More stories

  • in

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    1.Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012;109:35–47.Article 

    Google Scholar 
    2.Behm JE, Kiers ET. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol. 2014;102:315–27.Article 

    Google Scholar 
    3.Relyea RA. Phenotypic plasticity in the interactions and evolution of species. Ecology. 2005;86:321–6.Article 

    Google Scholar 
    4.Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci. 2010;1206:35–55.PubMed 
    Article 

    Google Scholar 
    5.Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15:684–92.CAS 
    Article 

    Google Scholar 
    6.Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol. 2008;14:1125–40.Article 

    Google Scholar 
    7.Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5:537–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Chevin LM, Gallet R, Gomulkiewicz R, Holt RD, Fellous S Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B Biol Sci. 2013;368:20120089.9.Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett. 2014;17:1351–64.PubMed 
    Article 

    Google Scholar 
    10.Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 2009;101:823–32.PubMed 
    Article 

    Google Scholar 
    11.Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. Microbial bet-hedging: the power of being different. Curr Opin Microbiol. 2015;25:67–72.PubMed 
    Article 

    Google Scholar 
    12.Rong M, Zheng X, Ye M, Bai J, Xie X, Jin Y, et al. Phenotypic plasticity of staphylococcus aureus in liquid medium containing vancomycin. Front Microbiol. 2019;10:1–11.Article 

    Google Scholar 
    13.Schmidt K, van Oosterhout C, Collins S, Mock T. The role of phenotypic plasticity and epigenetics in experimental evolution with phytoplankton. Perspect Phycol. 2016;3:29–36.
    Google Scholar 
    14.Graham EB, Crump AR, Kennedy DW, Arntzen E, Fansler S, Purvine SO, et al. Multi’omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Sci Total Environ. 2018;642:742–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Frac M, Hannula SE, Belka M, Jȩdryczka M. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:1–9.Article 

    Google Scholar 
    17.Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–59.Article 

    Google Scholar 
    18.Kwon MJ, Haraguchi A, Kang H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biol Biochem. 2013;60:33–44.CAS 
    Article 

    Google Scholar 
    19.Sardans J, Peñuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem. 2005;37:455–61.CAS 
    Article 

    Google Scholar 
    20.Hsu JP, Chen TH, Wang HH. A kinetic study of the growth of a Rhizopus colony. J Theor Biol. 1989;140:445–51.Article 

    Google Scholar 
    21.Baath E. Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biol Biochem. 2001;33:2011–8.CAS 
    Article 

    Google Scholar 
    22.Querejeta JI. Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. Mycorrhizal mediation of soil. Elsevier; 2017. p. 299–317.23.Tisdall JM. Fungal hyphae and structural stability of soil. Aust J Soil Res. 1991;29:729–43.Article 

    Google Scholar 
    24.Augé RM, Stodola AJW, Tims JE, Saxton AM. Moisture retention properties of a mycorrhizal soil. Plant Soil. 2001;230:87–97.Article 

    Google Scholar 
    25.Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 2010;8:e1000357.26.Rodriguez C, Dominguez A. The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol. 1984;30:605–12.CAS 
    Article 

    Google Scholar 
    27.De Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, et al. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang. 2012;2:276–80.Article 

    Google Scholar 
    28.Xiong J, Peng F, Sun H, Xue X, Chu H. Divergent responses of soil fungi functional groups to short-term warming. Microb Ecol. 2014;68:708–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Chevin LM, Collins S, Lefèvre F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol. 2013;27:967–79.Article 

    Google Scholar 
    30.Beier S, Rivers AR, Moran MA, Obernosterer I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 2015;9:1141–51.PubMed 
    Article 

    Google Scholar 
    31.Hall EK, Singer GA, Kainz MJ, Lennon JT. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol. 2010;24:898–908.Article 

    Google Scholar 
    32.Lennon JT, Aanderud ZT, Lehmkuhl BK Jr, Mapping DRS. the niche space of soil microorganisms using taxonomy and traits. Ecology. 2016;93:1867–79.Article 

    Google Scholar 
    33.Glassman SI, Weihe C, Li J, Albright M, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Bárcenas‐Moreno G, Gómez‐Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    35.Geisseler D, Horwath WR, Scow KM. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia. 2011;54:71–78.Article 

    Google Scholar 
    36.Allison SD, Romero-Olivares AL, Lu L, Taylor JW, Treseder KK. Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta. Fungal Ecol. 2018;35:78–86.Article 

    Google Scholar 
    37.Cross D, Kenerley CM. Modelling the growth of Trichoderma virens with limited sampling of digital images. J Appl Microbiol. 2004;97:486–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Ramin KI, Allison SD. Bacterial tradeoffs in growth rate and extracellular enzymes. Front Microbiol. 2019;10:1–10.Article 

    Google Scholar 
    39.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.PubMed 
    Article 

    Google Scholar 
    41.Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, et al. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J. 2016;10:109–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.A’Bear AD, Jones TH, Kandeler E, Boddy L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem. 2014;70:151–8.Article 
    CAS 

    Google Scholar 
    43.Alster CJ, German DP, Lu Y, Allison SD. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem. 2013;64:68–79.CAS 
    Article 

    Google Scholar 
    44.Alster CJ, Weller ZD, von Fischer JC. A meta‐analysis of temperature sensitivity as a microbial trait. Glob Chang Biol. 2018;24:4211–4224.45.Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, et al. Who is who in litter decomposition Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012;6:1749–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Luo L, Meng H, Gu JD. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J Environ Manage. 2017;197:539–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Haas L. Conquests and historical identities in California, 1769–1936. 1995. University of California Press.48.KIZH Nation. KIZH NATION (Pronounced Keech), Gabrieleño Band Of Mission Indians. https://gabrielenoindians.org/. Accessed 23 Sep 2020.49.Kimball S, Goulden ML, Suding KN, Parker S. Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol Appl. 2014;24:1390–404.PubMed 
    Article 

    Google Scholar 
    50.Potts DL, Suding KN, Winston GC, Rocha AV, Goulden ML. Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland. J Arid Environ. 2012;81:59–66.Article 

    Google Scholar 
    51.Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.PubMed 
    Article 

    Google Scholar 
    52.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). Pcr protocols: a guide to methods and applications. 1990. Academic Press, Inc., San Diego, California, USA; London, England, Uk., pp 315–22.53.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Matulich KL, Weihe C, Allison SD, Amend AS, Berlemont R, Goulden ML, et al. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J. 2015;9:2477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Connor EW, Sandy M, Hawkes CV. Microbial tools in agriculture require an ecological context: Stress-dependent non-additive symbiont interactions. Agron J. 2017;109:917–26.Article 

    Google Scholar 
    56.Sinsabaugh RL, Carreiro MM, Alvarez S. Enzyme and microbial dynamics of litter decomposition. Enzymes in the Environment activity ecology and applications. Marcel Dekker, New York, Basel 2002; 249–65.57.Wohl DL, McArthur JV. Aquatic actinomycete-fungal interactions and their effects on organic matter decomposition: a microcosm stu in the dy. Microb Ecol. 2001;42:446–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Alster CJ, Allison SD, Glassman SI, Martiny A, Treseder K. Exploring trait trade-offs for fungal decomposers in a Southern California grassland. Front Microbiol. 2021;12:665.Article 

    Google Scholar 
    59.Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology. 2013;94:714–25.PubMed 
    Article 

    Google Scholar 
    60.Shen Q, Kirschbaum MUF, Hedley MJ, Arbestain MC. Testing an alternative method for estimating the length of fungal hyphae using photomicrography and image processing. PLoS One. 2016;11:1–12.
    Google Scholar 
    61.Killham K. Soil Microbiology and Biochemistry. By EA PAUL and FE CLARK. 23×15 cm. Pp. xiii+340 with 108 text-figures. San Diego, CA, USA: Academic Press: 2nd Edition, 1996. Price h/b: £29.95, ISBN 0 12 546806 7. New Phytol. 1998;138: 563–6.62.Sylvia DM 3 Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. Methods in microbiology. 1992. Elsevier, pp 53–65.63.Bakken LR, Olsen RA. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol. 1983;45:1188–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. 2020. R Foundation for Statistical Computing, Vienna, Austria.65.Lenth RV. Response-surface methods in R, using RSM. J Stat Softw. 2009;32:1–17.Article 

