More stories

  • in

    Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon

    Agrawal AF, Stinchcombe JR (2009) How much do genetic covariances alter the rate of adaptation? Proc Biol Sci 276:1183–1191PubMed 
    PubMed Central 

    Google Scholar 
    Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol S 44:367–388Article 

    Google Scholar 
    Andersen O (2012) Hemoglobin polymorphisms in Atlantic cod—a review of 50 years of study. Mar Genom 8:59–65Article 

    Google Scholar 
    Anttila K, Dhillon RS, Boulding EG, Farrell AP, Glebe BD, Elliott JA et al. (2013) Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol 216:1183–1190CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300
    Google Scholar 
    Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478Article 

    Google Scholar 
    Bontrager M, Angert AL (2019) Gene flow improves fitness at a range edge under climate change. Evol Lett 3:55–68PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bowen SJ, Washburn KW (1984) Genetics of heat tolerance in Japanese quail. Poult Sci 63:430–435CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155Article 

    Google Scholar 
    Breau C, Cunjak RA, Bremset G (2007) Age-specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. J Fish Biol 71:1179–1191Article 

    Google Scholar 
    Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments ASReml-R reference manual. Queensland Department of Primary Industries and Fisheries, NSW Department of Primary Industries, Brisbane, Australia
    Google Scholar 
    Catullo RA, Llewelyn J, Phillips BL, Moritz CC (2019) The potential for rapid evolution under anthropogenic climate change. Curr Biol 29:R996–R1007CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B 272:1415–1425PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY, Deng Palomares ML et al. (2012) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Change 3:254–258Article 

    Google Scholar 
    Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Debes PV, Fraser DJ, McBride MC, Hutchings JA (2013) Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon. Heredity 111:238–247CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debes PV, Piavchenko N, Erkinaro J, Primmer CR (2020) Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proc R Soc B 287:20200867PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N et al. (2021) Polygenic and major-locus contributions to sexual maturation timing in Atlantic salmon. Mol Ecol https://doi.org/10.1111/mec.16062Dwyer WP, Piper RG (1987) Atlantic salmon growth efficiency as affected by temperature. Prog Fish Cult 49:57–59Article 

    Google Scholar 
    Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gallaugher P, Farrell AP (1998) Hematocrit and blood oxygen-carrying capacity. In: Perry SF, Tufts BL (eds) Fish respiration. Academic Press, San Diego, California, p 185–227
    Google Scholar 
    Gamperl AK, Ajiboye OO, Zanuzzo FS, Sandrelli RM, Peroni EDFC, Beemelmanns A (2020) The impacts of increasing temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic Salmon (Salmo salar). Aquaculture 519:734874Article 

    Google Scholar 
    Glover KA, Otterå H, Olsen RE, Slinde E, Taranger GL, Skaala Ø (2009) A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 286:203–210Article 

    Google Scholar 
    Glover KA, Solberg MF, Besnier F, Skaala O (2018) Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Sci Rep 8:13966PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW et al. (2017) Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish Fish 18:890–927Article 

    Google Scholar 
    Good C, Davidson J (2016) A review of factors influencing maturation of Atlantic salmon, Salmo salar, with focus on water recirculation aquaculture system environments. J World Aquacult Soc 47:605–632Article 

    Google Scholar 
    Hartman KJ, Porto MA (2014) Thermal performance of three rainbow trout strains at above-optimal temperatures. Trans Am Fish Soc 143:1445–1454Article 

    Google Scholar 
    Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310
    Google Scholar 
    Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41Article 

    Google Scholar 
    Hill WG (2010) Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci 365:73–85PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hutchings JA, Myers RA (1994) The evolution of alternative mating strategies in variable environments. Evol Ecol 8:256–268Article 

    Google Scholar 
    IPCC (2014) Future climate changes, risk and impacts. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, pp 56–74Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jonsson B, Forseth T, Jensen AJ, Naesje TF (2001) Thermal performance of juvenile Atlantic Salmon, Salmo salar L. Funct Ecol 15:701–711Article 

    Google Scholar 
    Jonsson B, Jonsson N, Finstad AG (2013) Effects of temperature and food quality on age and size at maturity in ectotherms: an experimental test with Atlantic salmon. J Anim Ecol 82:201–210PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ et al. (2018) Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J Exp Biol 221:jeb169615PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kellermann V, van Heerwaarden B, Sgro CM (2017) How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc R Soc B 284:20170447PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelly M (2019) Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 374:20180176PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kingsolver JG, Buckley LB (2017) Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc Lond B Biol Sci 372:20160147PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kingsolver JG, Heckman N, Zhang J, Carter PA, Knies JL, Stinchcombe JR et al. (2015) Genetic variation, simplicity, and evolutionary constraints for function-valued traits. Am Nat 185:E166–181PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kingsolver JG, Izem R, Ragland GJ (2004) Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves. Integr Comp Biol 44:450–460PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF et al. (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshwat Fish 12:1–59Article 

    Google Scholar 
    Komender P, Hoeschele I (1989) Use of mixed-model methodology to improve estimation of crossbreeding parameters. Livest Prod Sci 21:101–113Article 

    Google Scholar 
    Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189Article 

    Google Scholar 
    Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574Article 

    Google Scholar 
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Massachusetts
    Google Scholar 
    Mather K, Jinks JL (1982) Biometrical genetics: the study of continuous variation, 3rd edn. Chapman and Hall, LondonBook 

    Google Scholar 
    McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR et al. (2021) Intraspecific variation in tolerance of warming in fishes. J Fish Biol 98:1536–1555PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ et al. (2017) Global warming may disproportionately affect larger adults in a predatory coral reef fish. Glob Change Biol 23:2230–2240Article 

    Google Scholar 
    Morgan R, Finnoen MH, Jensen H, Pelabon C, Jutfelt F (2020) Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci USA 117:33365–33372CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morita K, Tamate T, Kuroki M, Nagasawa T (2014) Temperature-dependent variation in alternative migratory tactics and its implications for fitness and population dynamics in a salmonid fish. J Anim Ecol 83:1268–1278PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Langham G, Kearney M, Krockenberger A, VanDerWal J, Williams S (2012) Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philos Trans R Soc Lond B Biol Sci 367:1680–1687PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morrissey MB, Kruuk LE, Wilson AJ (2010) The danger of applying the breeder’s equation in observational studies of natural populations. J Evol Biol 23:2277–2288CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Morrissey MB, Liefting M (2016) Variation in reaction norms: statistical considerations and biological interpretation. Evolution 70:1944–1959PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Muff S, Niskanen AK, Saatoglu D, Keller LF, Jensen H (2019) Animal models with group-specific additive genetic variances: extending genetic group models. Genet Sel Evol 51:7PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munday PL, Donelson JM, Domingos JA (2017) Potential for adaptation to climate change in a coral reef fish. Glob Change Biol 23:307–317Article 

    Google Scholar 
    Muñoz NJ, Anttila K, Chen Z, Heath JW, Farrell AP, Neff BD (2014a) Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon. Proc R Soc B 281:20141082PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz NJ, Farrell AP, Heath JW, Neff BD (2014b) Adaptive potential of a Pacific salmon challenged by climate change. Nat Clim Change 5:163–166Article 

    Google Scholar 
    Muñoz NJ, Farrell AP, Heath JW, Neff BD (2018) Hematocrit is associated with thermal tolerance and modulated by developmental temperature in juvenile Chinook salmon. Physiol Biochem Zool 91:757–762PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ørsted M, Hoffmann AA, Rohde PD, Sørensen P, Kristensen TN (2019) Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122:315–325PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Bock C, Mark FC (2017) Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485Article 

