1.von Humboldt, A. Ansichten der Natur mit Wissenschaftlichen Erlauterungen (J.G. Cotta, 1808).2.Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).Article
Google Scholar
3.Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).PubMed
PubMed Central
Article
Google Scholar
4.Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article
Google Scholar
6.Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).Article
Google Scholar
7.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).CAS
Article
Google Scholar
9.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc. Natl Acad. Sci. USA 102, 140–145 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 4087–4091 (1993).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).Article
Google Scholar
13.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
14.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Igea, J. & Tanentzap, A. J. Angiosperm speciation cools down in the tropics. Ecol. Lett. 23, 692–700 (2020).PubMed
PubMed Central
Article
Google Scholar
16.Schluter, D. Speciation, ecological opportunity, and latitude (American Society of Naturalists address). Am. Nat. 187, 1–18 (2016).PubMed
Article
PubMed Central
Google Scholar
17.Anderson, K. J. & Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318 (2005).Article
Google Scholar
18.Clarke, A. & Gaston, K. J. Climate, energy and diversity. Proc. R. Soc. B 273, 2257–2266 (2006).PubMed
PubMed Central
Article
Google Scholar
19.Dowle, E. J., Morgan-Richards, M. & Trewick, S. A. Molecular evolution and the latitudinal biodiversity gradient. Heredity 110, 501–510 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).PubMed
Article
Google Scholar
21.Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).Article
Google Scholar
22.Boucher-Lalonde, V. & Currie, D. J. Spatial autocorrelation can generate stronger correlations between range size and climatic niches than the biological signal — a demonstration using bird and mammal range maps. PLoS One 11, e0166243 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
23.Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).PubMed
Article
PubMed Central
Google Scholar
24.Morales‐Barbero, J., Martinez, P. A., Ferrer‐Castán, D. & Olalla‐Tárraga, M. Á. Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography 41, 607–621 (2018).Article
Google Scholar
25.Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444–E3451 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).PubMed
PubMed Central
Article
Google Scholar
27.Testo, W. L., Sessa, E. & Barrington, D. S. The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytol. 222, 604–613 (2019).PubMed
Article
PubMed Central
Google Scholar
28.Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate 12, 1519–1538 (2016).
Google Scholar
29.Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. 160, 7–10 (2003).Article
Google Scholar
30.Aron, P. G. & Poulsen, C. J. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrugi, A. & Antonelli, A.) Ch. 8 (2018).31.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Wallis, G. P., Waters, J. M., Upton, P. & Craw, D. Transverse Alpine speciation driven by glaciation. Trends Ecol. Evol. 31, 916–926 (2016).PubMed
Article
PubMed Central
Google Scholar
33.Luebert, F. & Muller, L. A. H. Effects of mountain formation and uplift on biological diversity. Front. Genet. 6, 54 (2015).34.Huang, S., Meijers, M. J. M., Eyres, A., Mulch, A. & Fritz, S. A. Unravelling the history of biodiversity in mountain ranges through integrating geology and biogeography. J. Biogeogr. 46, 1777–1791 (2019).Article
Google Scholar
35.Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977–994 (2008).Article
Google Scholar
36.Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498–502 (2016).Article
Google Scholar
37.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed
Article
Google Scholar
38.Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).Article
Google Scholar
39.Rowley, D. B. & Garzione, C. N. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35, 463–508 (2007).CAS
Article
Google Scholar
40.Mulch, A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180–191 (2016).CAS
Article
Google Scholar
41.Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427–436 (2011).Article
Google Scholar
42.Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).43.Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on mammal diversification. Science 334, 521–524 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).PubMed
Article
PubMed Central
Google Scholar
45.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).PubMed
PubMed Central
Article
CAS
Google Scholar
46.Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
48.Redding, D. W. & Mooers, A. Ø. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 1670–1678 (2006).PubMed
Article
PubMed Central
Google Scholar
49.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9, e89543 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
50.Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Meyer, A. L. S., Román-Palacios, C. & Wiens, J. J. BAMM gives misleading rate estimates in simulated and empirical datasets. Evolution 72, 2257–2266 (2018).PubMed
Article
PubMed Central
Google Scholar
52.Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).PubMed
PubMed Central
Article
Google Scholar
53.Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019).PubMed
Article
PubMed Central
Google Scholar
54.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article
Google Scholar
55.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Amante, C. & Eakins, B. W. ETOPO1 Arc-minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (NOAA, 2009).57.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
58.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed
PubMed Central
Article
Google Scholar
59.Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar
60.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, v063i18 (2015).
Google Scholar More