    Google Scholar 
    66.Khuri AI. A general overview of response surface methodology. Biometrics Biostat Int J. 2017;5:87–93.
    Google Scholar 
    67.Aydar AY. Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes. InTech; 2018. p. 157–69.68.Brasil JL, Martins LC, Ev RR, Dupont J, Dias SLP, Sales JAA, et al. Factorial design for optimization of flow-injection preconcentration procedure for copper(II) determination in natural waters, using 2-aminomethylpyridine grafted silica gel as adsorbent and spectrophotometric detection. Int J Environ Anal Chem. 2005;85:475–91.CAS 
    Article 

    Google Scholar 
    69.Montgomery DC. Design and analysis of experiments, ninth. 2017. Wiley.70.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package version 133, 2019. https://CRAN.R-project.org/package=emmeans71.Pagel M. Inferring historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 2003;57:717–45.Article 

    Google Scholar 
    73.Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.Article 

    Google Scholar 
    74.Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.García FC, Bestion E, Warfield R, Yvon-Durochera G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA. 2018;115:10989–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Pold G, DeAngelis KM. Up against the wall: the effects of climate warming on soil microbial diversity and the potential for feedbacks to the carbon cycle. Diversity. 2013;5:409–25.CAS 
    Article 

    Google Scholar 
    78.Nielsen UN, Wall DH, Six J. Soil biodiversity and the environment. Annu Rev Environ Resour. 2015;40:63–90.Article 

    Google Scholar 
    79.Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos. 2000;90:279–94.Article 

    Google Scholar 
    80.Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C, Verdú M. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.PubMed 
    Article 

    Google Scholar 
    81.Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett. 2010;13:1085–93.PubMed 
    Article 

    Google Scholar 
    82.Morrison EW, Pringle A, Van Diepen LTA, Frey SD. Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition. Soil Biol Biochem. 2018;125:75–85.CAS 
    Article 

    Google Scholar 
    83.Romero-Olivares AL, Meléndrez-Carballo G, Lago-Lestón A. Soil metatranscriptomes under long-term experimental warming and drying: fungi allocate resources to cell metabolic maintenance rather than decay. Front Microbiol. 2019;10:1–9.Article 

    Google Scholar 
    84.Malik AA, Martiny JBH, Brodie EL, Allison SD, Martiny AC. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:2236–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:4.Article 

    Google Scholar 
    86.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:1–9.Article 

    Google Scholar 
    87.Rafiq M, Hassan N, Rehman M, Hasan F. Adaptation mechanisms and applications of psychrophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds). Fungi in extreme environments: ecological role and biotechnological significance. 2019. Springer International Publishing, Cham, pp 157–74.88.Alster CJ, Baas P, Wallenstein MD, Johnson NG, von Fischer JC. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front Microbiol 2016;7:1821.89.Angilletta Jr MJ, Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. 2009. Oxford University Press.90.Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. Soil Enzymology. 2011. Springer Berlin/Heidelberg, pp 245–58.91.Allison SD, Weintraub MN, Gartner TB, Waldrop MP. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. Soil Enzymology. 2011. Springer, pp 229–43. More

  • in

    A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years

    1.Solomon, S. et al. (eds.) IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).2.Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011 (2011).Article 

    Google Scholar 
    3.Timmermann, A. et al. Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Climate 27, 1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1 (2013).ADS 
    Article 

    Google Scholar 
    4.Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1 (2002).ADS 
    Article 

    Google Scholar 
    5.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978, https://doi.org/10.1002/joc.1276 (2005).ADS 
    Article 

    Google Scholar 
    6.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).8.Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).Article 

    Google Scholar 
    9.Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci Data 6, 1–16, https://doi.org/10.1038/s41597-019-0277-1 (2019).Article 

    Google Scholar 
    11.Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Scientific Data 7, 236, https://doi.org/10.1038/s41597-020-0552-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate of the Past 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020 (2020).ADS 
    Article 

    Google Scholar 
    13.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).Article 

    Google Scholar 
    14.O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691 (2012).15.Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. 108, 8171, https://doi.org/10.1029/2002JD002559 (2003).Article 

    Google Scholar 
    16.Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Reviews 29, 43–55, https://doi.org/10.1016/j.quascirev.2009.10.011 (2010).ADS 
    Article 

    Google Scholar 
    17.Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017 (2017).Article 

    Google Scholar 
    18.Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 2014GL061957, https://doi.org/10.1002/2014GL061957 (2015).Article 

    Google Scholar 
    19.Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q (1991).ADS 
    Article 

    Google Scholar 
    20.Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016 (2016).Article 

    Google Scholar 
    21.Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_c (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450–487, https://doi.org/10.1002/2014JB011176 (2014).ADS 
    Article 

    Google Scholar 
    22.Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NOAA NOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M (2009).Article 

    Google Scholar 
    23.Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).ADS 
    Article 

    Google Scholar 
    24.Araya-Melo, P. A., Crucifix, M. & Bounceur, N. Global sensitivity analysis of the Indian monsoon during the Pleistocene. Clim. Past 11, 45–61, https://doi.org/10.5194/cp-11-45-2015 (2015).Article 

    Google Scholar 
    25.Lord, N. S. et al. Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017 (2017).Article 

    Google Scholar 
    26.Hoyt, D. V. Percent of Possible Sunshine and the Total Cloud Cover. Monthly Weather Review 105, 648–652, 10.1175/1520-0493(1977)1052.0.CO;2 (1977).27.Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367 (1978).ADS 
    Article 

    Google Scholar 
    28.Krapp, M. Terrestrial climate of the last 800,000 years, Open Science Framework, https://doi.org/10.17605/OSF.IO/8N43X (2021).29.Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature Communications 7, 11967, https://doi.org/10.1038/ncomms11967 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Schulzweida, U. CDO User Guide. Zenodo https://doi.org/10.5281/zenodo.3539275 (2019).31.Kőster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522, https://doi.org/10.1093/bioinformatics/bts480 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).33.Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, 90–95, https://doi.org/10.1109/MCSE.2007.55 (2007).ADS 
    Article 

    Google Scholar 
    34.Met Office. Cartopy: a cartographic python library with a Matplotlib interface (2010–2015).35.Flyamer, I. et al. Phlya/adjustText: 0.8 beta. Zenodo https://doi.org/10.5281/zenodo.3924114 (2020).36.Whitaker, J. et al. Unidata/netcdf4-python: version 1.5.5 release. Zenodo https://doi.org/10.5281/zenodo.4308773 (2020).37.Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Reback, J. et al. pandas-dev/pandas: Pandas 1.0.3. Zenodo https://doi.org/10.5281/zenodo.3715232 (2020).39.McKinney, W. Data Structures for Statistical Computing in Python. In Walt, S. v. d. & Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a (2010).40.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Walt, Svd et al. scikit-image: image processing in Python. PeerJ 2, e453, https://doi.org/10.7717/peerj.453 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.da Costa-Luis, C. et al. tqdm: A fast, Extensible Progress Bar for Python and CLI. Zenodo https://doi.org/10.5281/zenodo.4531988 (2021).43.Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 2015RG000482, https://doi.org/10.1002/2015RG000482 (2016).44.Schaefer, G. et al. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Marine Micropaleontology 54, 191–212, https://doi.org/10.1016/j.marmicro.2004.12.001 (2005).ADS 
    Article 

    Google Scholar 
    45.Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography and Paleoclimatology 4, 353–412, https://doi.org/10.1029/PA004i004p00353 (1989).Article 

    Google Scholar 
    46.Nürnberg, D., Müller, A. & Schneider, R. R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K’, oxygen isotopes, and foraminiferal transfer function. Paleoceanography and Paleoclimatology 15, 124–134, https://doi.org/10.1029/1999PA000370 (2000).Article 

    Google Scholar 
    47.Horikawa, K., Murayama, M., Minagawa, M., Kato, Y. & Sagawa, T. Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quaternary Research 73, 573–582, https://doi.org/10.1016/j.yqres.2010.01.001 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Martrat, B. et al. Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 317, 502–507, https://doi.org/10.1126/science.1139994 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Rincón-Martínez, D. & Leduc, G. Sea surface temperature calculated from alkenones for the last 285 ka with high-reolution Holocene of sediment core MD02-2529, Panama Basin. PANGAEA https://doi.org/10.1594/PANGAEA.777473 (2012).50.Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F. & Naughton, F. Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability. Paleoceanography 26, PA1204, https://doi.org/10.1029/2010PA001927 (2011).ADS 
    Article 

    Google Scholar 
    51.Hayward, B. W. et al. Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years. Marine Micropaleontology 82–83, 13–27, https://doi.org/10.1016/j.marmicro.2011.10.003 (2012).ADS 
    Article 