    Google Scholar 
    Robinson ML, Gomez-Raya L, Rauw WM, Peacock MM (2008) Fulton’s body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). J Therm Biol 33:363–368Article 

    Google Scholar 
    Rowe DK, Thorpe JE, Shanks AM (1991) Role of fat stores in the maturation of male Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 48:405–413Article 

    Google Scholar 
    Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406Article 

    Google Scholar 
    Siepielski AM, Morrissey MB, Carlson SM, Francis CD, Kingsolver JG, Whitney KD et al. (2019) No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc R Soc B 286:20191332PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S et al. (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Solberg MF, Dyrhovden L, Matre IH, Glover KA (2016) Thermal plasticity in farmed, wild and hybrid Atlantic salmon during early development: has domestication caused divergence in low temperature tolerance? BMC Evol Biol 16:38PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014) Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon. PLoS ONE 9:e113697PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stillman JH (2019) Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34:86–100CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sutton SG, Bult TP, Haedrich RL (2000) Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans Am Fish Soc 129:527–538Article 

    Google Scholar 
    Taggart JB (2006) FAP: an exclusion-based parental assignment program with enhanced predictive functions. Mol Ecol Notes 7:412–415Article 
    CAS 

    Google Scholar 
    Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A et al. (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16:799–806PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Res 25:77–87Article 

    Google Scholar 
    Tromp JJ, Jones PL, Brown MS, Donald JA, Biro PA, Afonso LOB (2018) Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon. Aquaculture 495:196–204Article 

    Google Scholar 
    Underwood ZE, Myrick CA, Rogers KB (2012) Effect of acclimation temperature on the upper thermal tolerance of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus: thermal limits of a North American salmonid. J Fish Biol 80:2420–2433CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Leeuwen TE, McLennan D, McKelvey S, Stewart DC, Adams CE, Metcalfe NB (2016) The association between parental life history and offspring phenotype in Atlantic salmon. J Exp Biol 219:374–382PubMed 
    PubMed Central 

    Google Scholar 
    Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol S 40:41–59Article 

    Google Scholar 
    Whitlock MC, Phillips PC, Wade MJ (1993) Gene interaction affects the additive genetic variance in subdivided populations with migration and extinction. Evolution 47:1758–1769PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wright S (1932) Proceedings of the Sixth International Congress on Genetics, Vol. 1. Donald FJ (ed.). The Genetics Society of America, pp 356-366Zhang T, Kong J, Liu B, Wang Q, Cao B, Luan S et al. (2014) Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceano Sin 33:106–110CAS 
    Article 

    Google Scholar  More

  • in

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    1.Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–8.CAS 
    Article 

    Google Scholar 
    2.Jickells TD, Buitenhuis E, Altieri K, Baker AR, Capone D, Duce RA, et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob Biogeochem Cycles. 2017;31:289–305.CAS 

    Google Scholar 
    3.Knapp A. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Rees AP, Gilbert JA, Kelly-Gerreyn BA. Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar Ecol Prog Ser. 2009;374:7–12.CAS 
    Article 

    Google Scholar 
    5.Shiozaki T, Nagata T, Ijichi M, Furuya K. Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeosciences. 2015;12:4751–64.Article 

    Google Scholar 
    6.Tang W, Cerdán-García E, Berthelot H, Polyviou D, Wang S, Baylay A, et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 2020;14:2514–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tang W, Wang S, Fonseca-Batista D, Dehairs F, Gifford S, Gonzalez AG, et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat Commun. 2019;10:1–10.Article 
    CAS 

    Google Scholar 
    8.Hamersley M, Turk K, Leinweber A, Gruber N, Zehr J, Gunderson T, Capone D. Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquat Microb Ecol. 2011;63:193–205.Article 

    Google Scholar 
    9.Mulholland MR, Bernhardt PW, Blanco-Garcia JL, Mannino A, Hyde K, Mondragon E, et al. Rates of dinitrogen fixation and the abundance of diazotrophs in North American coastal waters between Cape Hatteras and Georges Bank. Limnol Oceanogr. 2012;57:1067–83.CAS 
    Article 

    Google Scholar 
    10.Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, western North Atlantic coastal waters expands the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    11.Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 2015;9:273–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wen Z, Lin W, Shen R, Hong H, Kao SJ, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:1–10.Article 
    CAS 

    Google Scholar 
    13.Voss M, Bombar D, Loick N, Dippner JW. Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea. Geophys Res Lett. 2006;33:L07604.Article 
    CAS 

    Google Scholar 
    14.Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S, Takemura T, et al. New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Glob Biogeochem Cycles. 2010;24:GB1015–n/a.15.Blais M, Tremblay JÉ, Jungblut AD, Gagnon J, Martin J, Thaler M, et al. Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic. Glob Biogeochem Cycles. 2012;26:GB3022.Article 
    CAS 

    Google Scholar 
    16.Shiozaki T, Fujiwara A, Inomura K, Hirose Y, Hashihama F, Harada N. Biological nitrogen fixation detected under Antarctic sea ice. Nat Geosci. 2020;13:729–32.CAS 
    Article 

    Google Scholar 
    17.Harding K, Turk-Kubo KA, Sipler RE, Mills MM, Bronk DA, Zehr JP. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc Natl Acad Sci USA. 2018;115:13371–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337:1546–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Zehr JP, Shilova IN, Farnelid HM, del Carmen Muñoz-MarínCarmen M, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:16214.PubMed 
    Article 
    CAS 

    Google Scholar 
    20.Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science. 2008;322:1110–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Church MJ, Mahaffey C, Letelier RM, Lukas R, Zehr JP, Karl DM. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Glob Biogeochem Cycles. 2009;23:GB2020.23.Langlois RJ, Hummer D, LaRoche J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol. 2008;74:1922–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Krupke A, Lavik G, Halm H, Fuchs BM, Amann RI, Kuypers MM. Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean. Environ Microbiol. 2014;16:3153–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Shiozaki T, Bombar D, Riemann L, Hashihama F, Takeda S, Yamaguchi T, et al. Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Glob Biogeochem Cycles 2017;31:996–1009.CAS 
    Article 

    Google Scholar 
    27.Krupke A, Musat N, Laroche J, Mohr W, Fuchs BM, Amann RI, et al. In situ identification and N2 and C fixation rates of uncultivated cyanobacteria populations. Syst Appl Microbiol. 2013;36:259–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environ. Microbiol. 2015;17:3754–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Conroy BJ, Steinberg DK, Song B, Kalmbach A, Carpenter EJ, Foster RA. Mesozooplankton graze on cyanobacteria in the amazon river plume and western tropical North Atlantic. Front Microbiol. 2017;8:1436.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Turk-Kubo KA, Connell P, Caron D, Hogan ME, Farnelid HM, Zehr JP. In situ diazotroph population dynamics under different resource ratios in the North Pacific Subtropical Gyre. Front Microbiol. 2018;9:1616.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Shiozaki T, Fujiwara A, Ijichi M, Harada N, Nishino S, Nishi S, et al. Diazotroph community structure and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean). Limnol Oceanogr. 2018;63:2191–205.CAS 
    Article 

    Google Scholar 
    35.Sohm JA, Hilton JA, Noble AE, Zehr JP, Saito MA, Webb EA. Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling system. Geophys Res Lett. 2011;38:L16608–n/a.Article 
    CAS 

    Google Scholar 
    36.Moreira-Coello V, Mouriño-Carballido B, Marañón E, Fernández-Carrera A, Bode A, Varela MM. Biological N2 fixation in the upwelling region off NW Iberia: magnitude, relevance, and players. Front Mar Sci. 2017;4:303.Article 

