such temporal trend may have confounded the comparisons of 2020 with earlier years, to take account for its effect, and to further justify our approach of using 2019 as the reference year, we conducted additional analyses on the birds’ reproductive success by comparing both 2019 and 2020 (separately) to the 2013–2018 long-term reference period. We predict that if 2019 and 2020 are similarly affected by the decreasing trend in reproductive success than then the differences between the long-term reference period and 2019 and 2020, respectively, should be similar. For the details of these long-term forest-city comparisons see ESM: Sect. 3 and Table S3).Finally, we did not conduct the forest-city comparisons (first objective) between the forest site (Szentgál) and the other urban site (Budapest) for two reasons. First, because unlike to the Szentgál vs. Veszprém setup, we did not have an appropriate forest (control) location which is close to Budapest. Second, because conducting comparisons between the long-term data and 2019 and 2020, respectively (see: ESM Sect. 3) was not possible for Budapest because we do not have similar long-term data for the latter site.Clutches that failed before reaching the incubation stage (due to predation or desertion; i.e. final clutch size was uncertain), suffered complete mortality due to weather (e.g. nestbox fall from the tree due to strong wind), and cases when complete or partial clutch or brood loss may have occurred due to the monitoring process (e.g. when a nestbox was dropped or when complete brood failure occurred soon after capturing a parent on the nest) were excluded from all analyses. In the analyses investigating the number of fledglings, fledging success, and nestling body size traits we involved nests only where at least one nestling hatched, and excluded broods that were involved in a food-supplementation experiment (as treatment group) during the nestling rearing period in 201714. We used the R 4.0.5 software environment for statistical analysis and creating figures34.Ethical statementAll procedures were in accordance with Hungarian laws, and adhered to the ASAB/ABS guidelines for the use of animals in behavioural research and teaching. Permit to the use of animals in this study was provided by the National Scientific Ethical Committee on Animal Experimentation (permit number: PE-06/KTF/997–8/2018, FPH061/1329–5/2018, PE-06/KTF/06,543–7/2020 and FPH061/3036–4/2020). Permits to study protected species and access to protected areas were provided by the Middle Transdanubian Inspectorate for Environmental Protection, Natural Protection and Water Management (permit numbers: 31559/2011, 24,861/2014 and VE-09Z/03,454–8/2018, for working in Veszprém and Szentgál) and the Environment Protection and Nature Conservation Department of the Pest County Bureau of the Hungarian Government and the Mayor’s Office of Budapest (permit numbers: PE-06/KTF/997–8/2018, FPH061/1329–5/2018, PE-06/KTF/06,543–7/2020 and FPH061/3036–4/2020, for working in Budapest). More