    Google Scholar 
    52.Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters 37, https://doi.org/10.1029/2010GL043191 (2010).53.Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710, https://doi.org/10.1038/385707a0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Rostek, F. et al. Reconstructing sea surface temperature and salinity using $delta{18}O$ and alkenone records. Nature 364, 319, https://doi.org/10.1038/364319a0 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Caley, T. et al. High-latitude obliquity as a dominant forcing in the Agulhas current system. Clim. Past 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011 (2011).Article 

    Google Scholar 
    56.Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation. Science 301, 948–952, https://doi.org/10.1126/science.1084451 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Garidel–Thoron, T. d. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, https://doi.org/10.1029/2006PA001269 (2005).58.Liu, Z., Altabet, M. A. & Herbert, T. D. Glacial-interglacial modulation of eastern tropical North Pacific denitrification over the last 1.8-Myr. Geophysical Research Letters 32, https://doi.org/10.1029/2005GL024439 (2005).59.Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quaternary Science Reviews 26, 405–414, https://doi.org/10.1016/j.quascirev.2006.07.014 (2007).ADS 
    Article 

    Google Scholar 
    60.Herbert, T. D. Collapse of the California Current During Glacial Maxima Linked to Climate Change on Land. Science 293, 71–76, https://doi.org/10.1126/science.1059209 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Schefuβ, E., Damsté, J. S. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition. Paleoceanography 19, https://doi.org/10.1029/2003PA000892 (2004).62.Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874, https://doi.org/10.1130/G25733A.1 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    63.McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C. & Lloyd, J. M. Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K’ index and South African climate. Quaternary Science Reviews 24, 1559–1572, https://doi.org/10.1016/j.quascirev.2004.06.024 (2005).ADS 
    Article 

    Google Scholar 
    64.Martínez–Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, https://doi.org/10.1029/2008PA001657 (2009).65.Crundwell, M., Scott, G., Naish, T. & Carter, L. Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202–229, https://doi.org/10.1016/j.palaeo.2007.08.023 (2008).ADS 
    Article 

    Google Scholar 
    66.Hayward, B. W. et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific. Global and Planetary Change 63, 309–316, https://doi.org/10.1016/j.gloplacha.2008.07.003 (2008).ADS 
    Article 

    Google Scholar 
    67.Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters 309, 10–20, https://doi.org/10.1016/j.epsl.2011.04.016 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical Ocean Temperatures Over the Past 3.5 Million Years. Science 328, 1530–1534, https://doi.org/10.1126/science.1185435 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Nürnberg, D. & Groeneveld, J. Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal Mg/Ca (ODP Site 1172 A). Geochemistry, Geophysics, Geosystems 7, https://doi.org/10.1029/2005GC000984 (2006).70.Dyez, K. A., Ravelo, A. C. & Mix, A. C. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature. Paleoceanography 31, 2015PA002873, https://doi.org/10.1002/2015PA002873 (2016).Article 

    Google Scholar 
    71.Alonso-Garcia, M. et al. Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400ka). Quaternary Science Reviews 30, 3234–3247, https://doi.org/10.1016/j.quascirev.2011.08.005 (2011).ADS 
    Article 

    Google Scholar 
    72.Medina-Elizalde, M. & W Lea, D. The Mid-Pleistocene Transition in the Tropical Pacific. Science 310, 1009–12, https://doi.org/10.1126/science.1115933 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Liu, Z. Pleistocene climate evolution in the eastern Pacific and implications for the orbital theory of climate change. Ph.D., Brown University, United States – Rhode Island (2004).74.Dyez, K. A. & Ravelo, A. C. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geological Society of America 41, 23–26, https://doi.org/10.1130/G33425.1 (2013).CAS 
    Article 

    Google Scholar 
    75.Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue. Science 328, 1550–1553, https://doi.org/10.1126/science.1184480 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218, https://doi.org/10.1029/2008PA001669 (2009).ADS 
    Article 

    Google Scholar 
    77.Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochemistry Geophysics Geosystems 7, https://doi.org/10.1029/2005GC000957 (2006).78.Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, https://doi.org/10.1029/2012PA002317 (2012).79.Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. The Geological Society of America 45, 1023–1026, https://doi.org/10.1130/G39457.1 (2017).Article 

    Google Scholar 
    80.Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881, https://doi.org/10.1126/science.aam5825 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374, https://doi.org/10.1038/srep24374 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Guo, Z. T., Berger, A., Yin, Q. Z. & Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 5, 21–31, https://doi.org/10.5194/cp-5-21-2009 (2009).Article 

    Google Scholar 
    83.Carolin, S. A. et al. Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters 439, 182–193, https://doi.org/10.1016/j.epsl.2016.01.028 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Waldmann, N., Torfstein, A. & Stein, M. Northward intrusions of low- and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38, 567–570, https://doi.org/10.1130/G30654.1 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Landwehr, J. M., Sharp, W. D., Coplen, T. B., Ludwig, K. R. & Winograd, I. J. The Chronology for the δ18O Record from Devils Hole, Nevada, Extended Into the Mid-Holocene. Tech. Rep., US Geological Survey (2011).86.Stoykova, D. A., Shopov, Y. Y., Garbeva, D., Tsankov, L. T. & Yonge, C. J. Origin of the climatic cycles from orbital to sub-annual scales. Journal of Atmospheric and Solar-Terrestrial Physics 70, 293–302, https://doi.org/10.1016/j.jastp.2007.08.018 (2008).ADS 
    Article 

    Google Scholar 
    87.Jouzel, J. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317, 793–796, https://doi.org/10.1126/science.1141038 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, https://doi.org/10.1029/2011GL050202 (2012).89.Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431–3457, https://doi.org/10.1016/j.quascirev.2006.10.002 (2006).ADS 
    Article 

    Google Scholar 
    90.Melles, M. et al. 2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia. Science 337, 315–320, https://doi.org/10.1126/science.1222135 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, 2647–2662, https://doi.org/10.1016/j.quascirev.2010.06.014 (2010).ADS 
    Article 

    Google Scholar 
    92.Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    93.Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646, https://doi.org/10.1038/nature18591 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002 (2006).ADS 
    Article 

    Google Scholar 
    95.Vaks, A. et al. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384–399, https://doi.org/10.1016/j.epsl.2006.07.009 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    96.K. Thomas, E. et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters 455, https://doi.org/10.1016/j.epsl.2016.09.044 (2016).97.Hao, Q. et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393–396, https://doi.org/10.1038/nature11493 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Priority effects in microbiome assembly

    1.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Naturalist 111, 1119–1144 (1977).Article 

    Google Scholar 
    2.Shulman, M. J. et al. Priority effects in the recruitment of juvenile coral reef fishes. Ecology 64, 1508–1513 (1983).Article 

    Google Scholar 
    3.Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).Article 

    Google Scholar 
    4.Grman, E. & Suding, K. N. Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor. Ecol. 18, 664–670 (2010).Article 

    Google Scholar 
    5.Almany, G. R. Priority effects in coral reef fish communities. Ecology 84, 1920–1935 (2003).Article 

    Google Scholar 
    6.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015). This study defines mechanisms by which early-arriving species affect late-arriving species (niche pre-emption and niche modification) and describes how and when they are expected to influence community assembly outcomes.Article 

    Google Scholar 
    7.Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed 
    Article 

    Google Scholar 
    8.Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).PubMed 
    Article 

    Google Scholar 
    9.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed 
    Article 

    Google Scholar 
    11.Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013). Uncovered the molecular mechanism underlying priority effects between strains of Bacteroides in the mouse gut microbiota.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Martínez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018). Inoculated mice with donor communities at different time points; the mature communities most resembled whichever donor community was inoculated first.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Cheong, J. Z. A. et al. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J. https://doi.org/10.1038/s41396-021-00901-5 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol. Evol. 3, 1445–1454 (2019). This study experimentally manipulated the assembly sequence of strains in a complex synthetic community in the plant phyllosphere.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. 4, 1510–1521 (2020).PubMed 
    Article 

    Google Scholar 
    18.Peay, K. G., Belisle, M. & Fukami, T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. 279, 749–758 (2012).PubMed 

    Google Scholar 
    19.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015). Showed that priority effects between commensal and pathogenic bacteria in the plant rhizosphere can be predicted based on overlap in resource consumption in vitro.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Kennedy, P. G., Peay, K. G. & Bruns, T. D. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90, 2098–2107 (2009).PubMed 
    Article 