    Google Scholar 
    37.Cabello AM, Turk-Kubo KA, Hayashi K, Jacobs L, Kudela RM, Zehr JP. Unexpected presence of the nitrogen-fixing symbiotic cyanobacterium UCYN-A in Monterey Bay, California. J Phycol. 2020;56:1521–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Deutsch C, Frenzel H, McWilliams JC, Renault L, Kessouri F, Howard E, et al. Biogeochemical variability in the California Current System. Prog Oceanogr. 2021;196:102565.Article 

    Google Scholar 
    39.Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of seawater analysis. 3rd ed. Weinheim: Wiley-VCH; 1999.40.Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    41.Moisander PH, Beinart RA, Voss M, Zehr JP. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2008;2:954–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Zehr JP, Jenkins BD, Short SM, Steward GF. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol. 2003;5:539–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013;4:1111–9.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    47.Turk-Kubo KA, Farnelid HM, Shilova IN, Henke B, Zehr JP. Distinct ecological niches of marine symbiotic N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa sublineages. J Phycol. 2017;53:451–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon. Front Microbiol. 2018;9:554.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gradoville MR, Farnelid H, White AE, Turk‐Kubo KA, Stewart B, Ribalet F, et al. Latitudinal constraints on the abundance and activity of the cyanobacterium UCYN‐A and other marine diazotrophs in the North Pacific. Limnol Oceanogr. 2020;65:1858–75.CAS 
    Article 

    Google Scholar 
    50.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Church M, Jenkins B, Karl D, Zehr J. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol. 2005;38:3–14.Article 

    Google Scholar 
    52.Thompson A, Carter BJ, Turk-Kubo K, Malfatti F, Azam F, Zehr JP. Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host. Environ Microbiol. 2014;16:3238–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Foster RA, Subramaniam A, Mahaffey C, Carpenter EJ, Capone DG, Zehr JP. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol Oceanogr. 2007;52:517–32.CAS 
    Article 

    Google Scholar 
    54.Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, et al. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiol. 2010;12:3272–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Farnelid H, Turk-Kubo K, Munoz-Marin MD, Zehr JP. New insights into the ecology of the globally significant uncultured nitrogen-fixing symbiont UCYN-A. Aquat Microb Ecol. 2016;77:125–38.Article 

    Google Scholar 
    56.Mohr W, Grosskopf T, Wallace DWR, LaRoche J. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE. 2010;5:e12583.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gradoville MR, Bombar D, Crump BC, Letelier RM, Zehr JP, White AE. Diversity and activity of nitrogen-fixing communities across ocean basins. Limnol Oceanogr. 2017;62:1895–909.Article 

    Google Scholar 
    59.White AE, Granger J, Selden C, Gradoville MR, Potts L, Bourbonnais A, et al. A critical review of the 15N2 tracer method to measure diazotrophic production in pelagic ecosystems. Limnol Oceanogr Methods. 2020;18:129–47.Article 

    Google Scholar 
    60.Cornejo-Castillo FM, Cabello AM, Salazar G, Sánchez-Baracaldo P, Lima-Mendez G, Hingamp P, et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat Commun. 2016;7:11071.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Cabello AM, Cornejo-Castillo FM, Raho N, Blasco D, Vidal M, Audic S, et al. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J. 2016;10:693–706.PubMed 
    Article 

    Google Scholar 
    62.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@ NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Krupke A, Mohr W, LaRoche J, Fuchs BM, Amann RI, Kuypers MM. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis. ISME J. 2015;9:1635–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Meyer NR, Fortney J, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2020;23:81–98.PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Durazo R. Seasonality of the transitional region of the California Current System off Baja California. J Geophys Res Oceans. 2015;120:1173–96.Article 

    Google Scholar 
    66.Bakun A. Coastal upwelling indices, west coast of North America, 1946–71.67.Redfield AC. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. Vol. 1. Liverpool: University Press of Liverpool; 1934. p. 176–92.68.Bograd SJ, Schroeder ID, Jacox MG. A water mass history of the Southern California current system. Geophys. Res. Lett. 2019;46:6690–8.Article 

    Google Scholar 
    69.Langlois R, Großkopf T, Mills M, Takeda S, LaRoche J. Widespread distribution and expression of gamma A (UMB), an uncultured, diazotrophic, γ-proteobacterial nifH phylotype. PLoS ONE. 2015;10:e0128912.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Dekaezemacker J, Bonnet S, Grosso O, Moutin T, Bressac M, Capone DG. Evidence of active dinitrogen fixation in surface waters of the eastern tropical South Pacific during El Niño and La Niña events and evaluation of its potential nutrient controls. Glob Biogeochem Cycles 2013;27:768–79.CAS 
    Article 

    Google Scholar 
    71.Chen M, Lu Y, Jiao N, Tian J, Kao SJ, Zhang Y. Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnol Oceanogr. 2019;64:1403–21.CAS 
    Article 

    Google Scholar 
    72.Turk KA, Rees AP, Zehr JP, Pereira N, Swift P, Shelley R, et al. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. ISME J. 2011;5:1201–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.Article 

    Google Scholar 
    74.Selden CR, Mulholland MR, Bernhardt PW, Widner B, Macías‐Tapia A, Ji Q, et al. Dinitrogen fixation across physico-chemical gradients of the eastern tropical North Pacific oxygen deficient zone. Glob Biogeochem Cycles. 2019;33:1187–202.CAS 
    Article 

    Google Scholar 
    75.Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol. 2011;9:499–508.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Carlucci A, Bowes PM. Production of vitamin B12, thiamine, and biotin by phytoplankton. J Phycol. 1970;6:351–7.CAS 

    Google Scholar 
    77.Gledhill M, Buck KN. The organic complexation of iron in the marine environment: a review. Front Microbiol. 2012;3:69.PubMed 
    PubMed Central 

    Google Scholar 
    78.Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr. 1997;42:506–18.CAS 
    Article 

    Google Scholar 
    79.Hernández de la Torre B, Gaxiola Castro G, Álvarez Borrego S, Gallegos García A, Aguirre Gómez R. New organic carbon in front of the Baja California Peninsula: time series and climatology. Hidrobiológica. 2015;25:74–85.
    Google Scholar 
    80.Xiu P, Chai F, Curchitser EN, Castruccio FS. Future changes in coastal upwelling ecosystems with global warming: the case of the California Current System. Sci. Rep. 2018;8:2866.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Kimor B, Reid F, Jordan J. An unusual occurrence of Hemiaulus membranaceus Cleve (Bacillariophyceae) with Richelia intracelluaris Schmidt (Cyanophyceae) off the coast of Southern California. Phycologia. 1978;17:162–6.Article 

    Google Scholar 
    82.White AE, Prahl FG, Letelier RM, Popp BN. Summer surface waters in the Gulf of California: Prime habitat for biological N2 fixation. Glob Biogeochem Cycles. 2007;21:GB2017–n/a.83.Pyle AE, Johnson AM, Villareal TA. Isolation, growth, and nitrogen fixation rates of the Hemiaulus-Richelia (diatom-cyanobacterium) symbiosis in culture. PeerJ. 2020;8:e10115.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Foster RA, Kuypers MM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011;5:1484–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Caputo A, Nylander JAA, Foster RA. The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol Lett. 2019;366:fny297.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    86.Thompson AR. State of the California Current 2017–18: still not quite normal in the north and getting interesting in the south. California cooperative oceanic fisheries investigations, Data report. 2018.87.Larkin AA, Moreno AR, Fagan AJ, Fowlds A, Ruiz A, Martiny AC. Persistent El Nino driven shifts in marine cyanobacteria populations. PLoS ONE. 2020;15:e0238405.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Hagino K, Takano Y, Horiguchi T. Pseudo-cryptic speciation in Braarudosphaera bigelowii (Gran and Braarud) Deflandre. Mar Micropaleontol. 2009;72:210–21.Article 

