More stories

  • in

    First modern human settlement recorded in the Iberian hinterland occurred during Heinrich Stadial 2 within harsh environmental conditions

    1.Zilhão, J. Neandertal-modern human contact in Western Eurasia: issues of dating, taxonomy, and cultural associations. In Dynamics of Learning in Neanderthals and Modern humans Volume 1: Cultural Perspectives (eds Akazawa, T., Nishiaki, K. & Aoko. Y.), 21–57 (Springer, 2013).2.Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad Sci. 113(40), 11162–11167. https://doi.org/10.1073/pnas.1605834113 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    3.Gravina, B. et al. No reliable evidence for a Neanderthal-Châtelperronian Association at La Roche-à-Pierrot, Saint-Césaire. Sci. Rep. 8, 15134. https://doi.org/10.1038/s41598-018-33084-9 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    4.Wood, R. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. J. Hum Evol. 69, 91–109. https://doi.org/10.1016/j.jhevol.2013.12.017 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    5.Marín-Arroyo, A. B. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13(4), e0194708. https://doi.org/10.1371/journal.pone.0194708 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    6.Wood, R. et al. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using radiocarbon dating to assess site taphonomy. Quat. Int. 474(A), 56–70. https://doi.org/10.1016/j.quaint.2016.03.005 (2018).Article 

    Google Scholar 
    7.Teyssandier, N. & Zilhão, J. On the entity and antiquity of the Aurignacian at Willendorf (Austria): Implications for modern human emergence in Europe. J. Paleolithic Archaeol. 1, 107–138. https://doi.org/10.1007/s41982-017-0004-4 (2018).Article 

    Google Scholar 
    8.Dinnis, R., Bessudnov, A., Chiotti, L., Flas, D. & Michel, A. Thoughts on the structure of the European Aurignacian, with Particular Focus on Hohle Fels IV. Proc. Prehist. Soc. 85, 29–60. https://doi.org/10.1017/ppr.2019.11 (2019).Article 

    Google Scholar 
    9.Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302. https://doi.org/10.1038/s41586-020-2259-z (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    10.Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801. https://doi.org/10.1038/s41559-020-1136-3 (2020).Article 

    Google Scholar 
    11.Straus, L. G. The Upper Paleolithic of Iberia. Trab. de Prehist. 75(1), 9–51. https://doi.org/10.3989/tp.2018.12202 (2018).Article 

    Google Scholar 
    12.Zilhão, J. et al. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435. https://doi.org/10.1016/j.heliyon.2017.e00435 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Zilhão, J. et al. A revised, Last Interglacial chronology for the Middle Palaeolithic sequence of Gruta da Oliveira (Almonda karst system, Torres Novas, Portugal). Quat. Sci. Rev. 258, 106885. https://doi.org/10.1016/j.quascirev.2021.106885 (2021).Article 

    Google Scholar 
    14.Aubry, T. et al. Timing of the Middle-to-Upper Palaeolithic transition in the Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal). Quat. Res. 98, 81–101. https://doi.org/10.1017/qua.2020.43 (2020).15.Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212. https://doi.org/10.1038/s41559-018-0753-6 (2019).Article 
    PubMed 

    Google Scholar 
    16.Haws, J. A. et al. The early Aurignacian dispersal of modern humans into westernmost Eurasia. Proc. Natl Acad. Sci. USA 117(41), 25414–25422. https://doi.org/10.1073/pnas.2016062117 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    17.Anderson, L., Reynolds, N. & Teyssandier, N. No reliable evidence for a very early Aurignacian in Southern Iberia. Nat. Ecol. Evol. 3, 713. https://doi.org/10.1038/s41559-019-0885-3 (2019).Article 
    PubMed 

    Google Scholar 
    18.de la Peña, P. Dating on its own cannot resolve hominin occupation patterns. Nat. Ecol. Evol. 3, 712. https://doi.org/10.1038/s41559-019-0886-2 (2019).Article 
    PubMed 

    Google Scholar 
    19.Morales, J. I. et al. The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia). PLoS ONE 14(5), e0215832. https://doi.org/10.1371/journal.pone.0215832 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    20.Alcaraz-Castaño, M. Central Iberia around the Last Glacial Maximum. Hopes and prospects. J. Anthropol. Res. 71(4), 565–578. https://doi.org/10.3998/jar.0521004.0071.406 (2015).Article 

    Google Scholar 
    21.Mosquera, M. et al. Valle de las Orquídeas: un yacimiento al aire libre del Pleistoceno Superior en la Sierra de Atapuerca (Burgos). Trab. de Prehist. 64(2), 143–155. https://doi.org/10.3989/tp.2007.v64.i2.113 (2007).Article 

    Google Scholar 
    22.Carretero, J. M. et al. A Late Pleistocene-Early Holocene archaeological sequence of Portalón de Cueva Mayor (Sierra de Atapuerca, Burgos, Spain). Munibe (Antropologia-Arkeologia). 59, 67–80 (2008).23.Aubry, T., Luis, L., Mangado Llach, J. & Matías, H. We will be known by the tracks we leave behind: Exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). J. Anthropol. Archaeol. 31, 528–550. https://doi.org/10.1016/j.jaa.2012.05.003 (2012).Article 

    Google Scholar 
    24.Gaspar, R., Ferreira, J., Carrondo, J., Silva, M. J. & García-Vadillo, F. J. Open-air Gravettian lithic assemblages from Northeast Portugal: The Foz do Medal site (Sabor valley). Quat. Int. 406, 44–64. https://doi.org/10.1016/j.quaint.2015.12.054 (2016).Article 

    Google Scholar 
    25.Alcaraz-Castaño, M. et al. Los orígenes del Solutrense y la ocupación pleniglaciar del interior de la Península Ibérica: implicaciones del nivel 3 de Peña Capón (valle del Sorbe, Guadalajara). Trab. de Prehist. 70(1), 28–53. http://tp.revistas.csic.es/index.php/tp/article/view/637/659(2013).26.Alcaraz-Castaño, M., Alcolea-González, J.J., Balbín Behrmann, R. de, Kehl, M., Weniger, G.C. Recurrent Human Occupations in Central Iberia around the Last Glacial Maximum. The Solutrean Sequence of Peña Capón Updated. In Human Adaptations to the Last Glacial Maximum: The Solutrean and Its Neighbors (eds. I. Schmidt & J. Cascalheira), 148–170 (Cambridge Scholars Publishing, Cambridge, UK, 2019).27.Straus, L. G. The human occupations of southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. J. Anthropol. Res. 71(4), 465–492. https://doi.org/10.3998/jar.0521004.0071.401 (2015).Article 

    Google Scholar 
    28.Schmidt, I. et al. Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quat. Int. 274(1), 179–204. https://doi.org/10.1016/j.quaint.2012.01.018 (2012).Article 

    Google Scholar 
    29.Burke, A. et al. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia. J. Hum. Evol. 73, 35–46. https://doi.org/10.1016/j.jhevol.2014.06.003 (2014).Article 
    PubMed 

    Google Scholar 
    30.Burke, A. et al. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217–229. https://doi.org/10.1016/j.quascirev.2017.04.001 (2017).ADS 
    Article 

    Google Scholar 
    31.Lüdwig, P., Shao, Y., Kehl, M. & Weniger, G.-C. The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns. Glob. Planet. Change. 170, 34–47. https://doi.org/10.1016/j.gloplacha.2018.08.006 (2018).ADS 
    Article 

    Google Scholar 
    32.Wren, C. D. & Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 14(6), e0217996. https://doi.org/10.1371/journal.pone.0217996 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Klein, K. et al. Human existence potential in Europe during the Last Glacial Maximum. Quat. Int. https://doi.org/10.1016/j.quaint.2020.07.046 (2020).Article 

    Google Scholar 
    34.Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657. https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).ADS 
    Article 

    Google Scholar 
    35.Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).Article 

    Google Scholar 
    36.Banks, W. E. et al. Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. J. Archaeol. Sci. 35, 481–491. https://doi.org/10.1016/j.jas.2007.05.011 (2008).Article 

    Google Scholar 
    37.Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the last glacial maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    38.Sala, N. et al. Central Iberia in the Middle MIS 3. Paleoecological inferences during the period 34–40 cal kyr BP. Quat. Sci. Rev. 228, 106027 (2020).Article 

    Google Scholar 
    39.Sala, N. et al. Cueva de los Torrejones revisited. New insights on the paleoecology of inland Iberia during the Late Pleistocene. Quat. Sci. Rev. 253, 106765 (2021).Article 

    Google Scholar 
    40.Wolf, D. et al. Climate deteriorations and Neanderthal demise in interior Iberia. Sci. Rep. 8, 7048. https://doi.org/10.1038/s41598-018-25343-6 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    41.Wolf, D. et al. Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period. Quat. Res. 101, 84-113.https://doi.org/10.1017/qua.2020.119(2021).42.Zilhão, J. et al. Pego do Diabo (Loures, Portugal). Dating the emergence of anatomical modernity in westernmost Eurasia. PLoS ONE 5, e8880. https://doi.org/10.1371/journal.pone.0008880(2010).43.Cascalheira, J. et al. Paleoenvironments and human adaptations during the Last Glacial Maximum in the Iberian Peninsula: A review. Quat. Int. 581-582, 28-51. https://doi.org/10.1016/j.quaint.2020.08.005(2021).44.Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets (University of California Press, 2001).45.Kelly, R. L. The Lifeways of Hunter-Gatherers. The Foraging Spectrum (Cambridge University Press, 2013, 2nd edition).46.Bettinger, R. L., Garvey, R. & Tushingham, S. Hunter-Gatherers: Archaeological and Evolutionary Theory (Springer, 2015, 2nd edition).47.Gamble, C., Davies, W., Pettitt, P. & Richards, M. Climate change and evolving human diversity in Europe during the last glacial. Phil. Trans. R. Soc. B 359, 243–254. https://doi.org/10.1098/rstb.2003.1396 (2014).Article 

    Google Scholar 
    48.d’Errico, F. & Banks, W. Identifying Mechanisms behind Middle Paleolithic and Middle Stone Age Cultural Trajectories. Curr. Anthropol. 54(S8), S371–S387. https://doi.org/10.1086/673388 (2013).Article 