    Google Scholar 
    21.Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed 
    Article 

    Google Scholar 
    22.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Svoboda, P., Lindström, E. S., Ahmed Osman, O. & Langenheder, S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 12, 644–646 (2018). Demonstrated that the strength of priority effects in an aquatic community was a product of how well each community was adapted to the habitat and the amount of time between their dispersal events.PubMed 
    Article 

    Google Scholar 
    24.Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Long, Z. T. & Karel, I. Resource specialization determines whether history influences community structure. Oikos 96, 62–69 (2002).Article 

    Google Scholar 
    27.Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93, 1164–1172 (2012).PubMed 
    Article 

    Google Scholar 
    28.Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682–13 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra81 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).CAS 
    Article 

    Google Scholar 
    31.Tucker, C. M. & Fukami, T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc. Biol. Sci. 281, 20132637 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Poza-Carrion, C., Suslow, T. & Lindow, S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103, 341–351 (2013).PubMed 
    Article 

    Google Scholar 
    33.Monier, J.-M. & Lindow, S. E. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49, 343–352 (2005).PubMed 
    Article 

    Google Scholar 
    34.Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Potnis, N. et al. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80, 3173–3180 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Zhang, Y., Kastman, E. K., Guasto, J. S. & Wolfe, B. E. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat. Commun. 9, 336 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Chang, P. V. Chemical mechanisms of colonization resistance by the gut microbial metabolome. ACS Chem. Biol. 15, 1119–1126 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Borton, M. A. et al. Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome 5, 47 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Foster, J. L. & Fogleman, J. C. Bacterial succession in necrotic tissue of agria cactus (Stenocereus gummosus). Appl. Environ. Microbiol. 60, 619–625 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.O’Keeffe, K. R., Halliday, F. W., Jones, C. D., Carbone, I. & Mitchell, C. E. Parasites, niche modification, and the host microbiome: a field survey of multiple parasites. Mol. Ecol. 30, 2404–2416 (2021).PubMed 
    Article 

    Google Scholar 
    42.Joo, J. et al. Bacteriophage-mediated competition in Bordetella bacteria. Proc. Biol. Sci. 273, 1843–1848 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    43.Fernández, L., Rodríguez, A. & García, P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 12, 1171–1179 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl Acad. Sci. USA 107, 18132–18137 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Topisirovic, L. et al. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112, 230–235 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.De Vuyst, L. & Leroy, F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194–199 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    48.ten Cate, J. M. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94, 1–9 (2006).PubMed 
    Article 

    Google Scholar 
    49.Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 
    Article 

    Google Scholar 
    52.The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    53.Zhang, Q.-G. & Zhang, D.-Y. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116, 1748–1758 (2007).Article 

    Google Scholar 
    54.Dickie, I. A., Fukami, T., Wilkie, J. P., Allen, R. B. & Buchanan, P. K. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol. Lett. 15, 133–141 (2012).PubMed 
    Article 

    Google Scholar 
    55.Bittleston, L. S., Gralka, M., Leventhal, G. E., Mizrahi, I. & Cordero, O. X. Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nat. Commun. 11, 1440 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Boyle, J. A., Simonsen, A. K., Frederickson, M. E. & Stinchcombe, J. R. Priority effects alter interaction outcomes in a legume-rhizobium mutualism. Proc. Biol. Sci. 288, 20202753 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    57.Fukami, T. & Morin, P. J. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424, 423–426 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Wagg, C., Schlaeppi, K., Banerjee, S., Juramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Rummens, K., De Meester, L. & Souffreau, C. Inoculation history affects community composition in experimental freshwater bacterioplankton communities. Environ. Microbiol. 20, 1120–1133 (2018).PubMed 
    Article 

    Google Scholar 
    61.Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016). This study identified features of the resident microbiome (bacterial taxa and genes) that predicted variation in the persistence of a probiotic among subjects in a clinical trial.PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Christian, N., Herre, E. A., Mejia, L. C. & Clay, K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc. Biol. Sci. 284, 20170641 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    66.Alavi, S. et al. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181, 1533–1546 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Hiscox, J. et al. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246–2260 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Losos, J. B. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Glitzenstein, J. S., Harcombe, P. A. & Streng, D. R. Disturbance, succession, and maintenance of species diversity in an east texas forest. Ecol. Monogr. 56, 243–258 (1986).Article 

    Google Scholar 
    70.Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Chappell, C. R. & Fukami, T. Nectar yeasts: a natural microcosm for ecology. Yeast 35, 417–423 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Loeuille, N. & Leibold, M. A. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am. Nat. 171, 788–799 (2008).PubMed 
    Article 

    Google Scholar 
    75.Vallespir Lowery, N. & Ursell, T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc. Natl Acad. Sci. USA 116, 379–388 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    76.Wittmann, M. J. & Fukami, T. Eco-evolutionary buffering: rapid evolution facilitates regional species coexistence despite local priority effects. Am. Nat. 191, E171–E184 (2018).PubMed 
    Article 

    Google Scholar 
    77.Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).PubMed 
    Article 

    Google Scholar 
    78.Woody, S. T., Ives, A. R., Nordheim, E. V. & Andrews, J. H. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. Ecology 88, 1513–1524 (2007).PubMed 
    Article 

    Google Scholar 
    79.Wein, T. et al. Carrying capacity and colonization dynamics of Curvibacter in the hydra host habitat. Front. Microbiol. 9, 443 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Tewksbury, J. J. & Lloyd, J. D. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127, 425–434 (2001).PubMed 
    Article 

    Google Scholar 
    82.Monier, J.-M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl Acad. Sci. USA 100, 15977–15982 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.LaSarre, B., McCully, A. L., Lennon, J. T. & McKinlay, J. B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 11, 337–348 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.McCully, A. L., LaSarre, B. & McKinlay, J. B. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism. Environ. Microbiol. 19, 3538–3550 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).PubMed 
    Article 

    Google Scholar 
    86.Fürst, U. et al. Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nat. Plants 6, 22–27 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    87.Lu, P., Bian, G., Pan, X. & Xi, Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl. Trop. Dis. 6, e1754 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).PubMed 
    Article 

    Google Scholar 
    89.Onoda, Y. et al. Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J. Ecol. 102, 167–175 (2014).Article 

    Google Scholar 
    90.Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).PubMed 
    Article 

    Google Scholar 
    91.Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: an artificial selection approach. N. Phytol. 219, 449–461 (2018).CAS 
    Article 

    Google Scholar 
    92.Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    94.Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443–5452 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Tecon, R., Ebrahimi, A., Kleyer, H., Erev Levi, S. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.van der Wal, A., Tecon, R., Kreft, J.-U., Mooij, W. M. & Leveau, J. H. J. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PLoS ONE 8, e75633 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10, 1413–1423 (2016).PubMed 
    Article 

    Google Scholar 
    98.Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    99.Hol, F. J. H., Galajda, P., Woolthuis, R. G., Dekker, C. & Keymer, J. E. The idiosyncrasy of spatial structure in bacterial competition. BMC Res. Notes 8, 245 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).PubMed 
    Article 

    Google Scholar 
    101.Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 12, 843–850 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Morella, N. M., Zhang, X. & Koskella, B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 3, 177–190 (2019).Article 

    Google Scholar 
    103.Scharschmidt, T. C. et al. A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R. & Schmid-Hempel, P. Trans-generational immune priming in a social insect. Biol. Lett. 1, 386–388 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00002-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).PubMed 
    Article 

    Google Scholar 
    107.Meadow, J. F., Bateman, A. C., Herkert, K. M., O’Connor, T. K. & Green, J. L. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1, e53 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Vannette, R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51, 363–386 (2020).Article 

    Google Scholar 
    109.Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Schluter, D., Price, T. D. & Grant, P. R. Ecological character displacement in Darwin’s finches. Science 227, 1056–1059 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Zee, P. C. & Fukami, T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc. R. Soc. Lond. B Biol. Sci. 285, 20171722 (2018).
    Google Scholar 
    118.Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Urban, M. C. & De Meester, L. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. Lond. B Biol. Sci. 276, 4129–4138 (2009).
    Google Scholar 
    121.De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016). This study describes how evolutionary changes in early-arriving strains or species can limit colonization by later-arriving strains or species.PubMed 
    Article 

    Google Scholar 
    122.Madi, N., Vos, M., Murall, C. L., Legendre, P. & Shapiro, B. J. Does diversity beget diversity in microbiomes? eLife 9, e58999 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Castledine, M., Padfield, D. & Buckling, A. Experimental (co)evolution in a multi-species microbial community results in local maladaptation. Ecol. Lett. 23, 1673–1681 (2020).PubMed 
    Article 