    Google Scholar 
    89.Selden CR, Chappell PD, Clayton S, Macías‐Tapia A, Bernhardt PW, Mulholland MR. A coastal N2 fixation hotspot at the Cape Hatteras front: elucidating spatial heterogeneity in diazotroph activity via supervised machine learning. Limnol Oceanogr. 2021;66:1832–49.Article 

    Google Scholar 
    90.Wang S, Tang W, Delage E, Gifford S, Whitby H, González AG, et al. Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic. Sci Rep. 2021;11:5508.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Handmade solar dryer: an environmentally and economically viable alternative for small and medium producers

    1.FAO—Food and Agriculture Organization of the United Nations. World Crops Production. http://www.wptc.to/releases-wptc.php (2016).2.WPTC—World Processing Tomato Council. World production estimate. http://www.wptc.to/releases-wptc.php. (2016).3.Silva, Y. P. A. et al. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 70, 150–160 (2019).Article 

    Google Scholar 
    4.Pereira, M. A. B. et al. Postharvest conservation of structural long shelf life tomato fruits and with the mutant rin produced, in edaphoclimatic conditions of the southern state of Tocantins. Ciênc. Agrotec. 39, 225–231 (2015).Article 

    Google Scholar 
    5.Brummell, D. A. & Harpster, M. H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. PCW. 47, 311–340 (2001).CAS 

    Google Scholar 
    6.Meli, V. S. et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc. Natl. Acad. Sci. USA 107, 2413–2418 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Samimi-Akhijahani, H. & Arabhosseini, A. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renew. Energy 123, 428–438 (2018).Article 

    Google Scholar 
    8.Tripathy, P. P. Investigação da secagem solar da batata: efeito da geometria da amostra na cinética de secagem e na mitigação das emissões de CO2. J. Ciênc. e Tecnol. Alim. 52, 1383–1393 (2015).CAS 

    Google Scholar 
    9.Badaoui, O., Hanini, S., Djebli, A., Haddad, B. & Benhamou, A. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renew. Energy 133, 144–155 (2019).Article 

    Google Scholar 
    10.Mohsen, H. A., El-Rahmam, A. A. & Hassan, H. E. Drying of tomato fruits using solar energy. Int. J. Agric. Eng. 21, 204–215 (2019).
    Google Scholar 
    11.César, L. V. E., Lilia, C. M. A., Octavio, G. V., Isaac, P. F. & Rogelio, B. O. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew. Energy 147, 845–855 (2020).Article 

    Google Scholar 
    12.Kingsly, A. R. P., Singh, R., Goyal, R. K. & Singh, D. B. Thin-layer drying behavior of organically produced tomato. Am. J. Food Tech. 2, 71–78 (2007).Article 

    Google Scholar 
    13.Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).CAS 
    Article 

    Google Scholar 
    14.Silva, F. A. S. A. & Azevedo, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Rev. Bras. Prod. Agroindustriais 4, 71–78 (2002).Article 

    Google Scholar 
    15.Klunklin, W. & Savage, G. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, e56 (2017).Article 

    Google Scholar 
    16.Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O. & Tijani, K. O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. 10, 120–126 (2019).
    Google Scholar 
    17.Correia, A. F., Loro, K. A. C., Zanatta, S., Spoto, M. H. F. & Vieira, T. M. F. S. Effect of temperature, time, and material thickness on the dehydration process of tomato. Int. J. Food Sci. 1, e970724 (2015).
    Google Scholar 
    18.Eswara, A. R. & Ramakrishnarao, M. Solar energy in food processing—A critical appraisal. J. Food Sci. Technol. 50, 209–227 (2013).CAS 
    Article 

    Google Scholar 
    19.Castillo, C. P., Silva, F. B. & Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 88, 86–99 (2016).Article 

    Google Scholar 
    20.Tampakis, G., Tsantopoulos, G. & Arabatzis, I. R. Citizens’ views on various forms of energy and their contribution to the environment. Renew. Sust. Energ. Rev. 20, 473–482 (2013).Article 

    Google Scholar 
    21.Tsantopoulos, G. & Arabatzis, T. G. Stilianos Public attitudes towards photovoltaic developments: Case study from Greece. Energy Policy 71, 94–106 (2014).Article 

    Google Scholar 
    22.Tiwari, R. B. Application of osmo-air dehydration for processing of tropical frepical fruits in rural areas. Indian Food Ind. 24, 62–69 (2005).
    Google Scholar 
    23.Goula, A. M. & Adamopoulos, K. G. Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technol. 24, 57–64 (2006).CAS 
    Article 

    Google Scholar 
    24.McAlpine, R. D., Cocivera, M. & Chen, H. Photooxidation and reduction of ascorbic acid atudied by E.S.R. Can. J. Chem. 51, 1682–1686 (1973).CAS 
    Article 

    Google Scholar 
    25.Santos, P. H. S. & Silva, M. A. Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technol. 26, 1421–1437 (2008).CAS 
    Article 

    Google Scholar 
    26.Santos-Sánchez, N. F., Valadez-Blanco, R., Gómez-Gómez, M. S., Pérez-Herrera, A. & Salas-Coronado, R. Effect of rotating tray drying on antioxidant components, color and rehydration ratio of tomato saladette slices. LWT Food Sci. Technol. 46, 298–304 (2012).Article 

    Google Scholar 
    27.Yadav, A. K. & Singh, S. V. Y. Osmotic dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 51, 1654–1673 (2014).Article 

    Google Scholar 
    28.Gunhan, T., Demir, V., Hancioglu, E. & Hepbasli, A. Mathematical modeling of drying of bay leaves. Energy Convers. Manag. 46, 1667–1679 (2005).Article 

    Google Scholar 
    29.Sacilik, K. & Unal, G. Dehydration characteristics of kastomonu garlic slices. Biosyst. Eng. 92, 207–215 (2005).Article 

    Google Scholar 
    30.Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos 1020 (Instituto Adolfo Lutz, 2008).
    Google Scholar  More

  • in

    African tropical montane forests store more carbon than was thought

    NEWS AND VIEWS
    25 August 2021

    African tropical montane forests store more carbon than was thought

    The inaccessibility of African montane forests has hindered efforts to quantify the carbon stored by these ecosystems. A remarkable survey fills this knowledge gap, and highlights the need to preserve such forests.

    Nicolas Barbier

    0

    Nicolas Barbier

    Nicolas Barbier is at AMAP, Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier 34980, France.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    In a paper in Nature, Cuni-Sanchez et al.1 report the assembly of a large database of tree inventories for 226 mature montane-forest plots in 12 African countries. The authors analyse the data to determine the amount of aboveground biomass and carbon stored in these highly diverse and threatened ecosystems. Their results suggest that African montane forests store more carbon than was previously thought, and the findings should help to guide efforts to conserve these ecosystems.Cuni-Sanchez and colleagues measured trunk diameters and heights of the trees in plots, and identified the botanical species to deduce wood density — an approach that constitutes the gold standard for estimating the biomass, and thus the amount of carbon, contained per unit of forest area. This method involves the use of general statistical equations for describing tree form, called allometric models, and considers only the aboveground parts of trees. It therefore disregards several other pools of carbon, notably in the roots and soil. The overall approach might seem crude, but recognizing and measuring the many hundreds of tree species found on steep, cloud-shrouded slopes (Fig. 1), let alone the underground carbon, without visiting the sites, will long remain difficult, even with the best drones and satellite systems.