    Google Scholar 
    49.Collard, M., Vaesen K., Cosgrove, R. & Roebroeks, W. The empirical case against the ‘demographic turn’ in Palaeolithic archaeology. Phil. Trans. R. Soc. B 371, 20150242. https://doi.org/10.1098/rstb.2015.0242 (2016).50.Banks, W. E. et al. Investigating links between ecology and bifacial tool types in Western Europe during the Last Glacial Maximum. J. Archaeol. Sci. 36(12), 2853–2867. https://doi.org/10.1016/j.jas.2009.09.014 (2009).Article 

    Google Scholar 
    51.Bradtmöller, M., Pastoors, A., Weninger, B. & Weniger, G.-C. The repeated replacement model—Rapid climate change and population dynamics in Late Pleistocene Europe. Quat. Int. 247, 38–49. https://doi.org/10.1016/j.quaint.2010.10.015 (2012).Article 

    Google Scholar 
    52.Cascalheira, J. & Bicho, N. Hunter–gatherer ecodynamics and the impact of the Heinrich event 2 in Central and Southern Portugal. Quat. Int. 318, 117–127 (2013).Article 

    Google Scholar 
    53.Bicho, N., Cascalheira, J., Marreiros, J. & Pereira, T. Rapid climatic events and long term cultural change: The case of the Portuguese Upper Paleolithic. Quat. Int. 428, 3–16. https://doi.org/10.1016/j.quaint.2015.05.044 (2017).Article 

    Google Scholar 
    54.Cascalheira, J. & Bicho, N. Testing the impact of environmental change on hunter-gatherer settlement organization during the Upper Paleolithic in western Iberia. J. Quat. Sci. 33(3), 323–334 (2018).Article 

    Google Scholar 
    55.Weniger, G-C. et al. Late Glacial rapid climate change and human response in the Westernmost Mediterranean (Iberia and Morocco). PLoS ONE 14(12), e0225049. https://doi.org/10.1371/journal.pone.0225049(2019).56.McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late Glacial and Early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Phil. Trans. R. Soc. B 376, 20190724. (2021).57.Portero García, J. M. et al. Mapa Geológico de España 1:50.000, MAGNA n. 486, Jadraque. (Instituto Geológico y Minero de España, Madrid, 1994).58.Portero García, J. M., et al. Mapa Geológico de España 1:50.000, MAGNA n. 485, Valdepeñas de la Sierra, (Instituto Geológico y Minero de España, Madrid, 1995).59.Pérez-González, A. Depresión del Tajo. In Geomorfología de España (ed. Gutiérrez Elorza, M.), 389–436 (Rueda, Madrid, 1994).60.Silva, P. G., Roquero, E., López-Recio, M., Huerta, P. & Martínez-Graña, A. M. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero basins, Central Spain). Quat. Sci. Rev. 166, 188–203. https://doi.org/10.1016/j.quascirev.2016.05.027 (2017).ADS 
    Article 

    Google Scholar 
    61.Angelucci, D. E. The recognition and description of knapped lithic artifacts in thin section. Geoarchaeology 25(2), 220–232. https://doi.org/10.1002/gea.20303 (2010).Article 

    Google Scholar 
    62.Kooistra, M. J. & Pulleman, M. M. Features Related to Faunal Activity. In Interpretation of Micromorphological Features of Soils and Regoliths (eds. Stoops, G., Marcelino, V. & Mess, F.), 397–440 (Elsevier, Amsterdam, 2010).63.Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309. https://doi.org/10.1038/nature13621 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    64.Cascalheira, J. & Bicho, N. On the chronological structure of the Solutrean in Southern Iberia. PLoS ONE 10(9), e0137308. https://doi.org/10.1371/journal.pone.0137308 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    65.Pettitt, P. & Zilhão, J. Problematizing Bayesian approaches to prehistoric chronologies. World Archaeol. 47(4), 525–542. https://doi.org/10.1080/00438243.2015.1070082 (2015).Article 

    Google Scholar 
    66.Douka, K., Chiotti, L., Nespoulet, R. & Higham, T. A refined chronology for the Gravettian sequence of Abri Pataud. J. Hum. Evol. 141, 10230. https://doi.org/10.1016/j.jhevol.2019.102730 (2020).Article 

    Google Scholar 
    67.Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007 (2014).ADS 
    Article 

    Google Scholar 
    68.Sánchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev., 29(21–22), 2823–2827. https://doi.org/10.1016/j.quascirev.2009.11.014(2010).69.Clark, P. U. et al. The last glacial maximum. Science 325(5941), 710–714. https://doi.org/10.1126/science.1172873 (2009).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    70.López-Sáez, J. A. et al. Discrimination of Scots pine forests in the Iberian Central System (Pinus sylvestris var. iberica) by means of pollen analysis. Phytosociological considerations. Lazaroa, 34, 191–208. https://doi.org/10.5209/rev_LAZA.2013.v34.n1.43599 (2013).71.Aranbarri, J. et al. Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of southwestern Europe. Glob. Planet. Change 114, 50–65. https://doi.org/10.1016/j.gloplacha.2014.01.003 (2014).ADS 
    Article 

    Google Scholar 
    72.Broothaerts, N. et al. Reconstructing past arboreal cover based on modern and fossil pollen data: A statistical approach for the Gredos Range (Central Spain). Rev. Palaeobot. Palynol. 255, 1–13. https://doi.org/10.1016/j.revpalbo.2018.04.007 (2018).Article 

    Google Scholar 
    73.López-Sáez, J. A., et al. Vegetation history, climate and human impact in the Spanish Central System over the last 9,000 years. Quat. Int. 353, 98–122. https://doi.org/10.1016/j.quaint.2013.06.034 (2014).74.López-Sáez, J. A., Sánchez-Mata, D. & Gavilán, R. G. Syntaxonomical update on the relict groves of Scots pine (Pinus sylvestris L. var. iberica Svoboda) and Spanish black pine (Pinus nigra Arnold subsp. salzmannii (Dunal) Franco) in the Gredos range (central Spain). Lazaroa 37, 153–172. https://doi.org/10.5209/LAZA.54043 (2016).75.López-Sáez, J. A., Alba-Sánchez, F., López-Merino, L. & Pérez-Díaz, S. Modern pollen analysis: A reliable tool for discriminating Quercus rotundifolia communities in Central Spain. Phytocoenologia 40, 57–72. https://doi.org/10.1127/0340-269X/2010/0040-0430 (2010).Article 

    Google Scholar 
    76.Sánchez-Mata, D., Gavilán, R. G. & de la Fuente, V. The Sistema Central (Central Range). In The Vegetation of the Iberian Peninsula (ed. Loidi, J.), vol. 1, 549–588 (Springer, Utrecht, 2017).77.López-Sáez, J. A. et al. A palynological approach to the study of Quercus pyrenaica forest communities in the Spanish Central System. Phytocoenologia 45, 107–124. https://doi.org/10.1127/0340-269X/2014/0044-0572 (2015).Article 

    Google Scholar 
    78.van der Knaap, W. O. et al. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen percentage threshold values. Quat. Sci. Rev. 24(645–680), 2005. https://doi.org/10.1016/j.quascirev.2004.06.013 (2005).Article 

    Google Scholar 
    79.Abel-Schaad, D. et al. Persistence of tree relicts through the Holocene in the Spanish Central System. Lazaroa 35, 107–131. https://doi.org/10.5209/rev_LAZA.2014.v35.41932 (2014).Article 

    Google Scholar 
    80.López-Sáez, J. A. et al. Late Glacial-early Holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: The Navamuño record, Béjar range (Spain). Quat. Sci. Rev. 230, 106167. https://doi.org/10.1016/j.quascirev.2020.106167 (2020).Article 

    Google Scholar 
    81.López-Merino, L., López-Sáez, J. A., Ruiz-Zapata, M.B. & Gil-García, M. J. Reconstructing the history of beech (Fagus sylvatica L.) in north-western Iberian Range (Spain): From Late-Glacial refugia to Holocene anthropic induced forests. Rev. Palaeobot. Palynol. 152, 58–65. https://doi.org/10.1016/j.revpalbo.2008.04.003 (2008).82.Ruiz-Alonso, M., Pérez-Díaz, S. & López-Sáez, J. A. From glacial refugia to the current landscape configuration: permanence, expansion and forest management of Fagus sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula). Veget. Hist. Archaeobot. 28, 481–496. https://doi.org/10.1007/s00334-018-0707-6(2019). 83.Cuenca-Bescós G, Straus, L. G., González Morales, M. R & García Pimienta J.C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci., 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).84.López-García, J. M, Cuenca-Bescós, G., Finlayson, C., Brown, K. & Giles Pacheco, F. Palaeoenvironmental and palaeoclimatic proxies of the Gorham’s cave small mammal sequence Gibraltar southern Iberia. Quat. Int., 243, 137–142. https://doi.org/10.1016/j.quaint.2010.12.032 (2011).85.Garcia-Ibaibarriaga, N. et al. A palaeoenvironmental estimate in Askondo (Bizkaia, Spain) using small vertebrates. Quat. Int. 364, 244–254. https://doi.org/10.1016/j.quaint.2014.09.069 (2015).Article 

    Google Scholar 
    86.Baca, M. et al. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quat. Sci. Rev. 233, 106239. https://doi.org/10.1016/j.quascirev.2020.106239 (2020).Article 

    Google Scholar 
    87.Yravedra, J. et al. Not so deserted…paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum. Quat. Sci. Rev. 140, 21–38. https://doi.org/10.1016/j.quascirev.2016.03.021 (2016).88.Alcolea-González, J. J. et al. Avance al estudio del poblamiento paleolítico del Alto Valle del Sorbe (Muriel, Guadalajara). In Il Congreso de Arqueología Peninsular I, Paleolítico y Epipaleolítico (eds. Balbín R. de & Bueno, P.), 201–218 (Fundacion Rei Afonso Henriques, Zamora, 1997).89.Smith P. Le Solutréen en France (Delmas, Bordeaux, 1966).90.Fullola, J. M. El Solutreo-Gravetiense o Parpallense, industria mediterránea. Zephyrvs XXVIII–XXIX, 125–33 (1978).91.Villaverde, V. & Peña, J. L. Piezas con escotadura del Paleolitico Superior Valenciano. (Servicio de Investigación Prehistórica, Valencia, 1981).92.de la Rasilla, M. Secuencia y cronoestratigrafía del solutrense cantábrico. Trab. de Prehist. 46, 35–46. https://doi.org/10.3989/tp.1989.v46.i0.585 (1989).Article 