    Google Scholar 
    124.von Gillhaussen, P. et al. Priority effects of time of arrival of plant functional groups override sowing interval or density effects: a grassland experiment. PLoS ONE 9, e86906 (2014).Article 
    CAS 

    Google Scholar 
    125.Ferrero, A. F. Effect of compaction simulating cattle trampling on soil physical characteristics in woodland. Soil. Tillage Res. 19, 319–329 (1991).Article 

    Google Scholar 
    126.Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80, 443–454 (1999).Article 

    Google Scholar 
    127.Eng, T. et al. Iron supplementation eliminates antagonistic interactions between root-associated bacteria. Front. Microbiol. 11, 1742 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Gong, B.-Q. et al. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host Microbe 26, 810–822 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Lindemann, J. Competition between ice nucleation-active wild type and ice nucleation-deficient deletion mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77, 882 (1987). This study showed that the effects of delivery mode on the assembly of the cow rumen microbiome extend beyond initial exposure to different microbiota and they continue to affect bacterial species that arrive throughout the first few years of life.Article 

    Google Scholar 
    131.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    133.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    135.O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, e80074 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    136.Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).PubMed 
    Article 

    Google Scholar 
    137.Fukami, T., Beaumont, H. J. E., Zhang, X.-X. & Rainey, P. B. Immigration history controls diversification in experimental adaptive radiation. Nature 446, 436–439 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    138.Rigby, M. C., Hechinger, R. F. & Stevens, L. Why should parasite resistance be costly? Trends Parasitol. 18, 116–120 (2002).PubMed 
    Article 

    Google Scholar 
    139.Koskella, B. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23, 1256–1260 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Author Correction: A global-scale expert assessment of drivers and risks associated with pollinator decline

    Department of Zoology, University of Cambridge, Cambridge, UKLynn V. DicksSchool of Biological Sciences, University of East Anglia, Norwich, UKLynn V. DicksCentre for Agri-Environmental Research, School of Agriculture, Policy and Development, Reading University, Reading, UKTom D. Breeze, Deepa Senapathi & Simon G. PottsIPBES Secretariat, Bonn, GermanyHien T. NgoInstitute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, ChinaJiandong AnInstituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue‐CONICET, Río Negro, ArgentinaMarcelo A. AizenDepartment of Zoology, University of Calcutta, Kolkata, IndiaParthiba BasuCenter for Transdisciplinary and Sustainability Sciences, IPB University, Jalan Pajajaran, IndonesiaDamayanti BuchoriDepartment of Plant Protection, IPB University, Bogor, IndonesiaDamayanti BuchoriFacultad de Ciencias Exactas, Físicas y Naturales, Universidad de Córdoba, Córdoba, ArgentinaLeonardo GalettoInstituto Multidisciplinario de Biología Vegetal, CONICET-UNC, Córdoba, ArgentinaLeonardo GalettoInstituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro, Río Negro, ArgentinaLucas A. GaribaldiInstituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Negro, ArgentinaLucas A. GaribaldiWorld Agroforestry Centre, Nairobi, KenyaBarbara Gemmill-HerrenPrescott College, Prescott, AZ, USABarbara Gemmill-HerrenThe New Zealand Institute for Plant & Food Research Limited, Lincoln, New ZealandBrad G. HowlettBiosciences Institute, University of Sao Paulo, São Paulo, BrazilVera L. Imperatriz-FonsecaCentre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South AfricaSteven D. JohnsonInstitute of Ecology and Botany, Centre for Ecological Research, Vácrátót, HungaryAnikó Kovács-HostyánszkiSchool of Applied Biosciences, Kyungpook National University, Daegu, KoreaYong Jung KwonInternational Centre of Insect Physiology and Ecology (icipe), Nairobi, KenyaH. Michael G. LattorffNaga Women’s Union, Manipur, IndiaThingreipi LungharwoSouth African National Biodiversity Institute (SANBI), Kirstenbosch Research Centre, Claremont, South AfricaColleen L. SeymourDepartment of Biological Sciences, FitzPatrick Institute, University of Cape Town, Rondebosch, South AfricaColleen L. SeymourAgroécologie, AgroSup Dijon, INRAE, University of Bourgogne Franche-Comté, Dijon, FranceAdam J. Vanbergen More

  • in

    Using plant physiological stable oxygen isotope models to counter food fraud

    Independent reference samplesThe authentic, independent strawberry (Fragaria × ananassa) reference samples used for model validation in this study were provided by Agroisolab GmbH (Jülich, Germany). The samples were collected either directly by the company or on their behalf through authorized sample collectors between 2007 and 2017. The primary purpose of such authentic reference samples is the direct comparison between their stable isotope compositions (oxygen, hydrogen, carbon, nitrogen, or sulfur) to those of samples of suspect origin. Accompanying metadata for each reference sample included information about the geographic origin as community name, postal code, or location coordinates, and information about the month and year the strawberry sample was picked. In total, we used δ18O values from 154 reference samples. Most samples were collected in the UK, Germany, Sweden, and Finland (Fig. 1). All reference samples were grown on open strawberry-fields rather than artificial greenhouse conditions. All berry samples were collected from cultivated, non-endangered plant species (“garden strawberry”), and the research conducted complies with all relevant institutional, the corresponding national, and also international guidelines and legislation.After collection in the field, samples were stored in airtight containers and shipped directly to Agroisolab, where they were stored frozen prior to analysis. In order to analyze the oxygen stable isotope composition of the organic strawberry tissue, the lipids were solvent-extracted with dichloromethane for a at least 4 h, using a Soxhlet extractor. The remaining samples were dried and milled to a fine powder. 1.5 mg of the powder was weighed into silver capsules. The silver capsules were equilibrated for at least 12 h in a desiccator with a fixed relative humidity of 11.3%. After a further vacuum drying the samples were measured via high-temperature furnace (Hekatech, Wegberg, Germany) in combination with an Isotope-ratio mass spectrometer (IRMS) Horizon (NU Instruments, Wrexham, UK). The pyrolysis temperature was 1530 °C and the pyrolysis tube consisted of covalent-bound SiC (Agroisolab patented). The reproducibility of the measurement was better than 0.6 ‰.Oxygen isotope model calculationPlant physiological stable isotope models simulate the oxygen isotopic composition of leaf water or organic compounds synthesized therein as δ18O values in per mil (‰), where δ18O = (18O/16O)sample/(18O/16O)VSMOW − 1, and VSMOW is Vienna Standard Mean Ocean Water as defined by the VSMOW-Standard Light Antarctic Precipitation (SLAP) scale. The Craig-Gordon model57, which was developed to mathematically describe the isotopic enrichment of standing water bodies during evaporation and later modified for plants, is the basis for modelling plant water δ18O values23,58. Plant source water is the baseline for the model, which is the precipitation-derived soil water that plants take up through their roots without isotope fractionation51,59,60. The 18O enrichment of water within leaves is described by the following equation (Eq. 1)36,61:$$ Delta^{18} {text{O}}_{{text{e leaf}}} = left( {1 +upvarepsilon ^{ + } } right)left[ {left( {1 + {upvarepsilon }_{{text{k}}} } right)left( {1 – {text{e}}_{{text{a}}} /{text{e}}_{{text{i}}} } right) + {text{e}}_{{text{a}}} /{text{e}}_{{text{i}}} (1 + Delta^{18} {text{O}}_{{{text{Vapor}}}} )} right]{-}1 $$
    (1)

    where Δ18Oe_leaf is the oxygen isotopic enrichment above source of water at the evaporative site in leaves, ε+ is the equilibrium fractionation between liquid water and water vapor, εk is the kinetic fractionation associated with the diffusion through the stomata and the boundary layer. ea/ei is the ratio of ambient vapor pressure in the atmosphere to intercellular vapor pressure in the leaf. Δ18OVapor is the isotopic composition of the ambient vapor above source water, which in this study is assumed to be in equilibrium with the source water (Δ18OV = − ε+)62,63. This assumption can be used, if the atmosphere is well mixed, and plants’ source water derives from recent precipitation events. For crops, growing in the temperate climate of the mid latitudes this is usually the case, especially over the long time periods (several weeks) over which strawberries grow. If such a model is applied in other climatic zones (e.g. tropics), this assumption should, however, be reevaluated64. The equilibrium fractionation factor (ε+)65,66 and kinetic fractionation factor (εk)67 can be calculated with the following equations (Eqs. 2 and 3):$$upvarepsilon ^{ + } = left[ {exp left( {frac{1.137}{{left( {273 + T} right)^{2} }}*10^{3} – frac{0.4156}{{273 – T}} – 2.0667*10^{ – 3} } right) – 1} right]*1000 $$
    (2)