    Figure 1 | Montane forest in Boginda, Ethiopia. Cuni-Sanchez et al.1 use data from a survey of montane tropical forests in Africa to quantify the amount of carbon stored above ground in these ecosystems.Credit: Bruno D’Amicis/Nature Picture Library

    Anyone who has conducted field inventories in tropical mountains knows that measuring and identifying 72,336 trees, often just a few steps away from the void, is an amazing feat. For comparison, a previously reported study2 based its estimates of the carbon stored in montane African forests on as few as seven plots. The study also brings together contributions from numerous researchers and institutions, including many in Africa, to greatly increase the size of the data set, which is also a remarkable achievement. Even so, the total area of forest studied is less than 150 hectares, whereas African montane forest covers about 100,000 times that area, inevitably raising questions about how representative the inventory is.Statisticians might raise their eyebrows at the sampling design. As is usually the case in meta-analyses, the data set was neither homogeneous (for example, there is a roughly tenfold variation in the plot sizes), nor were the sites selected at random. However, the authors did their best to rule out possible biases induced by sampling artefacts.
    Read the paper: High aboveground carbon stock of African tropical montane forests
    Cuni-Sanchez et al. chose not to discuss one tricky aspect of surveys of this sort (extensively discussed elsewhere2): how should the land area of a steep slope be measured? The authors followed standard practice, which is to measure the extent of forest plots and of land-cover types in reference to horizontal, planimetric areas (that is, the areas that would be represented on a 2D map, as if seen from the air). This tends to overestimate aboveground carbon because the sloped surface area is greater than that of the planimetric area — which means that the tree density of the planimetric area is higher than it is on the slope. By contrast, the use of planimetric areas underestimates total montane-forest area (by about 40%; see ref. 2). These two biases should roughly cancel each other out when estimating carbon stocks, or changes to stocks, for a region or country. But care should be taken not to combine data acquired using planimetric and non-planimetric areas in future meta-analyses, because the resulting estimates could end up well off the mark.One might expect that trees in mature African montane forests would be, on average, shorter — and therefore store less carbon — than their lowland counterparts, because of their lower environmental temperatures and shallow soils, frequent landslides and strong winds. However, this is not what Cuni-Sanchez et al. report. Instead, they find that average aboveground carbon stocks are not significantly different from those of mature lowland forests. This contrasts with the situation in the neotropics and southeast Asia, where montane forests store, on average, less carbon than do lowland forests.However, the new results fit with the 2016 discovery that the tallest African trees (81.5 metres) grow on Mount Kilimanjaro3, the highest mountain in Africa. African forests, in general, tend to contain fewer but larger-statured tree stands than does, for example, Amazonia4. The current study confirms that this peculiarity applies even at high altitudes.The authors investigate several possible drivers for the variations in biomass observed at different sites in their study, including topography, climate, landslide hazard, and even the presence of elephants or certain conifers (Podocarpaceae), but were unable to identify any clear pattern. Many environmental, historical and biological effects probably interact, with each of these effects varying greatly in ways that are poorly captured by available data sets. These effects must therefore be disentangled before a predictive model of African montane carbon distribution can be developed.
    Tropical carbon sinks are saturating at different times on different continents
    Nevertheless, Cuni-Sanchez and colleagues’ study underlines a crucial message: African montane forests are immensely valuable, and not only because they host the source of the River Nile, mountain gorillas and ecosystems such as mysterious lichen-covered forests. They also store vast amounts of carbon, and thereby have a key role in tackling climate change. Of course, this immense intrinsic value does not preclude intense human exploitation of these ecosystems, which can lead to rapid degradation and deforestation. For instance, on the basis of satellite monitoring, Cuni-Sanchez and colleagues report that Mozambique lost nearly one-third of its montane forests between 2000 and 2018.There is, however, the faint hope that putting a financial value on carbon, and the establishment of economic incentives to avoid deforestation in tropical countries, might help to check the flood of damage5. The aim is to reward African countries — for which montane forest sometimes constitutes the last remaining forests — for their conservation endeavours, and for renouncing efforts to access the timber and ore in these ecosystems, even when such resources are otherwise desperately lacking. By gathering the best-available data to provide precise, country-level estimates of average aboveground carbon content in African montane forests, Cuni-Sanchez and colleagues’ study will add weight to such efforts — not least because the new estimates are, on average, two-thirds higher than the values reported by the Intergovernmental Panel on Climate Change6.The next step should be to extend measurements in these forests, particularly by continuing to support national forest-inventory efforts. These inventories target all vegetation types, rather than just the most intact forests, and all carbon pools, using standardized protocols and systematic sampling methods. Remote sensors, both in the sky and in space, should also be used to fully map the detailed spatial variation of forest diversity, structure and dynamics. But there is no excuse for delaying policymaking — we already know enough to justify immediate decisive action to preserve yet another of Earth’s threatened treasures.

    Nature 596, 488-490 (2021)
    doi: https://doi.org/10.1038/d41586-021-02266-3

    References1.Cuni-Sanchez, A. et al. Nature 596, 536–542 (2021).Article 

    Google Scholar 
    2.Spracklen, D. V. & Righelato, R. Biogeosciences 11, 2741–2754 (2014).Article 

    Google Scholar 
    3.Hemp, A. et al. Biodivers. Conserv. 26, 103–113 (2017).Article 

    Google Scholar 
    4.Lewis, S. L. et al. Phil. Trans. R. Soc. B 368, 20120295 (2013).PubMed 
    Article 

    Google Scholar 
    5.Venter, O. et al. Science 326, 1368 (2009).PubMed 
    Article 

    Google Scholar 
    6.Domke, G. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Calvo Buendia, E. et al.) Ch. 4, 4.48 (IPCC, 2019).
    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: High aboveground carbon stock of African tropical montane forests

    Southeast Amazonia is no longer a carbon sink

    Tropical carbon sinks are saturating at different times on different continents

    See all News & Views

    Subjects

    Biogeochemistry

    Environmental sciences

    Ecology

    Latest on:

    Biogeochemistry

    High aboveground carbon stock of African tropical montane forests
    Article 25 AUG 21

    The Montreal Protocol protects the terrestrial carbon sink
    Article 18 AUG 21

    Amazonia as a carbon source linked to deforestation and climate change
    Article 14 JUL 21

    Environmental sciences

    Brazilian road proposal threatens famed biodiversity hotspot
    News 17 AUG 21

    ‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2
    News & Views 16 AUG 21

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Ecology

    Can artificially altered clouds save the Great Barrier Reef?
    News Feature 25 AUG 21

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose
    World View 18 AUG 21

    Brazilian road proposal threatens famed biodiversity hotspot
    News 17 AUG 21

    Jobs

    Postdoctoral Research Scientist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Bioinformatics Software Engineer

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Computational Biologist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Research Fellow – Berbeco Lab

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Can artificially altered clouds save the Great Barrier Reef?