    Google Scholar 
    93.Zilhão J. O Paleolítico Superior da Estremadura portuguesa. (Edições Colibri, Lisboa, II vols., 1997).94.Straus, L. G. Once more into the breach: Solutrean chronology. Munibe 38, 35–38 (1986).
    Google Scholar 
    95.Calvo, A. & Prieto, A. El final del Gravetiense y el comienzo del Solutrense en la Península Ibérica. Un estado de la cuestión acerca de la cronología radiocarbónica en 2012. Espacio, Tiempo y Forma 5, 131–148. https://doi.org/10.5944/etfi.5.2012.5377 (2012). 96.Zilhão, J. Seeing the leaves and not missing the forest: a Portuguese perspective of the Solutrean. In Pleistocene foragers on the Iberian Peninsula: their culture and environment (eds. Pastoors A, Auffermann B.), 201–216 (Neanderthal Museum, Mettmann, 2013).97.González-Sampériz, P. et al. Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Rev. Palaeobot. Palynol. 162(3), 427–457. https://doi.org/10.1016/j.revpalbo.2010.03.009 (2010).Article 

    Google Scholar 
    98.González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: The Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425. https://doi.org/10.1016/j.quascirev.2020.106425 (2020).Article 

    Google Scholar 
    99.Cacho, I. et al. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanogr. Paleoclimatol. 16, 40–52. https://doi.org/10.1029/2000PA000502 (2001).100.Fletcher, W. J. & Sánchez Goñi, M. F. Orbital and sub-orbital climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quat. Sci. Rev. 70, 451–464. https://doi.org/10.1016/j.yqres.2008.07.002 (2008).101.Sánchez Goñi, M. F. et al. Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151. https://doi.org/10.1016/j.quascirev.2008.03.003(2008).102.Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034. https://doi.org/10.1038/srep02034 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Carrasco, R., Pedraza, J., Domínguez-Villar, D., Willenbring, J. & Villa, J. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163–177. https://doi.org/10.1016/j.quascirev.2015.09.021 (2015).ADS 
    Article 

    Google Scholar 
    104.Valdeolmillos, A., Dorado-Valiño, M., Ruiz-Zapata, B., Bardají, T. & Bustamante, I. Palaeoclimatic record of the Last Glacial Cycle at las Tablas de Daimiel National Park (Southern Iberian Meseta, Spain). In Quaternary climatic changes and environmental crises in the Mediterranean region (eds. Ruiz-Zapata, B. et al.), 221–228 (Universidad de Alcalá, Alcalá de Henares, 2003).105.Vegas, J. et al. Identification of arid phases during the last 50 kyr Cal BP from the Fuentillejo maar lacustrine record (Campo de Calatrava Volcanic Field, Spain). J. Quat. Sci. 25, 1051–1062. https://doi.org/10.1002/jqs.1262 (2010).Article 

    Google Scholar 
    106.Alcolea-González, J. J. & Balbín-Behrmann, R. de. El Arte rupestre Paleolítico del interior peninsular. In Arte sin artistas. Una mirada al Paleolítico, 187–207 (Museo Arqueológico Regional, Comunidad de Madrid, Madrid, 2012).107.Alcaraz-Castaño, M. et al. The human settlement of Central Iberia during MIS 2: New technological, chronological and environmental data from the Solutrean workshop of Las Delicias (Manzanares River valley, Spain). Quat. Int. 431, 104–124. https://doi.org/10.1016/j.quaint.2015.06.069 (2017).108.Aubry, T., Luis, L., Mangado Llach, J. & Matias, H. Adaptation to resources and environments during the last glacial maximum by hunter-gatherer societies in Atlantic Europe. J. Anthropol. Res. 71, 521–544. https://doi.org/10.3998/jar.0521004.0071.404 (2015).109.Aubry, T. et al. Upper Paleolithic lithic raw material sourcing in Central and Northern Portugal as an aid to reconstructing hunter-gatherer societies. J. Lithic Stud. 3(2), 7–28. https://doi.org/10.2218/jls.v3i2.1436 (2016).Article 

    Google Scholar 
    110.Alcaraz-Castaño, M. et al. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12(7), e0180823. https://doi.org/10.1371/journal.pone.0180823 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    111.Kehl, M. et al. The rock shelter Abrigo del Molino (Segovia, Spain) and the timing of the late Middle Palaeolithic in Central Iberia. Quat. Res. 90, 180–200. https://doi.org/10.1017/qua.2018.13 (2018).Article 
    CAS 

    Google Scholar 
    112.Hoffecker, J. Desolate landscapes. Ice-age settlement in Eastern Europe. (Rutgers University Press, London, 2002).113.Nigst, P. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. 111(40), 14394–14399. https://doi.org/10.1073/pnas.1412201111 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    114.Terberger T. Le Dernier Maximum glaciaire entre le Rhin et le Danube, un réexamen critique. In Le Paléolithique supérieur ancien de l’Europe du Nord-Ouest (dirs. Bodu, P. et al.), 415–443 (Société Préhistorique Française, Mémoire LVI, Paris, 2013).  115.Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).Article 

    Google Scholar 
    116.Verpoorte, A. Limiting factors on early modern human dispersals: The human biogeography of late Pleniglacial Europe. Quatern. Int. 201(1–2), 77–85 (2009).Article 

    Google Scholar 
    117.Slimak, L. Late Mousterian Persistence near the Arctic Circle. Science 332(6031), 841–845. https://doi.org/10.1126/science.1203866 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    118.Rethemeyer, J. et al. Status report on sample preparation facilities for 14C analysis at the new CologneAMS center. Nucl. Instrum. Methods Phys. Res. B 294, 168–172. https://doi.org/10.1016/j.nimb.2012.02.012 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    119.Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103–112. https://doi.org/10.1017/S0033822200045069 (2010).Article 
    CAS 

    Google Scholar 
    120.Wood, R. E. et al. Testing the ABOx-SC method: dating known age charcoals associated with the Campanian Ignimbrite. Quat. Geochronol. 9, 16–26. https://doi.org/10.1016/j.quageo.2012.02.003 (2012).Article 

    Google Scholar 
    121.Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    122.Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).Article 
    CAS 

    Google Scholar 
    123.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3), 1023–1045. https://doi.org/10.1017/S0033822200034093 (2009).Article 

    Google Scholar 
    124.Burjachs, F., López-Sáez, J. A. & Iriarte, M. J. Metodología Arqueopalinológica. In La recogida de muestras en Arqueobotánica: objetivos y propuestas metodológicas. La gestión de los recursos vegetales y la transformación del paleopaisaje en el Mediterráneo occidental (eds. Buxó, R. & Piqué, R.), 11–18 (Museu d’Arqueologia de Catalunya, Barcelona, 2003).125.López-Sáez, J. A., López-García, P. & Burjachs, F. Arqueopalinología: Síntesis Crítica. Polen 12, 5–35 (2003).
    Google Scholar 
    126.Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis (Blackwell Scientific Publications, 1991).
    Google Scholar 
    127.Reille, M. Pollen et spores d’Europe et d’Afrique du Nord. (Marseille: Laboratoire de Botanique Historique et Palynologie, 1999).128.Desprat, S. et al. Pinus nigra (Spanish black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: a morphological study of modern and fossil pollen. J. Biogeogr. 42, 1998–2009. https://doi.org/10.1111/jbi.12566 (2015).Article 

    Google Scholar 
    129.Grimm, E. C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 (1987).ADS 
    Article 

    Google Scholar 
    130.Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New. Phytol. 132, 155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x (1996).Article 
    PubMed 
    CAS 

    Google Scholar 
    131.Grimm, E. C. Tilia version 2. (Illinois State Museum. Research and Collection Center, Springfield, 1992).132.Grimm, E. D. TGView. (Illinois State Museum, Research and Collection Center, Springfield, 2004).133.Schweingruber F.H. Microscopic Wood Anatomy; Structural variability of stems and twigs in recent and subfossil woods from Central Europe. (Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research, 1990, 3rd edition).134.Hather, J. G. The Identification of the Northern European Woods. A Guide for Archaeologists and Conservators (Archetype Publications, 2000).
    Google Scholar 
    135.Vernet, J. L., Ogereau, P., Figueiral, I., Machado, C., Uzquiano, C. Guide d’identification des charbons de bois préhistoriques et récents. Sud-Ouest de l’Europe: France, Péninsule Ibérique et Îles Canaries (CNRS Éditions, Paris, 2001).136.Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci. 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).Article 

    Google Scholar 
    137.López-García, J. M. Los micromamíferos del Pleistoceno Superior en la Península Ibérica. Evoluión de la diversidad taxonómica y cambios paleoambientales y paleoclimáticos (Editorial Académica Española, 2011).138.Moya-Sola, R. & Cuenca-Bescós, G. Biometría mandibular y dentaria de las musarañas del género Sorex Linnaeus, 1758 en la región central y occidental de los Pirineos. Galemys 31, 11–25. https://doi.org/10.7325/Galemys.2019.A2 (2019).Article 

    Google Scholar 
    139.Lyman, R. L. Relative abundance of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios 9(3), 288–298. https://doi.org/10.2307/3515203 (1994).ADS 
    Article 

    Google Scholar 
    140.Brain, C. K. The contribution of Namib Desert Hottentot to understanding of Australopithecus bone accumulations. Sci. Pap. Namibian Desert Res. Station 32, 1–11 (1969).
    Google Scholar 
    141.Barba, R. & Domínguez-Rodrigo M. The Taphonomic Relevance of the Analysis of Bovid Long Limb Bone Shaft Features and Their Application to Element Identification. Study of Bone Thickness and Morphology of the Medullar Cavity. J. Taphon. 3, 29–42 (2005).142.Yravedra, J. & Domínguez-Rodrigo, M. The shaft-based methodological approach to the quantification of long limb bones and its relevance to understanding hominid subsistence in the Pleistocene: application to four Palaeolithic sites. J. Quat. Sci. 24(1), 85–96. https://doi.org/10.1002/jqs.1164 (2009).Article 