    where T is the leaf temperature in degrees Celsius. In our calculations, leaf temperature was set to 90% of the monthly mean air temperature, which describes a realistic leaf-energy balance scenario for well-watered crops68,69, and also yielded the best model performance with respect to the reference data. As leaf to air temperature differences have a strong influence on leaf water δ18O values, this assumption needs to be independently tested in future applications. For example, changing leaf temperature from 20 °C to 22 °C at a constant air temperature of 20 °C and a source water δ18O value of -10 ‰ will affect leaf water δ18O values by + 1.4 ‰.$$upvarepsilon _{{text{k}}} = frac{{28{text{r}}_{{text{s}}} + 19{text{r}}_{{text{b}}} }}{{{text{r}}_{{text{s}}} + {text{r}}_{{text{b}}} }} $$
    (3)

    where rs is the stomatal resistance and rb is the boundary layer resistance in m2s/mmol, which is the inverse of the stomatal and boundary layer conductance. For our model calculations, we consistently used stomatal conductance values of 0.4 mol/m2s, stomatal resistance values of 1 m2s/mol70.The Craig-Gordon model predicted leaf water values are often enriched in 18O relative to measured bulk leaf water δ18O values26,27. This is because the model describes the δ18O values of water at the site of evaporation while measurements typically give bulk leaf water δ18O values36,71. The two-pool modification to the Craig-Gordon model corrects for this effect by separating bulk leaf water into a pool of evaporatively enriched water at the site of evaporation (δ18Oe_leaf derived from the Craig-Gordon model, Eq. 1) and a pool of unenriched plant source water (δ18Osource water)25. δ18Oe_leaf is calculated as follows:$$updelta ^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} = , (Delta^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} +updelta ^{18} {text{O}}_{{text{source water}}} ) , + , (Delta^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} * ,updelta ^{18} {text{O}}_{{text{source water}}} )/1000) $$
    (4)
    In the two-pool modified Craig-Gordon model (Eq. 5), the proportion of unenriched source water is described as fxylem36.$$updelta ^{18} {text{O}}_{{text{leaf water}}} = , left( {1 , {-}f_{xylem} } right) , * ,updelta ^{18} {text{O}}_{{{text{e}}_{text{leaf}}}} + , left( {f_{xylem} * ,updelta ^{18} {text{O}}_{{text{source water}}} } right) $$
    (5)
    Values for fxylem in leaf water generally range from 0.10 to 0.3336,37,38,39,40 but higher values have also been observed72. For strawberry plants, leaf water fxylem values were recently shown to vary between 0.24 and 0.3428.Organic molecules in leaves generally reflect the δ18O values of the bulk leaf water plus additional isotopic effects occurring during the assimilation of carbohydrates and post-photosynthetic processes21,22,34. The fractionations occur when carbonyl-group oxygen exchanges with leaf tissue water during the primary assimilation of carbohydrates (trioses and hexoses)42. This process causes 18O enrichment, described as εwc42, and has been determined to be ~  + 27 ‰21,22,73.During the synthesis of cellulose from primary assimilates, sucrose molecules are broken down to glucose and re-joined, allowing some of the carbonyl group oxygen to further exchange with water in the developing cell. The isotopic fractionation (εwc) during this process is assumed to be the same as in the carbonyl oxygen exchange during primary carbohydrate assimilation (~ + 27 ‰)41,42. During the formation of cellulose, the δ18O values of the primary assimilates are thus partially modified by the water in the developing cell33. Equation (6) describes this process34$$updelta ^{18} {text{O}}_{{{text{cellulose}}}} = {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} *left( {updelta ^{18} {text{O}}_{{text{source water}}} + ,upvarepsilon _{{{text{wc}}}} } right) , + , left( {1 , – {text{p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} } right) , * , left( {updelta ^{18} {text{O}}_{{text{leaf water}}} + ,upvarepsilon _{{{text{wc}}}} } right) $$
    (6)

    where δ18Ocellulose is the oxygen isotopic composition of cellulose, pex is the fraction of carbonyl oxygen in cellulose that exchanges with the medium water during synthesis, and px is the proportion of unenriched source water in the bulk water of the cell where cellulose is synthesized33. Bulk water in developing cells where cellulose is synthesized, i.e. in the leaf growth-and-differentiation zone, has been found to primarily reflect the isotope composition of source water43. Therefore, px in Eq. 6 is likely larger than fxylem in Eq. (5). For practical reasons, the parameters px or pex are typically not determined individually, but as the combined parameter pxpex45. For cellulose in leaves of grasses, crops, and trees pxpex has been found to range from 0.25 to 0.5445,46,47,48,49.In this study as in many applied examples where plant δ18O values are used for origin analysis we attempt to simulate the δ18O values of dried bulk tissue. Bulk dried plant tissue (δ18Obulk) contains in addition to carbohydrates compounds such as lignin, lipids, and proteins, which can be 18O-depleted compared to carbohydrates50. Since this needs to be accounted for in the model, we included the parameter c into the model. As pxpex and c cannot be determined separately they are used as a combined model parameter in our approach pxpexc:$$updelta ^{18} {text{O}}_{{{text{bulk}}}} = {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} {text{c}}*left( {updelta ^{18} {text{O}}_{{text{source water}}} + ,upvarepsilon _{{{text{wc}}}} } right) , + , left( {1 – {text{ p}}_{{text{x}}} {text{p}}_{{{text{ex}}}} {text{c}}} right) , * , left( {updelta ^{18} {text{O}}_{{text{leaf water}}} + ,upvarepsilon _{{{text{wc}}}} } right) $$
    (7)
    Bulk dried tissue δ18O values of strawberries in Cueni et al. (in review) did not differ statistically from pure cellulose δ18O values in strawberries. Consequently, pxpex and pxpexc are identical for strawberries and ranges from 0.41 to 0.51. This approach allows the calculation of bulk dried tissue δ18O values without the knowledge of cellulose δ18O values, which is the case for the data set used in this study, and contrasts to the approach by Barbour & Farquhar (2000), where bulk dried tissue δ18O values are assessed by an offset (εcp) to the cellulose δ18O values.Model parameter selectionTo find the best values of the key model parameters for the prediction of strawberry bulk dried tissue δ18O values, we used different combinations of the values for the parameters. Specifically, we compared average parameter values from the literature that were derived from leaves and parameter values that were specifically derived for berries (Cueni et al. in review) to test if a leaf-level parameterization of the model is sufficient or if a berry-specific parameterization is necessary for producing satisfying model prediction. These values were either (i) fxylem and pxpex values reported in literature for leaf water and cellulose from various species that were averaged, (ii) values averaged for leaves (fxylem) and berries (pxpexc) of berry producing plants, or (iii) values for leaves (fxylem) and berries (pxpexc) specifically obtained for strawberry plants. For the general leaf-derived parameter values we used mean literature values originally obtained for leaf water and leaf cellulose δ18O for different species and averaged these values (0.22 for fxylem36,37,38,39,40 and 0.40 for pxpex45,46,47,48,49) (Table 1). For berries (average of the values of raspberries and strawberries) the mean leaf-derived fxylem value was 0.26 and the value for pxpexc was determined to be 0.46 (Table 1) (data derived from Cueni et al. in review). For strawberry plants, the leaf-derived fxylem value we used was 0.30, and the value for bulk dried tissue (pxpexc) was determined to be 0.46 (Table 1) (data derived from Cueni et al. in review). Since the pxpexc values of different berry species did not differ, this resulted in a total of six different model input parameter combinations.Table 1 Values of the model parameters (fxylem and pxpex/pxpexc) used for the simulations of strawberry bulk dried tissue δ18O values.Full size tableEnvironmental model input data selectionIn order to apply the strawberry parametrized bulk dried tissue oxygen model on a spatial scale, spatially gridded climate and precipitation isotope data layers were used as model inputs. The accurate simulation of geographically distinct δ18O values, however, requires the use of the most appropriate and best available input variables. We therefore tested the importance of the temporal averaging and lead time of the input data relative to the picking date of the berry. We defined these collectively as the “integration time” of the input data. Climate of the growing season46,53, and precipitation δ18O values of rain-events prior and during the growing season51,54,55 have been shown to shape plant tissue water and organic compound δ18O values. The major objective of our study was thus a careful evaluation of the most appropriate type and integration time of model input variables needed for this kind of model simulation. Moreover, to find the best data source provided, we also used several different spatial climate and precipitation isotope datasets in our evaluations (Table 2).Table 2 (a) Table showing the different climatic (air temperature and vapor pressure) and isotope (precipitation and vapor δ18O) data products, (b) as well as the different integration times and names used in the study used to simulate strawberry bulk dried tissue δ18O values.Full size tableTwo precipitation isotope data products were compared (Table 2): (1) The mean monthly precipitation δ18O grids by Bowen (2020), which are updated versions of the grids produced by Bowen and Revenaugh (2003) and Bowen et al. (2005) (Online Isotopes in Precipitation Calculator, OIPC Version 3.2). They provide global grids of monthly long-term mean precipitation isotope values. The resolution of these global grids is 5’. (2) Precipitation isotope predictions from Piso.AI (Version 1.01)32. This source provides values for individual months and years based on station coordinates32. Both data sets were on the one hand used for the precipitation δ18O input data of the model, and also to extrapolate the vapor δ18O values from sets (see model description above), which we treated as two individual, independent input data sets.For the climatic drivers of the model (air temperature and vapor pressure), we used the gridded data products from the Climatic Research Unit (CRU) (TS Version 4.04)29 and the E-OBS gridded dataset by the European Climate Assessment & Dataset (Version 22.0e)30 (Table 2). The CRU dataset provided global gridded monthly mean air temperature, and mean vapor pressure with a resolution of 0.5°. The E-OBS dataset included European daily mean air temperature and relative humidity gridded data, with a resolution of 0.1 arc-degrees. We calculated monthly mean air temperature and relative humidity grid layers, on the basis of these daily mean air temperature and relative humidity grids, respectively.Fruit tissue formation takes place over a period of several weeks leading up to picking date46,53. This results in a lead time between the date that best represents the mean climate conditions, and source water and vapor stable isotope signal influencing the isotope signal during tissue formation, and the picking date. As integration time of the input data, we therefore investigated lead times of 1, 2, 3, and 4 months, as well as the three months leading up to the picking date (Table 2). Moreover we also used more general European strawberry growing season averages76, independent of either the sampling month (yearly May to July mean) or the sampling year (2007 to 2017 May to July mean) (Table 2). Precipitation isotope data means were calculated as amount-weighted averages using CRU mean monthly precipitation data. This means that the long term mean precipitation δ18O values taken from OIPC were weighted by yearly specific CRU monthly precipitation totals for the case of the three months or growing season averages for individual years, and by average monthly precipitation totals (May, June, and July) from 2007 to 2017 for the long-term growing season calculation. The same assessment was also made using precipitation values from Piso.AI.Validation of model with reference samplesUsing the plant physiological model described above, we calculated the strawberry bulk dried tissue δ18O values for the location and the growing time of each authentic reference sample. For the model input data, we tested variable combinations using each of the eight integration times described in Table 2, along with all combinations of the data sources outlined in Table 2. This resulted in a total of 65,536 combinations of input variables per model parameter combination (fxylem and pxpex/pxpexc, Table 1), yielding model results to be evaluated against the measured reference samples. Our approach can be described with the following equation:$$updelta ^{18} {text{O}},{text{plant }} = fleft( {{text{air}},{text{temp}}left( {text{s,t}} right),{text{ relative}},{text{humidity}}left( {text{s,t}} right), updelta ^{18} {text{O}},{text{precip}}.left( {text{s,t}} right),updelta ^{18} {text{O}},{text{vapor }}left( {text{s,t}} right)} right) $$
    (8)