    Download PDF

    In place of its normal load of cars and vans, the repurposed ferry boat sported a mobile science laboratory and a large fan on its deck as it left Townsville, Australia, in March. Researchers dropped anchor in a coral lagoon some 100 kilometres offshore and then fired up the cone-shaped turbine, which blew a mist of seawater off the back of the boat. What happened next came as a welcome surprise: after briefly drifting along the ocean surface, the plume ascended into the sky.Looking a bit like a jet engine, this mist machine is at the centre of an experiment that, if successful, could help to determine the future of the Great Barrier Reef. Three-hundred and twenty nozzles spewed a cloud of nano-sized droplets engineered to brighten clouds and block sunlight — providing a bit of cooling shade for the coral colonies below. Scientists used sensors aboard the ferry, drones and a second boat to monitor the plume as it migrated skyward.The experiment wasn’t big enough to significantly alter the clouds. But preliminary results from the field tests — which were shared exclusively with Nature — suggest that the technology might perform even better than computer models suggested it would, says Daniel Harrison, an oceanographer and engineer at Southern Cross University in Coffs Harbour, Australia, who is heading up the research. “We are now very confident that we can get the particles up into the clouds,” Harrison says. “But we still need to figure out how the clouds will respond.”Harrison’s project is the world’s first field trial of marine cloud brightening, one of several controversial geoengineering technologies that scientists have studied in the laboratory for decades. The research has been driven by fear that humans might one day be forced to deliberately manipulate the Earth’s climate and weather systems to blunt the most severe impacts of global warming.For many Australians, that day arrived in 2017, when a marine heat wave spurred massive coral bleaching and death across much of the 2,300-kilometre Great Barrier Reef. That crisis hit just a year after another bleaching event along the reef, which supports more than 600 species of coral and an estimated 64,000 jobs in industries such as tourism and fishing. Research suggests that the reef lost more than half of its coral between 1995 and 2017, as a result of warming waters, tropical storms and predatory starfish (A. Dietzel et al. Proc. R. Soc. B. 287, 20201432; 2020).
    These corals could survive climate change — and help save the world’s reefs
    The project has raised concerns among some scientists abroad, in part because the Australian group has published little about its work. Environmentalists outside Australia objected to the project last year after news of the first trial broke, and there could be similar criticism when details of the 2021 trial emerge.Harrison stresses that the cloud-brightening project is about local adaptation to climate change, not global geoengineering, because its application would be limited in both space and time. It’s also just one part of a larger Aus$300 million (US$220 million) Reef Restoration and Adaptation Program (RRAP) launched last year by Australia to investigate and develop techniques and technologies to save the country’s reefs. Many of the proposals, from cloud brightening to breeding heat-tolerant corals, would represent unprecedented human interventions in the natural reef system.Ecological modelling suggests that a large-scale intervention involving multiple strategies — including a fleet of mist machines — could prolong the life of the reef while governments work to eliminate greenhouse-gas emissions. The goal now is to work out what’s achievable in the real world, says Cedric Robillot, executive director of the RRAP.“You need to consider every angle, from the fundamental science to the very pointy end of engineering, if you want to succeed,” Robillot says. “It’s not enough to just prove you could do it. You need to explain how you would do it.”Into the cloudsHarrison conducted his first field test in March 2020: a three-day proof-of-concept expedition on a small car ferry with four scientists, one representative from a local Indigenous group, and two shipping containers for equipment and sleeping quarters. The team had a minimal Aus$400,000 budget and limited scientific instrumentation to monitor the mist, but it was enough to document that the plume flowing out of their mist machine rode a draught of warm air high into the sky.It was the first time they had witnessed this phenomenon. Their models had suggested that evaporation of the brine droplets would cool the plume, which would then float across the surface of the ocean, only slowly mixing upwards into the low-lying marine clouds. The models also indicated a risk that the tiny droplets might merge and drop out of the air. Instead, brine droplets floated along the surface of the ocean for half a kilometre without coalescing, gradually losing water and weight to evaporation along the way. And then they shot upwards.

    A marine heat wave in 2017 caused coral bleaching along much of Australia’s Great Barrier Reef.Credit: Juergen Freund/Nature Picture Library

    “We didn’t expect that at all,” Harrison says, “but it turned out we were doing this experiment in the middle of a rising air mass.”The scientists feared it was a fluke. Although years of research and development have gone into the nozzles, initially led by a separate American team, this was the first time anybody had ever deployed them in the field with fresh seawater. The team also didn’t know what to expect from clouds and aerosols in that region, because research on the reef has focused almost exclusively on what happens below the water, not the conditions above.For Harrison, the 2020 experiment was more than enough to justify moving forward with another, larger trial in March 2021. But it did raise eyebrows among some scientists and observers abroad, where geoengineering research has met strong opposition and struggled to attract funding.
    IPCC climate report: Earth is warmer than it’s been in 125,000 years
    Most of the concern has centred on a form of solar geoengineering that involves injecting reflective material into the stratosphere to block sunlight at a global scale. But cloud brightening has also been studied as a potential global intervention, and it has attracted criticism from some environmental groups who argue that it carries inevitable ecological risks and detracts from efforts to limit greenhouse gases.Some scientists, as well as environmental advocates who follow geoengineering research, told Nature that they were surprised to see the experiment move forward without more scrutiny — or without published research to justify such an investment.Critics also worry that Australia is setting the wrong kind of precedent by rebranding a solar-geoengineering experiment that could have regional impacts as a local adaptation project. “One could say that there should have been some level of consultation with the outside world,” says Janos Pasztor, who heads the Carnegie Climate Governance Initiative, an advocacy group in New York City that has been pushing for a global debate over geoengineering governance in the United Nations.Harrison says scientists in the programme have consulted with regulatory authorities, as well as with the general public and Indigenous groups that have historic claims on the reef. He also readily acknowledges trying to avoid getting embroiled in a debate about solar geoengineering, arguing that the project would be more akin to cloud-seeding operations that are designed to promote rain and that are not considered to be geoengineering. One of the next modelling efforts, however, will be to explore any potential regional and global implications, he says.

    A plume of seawater droplets rises up into the sky during a field trial in March 2021.Credit: Brendan Kelaher/SCU

    Others question the Australian government’s motivations in funding such work. Under the conservative prime minister Scott Morrison, the government has yet to strengthen its climate pledge under the 2015 Paris agreement, as many nations have done in the past year. Morrison has personally ruled out committing to net-zero emissions. Pushing for a technological fix to global warming without moving to aggressively curb greenhouse gases is “sheer lunacy”, says Peter Frumhoff, chief climate scientist for the Union of Concerned Scientists, an advocacy group in Cambridge, Massachusetts.Some researchers, however, are pleased to see marine cloud brightening move from theory to the field, including US scientists working on a similar project that has been struggling to get into the field for nearly a decade. “This is an early example of how climate disruption can drive interest in these things,” says Sarah Doherty, an atmospheric physicist who manages the Marine Cloud Brightening Project at the University of Washington in Seattle. Members of the team provided the initial nozzle design and have been tracking the Australian group’s progress.Coral crisisThe first time that scientists observed a major bleaching event along the Great Barrier Reef was in 1998, and the second event followed four years later. In both cases, corals expelled the algae that live within them and that provide colour and energy through photosynthesis. Most of the corals eventually recovered. But in 2016 and 2017, many corals bleached and then died across two-thirds of the reef.
    First sun-dimming experiment will test a way to cool Earth
    “It was absolutely horrifying,” says David Wachenfeld, chief scientist at the Great Barrier Reef Marine Park Authority, which manages the reef. The clear message from those events was that the traditional approach to managing corals and coral reefs would not be enough, he adds. “Our hand was forced.”In 2018, the Australian government allocated Aus$6 million to a consortium of universities and government research institutes for a feasibility study focused on potentially radical strategies that could be applied across the reef. Researchers reviewed some 160 ideas, including putting live corals on ice for long-term preservation and synthetically engineeering new varieties that can tolerate the warmer waters. Many approaches proved too costly and energy intensive, but 43 interventions were singled out for further study. Marine cloud brightening drew support in part because it theoretically provides direct relief precisely when and where corals need it most.Much of the emphasis of the programme is on helping corals to adapt and repopulate the reef, including efforts to improve coral aquaculture operations so that they can produce millions of corals per year rather than thousands. For Madeleine van Oppen, a coral geneticist at the Australian Institute of Marine Science near Townsville, the RRAP programme helps to integrate her team’s work on assisting coral evolution to make them more heat tolerant.Thanks to the RRAP, she says, data from those projects are now being fed directly into models that enable researchers to assess the potential benefits — as well as the risks — of releasing new strains of coral and microalga into the wild. The programme is also raising ecological questions, such as whether the introduction of new coral species can propagate disease, or whether a new variety of more heat-tolerant corals might displace corals struggling to survive.