    Google Scholar 
    143.Inizan, M. L., Reduron, M., Roche, H. & Tixier J. Préhistoire de la Pierre Taillée. T. 4. Technologie de la pierre taillée. (CREP, Meudon, Paris, 1995).144.Soressi, M. & Geneste, J.-M. The history and efficacy of the Chaîne Opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology 2011, 334–350. https://doi.org/10.4207/PA.2011.ART63 (2011).Article 

    Google Scholar 
    145.Nelson, M. C. The study of technological organization. Archaeol. Method. Theory 3, 57–100 (1991).
    Google Scholar 
    146.Kelly, R. L. The three sides of a biface. Am. Antiq. 53(4), 717–734. https://doi.org/10.2307/281115 (1998).Article 

    Google Scholar 
    147.Robinson, E. & Sellet, F. (eds.). Lithic Technological Organization and Paleoenvironmental Change. Global and Diachronic Perspectives. https://doi.org/10.1007/978-3-319-64407-3(Springer, 2018). 148.Pelegrin, J. & Chauchat, C. Tecnología y función de las puntas de Paijan: el aporte de la experimentación. Lat. Am. Antiq. 4(4), 367–382 (1993).Article 

    Google Scholar 
    149.Callahan, E. The Basics of Biface Knapping in the Eastern Fluted Point Tradition: a Manual for Flintknappers and Lithic Analysts. (Piltdown Productions, 2000, 4th edition).
    Google Scholar 
    150.Aubry, T. et al. Solutrean laurel leaf production at Maîtreaux: An experimental approach guided by techno-economic analysis. World. Archaeol. 40, 48–66 (2008).Article 

    Google Scholar  More

  • in

    Beneficial insects are associated with botanically rich margins with trees on small farms

    1.Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).Article 
    PubMed 

    Google Scholar 
    2.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).Article 

    Google Scholar 
    3.Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).Article 

    Google Scholar 
    4.Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).Article 

    Google Scholar 
    5.Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).CAS 
    Article 

    Google Scholar 
    6.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).Article 

    Google Scholar 
    8.Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).Article 

    Google Scholar 
    9.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).Article 

    Google Scholar 
    11.Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).Article 

    Google Scholar 
    12.Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).Article 

    Google Scholar 
    13.Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).Article 

    Google Scholar 
    14.Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).Article 

    Google Scholar 
    15.Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).Article 

    Google Scholar 
    17.Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).Article 

    Google Scholar 
    18.Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).Article 
    PubMed 

    Google Scholar 
    19.Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).Article 

    Google Scholar 
    21.Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).Article 

    Google Scholar 
    23.Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).Article 

    Google Scholar 
    24.Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).25.Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).Article 

    Google Scholar 
    26.Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).Article 

    Google Scholar 
    27.Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).Article 

    Google Scholar 
    28.Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).30.ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).31.Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).Article 

    Google Scholar 
    32.Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).Article 

    Google Scholar 
    33.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).Article 

    Google Scholar 
    34.Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).Article 

    Google Scholar 
    35.Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).Article 

    Google Scholar 
    36.Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).Article 

    Google Scholar 
    37.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).Article 

    Google Scholar 
    38.Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).39.Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).Article 

    Google Scholar 
    41.Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).
    Google Scholar 
    42.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).Article 

    Google Scholar 
    43.Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).CAS 
    Article 

    Google Scholar 
    44.Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).Article 

    Google Scholar 
    45.Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).Article 

    Google Scholar 
    46.Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).Article 

    Google Scholar 
    47.Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).Article 

    Google Scholar 
    48.Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    49.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    50.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    51.Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).
    Google Scholar 
    52.Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).Article 

    Google Scholar 
    53.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    54.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).
    Google Scholar  More

  • in

    The isotopic niche of Atlantic, biting marine mammals and its relationship to skull morphology and body size

    1.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    2.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world. Sea mammals (Lynx Edicions 2014).3.Plagányi, E. E. & Butterworth, E. S. Competition with fisheries in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsing, & J. G. M. Thewsissen) 269–275 (Academic Press, 2009).4.Read, A. J. The looming crisis: interactions between marine mammals and fisheries. J. Mammal. 89, 541–548 (2008).Article 

    Google Scholar 
    5.Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries? PLoS One 7, e43966 (2012).6.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield?. Science 323, 880–881 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.DeMaster, D. P., Fowler, C. W., Perry, S. L. & Richlen, M. F. Predation and competition: the impact of fisheries on marine-mammals populations over the next one hundred years. J. Mammal. 82, 641–651 (2001).Article 

    Google Scholar 
    8.Smith, T. D. Interactions between marine mammals and fisheries: an unresolved problem for fisheries research in Whales, seals, fish and man (eds A.S. Blix, L. Walløe, & t Ø. Ultan) 527–536 (Elsevier Science, 1995).9.Hall, A. J., Watkins, J. & Hammond, P. S. Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar. Ecol. Prog. Ser. 170, 269–281 (1998).ADS 
    Article 

    Google Scholar 
    10.Santos, M. B., Martin, V., Fernández, A. & Pierce, G. J. Insights into the diet of beaked whales from the atypical mass stranding in the Canary Islands in September 2002. J. Mar. Biol. Assoc. U. K. 87, 243–251 (2007).Article 

    Google Scholar 
    11.Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J. & Aguilar, A. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean sea. PLoS One 6, e24554 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Adam, P. J. & Berta, A. Evolution of prey capture strategies and diet in the pinnipedimorpha (Mammalia, Carnivora). Oryctos 4, 83–107 (2002).
    Google Scholar 
    13.Kienle, S. S. & Berta, A. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J. Anat. 228, 396–413 (2016).PubMed 
    Article 

    Google Scholar 
    14.McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W. & McHenry, C. R. Skull shape reflects prey size niche in toothed whales. Biol. J. Linn. Soc. 121, 936–946 (2017).Article 

    Google Scholar 
    15.McCurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B 284, 20162348 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Davis, R. W. Marine Mammals: adaptations for an aquatic life (Springer, 2019).Book 

    Google Scholar 
    17.Marshall, C. D. & Pyenson, N. D. Feeding in aquatic mammals: an evolutionary and functional approach in Feeding in vertebrates: evolution, morphology, behaviour, biomechanics. Fascinating Life Sciences (eds V. Bels & I. Whishaw) 743–785 (Springer, Cham, 2019).18.Werth, A. J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579–588 (2006).Article 

    Google Scholar 
    19.Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 20140709 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Kienle, S. S., Law, C. J., Costa, D. P., Berta, A. & Mehta, R. S. Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B 284, 20171035 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. & Arim, M. Gape and energy limitation determining a humped relationship between trophic position and body size. Can. J. Fish. Aquat. Sci. 72, 198–205 (2015).CAS 
    Article 

    Google Scholar 
    22.Taylor, M. A. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91, 171–195 (1987).Article 

    Google Scholar 
    23.Werth, A. Feeding in marine mammals in Feeding: form, function, and evolution in tetrapod vertebrates (ed K. Schwenk) 487–526 (Academic Press, 2010).24.Hocking, D. P., Salverson, M., Fitzgerald, E. M. G. & Evans, A. R. Australian fur seals (Arctocephalus pusillus doriferus) use raptorial biting and suction feeding when targeting prey in different foraging scenarios. PLoS One 9, e112521 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bearhop, S., Adams, C. E., Waldrons, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    27.Layman, C. A., Arrington, D. A., Montanä, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Michener, R. H. & Lajtha, K. Stable isotopes in ecology and environmental science. Second edn, (Blackwell publishing, 2007).30.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    31.Das, K. et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by d13C and d15N measurements and their trace metal concentration. Mar. Environ. Res. 56, 349–365 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from d13C and d15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).ADS 
    Article 

    Google Scholar 
    33.Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Biol. Ecol. 413, 150–158 (2012).Article 
    CAS 

    Google Scholar 
    34.Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Costa, A. F., Botta, S., Siciliano, S. & Giarrizzo, T. Resource partitioning among stranded aquatic mammals from Amazon and northeastern coast of Brazil revealed through carbon and nitrogen stable isotopes. Sci. Rep. 10, 12897 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bisi, T. L. et al. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 8, e82205 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).ADS 
    Article 

    Google Scholar 
    38.Saporiti, F. et al. Resource partitioning among air-breathing marine predators: are body size and mouth diameter the major determinants?. Mar. Ecol. 37, 957–969 (2016).ADS 
    Article 

    Google Scholar 
    39.Ford, J. K. B. Killer whale Orcinus orca in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 531–537 (Academic Press, 2018).40.Durban, J. W. & Pitman, R. L. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. Biol. Lett. 8, 274–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Drago, M. et al. Mouth gape determines the response of marine top predators to long-term fishery-induced changes in food web structure. Sci. Rep. 8, 15759 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Drago, M. et al. Isotopic niche partitioning between two apex predators over time. J. Anim. Ecol. 86, 766–780 (2017).PubMed 
    Article 

    Google Scholar 
    43.Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).Article 

    Google Scholar 
    44.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    46.Keeling, C. D. The Suess effect: 13Carbon-14Carbon interactions. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    47.Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 
    Article 

    Google Scholar 
    48.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing, http://www.R-project.org. (2018).53.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes analysis. I: Turnover of 13C in tissues. The Condor 94, 181–188 (1992).Article 

    Google Scholar 
    54.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94, 189–197 (1992).Article 

    Google Scholar 
    55.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Barnes, C., Seeting, C. J., Jennings, S., Barry, J. T. & Polunin, N. V. C. Effect of temperature and ration size on carbon and nitrogen isotope trophic fractionation. Funct. Ecol. 21, 356–362 (2007).Article 

    Google Scholar 
    57.Bloomfield, A. L., Elsdon, T. S., Walther, B. D. & Gier, E. J. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects?. J. Exp. Mar. Biol. Ecol. 399, 48–59 (2011).CAS 
    Article 