    where δ18O plant is the simulated δ18O value of the strawberry, s is the data product for the specified input variable (Table 2), and t is the integration time of the specified variable (Table 2).For the crucial model parameters fxylem and pxpex/pxpexc we on the one hand used the values proposed for leaves by literature (for pxpex), and on the other hand average of the values of raspberries and strawberries and strawberry-specific values determined from Cueni et al. (in review) (for pxpexc). In all calculations an εwc value of + 27 ‰ was used. To calculate mean monthly relative humidity values from the provided CRU vapor pressure data, site specific elevation was extracted from the ETOPO1 digital elevation model77, and used to calculate the approximate atmospheric pressure. These values were then used in combination with air temperature to calculate the saturation vapor pressure after Buck (1981), in order to assess relative humidity (relative humidity = vapor pressure/saturation vapor pressure). The R-script of the model is available on “figshare”, find the URL in the data availability statement.Statistical analysesStatistical analyses were done using the statistical package R version 3.5.379. The relationships of the range δ18O values observed with latitude, and between CRU and E-OBS mean air temperature were compared with a linear regression model, and with an alpha level that was set to α = 0.05. The results of the 65,536 models for each of the six physiological parameter combinations were compared with the measured δ18O bulk dried tissue values of the authentic reference samples (n = 154) by calculation of the root mean squared error (RMSE).Calculation of prediction mapsPrediction maps showing the regions of possible origin of a sample with unknown provenance are the product that is of interest in the food forensic industry. We calculated the prediction maps shown in Fig. 5 for three example δ18O values of strawberries collected in July 2017: (i) + 20 ‰ representing a mean Finish/Swedish sample, (ii) + 24.5 ‰ representing a mean German sample, and (iii) + 27 ‰ representing a mean southern European sample.The prediction maps were calculated in a two-step approach. First, we calculated a map of the expected strawberry bulk dried tissue δ18O values of berries grown in July 2017. For this we used the average berry model input parameters (fxylem and pxpexc, Table 1), and the best fitting model input data and integration time combination, which we assessed beforehand (Fig. 2). We thus used CRU mean air temperature and vapor pressure from June 2017, precipitation δ18O values from OIPC as an average from April, May and June, and vapor δ18O values calculated from OIPC precipitation δ18O values from April. Since using spatial maps as model input data, this calculation resulted in a mapped model result. In a second step, we calculated the prediction maps. For this we first subtracted the δ18O value of the bulk dried tissue of the sample strawberry from the mapped result of the best berry-specific model. This was done for each pixel value of the map. This resulted in a map showing the difference of the sample δ18O value and the predicted map δ18O value for each pixel of the map. The places (pixels) that are predicted to have the same δ18O value as the sample strawberry thus are represented by a value of zero. Based on the prediction error of the best berry-specific model (RMSE = 0.96 ‰), the one sigma (68%) and two sigma (95%) confidence intervals around the areas showing no difference to the δ18O value of the suspected sample could be assessed. This means that the bigger the difference between the simulated δ18O value and the sample value, the lower the probability of provenance of the sample. In other words, a difference between the sample’s δ18O value and the predicted δ18O value of 0 ‰ to ± 0.96 ‰ equals a possible provenance of at least 68% (one sigma), and a difference between ± 0.96 ‰ and ± 1.92 ‰ reflects a possible provenance between 68 and 27% (two sigma). Regions on the map with bigger differences than ± 1.92 ‰ represent regions of possible provenance, lower than 5% (bigger than two sigma). More

  • in

    Universal scaling of robustness of ecosystem services to species loss

    1.Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    4.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 

    Google Scholar 
    6.Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 
    Article 

    Google Scholar 
    7.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    8.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).PubMed 
    Article 

    Google Scholar 
    11.Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    13.Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    15.Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 
    Article 

    Google Scholar 
    16.Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B 282, 20151348 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 

    Google Scholar 
    19.Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).PubMed 
    Article 

    Google Scholar 
    20.Mastrángelo, M. E. et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2, 1115–1121 (2019).Article 

    Google Scholar 
    21.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1072–1085 (2016).Article 

    Google Scholar 
    24.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Pillar, V. D. et al. Functional redundancy and stability in plant communities. J. Veg. Sci. 24, 963–974 (2013).Article 

    Google Scholar 
    27.Feit, B., Blüthgen, N., Traugott, M. & Jonsson, M. Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecol. Lett. 22, 1568–1577 (2019).PubMed 
    Article 

    Google Scholar 
    28.Salski, A. Ecological applications of fuzzy logic. Pages 3–14 in Ecological Informatics (ed. Recknagel, F.) (Springer, 2003).29.Ehrlich, P. R. & Mooney, H. A. Extinction, substitution, and ecosystem services. Bioscience 33, 248–254 (1983).Article 