    Researchers are testing specialized nozzles that create jets of seawater mist.Credit: Alejandro Tagliafico/SCU

    “It sort of speeds up the whole path from research to implementation in the field,” says van Oppen.In the long run, the models indicate that without interventions, the extent of coral on the reef could shrink by well over 60% by 2070 compared with 2020 levels (S. A. Condie et al. R. Soc. Open Sci. 8, 201296; 2021). But simulations suggest that Australia could cut those losses in half with a three-pronged approach focused on propagating heat-tolerant corals, controlling outbreaks of the predatory crown-of-thorns starfish and brightening clouds to take the edge off of heat waves. Crucially, the latest modelling also suggests that without the cooling provided by Harrison’s cloud brightening project, the other interventions might not amount to much.Testing the windWhen Harrison’s group returned to the field this year, they had more-powerful drones as well as other aerosol sensors on a second boat. As in the previous year’s experiment, each time they created a plume, it rose into the sky after the droplets lost around 90% of their water to evaporation. The likely explanation, Harrison says, is that the reef is creating its own weather as warm water along the shallow corals heats the air above.Many more droplets are making it into the clouds than the scientists had initially calculated, but Harrison says their mist machine might need to be scaled up by a factor of 10 — from 320 to around 3,000 nozzles — to produce enough particles to brighten nearby clouds by around 30%. His team’s modelling suggests that this could in turn reduce the incoming solar radiation on the reef locally by around 6.5%. Even then, the operation would require 800–1,000 stations to cover the length of the Great Barrier Reef.
    Fevers are plaguing the oceans — and climate change is making them worse
    But it’s unclear whether that spray of salty droplets will have the desired effect, says Lynn Russell, an atmospheric chemist at the Scripps Institution of Oceanography in La Jolla, California, who has studied cloud brightening. Russell has not seen the latest — and as-yet unpublished — results, but questions whether there are enough of the low layered clouds considered suitable for cloud brightening.Harrison acknowledges such concerns and says that his team sees more of these clouds on the southern part of the reef. His team’s modelling suggests the technology will also work on the clouds that are common across the rest of the reef in summer. Even then, he says, it remains unclear how much coverage a full-scale cloud-brightening operation could provide across the entirety of the reef. More measurements, and detailed modelling, are needed to provide answers.For now, Harrison has secured funding for another two years, and he needs to demonstrate progress. The RRAP is testing all 43 approaches and will redistribute resources to projects that show potential, Robillot says. But he stresses that no amount of science and engineering will preserve the reef in its current form. “Even if we do all of this, the system that you’ll end up with is not going to be the Great Barrier Reef that we know today,” Robillot says. “You might, however, retain a very functional ecosystem.”That’s enough to keep Harrison going, and his team is already preparing for a trip into the field in 2022. The scientists plan to run the mist machine at higher pressure, which should produce a sixfold increase in the number of particles, and they will use new instrumentation to determine how particles alter clouds. They are also investigating an entirely different nozzle technology that could reduce the number of nozzles needed by a factor of 1,000.Harrison is more confident today than he was even a year ago that cloud brightening might work over the reef, but he is also realistic about the future if governments fail to limit carbon emissions. “There are only so many clouds available, and there is only so much you can brighten them,” he says. “Eventually, climate change just overwhelms things.”

    Nature 596, 476-478 (2021)
    doi: https://doi.org/10.1038/d41586-021-02290-3

    Related Articles

    First sun-dimming experiment will test a way to cool Earth

    Fevers are plaguing the oceans — and climate change is making them worse

    These corals could survive climate change — and help save the world’s reefs

    IPCC climate report: Earth is warmer than it’s been in 125,000 years

    Subjects

    Ocean sciences

    Conservation biology

    Climate change

    Climate sciences

    Latest on:

    Ocean sciences

    Possible poriferan body fossils in early Neoproterozoic microbial reefs
    Article 28 JUL 21

    Cruise ships could sail now-icy Arctic seas by century’s end
    Research Highlight 09 JUL 21

    Shark mortality cannot be assessed by fishery overlap alone
    Matters Arising 07 JUL 21

    Climate change

    Control methane to slow global warming — fast
    Editorial 25 AUG 21

    Five principles for climate-resilient cities
    Correspondence 24 AUG 21

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose
    World View 18 AUG 21

    Jobs

    Postdoctoral Research Scientist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Bioinformatics Software Engineer

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Computational Biologist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Research Fellow – Berbeco Lab

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Migrations of cancer cells through the lens of phylogenetic biogeography