    Google Scholar 
    58.Saporiti, F. et al. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 538, 23–34 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Wells, R. S. & Scott, M. D. Bottlenose dolphin, Tursiops truncatus, common bottlenose dolphin in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 118–125 (Academic Press, 2018).60.Natoli, A., Peddemors, V. M. & Hoelzel, A. R. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Costa, A. P. B., Rosel, P. E., Daura-Jorge, F. G. & Simões-Lopes, P. C. Offshore and coastal common bottlenose dolphins of the western South Atlantic face-to-face: what the skull and the spine can tell us. Mar. Mamm. Sci. 32, 1433–1457 (2016).Article 

    Google Scholar 
    62.Drago, M. et al. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean. Estuar. Coast. Shelf Sci. 238, 106708 (2020).63.Koen, A. M., Pedraza, S. N., Sciavini, A. C. M., Goodall, R. N. & Crespo, E. A. Stomach contents of false killer whales (Pseudorca crassidens) stranded on the coasts of the strait of Magellan, Tierra del Fuego. Mar. Mamm. Sci. 15, 712–724 (1999).64.Page, C. E. & Cooper, N. Morphological convergence in ‘river dolphin’ skulls. PeerJ 5, e4090 (2017).65.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldañas, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).Article 

    Google Scholar 
    66.Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U.S.A. 100, 1781–1786 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Warren, P. H. & Lawton, J. H. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure?. Oecologia 74, 231–235 (1987).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Kerr, S. R. & Dickie, L. M. The biomass spectrum: a predator-prey theory of aquatic production. (Columbia University Press, 2001).69.Leaper, R. & Huxham, M. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99, 443–456 (2002).Article 

    Google Scholar 
    70.Memmott, J., Martinez, N. D. & J.E., C. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).71.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Jennings, S. Size-based analyses of aquatic food webs in Aquatic food webs: an ecosystem approach (eds A. Belgrano, U.M. Scharler, J. Dunne, & R.E. Ulanowicz) 86–97 (Oxford University Press, 2005).73.Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535 (2005).Article 

    Google Scholar 
    74.Jeglinski, J., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size – same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).PubMed 
    Article 

    Google Scholar 
    75.Akin, S. & Winemiller, K. O. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33, 144–153 (2008).ADS 
    Article 

    Google Scholar 
    76.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    77.Madigan, D. J. et al. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2, 654 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Biodiversity needs every tool in the box: use OECMs

    COMMENT
    26 July 2021

    Biodiversity needs every tool in the box: use OECMs

    To conserve global biodiversity, countries must forge equitable alliances that support sustainability in traditional pastoral lands, fisheries-management areas, Indigenous territories and more.

    Georgina G. Gurney

    0
    ,

    Emily S. Darling

    1
    ,

    Gabby N. Ahmadia

    2
    ,

    Vera N. Agostini

    3
    ,

    Natalie C. Ban

    4
    ,

    Jessica Blythe

    5
    ,

    Joachim Claudet

    6
    ,

    Graham Epstein

    7
    ,

    Estradivari

    8
    ,

    Amber Himes-Cornell

    9
    ,

    Harry D. Jonas

    10
    ,

    Derek Armitage

    11
    ,

    Stuart J. Campbell

    12
    ,

    Courtney Cox

    13
    ,

    Whitney. R. Friedman

    14
    ,

    David Gill

    15
    ,

    Peni Lestari

    16
    ,

    Sangeeta Mangubhai

    17
    ,

    Elizabeth McLeod

    18
    ,

    Nyawira A. Muthiga

    19
    ,

    Josheena Naggea

    20
    ,

    Ravaka Ranaivoson

    21
    ,

    Amelia Wenger

    22
    ,

    Irfan Yulianto

    23
    &

    Stacy D. Jupiter

    24

    Georgina G. Gurney

    Georgina G. Gurney is a senior research fellow in environmental social science at the Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Emily S. Darling

    Emily S. Darling is director, Coral Reef Conservation, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Gabby N. Ahmadia

    Gabby N. Ahmadia is director, Marine Conservation Science, Ocean Conservation, World Wildlife Fund.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Vera N. Agostini

    Vera N. Agostini is deputy director, Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Natalie C. Ban

    Natalie C. Ban is associate professor in environmental studies at the University of Victoria, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jessica Blythe

    Jessica Blythe is assistant professor in environmental sustainability at Brock University, St Catharines, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Joachim Claudet

    Joachim Claudet is a senior researcher at the National Center for Scientific Research, CRIOBE, France.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Graham Epstein

    Graham Epstein is a postdoctoral research associate at the School of Politics, Security and International Affairs at the University of Central Florida, Orlando, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Estradivari

    Estradivari is a researcher at the Leibniz Center for Tropical Marine Research (ZMT), Germany, and a conservation research manager, World Wildlife Fund Indonesia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Amber Himes-Cornell

    Amber Himes-Cornell is a fisheries officer, Fisheries and Aquaculture Division, Food and Agricultural Organization of the United Nations.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Harry D. Jonas

    Harry D. Jonas is an international lawyer at Future Law, Kota Kinabalu, Malaysia, and co-chair of the IUCN WCPA Specialist Group on Other Effective Area-based Conservation Measures.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Derek Armitage

    Derek Armitage is a professor in the School of Environment, Resources and Sustainability, University of Waterloo, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Stuart J. Campbell

    Stuart J. Campbell is senior director, RARE Indonesia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Courtney Cox

    Courtney Cox is senior director, Rare, Washington DC, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Whitney. R. Friedman

    Whitney R. Friedman is a postdoctoral fellow at the University of California, Santa Barbara, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    David Gill

    David Gill is an assistant professor of marine science and conservation at Duke University, Durham, North Carolina, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Peni Lestari

    Peni Lestari is a socioeconomic marine specialist, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Sangeeta Mangubhai

    Sangeeta Mangubhai is director, Fiji Program, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Elizabeth McLeod

    Elizabeth McLeod is global reef lead, The Nature Conservancy, Arlington, Virginia, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Nyawira A. Muthiga

    Nyawira A. Muthiga is director, Marine Conservation Program, Kenya Program, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Josheena Naggea

    Josheena Naggea is a PhD candidate at Stanford University, California, USA, studying conservation in her home country of Mauritius.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Ravaka Ranaivoson

    Ravaka Ranaivoson is marine director, Madagascar Program, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Amelia Wenger

    Amelia Wenger is a research fellow in the School of Earth and environmental sciences at the University of Queensland, Brisbane, Australia, and a conservation scientist at the Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Irfan Yulianto

    Irfan Yulianto is a researcher and lecturer at Institut Pertanian Bogor University, Indonesia, and a Senior Manager, Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Stacy D. Jupiter

    Stacy D. Jupiter is Melanesia regional director at the Wildlife Conservation Society.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Customary fishing-rights holders from Totoya Island, Fiji, marking a sacred reef area as a no-fishing zone.Credit: Keith Ellenbogen

    Global support is growing for the 30 × 30 movement — a goal to conserve 30% of the planet by 2030. In May, the G7 group of wealthy nations endorsed the commitment to this target that had been made by more than 50 countries in January. It is likely to be the headline goal when parties to the Convention on Biological Diversity (CBD) meet to discuss the latest global conservation agreement in May 2022 in Kunming, China.So where do the sacred forests of Estonia or shipwrecks in North America’s Great Lakes come in? What do these share with managed fishing grounds in Fiji and bighorn-sheep hunting areas in Mexico? All have the potential to be recognized using a conservation policy tool called other effective area-based conservation measures, or OECMs. Together with protected areas — from Malaysia’s Taman Negara National Park to the Cerbère-Banyuls Marine Reserve in southern France — OECMs could help to achieve the 30% target.Devised in 2010 and defined in 2018, the OECM tool is little known outside specialist circles. Less than 1% of the world’s land and freshwater environments and less than 0.1% of marine areas are currently covered under this designation. Meanwhile, biodiversity is in free fall and protected areas alone can’t stem the loss. Both designations are among the international policy instruments being negotiated ahead of the CBD conference.We call on the CBD parties and the conservation community of policymakers, scientists, practitioners and donors to study and use OECMs more, alongside protected areas. This policy tool can advance equitable and effective conservation if CBD parties stay true to the convention’s intent to sustain biodiversity rather than ‘achieve’ area-based targets. But more groundwork must be laid to realize its potential.Improvements are needed in research, policy and practice. Local managers and CBD parties need better ways to assess whether potential OECMs contribute to sustaining biodiversity, so that areas are properly designated. The conservation community needs to develop processes to ensure that OECM recognition strengthens, rather than displaces, existing local governance. And researchers need to articulate the value of OECMs to encourage policymakers to use them.Bigger toolkit Protected areas have expanded rapidly in the past 10 years, and now cover 15.7% of the world’s land and fresh water, and 7.7% of the marine realm. Defined by the CBD as areas designated or regulated and managed for biodiversity conservation, they are an essential conservation approach. But some have failed to be equitable or effective: aligning biodiversity goals with local values, needs and governance can be difficult in some contexts1,2. This conflict can lead to inequities, non-compliance and poor biodiversity outcomes.
    Indigenous rights vital to survival
    OECMs can have an important and complementary role3. The tool recognizes managed areas that sustain biodiversity, irrespective of their objective. OECM recognition can support Indigenous and local communities in managing their lands and seas — be it for hunting, fishing or other cultural practices — while conserving nature. It opens up new conservation opportunities in landscapes where there is relatively light human usage, such as pastoralism with a low density of livestock. These regions make up nearly 56% of the world’s lands, and contain more Key Biodiversity Areas — sites of global important to biodiversity — than do remaining large wild areas4. So, management approaches that accommodate the ways people use landscapes and seascapes are crucial.Some managed areas do not safeguard biodiversity5. But there is a wealth of evidence suggesting that many do. For example, a study of the Peruvian Amazon found that Indigenous peoples’ territories were, on average, more effective than state-governed protected areas at preventing deforestation6. A review of 61 areas managed under territorial-use rights in fisheries in Chile found positive effects on biodiversity; some had levels of fish biomass and biodiversity that were comparable to those in a protected area that restricts all fishing7. And abandonment of agricultural management systems involving low-intensity farming methods in Europe — such as traditional haymaking in Romania — has been linked repeatedly to biodiversity loss8.Perhaps many of these could be recognized as OECMs (see ‘Conservation potential’). Doing so depends on the consent of the relevant governing bodies, and whether the managed area meets the CBD’s definition and criteria for OECMs, including demonstrated or expected biodiversity outcomes.