    Google Scholar 
    30.Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276, 229–237 (2009).PubMed 
    Article 

    Google Scholar 
    31.Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B 269, 1721–1727 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    34.Maseyk, F. J. F., Demeter, L., Csergő, A. M. & Buckley, Y. M. Effect of management on natural capital stocks underlying ecosystem service provision: a ‘provider group’ approach. Biodivers. Conserv. 26, 3289–3305 (2017).Article 

    Google Scholar 
    35.Schröter, M. et al. Assumptions in ecosystem service assessments: increasing transparency for conservation. Ambio 50, 289–300 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 

    Google Scholar 
    37.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lafuite, A.-S., de Mazancourt, C. & Loreau, M. Delayed behavioural shifts undermine the sustainability of social–ecological systems. Proc. R. Soc. B 284, 20171192 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    40.Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2020).Article 

    Google Scholar 
    41.Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).Article 

    Google Scholar 
    42.Palumbi, S. R. et al. Managing for ocean biodiversity to sustain marine ecosystem services. Front. Ecol. Environ. 7, 204–211 (2009).Article 

    Google Scholar 
    43.Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    44.White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).PubMed 
    Article 

    Google Scholar 
    45.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).PubMed 
    Article 

    Google Scholar 
    47.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).Article 

    Google Scholar 
    51.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Ross, S. R. P.-J. et al. Code from: Universal scaling of robustness of ecosystem services to species loss (Version V0.4.2-beta). zenodo https://doi.org/10.5281/zenodo.4749405 (2021). More

  • in

    Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world

    Spatial databaseWe collected species occurrences from the most accurate and available source of data for each taxonomic group. For mammals, birds, reptiles and amphibians, we used the IUCN spatial database to assign realm identity for each species15. By doing this, we assigned a realm for 5489 mammal species, 10,787 bird species, 5489 reptile species and 5833 amphibian species. Since IUCN spatial database does not cover all species, we completed our database with two additional sources of species occurrences: (1) the WWF WildFinder species database23, except for mammals where we used the latest version of the species distribution provided by ref. 24. If (1) was not available, we used (2) the global biodiversity information facility (GBIF). Using WWF WildFinder, we assigned a realm for 1634 bird species, 7378 reptile species and 2006 amphibian species. 437 mammal species were assigned using ref. 24. From GBIF, we downloaded all the records belonging to the four classes of animals (Mammals50, Aves51, Reptiles52 and Amphibians53). Before using the spatial data, we cleaned the dataset following a cleaning procedure that was similar to but more conservative than other currently available methods (e.g. CoordinatesCleaner, BDCleaner54). First, records were screened, and only those with (1) coordinates; (2) a taxonomic rank of “species” were kept. From this list, we filtered out the records with clearly false locality coordinates (e.g. latitude equal to longitude, both latitude and longitude equal to 0, and longitude/latitude outside the possible range (i.e. −180; 180 for longitude and −90; 90 for latitude)). Those are the most common errors encountered with GBIF occurrence data55. In addition, we removed the records from living specimens (i.e. from zoos, botanical gardens), conserved specimens (i.e. museums), and unknown sources. We also excluded the species with less than 50 records within each realm as a low number of records can be due to misidentifications, which might have strong effects on our analyses. We finally refined the dataset by overlaying the occurrences within the six biogeographic realms (see below) and dropping the species that fall outside of the polygons. This spatial overlay process was conducted using the ‘sp’ library56 in R. The number of species for which realm was assigned using GBIF was 1 ( More

  • in

    2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize

    1.Marles, R. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017).CAS 
    Article 

    Google Scholar 
    2.Davis, D. Declines in iron content of foods. Br. J. Nutr. 109, 2111 (2013).CAS 
    Article 

    Google Scholar 
    3.Davis, D. Commentary on: “Historical variation in the mineral composition of edible horticultural products” (White, P. J and Broadley, M.R (2005) Journal of Horticultural Science & Biotechnology, 80, 660-667). J. Horticult. Sci. Biotechnol. 81(3), 553–554 (2006).Article 

    Google Scholar 
    4.Broadley, M. R., Mead, A. & White, P. J. Replay to Davis (2006) Commentary. J. Horticult. Sci. Technol. 81(3), 554–555 (2006).
    Google Scholar 
    5.Teklic, T., Loncaric, Z., Kovacevic, V. & Singh, B. R. Metallic trace elements in cereal grain—a review: How much metal do we eat?. Food Energy Secur. 2(2), 81–95 (2013).Article 

    Google Scholar 
    6.Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization and consumption. Ann N Y Acad Sci. 1312, 105–112 (2014).ADS 
    Article 

    Google Scholar 
    7.Vidal Elgueta, A., Hinojosa, L. F., Pérez, M. F., Peralta, G. & Rodríguez, M. U. Genetic and phenotypic diversity in 2000 years old maize (Zea mays L.) samples from the Tarapacá region, Atacama Desert, Chile. PLoS ONE 14(1), e0210369. https://doi.org/10.1371/journal.pone.0210369 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fan, M. S., Fairweather, S., Polton, P., Dunham, S. & Mcrath, S. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22, 315–324 (2008).CAS 
    Article 

    Google Scholar 
    9.McGrath, S. The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. J. Sci. Food Agric. 36, 1073–1083 (1985).CAS 
    Article 

    Google Scholar 
    10.De Fries, R., Fanzo, J., Remans, R., Palm, C. & Wood, S. Metrics for land-scarce agriculture Nutrient content must be better integrated into planning. Science 349(6245), 238–240 (2015).ADS 
    Article 

    Google Scholar 
    11.Roschzttardtz, H., Conéjéro, G., Curie, C. & Mari, S. Identification of the endotermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    12.Zang, J. et al. Maize YSL2 is required for iron distribution and development in kernels. J. Exp. Bot. 71, 5896–5910 (2020).CAS 
    Article 

    Google Scholar 
    13.Roschzttardtz, H. et al. Plant cell nucleolus as a hot spot for iron. J. Biol. Chem. 286, 27863–27866 (2011).CAS 
    Article 

    Google Scholar 
    14.Ibeas, M., Grant-Grant, S., Navarro, N., Perez, F. & Roschzttardtz, H. Dynamic subcellular localization of iron during embryo development in Brassicaceae seeds. Front. Plant Sci. 8, 2186 (2017).Article 

    Google Scholar 
    15.Santana-Sagredo, F. et al. ‘White gold’ guano fertilizer drove agricultural intensification in the Atacama Desert from AD 1000. Nat. Plants. 7, 152–158 (2021).CAS 
    Article 

    Google Scholar 
    16.García, M. et al. Alimentos, tecnologías vegetales y paleoambiente en las aldeas formativas de la pampa del Tamarugal (ca. 900 a.C.–800 d.C.). Estudios Atacameños. 47, 33–58 (2014).Article 

    Google Scholar 
    17.Santana-Sagredo, F., Uribe, M., Herrera, M. J., Retamal, R. & Flores, S. Brief communication: Dietary practices in ancient populations from northern chile during the transition to agriculture (Tarapaca Region, 1000 BC-AD 900). Am. J. Phys. Anthropol. 158(4), 751–758 (2014).Article 

    Google Scholar 
    18.Santoro, C. M. et al. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. J. Anthropol. Archaeol. 46, 28–39 (2017).Article 

    Google Scholar 
    19.Roschzttardtz, H., Conejero, G., Curie, C. & Mari, S. Identification of the endodermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    20.Ibeas, M. et al. The diverse iron distribution in Eudicotyledoneae seeds: From Arabidopsis to Quinoa. Front. Plant Sci. 15, 1985 (2019).Article 

    Google Scholar 
    21.Davis, D., Epp, M. & Riordan, H. Changes in USDA food composition data for 43 Garden crops, 1950 to 1990. J. Am. Coll. Nutr. 23(6), 669–682 (2004).CAS 
    Article 

    Google Scholar 
    22.White, P. J. & Broadley, M. R. Historical variation in the mineral composition of edible horticultural products. J. Horticult. Sci. Biotrchnol. 80(6), 660–667 (2005).Article 

    Google Scholar 
    23.Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2), 1809–1833 (2017).Article 

    Google Scholar 
    24.Hogg, A. G. et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), 1889–1903 (2013).CAS 
    Article 

    Google Scholar 
    25.Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., Izquierdo, E., & Dubos, C. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in arabidopsis. Plant Cell, 32, 508–524 (2020).CAS 
    Article 

    Google Scholar  More