1.Irwin AJ, Oliver MJ. Are ocean deserts getting larger? Geophys Res Lett. 2009;36:L18609.Article
Google Scholar
2.McClain CR, Signorini SR, Christian JR. Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res Part II Topical Stud Oceanogr. 2004;51:281–301.CAS
Article
Google Scholar
3.Signorini SR, Franz BA, McClain CR. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front Mar Sci. 2015;2:1–11.Article
Google Scholar
4.Polovina JJ, Howell EA, Abecassis M. Ocean’s least productive waters are expanding. Geophys Res Lett. 2008;35:L03618.Article
Google Scholar
5.Sharma P, Marinov I, Cabre A, Kostadinov T, Singh A. Increasing biomass in the warm oceans: unexpected new insights from SeaWIFS. Geophys Res Lett. 2019;46:3900–10.Article
Google Scholar
6.Flombaum P, Wang W-L, Primeau FW, Martiny AC. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat Geosci. 2020;13:116–20.CAS
Article
Google Scholar
7.Carr M-E, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo KR, et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res Part II Topical Stud Oceanogr. 2006;53:741–70.Article
Google Scholar
8.Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS
PubMed
Article
Google Scholar
9.DeVries T, Primeau F, Deutsch C. The sequestration efficiency of the biological pump. Geophys Res Lett. 2012;39:L13601.Article
CAS
Google Scholar
10.Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn. 2015;45:1253–80.Article
Google Scholar
11.Behrenfeld MJ, O’Malley RT, Boss ES, Westberry TK, Graff JR, Halsey KH, et al. Revaluating ocean warming impacts on global phytoplankton. Nat Clim Change. 2015;6:323–30.Article
Google Scholar
12.Richardson K, Bendtsen J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar Ecol Prog Ser. 2019;620:33–46.CAS
Article
Google Scholar
13.Roshan S, DeVries T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat Commun. 2017;8:1–8.CAS
Article
Google Scholar
14.Marañón E, Holligan PM, Barciela R, González N, Mouriño B, Pazó MJ, et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser. 2001;216:43–56.Article
Google Scholar
15.Pérez V, Fernández E, Marañón E, Morán XAG, Zubkov MV. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Part I Oceanographic Res Pap. 2006;53:1616–34.Article
Google Scholar
16.Teira E, Mouriño B, Marañón E, Pérez V, Pazó MJ, Serret P, et al. Variability of chlorophyll and primary production in the Eastern North Atlantic subtropical gyre: potential factors affecting phytoplankton activity. Deep Sea Res Part I Oceanographic Res Pap. 2005;52:569–88.CAS
Article
Google Scholar
17.Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, et al. Prochlorococcus marinus nov. Gen. Nov. Sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol. 1992;157:297–300.CAS
Article
Google Scholar
18.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS. 2013;110:9824–9.CAS
PubMed
PubMed Central
Article
Google Scholar
19.Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.CAS
PubMed
PubMed Central
Article
Google Scholar
20.Li WK. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.CAS
Article
Google Scholar
21.Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical Northeast Atlantic Ocean. ISME J. 2010;4:1180–92.CAS
PubMed
Article
Google Scholar
22.Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:1–14.Article
CAS
Google Scholar
23.Liu K, Suzuki K, Chen B, Liu H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical Northwest Pacific? Limnol Oceanogr. 2020;66:639–51.Article
CAS
Google Scholar
24.D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, et al. Subseafloor sedimentary life in the South Pacific gyre. PNAS. 2009;106:11651–6.PubMed
PubMed Central
Article
Google Scholar
25.Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.Article
Google Scholar
26.Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J, et al. Optical properties of the “clearest” natural waters. Limnol Oceanogr. 2007;52:217–29.CAS
Article
Google Scholar
27.Halm H, Lam P, Ferdelman TG, Lavik G, Dittmar T, LaRoche J, et al. Heterotrophic organisms dominate nitrogen fixation in the south pacific gyre. ISME J. 2012;6:1238–49.CAS
PubMed
Article
Google Scholar
28.Raimbault P, Garcia N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences. 2008;5:323–38.CAS
Article
Google Scholar
29.Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cyc. 2018;32:1028–44.CAS
Article
Google Scholar
30.Reintjes G, Tegetmeyer HE, Bürgisser M, Orlić S, Tews I, Zubkov M, et al. On-site analysis of bacterial communities of the ultraoligotrophic South Pacific gyre. Appl Environ Microbiol. 2019;85:e00184–19.CAS
PubMed
PubMed Central
Article
Google Scholar
31.Zielinski O, Henkel R, Voß D, Ferdelman TG. Physical oceanography during Sonne cruise SO245 (Ultrapac). PANGAEA. 2018. https://doi.org/10.1594/PANGAEA.890394.32.Ferdelman TG, Klockgether G, Downes P, Lavik G. Nutrient data from CTD Nisken bottles from Sonne expedition SO-245 “Ultrapac”. PANGAEA. 2019. https://doi.org/10.1594/PANGAEA.899228.33.Arar EJ, Collins GB. Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence: U.S. Environmental Protection Agency, Washington, DC; 1997. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=309417.34.Welschmeyer N, Naughton S. Improved chlorophyll a analysis: single fluorometric measurement with no acidification. Lake Reserv Manag. 1994;9:123.