    EquityOECMs can help to ensure that international conservation targets are legitimate to the many and diverse actors required to turn the tide on biodiversity loss.Too often, the costs of conservation are felt locally while many of the benefits are shared globally — from carbon sequestration to preserving genetic resources. For instance, rainforest conservation, including a protected area, in the Ankeniheny-Zahamena Corridor in Madagascar meant that local farmers of vanilla, cloves and rice bore opportunity costs representing 27–84% of their average annual household income. The protection scheme is intended to cut 10 million tonnes of carbon dioxide emissions over 10 years9.Such inequities can occur when protected areas do not prioritize local values and needs. Although protected areas can have multiple objectives, the widely followed guidance from the International Union for Conservation of Nature (IUCN) advises that nature conservation should retain priority over all other objectives. This can alienate people who manage areas for other reasons. Even in the instance of Indigenous Protected Areas in Australia, which have resulted in an array of social and biodiversity benefits, the IUCN definition can undermine Indigenous Australians’ conceptualization of humans as part of nature, which underpins their governance systems2. This stands in contrast to the Western world view of humans as distinct from nature — a concept that is embedded in the IUCN definition and conservation more generally2,3.
    A spatial overview of the global importance of Indigenous lands for conservation
    However, OECMs need not have conservation as an objective. This means that they can be used to recognize the contributions of a myriad of actors who manage areas that sustain nature, regardless of why they do so. Indigenous peoples, for instance, manage 37% of the world’s natural lands10 for many reasons, such as maintaining rights, harvesting and cultural identity2,10,11. Recognition of Indigenous territories as OECMs could help to overcome current challenges of insecure rights, insufficient funding and exclusion of these communities from decision-making12. For example, Indonesia has initiated revisions to its conservation laws to accommodate coastal OECMs, which could provide opportunities for Indigenous and local communities to gain legal recognition of their rights to use and manage fisheries.OECMs can thus ensure a more equitable approach to conservation decision-making. They enable the participation of those who govern areas that sustain biodiversity but who are currently not involved in decision-making. For example, fisheries-management organizations have rebuilt some fish stocks, contributing to biodiversity and wider ecosystem health, yet the fisheries and conservation sectors are often divided13. OECMs can foster cooperation between sectors, and encourage the participation of fisheries-management organizations in conservation decision-making.EffectivenessCollectively, alongside protected areas, OECMs can increase the effectiveness of the global conservation system in four key ways.First, they support management that is tailored to its context14, and aligned with local values, governance and traditional knowledge systems. This fosters the local leadership, support and compliance that are key to biodiversity benefits14. For example, in Mo’orea, French Polynesia, protected areas that restricted all fishing did not meet fishers’ needs, leading to non-compliance and relatively little change in the density and biomass of coral-reef fish15. Conversely, a management area in Labrador, Canada, implemented at the behest of crab fishers, maintained the fishery and increased the biomass of fish species such as Atlantic cod (Gadus morhua) and other, non-target species16. This area seems likely to meet the OECM criteria.

    Estonia’s sacred groves are protected for their spiritual significance.Credit: Toomas Tuul/FOCUS/Universal Images Group via Getty

    Second, OECMs, together with protected areas, can help to ensure a well-connected conservation network in which all elements of biodiversity are represented and in which ecological processes, such as species movements, are sustained. For instance, Kenya’s wildlife conservancies provide geographical bridges between protected areas for the movement of wildlife such as zebras, and have potential to be recognized as OECMs.Third, OECMs can increase the diversity of tools in the global conservation system. This bolsters the system’s resilience to social and biophysical shifts, including climate change14. Redundancy in governance arrangements can help to mitigate risks associated with the current reliance on government-led protected areas, which are vulnerable to shifts in national priorities. For example, in 2017, the Bears Ears National Monument, a protected area in Utah, was downsized by 85% to make way for oil and gas exploration under a former US presidential administration.Fourth, OECMs help to bring conservation outcomes into focus. A key criterion for official designation is demonstrated or expected biodiversity outcomes, such as the restoration of a crucial habitat. This is not the case for protected areas, where a focus on coverage has, in some cases, led to expansion with scant biodiversity gains4.Five steps Key concerns remain about the misuse of OECM recognition. CBD parties might use it to meet commitments without actually tackling biodiversity loss. For example, in 2017, Canada increased the marine area it planned to report almost sixfold, by reclassifying 51 fishery closures as OECMs17. This decision was criticized on the grounds of insufficient evidence that these areas sustain biodiversity. Another concern is that, despite the focus on equity, any attempts to influence local governance could be perceived as a ‘land grab’ or ‘sea grab’ by external actors such as national governments, foreigners or international organizations. For example, the establishment of some privately owned protected areas in southern Chile has been suggested to have involved coercion and intimidation of smallholder farmers.
    Area-based conservation in the twenty-first century
    The conservation community needs to take the following five steps to overcome these key challenges to using the OECM policy tool.Show that they work. The 2019 IUCN Guidelines for Recognizing and Reporting OECMs provide clear criteria for identifying managed areas that are suitable for a full assessment against the CBD’s definition. However, research is needed on how to meet the crucial criteria of demonstrated or expected in situ conservation of biodiversity. This is challenging and resource-intensive, especially because of the variety of actors involved. Ideas based in Western science might not align with the knowledge systems of all involved.Guidelines should build on existing approaches for evaluation, such as the IUCN Green List for Protected and Conserved Areas and the Indicators of Resilience in Socio-ecological Production Landscapes (SEPLs). They should include recent advances focused on outcomes18 and should be tailored to different types of managed area. To ensure that these are salient, credible and legitimate to those governing OECMs, they should be co-produced by groups such as rights holders, civil-society organizations, government and industry, as well as by academics from various disciplines. This transdisciplinary approach is growing rapidly, with examples ranging from management at the national level (such as New Zealand’s Sustainable Seas National Science Challenge) to the monitoring of coral reefs as social-ecological systems19.

    Pastoral lands in Africa are often governed to maintain sustainable grazing.Credit: Steve Pastor

    Strengthen existing local governance. Many rights holders have raised concerns that formal recognition of their managed areas for conservation might infringe their rights. For example, few communities in Fiji have had their fisheries-management areas recognized under national conservation laws, because that currently requires the communities to waive their customary rights20.Engaging with global conservation processes might also erode self-determination through the imposition of external world views2,3,12. Although OECMs open the door to recognizing diverse relations between humans and nature, it is crucial that the need for demonstrated or expected biodiversity outcomes does not diminish other priorities and values.OECM recognition must strengthen existing local governance, rather than displace or substantially alter it. This will require guidelines to be informed by principles of procedural equity and tailored to different types of managed area. Their development should draw on existing approaches such as the Australian Indigenous-led Healthy Country Planning and Our Knowledge, Our Way guidelines, which have underpinned engagement with the national carbon sequestration scheme11.Secure funding. Funding for recognizing and reporting OECMs should be made available to ensure costs are not a barrier or burden for under-resourced groups. A prominent role for OECMs in the next CBD agreement will help — this policy guides conservation investments from nations and donors.
    Sixty years of tracking conservation progress using the World Database on Protected Areas
    Importantly, the diversity of managed areas that OECMs encompass can provide funding opportunities beyond conventional conservation funders, whose resources for protected-area funding are already overstretched. Conservation practitioners should engage private sectors that manage areas that could be recognized as OECMs, and access funding earmarked for other priorities such as health and development. For example, the Watershed Interventions for Systems Health project in Fiji, which aims to reduce waterborne diseases using nature-based solutions, is supported by both conservation and public-health funding.Conservation donors and practitioners should co-design new funding strategies for OECMs with those governing these areas. This will help to ensure that local priorities are supported. For example, Coast Funds, a unique conservation trust fund, was developed by First Nations people in collaboration with conservation practitioners and the forestry industry to support stewardship of the Great Bear Rainforest and Haida Gwaii regions of British Columbia, Canada.Agree on metrics. The record of progress towards the CBD’s area-based target, the World Database on Protected Areas, assumes that all reported protected areas have biodiversity conservation as a main objective. But some CBD parties report areas that have other primary objectives, such as sustainable harvesting20. This leads to inaccurate accounting at the global level, and to misunderstanding of management actually occurring on the ground. Canada, among others, is developing legislation that demarcates protected areas and OECMs. But it is not clear whether all CBD parties will do the same.Policymakers need to agree on targets that are based on outcomes — not just coverage — for both OECMs and protected areas. These might include, for example, changes in the populations of multiple species relative to a reference point. In constructing these targets, the conservation community should be guided by the development and health sectors, which have long used outcome targets. For example, the United Nations Sustainable Development Goal 1.2 aims to reduce at least by half the proportion of people living in multidimensional, regionally-defined poverty by 2030. A common currency of outcomes could alleviate concerns that there is an uneven burden of proof for the OECM and protected-area tools. It could also prevent the misuse of either to meet targets based on area without actually sustaining biodiversity.Include OECMs in other environmental agreements. Addressing the interrelated global challenges of biodiversity loss, climate change and sustainability requires the coordination of policy across sectors. Right now, OECMs appear only in CBD policy. But they could contribute to the mandates of other intergovernmental initiatives. Policymakers should include OECMs alongside protected areas in international agreements such as the Sustainable Development Goals, new global climate agreements being negotiated under the UN convention on climate, and the emerging UN treaty on marine biodiversity in areas beyond national jurisdiction.New targets negotiated at the upcoming CBD meeting will set the global conservation agenda over the next decade. If the steps we outline here are implemented, OECMs could be central to the transformations needed for a sustainable future for the planet.