    Conceptualization of organismal to tumor biogeography through clone phylogeniesWe first map organismal biogeographic concepts and models to the process of migration and colonization of cancer cells during metastasis. Tumors are populations consisting of a diversity of cancer cells with different genetic profiles that may represent different lineages in the clone phylogeny. We use the example in Fig. 1, which contains a phylogeny of 17 clones found in one primary tumor (P) and four metastases (M1–M4). Events occurring along a branch in a phylogeny are anagenetic events, which include diversification, extinction, and expansion12,14. In organismal evolutionary biology, anagenetic events are not directly observed except through the fossil record. However, one can map the collection of genetic variants that likely arose on individual lineage in a phylogeny. In many cancers, sequencing of temporally sampled biopsies’ can directly reveal anagenetic events similar to the sequencing of ancient DNA in paleogenomics.The other types of evolutionary events in the phylogeny are cladogenetic, including genetic divergences and dispersals (Fig. 1). Genetic differences observed among species and populations are the key to detect cladogenetic events reconstructed in molecular phylogenies of living descendants. In cancer, temporal sampling of biopsies can reveal cladogenetic events that produced extinct descendants.In biogeography, genetic divergence results in the diversification of lineages within an area. Sometimes, the term duplication is used, but we avoid its further use because of the confusion it may cause in evolutionary genomics. Divergence events are also observed in a clone phylogeny, particularly when clone lineages diverge from each other within a tumor or across tumors. The exact opposite of genetic diversification can also be observed when lineages partially or fully disappear from the phylogeny. Extinction can occur due to random chance, selection, or environmental pressures. Even though extinction is rarely discussed in tumor clone phylogenetics, it happens frequently.Phylogenies also reveal movements of lineages between locations (geographic areas or body parts) when the locations of individual cells, species, or populations are known5,6,7,8,9,15. When lineages accumulate genetic differences along a branch in the phylogeny, and the evolved lineages migrate to a new area, we observe an expansion event. Expansions differ from dispersals in such that the growth of a population occurs in the same place. This movement of cells of a clone from one location to another, where they would potentially form a metastasis, results in the dispersal of  these cells of that clone to additional areas, which is modeled by a dispersal rate (d) in organismal biogeography. When a clone genetically diverges following its migration, then a distant dispersal event is said to have occurred. Similarly, when a clone diverges from the rest of the clones within a tumor and disperses to another tumor, we have observed an expansion event. Thus, clone phylogenies can give insights into the origin and trajectory of cancer cells between tumors.When a clone is no longer present at a location, it is extinct at that location. Extinctions are modeled by an extinction rate (e) in biogeographic models. As a result of extinction, the range of descendent clones on a phylogeny can be smaller than the ancestors. Biogeography models also have a parameter (J) to consider founder events that establish new populations from a few individuals. In phylogenies, founder events can be detected if only one or a few cells are found to have moved from one location to another to start diversifying in a new area. Both distant dispersal and founder events may result in forming a new colony of cells, i.e., a new metastasis in the case of cancer cell migrations. The primary distinction between dispersal and founder events is the relative number of migrating cells. Founder events are due to one or a few cells, whereas dispersal events involve a larger number of migrating cells. Founder events are expected to be more common in tumor evolution because metastases are thought to be formed by the spread of only one or a few cancer cells. These biogeographic events have been mathematically modeled and implemented in various approaches to infer species migration events12, which are directly applicable in the inference of cancer cell migrations between tumors.Model fitsWe began by analyzing the statistical fits of six biogeographic models (Table 1) to 80 computer-simulated tumor evolutionary datasets. Simulations enable us to assess the performance of computational approaches and reveal potential caveats associated with their use because the ground truth is known. These datasets were simulated using four main clone migration schemes defined by the different number of migrating clones (1–3), the small and large number of tumor areas (5–7 tumors, m5 datasets; 8–11 tumors, m8 datasets), and the different types of source areas of migration (primary or metastasis). The following seeding scenarios reflect this complexity of the clone migration schemes: monoclonal single-source seeding (mS), polyclonal single-source seeding (pS), polyclonal multisource seeding (pM), and polyclonal reseeding (pR) (see “Methods” section).Table 1 Phylogenetic and biogeographic events considered in seven biogeographic models used for analysis.Full size tableWe considered biogeographic models that weigh genetic divergence, dispersal/expansion, and extinction events differently (Table 1). We also explored the provision of including founder events in our models on the accuracy of detecting clone migrations. The parameterization of the aforementioned events results in models with two free parameters, i.e., dispersal rate (d) and extinction rate (e), and models with three free parameters by adding the founder-event speciation (J); see “Methods” section for more details.Overall, we tested six biogeographic models for their fit to the tumor data, three models with two free parameters and three others with three free parameters. BAYAREALIKE, DEC, and DIVALIKE models have two parameters each. They are nested within their respective models that add the founder effect, resulting in a model with three free parameters (hereinafter +J models). We used the BioGeoBEARS software for all model fit analyses. In data analysis, we first inferred phylogeny of cancer cell populations (clone phylogeny) using an existing method16, followed by the use of BioGeoBEARS to infer the clone migration history in which the clone phylogeny is used along with the location of tumor sites in which each clone is observed (Fig. 2). BioGeoBEARS estimates the probabilities of annotating internal nodes with tumor locations. These annotations are then used to derive cancer cell migration paths when two adjacent nodes are annotated with different tumor locations. In these analyses, we assumed the correct clone phylogeny because our focus was not assessing the impact of errors in a phylogeny on the accuracy of clone migration inferences. We also compared the accuracy of migration histories reconstructed using biogeographic models in BioGeoBEARS with those obtained from the approaches that do not model biogeographic processes (BBM9, MACHINA5, and PathFinder7).Figure 2Data analysis pipeline using BioGeoBEARS in R14 to infer clonal migration histories.Full size imageWe first conducted Likelihood Ratio Tests (LRTs) to examine the improvement offered by considering founder events in modeling tumor migrations. In this case, the fit of the BAYAREALIKE, DEC, and DIVALIKE models was compared to their +J counterparts, respectively. The null hypothesis was rejected for more than 50% of the datasets (BAYAREALIKE: 71.25%, DEC: 60%, and DIVALIKE: 53.75%; P  More

  • in

    T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer

    The Fur-regulated T6SS1 plays an important role in iron acquisition in C. necator
    To explore the function of T6SS1 (Reut_A1713 to Reut_A1733) in C. necator (Fig. S1A), we analyzed the T6SS1 promoter and identified a Fur binding site (AGAAATA) upstream of gene reut_A1733. This Fur binding site was highly similar to the Fur-box reported in E. coli [38], with a probability score of 2.25 (out of a maximum score = 2.45) (Fig. S1B), which was calculated by applying the position weight matrix to a sequence [39]. Incubation of the T6SS1 promoter probe with purified Fur protein led to decreased mobility of the probe in the electrophoretic mobility shift assay, suggesting a direct interaction between Fur and the T6SS1 promoter (Fig. 1A). To further determine the function of Fur on the expression of T6SS1, a single-copy PT6SS1::lacZ fusion reporter was introduced into the chromosomes of C. necator wild-type (WT), Δfur deletion mutant, and the Δfur(fur) complementary strain. Compared to WT, the PT6SS1::lacZ promoter activity was significantly increased in the Δfur mutant (about 2.2-fold), and this increase could be restored by introducing the complementary plasmid pBBR1MCS-5-fur (Fig. 1B). Similar results were obtained by analyzing the expression of T6SS1 core component genes (hcp1, clpV1, vgrG1, and tssM1) with qRT-PCR (Fig. S1C). These results demonstrate that the expression of T6SS1 in C. necator is directly repressed by Fur, the master regulator of genes involved in iron homeostasis in many prokaryotes [40, 41].Fig. 1: Regulation of T6SS1 expression by Fur.A The interactions between His6-Fur and the T6SS1 promoter examined by EMSA. Increasing amounts of Fur (0, 0.03, 0.06, 0.13, 0.25, and 1.0 μM) and 10 nM DNA fragments were used in the assay. A 500 bp unrelated DNA fragment (Control A) and 1 µM BSA (Control B) were included in the assay as negative controls. B Fur represses the expression of T6SS1. β-galactosidase activities of T6SS1 promoter from chromosomal lacZ fusions in relevant C. necator strains were measured. C Iron uptake requires T6SS1. Stationary-phase C. necator strains were washed twice with M9 medium. Iron associated with indicated bacterial cells were measured with ICP-MS. The vector corresponds to the plasmid pBBR1MCS-5 (B) and pBBR1MCS-2 (C), respectively. Data are represented as mean values ± SD of three biological replicates, each with three technical replicates. **p  More

  • in

    Publisher Correction: Principles, drivers and opportunities of a circular bioeconomy

    AffiliationsAnimal Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsAbigail Muscat, Evelien M. de Olde, Raimon Ripoll-Bosch & Imke J. M. de BoerFarming Systems Ecology group, Wageningen University & Research, Wageningen, The NetherlandsHannah H. E. Van ZantenPublic Administration and Policy group, Wageningen University & Research, Wageningen, The NetherlandsTamara A. P. Metze & Catrien J. A. M. TermeerPlant Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsMartin K. van IttersumAuthorsAbigail MuscatEvelien M. de OldeRaimon Ripoll-BoschHannah H. E. Van ZantenTamara A. P. MetzeCatrien J. A. M. TermeerMartin K. van IttersumImke J. M. de BoerCorresponding authorCorrespondence to
    Imke J. M. de Boer. More