Google Scholar
35.Osterholz H, Kilgour D, Storey DS, Lavik G, Ferdelman T, Niggemann J, et al. Accumulation of DOC in the South Pacific subtropical gyre from a molecular perspective. Mar Chem. 2021;231:103955.CAS
Article
Google Scholar
36.Voß D, Henkel R, Wollschläger J, Zielinski O. Hyperspectral underwater light field measured during the cruise SO245 with R/V Sonne. PANGAEA. 2020. https://doi.org/10.1594/PANGAEA.911558.37.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:1–7.Article
CAS
Google Scholar
38.Marra J. Net and gross productivity: weighing in with 14C. Aquat Microb Ecol. 2009;56:123–31.Article
Google Scholar
39.Ribeiro CG, Marie D, Santos ALD, Brandini FP, Vaulot D. Estimating microbial populations by flow cytometry: comparison between instruments. Limnol Oceanogr Methods. 2016;14:750–8.Article
Google Scholar
40.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS
PubMed
PubMed Central
Article
Google Scholar
41.West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, et al. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16 S rRNA-targeted oligonucleotides. Microbiology. 2001;147:1731–44.CAS
PubMed
Article
Google Scholar
42.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS
PubMed
Article
Google Scholar
43.Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr. 1992;37:1434–46.CAS
Article
Google Scholar
44.Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:AEM00493–19.Article
Google Scholar
45.Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16 S rRNA gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems. 2016;1:e00009–15.PubMed
Article
Google Scholar
46.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS
PubMed
PubMed Central
Article
Google Scholar
47.Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems. 2017;2:e00127–16.CAS
PubMed
PubMed Central
Article
Google Scholar
48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.CAS
PubMed
PubMed Central
Article
Google Scholar
49.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DW. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS
PubMed
Article
Google Scholar
50.Zhang J, Kobert K, Flouri T, Stamatakis A. Pear: a fast and accurate Illumina paired-end read merger. Bioinformatics. 2013;30:614–20.51.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed
PubMed Central
Article
Google Scholar
52.Kopylova E, Noé L, Touzet H. Sortmerna: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS
PubMed
Article
Google Scholar
53.Mercier C, Boyer F, Bonin A, Coissac E (eds). Sumatra and Sumaclust: fast and exact comparison and clustering of sequences. SeqBio 2013 Workshop 2013: (abstract).54.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS
PubMed
PubMed Central
Article
Google Scholar
55.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed
PubMed Central
Article
CAS
Google Scholar
56.Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: A reference database of the plastidial 16 S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molec Ecol Res. 2015;15:1435–45.CAS
Article
Google Scholar
57.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;4:D597–604.Article
CAS
Google Scholar
58.Del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.PubMed
PubMed Central
Article
CAS
Google Scholar
59.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Gruber-Vodicka HR, Seah BK, Pruesse E. Phyloflash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. Msystems. 2020;5:e00920.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS. 2016;113:E3365–74.CAS
PubMed
PubMed Central
Article
Google Scholar
62.Oggerin de Orube M, Fuchs BM. Personal communication: Unpublished shotgun metagenomes collected from in situ pump samples during R/V Sonne expedition SO245. Bremen, Germany. 2021.63.Schlitzer R. Ocean Data View. Bremerhaven, Germany. 2021. https://odv.awi.de.64.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria. 2017. https://www.R-project.org/.65.Wickham H. Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. 2016.66.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.CAS
PubMed
PubMed Central
Article
Google Scholar
67.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package: community ecology package. R package version 2.5–7. 2019. https://CRAN.R-project.org/package=vegan.68.Chaigneau A, Pizarro O. Surface circulation and fronts of the South Pacific Ocean, east of 120°W. Geophys Res Lett. 2005;32:L08605.69.Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16 S rRNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS
PubMed
Article
Google Scholar
70.Shi XL, Lepère C, Scanlan DJ, Vaulot D. Plastid 16 s rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLOS ONE. 2011;6:e18979.CAS