    Nature 595, 646-649 (2021)
    doi: https://doi.org/10.1038/d41586-021-02041-4

    References1.Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. Conserv. Biol. 30, 133–141 (2016).PubMed 
    Article 

    Google Scholar 
    2.Lee, E. Antipode 48, 355–374 (2016).Article 

    Google Scholar 
    3.Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. PARKS 20, 111–128 (2014).Article 

    Google Scholar 
    4.Ellis, E. C. One Earth 1, 163–167 (2019).Article 

    Google Scholar 
    5.Donald, P. F. et al. Conserv. Lett. 12, e12659 (2019).Article 

    Google Scholar 
    6.Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Sci. Rep. 7, 11318 (2017).PubMed 
    Article 

    Google Scholar 
    7.Gelcich, S., Martínez-Harms, M. J., Tapia-Lewin, S., Vasquez-Lavin, F. & Ruano-Chamorro, C. Conserv. Lett. 12, e12637 (2019).Article 

    Google Scholar 
    8.Lomba, A. et al. Front. Ecol. Environ. 18, 36–42 (2020).Article 

    Google Scholar 
    9.Poudyal, M. et al. PeerJ 6,e5106 (2018).PubMed 
    Article 

    Google Scholar 
    10.Garnett, S. T. et al. Nature Sustain. 1, 369–374 (2018).Article 

    Google Scholar 
    11.Ansell, J. et al. Int. J. Wildland Fire 29, 371–385 (2019).Article 

    Google Scholar 
    12.Corson, C. et al. Conserv. Soc. 12, 190–202 (2014).Article 

    Google Scholar 
    13.Hilborn, R. Nature 535, 224–226 (2016).PubMed 
    Article 

    Google Scholar 
    14.Carlisle, K. & Gruby, R. L. Policy Stud. J. 47, 927–952 (2019).Article 

    Google Scholar 
    15.Thiault, L. et al. Ecosphere 10, e02576 (2019).Article 

    Google Scholar 
    16.Kincaid, K. & Rose, G. Can. J. Fish. Aqua. Sci. 74, 1490–1502 (2017).Article 

    Google Scholar 
    17.Lemieux, C. J. & Gray, P. A. J. Environ. Stud. Sci. 10, 483–491 (2020).Article 

    Google Scholar 
    18.Geldmann, J. et al. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).Article 

    Google Scholar 
    19.Gurney, G. G. et al. Biol. Conserv. 240, 108298 (2019).Article 

    Google Scholar 
    20.Govan, H. & Jupiter, S. PARKS 19, 73–80 (2013).Article 

    Google Scholar 
    Download references

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    Indigenous rights vital to survival

    A spatial overview of the global importance of Indigenous lands for conservation

    Area-based conservation in the twenty-first century

    Marine conservation across protected area boundaries

    Sixty years of tracking conservation progress using the World Database on Protected Areas

    Subjects

    Biodiversity

    Policy

    Ecology

    Latest on:

    Biodiversity

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    UK biodiversity: close gap between reality and rhetoric
    Correspondence 06 JUL 21

    Indigenous lands: make Brazil stop mining to secure US deal
    Correspondence 08 JUN 21

    Policy

    COVID and mass sport events: early studies yield limited insights
    News 22 JUL 21

    Scientific publishers expedite name changes for authors
    Career News 21 JUL 21

    Solar geoengineering research needs formal global debate
    Correspondence 20 JUL 21

    Ecology

    Andes foothills protected by carbon-offset fund
    Correspondence 20 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    Italy: Forest harvesting is the opposite of green growth
    Correspondence 13 JUL 21

    Jobs

    Postdoctoral Associate

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Niche partitioning among dead wood-dependent beetles

    1.Polechová, J. & Storch, D. Ecological niche. Encycl. Ecol. 2, 1088–1097 (2008).
    Google Scholar 
    2.Vannette, R. L. & Fukami, T. Historical contingency in species interactions: Towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).PubMed 
    Article 

    Google Scholar 
    3.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2011).Book 

    Google Scholar 
    4.Clark, J. S. The coherence problem with the unified neutral theory of biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).PubMed 
    Article 

    Google Scholar 
    5.McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Bocci, A. et al. Sympatric snow leopards and Tibetan wolves: Coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).Article 

    Google Scholar 
    7.Dueser, R. D. & Shuggart, H. H. Niche pattern in a forest-floor small-mammal fauna. Ecology 60, 108–118 (1979).Article 

    Google Scholar 
    8.Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Armstrong, R. A. & McGehee, R. Coexistence of species competing for shared resources. Theor. Popul. Biol. 9, 317–328 (1976).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    10.Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159 (2018).Article 

    Google Scholar 
    11.Kadowaki, K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur. J. Entomol. 107, 89 (2010).Article 

    Google Scholar 
    12.Peter, A.-K. Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can. J. Zool. 79, 652–661 (2001).Article 

    Google Scholar 
    13.Borkowski, A. & Skrzecz, I. Ecological segregation of bark beetle (Coleoptera, Curculionidae, Scolytinae) infested Scots pine. Ecol. Res. 31, 135–144 (2016).Article 

    Google Scholar 
    14.Bobiec, A., Gutowski, J. M. & Laudenslayer, W. F. The Afterlife of a Tree (WWF Poland, 2005).
    Google Scholar 
    15.Alexander, K. N. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. 10, 9–13 (2008).
    Google Scholar 
    16.Véle, A. & Horák, J. The importance of host characteristics and canopy openness for pest management in urban forests. Urban For. Urban Green. 36, 84–89 (2018).Article 

    Google Scholar 
    17.Přikryl, Z. B., Turčáni, M. & Horák, J. Sharing the same space: Foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol. Entomol. 37, 117–123 (2012).Article 

    Google Scholar 
    18.Brin, A. & Bouget, C. Biotic interactions between saproxylic insect species. In Saproxylic insects: Diversity, ecology and conservation (ed. Ulyshen, M. D.) 471–514 (Springer, 2018).Chapter 

    Google Scholar 
    19.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    20.Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).PubMed 
    Article 

    Google Scholar 
    21.Biedermann, P. H. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. U.S.A. 108, 17064–17069 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Horak, J. What is happening after an abiotic disturbance? Response of saproxylic beetles in the Primorsky Region woodlands (Far Eastern Russia). J. Insect Conserv. 19, 97–103 (2015).Article 

    Google Scholar 
    24.Hůrka, K. Beetles of the Czech and Slovak Republics (Kabourek, 2005).
    Google Scholar 
    25.Horák, J. & Chobot, K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 7, 352–355 (2011).
    Google Scholar 
    26.Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Crowson, R. Observations on Dendrophagus crenatus (Paykull)(Cucujidae) and some comparisons with piestine Staphylinidae (Coleoptera). Entomol. Mon. Mag. 104, 161–169 (1969).
    Google Scholar 
    28.Tarno, H. et al. The behavioral role of males of platypus quercivorus murayama in their subsocial colonies. Agrivita 38, 47–54 (2016).
    Google Scholar 
    29.Della Rocca, F. & Milanesi, P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 47, 1427–1438 (2020).Article 

    Google Scholar 
    30.Buse, J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 16, 93–102 (2012).Article 

    Google Scholar 
    31.Røed, K. H. et al. Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conserv. Genet. Resour. 6, 641–643 (2014).Article 

    Google Scholar 
    32.Konvicka, M., Hula, V. & Fric, Z. Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture?. Eur. J. Entomol. 100, 313–322 (2003).Article 

    Google Scholar 
    33.Bonacci, T. et al. Artificial feeding and laboratory rearing of endangered saproxylic beetles as a tool for insect conservation. J. Insect Sci. 20, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mazzei, A. et al. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 78, 264–270 (2011).Article 

    Google Scholar 
    35.Horák, J., Chumanová, E. & Chobot, K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 107, 81–88 (2010).Article 

    Google Scholar 
    36.Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Carmel, Y. et al. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos 126, 1451–1458 (2017).Article 

    Google Scholar 
    38.Horák, J., Chumanová, E. & Hilszczański, J. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 5, 403–413 (2012).Article 

    Google Scholar 
    39.Keddy, P. Competiton 2nd edn. (Springer, 2001).Book 

    Google Scholar 
    40.Bonacci, T. et al. Beetles “in red”: are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae). Eur. Zool. J. 85, 128–136 (2018).Article 
    CAS 

    Google Scholar 
    41.Chararas, C., Chipoulet, J. M. & Courtois, J. E. Purification partielle et caracterisation d’une beta-glucosidase des larves de Pyrochroa coccinea (Coleoptere, Pyrochroidae). C. R. Séances Soc. Biol. Fil. 1771, 22–27 (1983).
    Google Scholar 
    42.Dettner, K. Description of defensive glands from cardinal beetles (Coleoptera, Pyrochroidae)—their phylogenetic significance as compared with other heteromeran defensive glands. Entomol. Basil. 9, 204–215 (1984).
    Google Scholar 
    43.Nardi, G. & Bologna, M. Cantharidin attraction in Pyrochroa (Coleoptera: Pyrochroidae). Entomol. News 111, 74–75 (2000).
    Google Scholar 
    44.Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 157, 331–341 (2002).Article 

    Google Scholar 
    45.Jaworski, T. et al. Saproxylic moths reveal complex within-group and group-environment patterns. J. Insect Conserv. 20, 677–690 (2016).Article 

    Google Scholar 
    46.Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null Model Analysis for Ecologicaldata. R package version 0.1.0 (Zenodo, 2015).47.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://CRAN.R-project.org/package=HH (2020).48.Walsh, C. & Mac Nally, R. M. Hier.Part: Hierarchical partitioning. https://cran.r-project.org/web/packages/hier.part/index.html (2020). More

  • in

    Computational sustainability meets materials science

    Computational sustainability research has been supported by an Expedition in Computing from the US National Science Foundation (NSF; CCF-1522054). eBird has been supported by the Leon Levy Foundation, the Wolf Creek Foundation, and NSF (DBI-1939187). Materials science research has also been supported by the AFOSR Multidisciplinary University Research Initiative (MURI) Program FA9550-18-1-0136, US DOE Award No.DE-SC0020383, and an award from the Toyota Research Institute. More

  • in

    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef

    1.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 6371 (2018).Article 
    CAS 

    Google Scholar 
    2.Laffoley, D. & Baxter, J. M. Ocean deoxygenation: everyone’s problem—causes, impacts, consequences and solutions (IUCN, 2019).3.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Pandolfi, J. M. et al. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Hoegh-Guldberg, O. et al. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).7.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).Article 

    Google Scholar 
    9.Wild, C. et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 62, 205–215 (2011).CAS 
    Article 

    Google Scholar 
    10.Muscatine, L. & Porter, J. W. Reef corals-mutualistics symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).Article 

    Google Scholar 
    11.Ainsworth, T. D., Turber, R. V. & Gates, R. D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25, 233–240 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Garren, M. et al. Resilience of coral-associated bacterial communities exposed to fish farm effluent. PLoS ONE 4, 10 (2009).Article 
    CAS 

    Google Scholar 
    13.Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA 111, 10227–10232 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Altieri, A. H., Johnson, M. D., Swaminathan, S. D., Nelson, H. & Gedan, K. Resilience of tropical ecosystems to ocean deoxygenation. Trends Ecol. Evol. 36, 227–238 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Lucey, N. M., Collins, M. & Collin, R. Oxygen-mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Kealoha, A. K. et al. Localized hypoxia may have caused coral reef mortality at the Flower Garden Banks. Coral Reefs 39, 119–132 (2020).Article 

    Google Scholar 
    17.Nelson, H. R. & Altieri, A. H. Oxygen: the universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    18.Glynn, P. W. Coral-reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).ADS 
    Article 

    Google Scholar 
    19.Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Alderice, R. et al. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. Glob. Change Biol. 27, 312–326 (2020).21.Cramer, K. L. et al. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15, 561–567 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Warner, M. E., Fit, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Guzmán, H. M. & Guevara, C. A. Coral reefs of Bocas del Toro, Panama: distribution, structure and state of conservation of the continental reefs of Laguna de Chiriquí and Bahía Almirante. Rev. Biol. Trop. 46, 601–623 (1998).
    Google Scholar 
    24.Prada, C. et al. Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33, 1019–1030 (2014).ADS 
    Article 

    Google Scholar 
    25.Wegley Kelly, L. et al. Diel population and functional synchrony of microbial communities on coral reefs. Nat. Comm. 10, 1691 (2019).26.Wegley Kelly, L., Haas, A. F. & Nelson, C. E. Ecosystem microbiology of coral reefs: Linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes. mSystems 3, e00162-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    28.On, S. L. W. et al. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst. Appl. Microbiol. 43, 126108 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Wang, Y. et al. Aliiroseovarius marinus sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 70, 334–339 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Park, S. et al. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int. J. Syst. Evol. Microbiol. 65, 2646–2652 (2015).33.Zhou, H. et al. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. Int. Biodeterio. Biodegrad. 150, 104961 (2020).CAS 
    Article 

    Google Scholar 
    34.Friedrich, C. G. et al. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Wirsen, C. O. et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp that produces filamentous sulfur. Appl. Environ. Microbiol. 68, 316–325 (2002).36.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).37.Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 747–1763 (2014).Article 
    CAS 

    Google Scholar 
    38.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    39.Sievert, S. M. et al. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271–276 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Berg, C. et al. Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Microbiol. Ecol. 85, 251–261 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Broman, E. et al. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front. Microbiol. 8, 2453 (2017).42.Bourlat, S. J. et al. Genomics in marine monitoring: new opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).ADS 
    Article 

    Google Scholar 
    44.Fitt, W. K. et al. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    45.Johnson, M. D. et al. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. PLoS ONE 15, e0228448 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74 (1991).Article 

    Google Scholar 
    47.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher-plants, algae, and natural phytolplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).48.Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).ADS 
    Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing (v3.6.2) (R Foundation for Statistical Computing, 2019).50.Kuznetsova, A., Brockhoff, P. B. & Christensen R. H. B. lmerTest package: tests in linear mixed effects models (2017).51.Oksanen, J. et al. The vegan package. Community ecology package. 631–637 (2007).52.Martinez Arbizu, P. Pairwiseadonis: pairwise multilevel comparison using adonis (2017).53.Nguyen, B. N. et al. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci. Rep. 10, 6729 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    55.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems 1, e00009-15 (2016).56.Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. Msystems 2, e00127–00116 (2017).57.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).58.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.McMurdie, P. J. & Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).62.Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    63.Roberts, D. W. labdsv: ordination and multivariate analysis for ecology. R package (2017).64.Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platformfor ‘omics data. PeerJ 3, e1319 (2015).65.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Koster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Eren, A. M. et al. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).68.Li, D. H. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).70.Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).71.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U54 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Menzel, P., Ng, K. L., & Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Comm. 7, 11257 (2016).73.Roux, S. et al. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).74.Buchfink, B., Xie, C. & Huson, D. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2014).Article 
    CAS 

    Google Scholar 
    77.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Comm. 9, 1–8 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    80.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Johnson, M.D. et al. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Zenodo. https://doi.org/10.5281/zenodo.4940132 (2021). More

  • in

    Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks

    1.Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997;61:262–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7:235–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–48.CAS 
    Article 

    Google Scholar 
    8.Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol. 2016;18:1970–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology. 2013;11:340–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Schubotz F, Hays LE, Meyer-Dombard D, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol. 2015;6:42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fortunato CS, Huber JA. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 2016;10:1925–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, et al. Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci USA. 2018;115:6756–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Coskun ÖK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations with benthic carbon turnover using quantitative stable isotope probing. Appl Environ Microbiol 2018;84:e01083–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Häggblom MM, et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014;8:139–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci. 2016;9:619–23.CAS 
    Article 

    Google Scholar 
    17.Klein F, Tarnas JD, Bach W. Abiotic sources of molecular hydrogen on Earth. Elements. 2020;16:19–24.CAS 
    Article 

    Google Scholar 
    18.Seewald JS, Doherty KW, Hammar TR, Liberatore SP. A new gas-tight isobaric sampler for hydrothermal fluids. Deep Sea Res Part I. 2002;49:189–96.CAS 
    Article 

    Google Scholar 
    19.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun OK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv. 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Oremland RS, Miller LG, Whiticar MJ. Sources and flux of natural gases from Mono Lake, California. Geochim Cosmochim Acta. 1987;51:2915–29.CAS 
    Article 

    Google Scholar 
    22.Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.CAS 
    Article 

    Google Scholar 
    23.Butler IB, Schoonen MA, Rickard DT. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta. 1994;41:211–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol. 2019;21:374–88.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18:1403–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coskun ÖK, Özen V, SD Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.27.Pichler M, Coskun ÖK, Ortega-Arbulú A-S, Conci N, Wörheide G, Vargas S, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen 2018:7;e00611.28.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 

    Google Scholar 
    29.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    Article 

    Google Scholar 
    30.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Youngblut ND, Barnett SE, Buckley DH. HTSSIP: an R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS ONE. 2018;13:e0189616.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.R. Team. Others, RStudio: integrated development for R. vol. 42. Boston, MA: RStudio, Inc; 2015. P. 14.
    Google Scholar 
    36.Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Orsi WD, Morard R, Vuillemin A, Eitel M, Worheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, et al. Measurement error and resolution in quantitative stable isotope probing: implications for experimental design. mSystems. 2020;5:e00151–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Youngblut ND, Barnett SE, Buckley DH. SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol 2018;9:570.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–235.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 2016;6:2774–80.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol. 2019;21:682–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Lecoeuvre A, Menez B, Cannat M, Chavagnac V, Gerard E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 2021;15:818–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 2009;3:231–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, et al. Abundance and diversity of microbial life in ocean crust. Nature. 2008;453:653–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Schrenk MO, Brazelton WJ, Lang SQ. Serpentinization, carbon, and deep life. Rev Mineral Geochem 2013;75:575–606.CAS 
    Article 

    Google Scholar 
    57.Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, et al. Magnetite in seafloor serpentinite—some like it hot. Geology. 2014;42:135–8.CAS 
    Article 

    Google Scholar 
    58.Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 2005;307:1428–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    60.McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA. 2014;111:E3948–3956.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, et al. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J. 2021;15:1121–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015;6:872.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Vuillemin A, Vargas S, Coskun OK, Pockalny R, Murray RW, Smith DC, et al. Atribacteria reproducing over millions of years in the Atlantic Abyssal subseafloor. mBio. 2020;11:e01937–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bryant FO, Adams MW. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 1989;264:5070–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Berney M, Greening C, Conrad R, Jacobs WR Jr, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA 2014;111:11479–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu C-H, et al. The [NiFe]-hydrogenase of Pyrococcus furiosus exhibits a new type of oxygen tolerance. J Am Chem Soc. 2015;137:13556–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing Thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.W Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.Article 
    CAS 

    Google Scholar 
    72.Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiol Ecol 2018;94:fiy014.73.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Diaz R, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural response of benthic macrofauna. Oceanogr Mar Biol. 1995;33:245–303.
    Google Scholar 
    75.Jenkins MC, Kemp WM. The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr. 1984;29:609–19.CAS 
    Article 

    Google Scholar 
    76.Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol. 2017;8:56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 2004;39:165–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, Rempfert KR, et al. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 2019;13:1750–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Morrill PL, Brazelton WJ, Kohl L, Rietze A, Miles SM, Kavanagh H, et al. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front Microbiol. 2014;5:613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry. 2011;50:1910–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Seewald JS, Zolotov MY, McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta. 2006;70:446–60.CAS 
    Article 

    Google Scholar 
    83.Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev. 2014;114:4149–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 2010;466:478–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat Commun. 2020;11:6381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Brisbarre N, Fardeau M-L, Cueff V, Cayol J-L, Barbier G, Cilia V, et al. Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol. 2003;53:1043–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, et al. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020;96:fiaa080.89.Jansen K, Thauer RK, Widdel F, Fuchs G. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol. 1984;138:257–62.CAS 
    Article 

    Google Scholar 
    90.Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, et al. Reviews and syntheses: heterotrophic fixation of inorganic carbon—significant but invisible flux in global carbon cycling. Biogeosciences 2020;18:3689–3700.91.Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71. https://doi.org/10.1111/j.1472-4669.2010.00249.x92.Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14. 10.1038/nrmicro1991. More