PubMed
PubMed Central
Article
Google Scholar
71.Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Le Gall F, et al. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a pcr biased towards marine algal plastids. Aquat Micro Ecol. 2006;43:79–93.Article
Google Scholar
72.Raes EJ, Bodrossy L, Kamp JVD, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. PNAS. 2018;115:E8266–75.CAS
PubMed
PubMed Central
Article
Google Scholar
73.Campbell L, Liu H, Nolla HA, Vaulot D. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991-4 ENSO event. Deep Sea Res Part I Oceanogr Res Pap. 1997;44:167–92.CAS
Article
Google Scholar
74.Viviani DA, Church MJ. Decoupling between bacterial production and primary production over multiple time scales in the North Pacific subtropical gyre. Deep Sea Res Part I Oceanogr Res Pap. 2017;121:132–42.CAS
Article
Google Scholar
75.Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the south east pacific ocean. Limnol Oceanogr. 2016;61:806–24.Article
Google Scholar
76.Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLOS ONE. 2009;4:e7657.PubMed
PubMed Central
Article
CAS
Google Scholar
77.Kirkham AR, Lepere C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.CAS
PubMed
PubMed Central
Article
Google Scholar
78.Lepère C, Vaulot D, Scanlan DJ. Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on earth. Environ Microbiol. 2009;11:3105–17.PubMed
Article
CAS
Google Scholar
79.Bender ML, Jönsson B. Is seasonal net community production in the South Pacific subtropical gyre anomalously low? Geophys Res Lett. 2016;43:9757–63.Article
Google Scholar
80.Montégut CDB, Madec G, Fischer AS, Lazar A, Iudicone D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans. 2004;109:C12003.Article
Google Scholar
81.Liu Q, Lu Y. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific. Adv Atmospher Sci. 2016;33:442–51.Article
Google Scholar
82.Sato K, Suga T. Structure and modification of the South Pacific eastern subtropical mode water. J Phys Oceanogr. 2009;39:1700–14.Article
Google Scholar
83.Jung J, Furutani H, Uematsu M. Atmospheric inorganic nitrogen in marine aerosol and precipitation and its deposition to the north and south pacific oceans. J Atmospher Chem. 2011;68:157–81.CAS
Article
Google Scholar
84.Pavia FJ, Anderson RF, Winckler G, Fleisher MQ. Atmospheric dust inputs, iron cycling, and biogeochemical connections in the South Pacific Ocean from thorium isotopes. Glob Biogeochem Cycles. 2020;34:e2020GB006562.CAS
Google Scholar
85.Bonnet S, Guieu C, Bruyant F, Prášil O, Van Wambeke F, Raimbault P, et al. Nutrient limitation of primary productivity in the Southeast Pacific (Biosope Cruise). Biogeosciences. 2008;5:215–25.CAS
Article
Google Scholar
86.Mahaffey C, Björkman KM, Karl DM. Phytoplankton response to deep seawater nutrient addition in the North Pacific subtropical gyre. Mar Ecol Prog Ser. 2012;460:13–34.CAS
Article
Google Scholar
87.Grob C, Jardillier L, Hartmann M, Ostrowski M, Zubkov MV, Scanlan DJ. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition. Environ Microbiol Rep. 2015;7:211–8.CAS
PubMed
Article
Google Scholar
88.Vaulot D, Marie D, Olson RJ, Chisholm SW. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science. 1995;268:1480–2.CAS
PubMed
Article
Google Scholar
89.Grob C, Hartmann M, Zubkov MV, Scanlan DJ. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environ Microbiol. 2011;13:3266–74.PubMed
Article
Google Scholar
90.Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651.CAS
PubMed
Article
Google Scholar
91.Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003;69:1299–304.CAS
PubMed
PubMed Central
Article
Google Scholar
92.Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 2020;14:1065–73.PubMed
PubMed Central
Article
CAS
Google Scholar
93.Timmermans K, Van der Wagt B, Veldhuis M, Maatman A, De Baar H. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res. 2005;53:109–20.CAS
Article
Google Scholar
94.Vaulot D, Eikrem W, Viprey M, Moreau H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol Rev. 2008;32:795–820.CAS
PubMed
Article
Google Scholar
95.Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–7.CAS
PubMed
Article
Google Scholar
96.Le Gall F, Rigaut-Jalabert F, Marie D, Garczarek L, Viprey M, Gobet A, et al. Picoplankton diversity in the South-east Pacific Ocean from cultures. Biogeosciences. 2008;5:203–14.Article
Google Scholar
97.NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. 2018. https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3M/CHL/2018/ Accessed 2019/08/01. More