More stories

  • in

    Author Correction: Drivers of seedling establishment success in dryland restoration efforts

    School of Environmental Studies, University of Victoria, Victoria, British Columbia, CanadaNancy ShackelfordEcology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USANancy Shackelford, Nichole Barger, Julie E. Larson & Katharine L. SudingDepartamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, BrazilGustavo B. PaternoDepartment of Ecology and Ecosystem Management, Restoration Ecology Research Group, Technical University of Munich, Freising, GermanyGustavo B. PaternoUS Geological Survey, Southwest Biological Science Center, Moab, UT, USADaniel E. Winkler & Stephen E. FickSchool of Biological Sciences, The University of Western Australia, Crawley, Western Australia, AustraliaTodd E. EricksonKings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, Western Australia, AustraliaTodd E. Erickson & Peter J. GolosDepartment of Biology, University of Nevada, Reno, Reno, NV, USAElizabeth A. LegerUSDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, USALauren N. Svejcar, Chad S. Boyd & Kirk W. DaviesCollege of Science and Engineering, Flinders University, Bedford Park, South Australia, AustraliaMartin F. BreedDepartment of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USAAkasha M. FaistSchool of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, AustraliaPeter A. HarrisonProgram in Ecology, University of Wyoming, Laramie, WY, USAMichael F. CurranUSDA FS – Southern Research Station, Research Triangle Park, NC, USAQinfeng GuoDepartment of Nature Conservation and Landscape Planning, Anhalt University of Applied Sciences, Bernburg, GermanyAnita Kirmer & Sandra DullauSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USADarin J. LawDepartment of Agricultural Sciences, South Eastern Kenya University, Kitui, KenyaKevin Z. MgangaUS Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USASeth M. Munson & Hannah L. FarrellUS Department of Agriculture – Agricultural Research Service Rangeland Resources and Systems Research Unit, Fort Collins, CO, USALauren M. PorenskyInstituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, ArgentinaR. Emiliano QuirogaCátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, ArgentinaR. Emiliano QuirogaMTA-DE Lendület Functional and Restoration Ecology Research Group, Debrecen, HungaryPéter TörökTennessee Department of Environment and Conservation, Division of Water Resources, Nashville, TN, USAClaire E. WainwrightHirola Conservation Programme, Nairobi, KenyaAli AbdullahiUSDA Natural Resources Conservation Service, Merced Field Office, Merced, CA, USAMatt A. BahmNational Park Service, Southeast Utah Group, Moab, UT, USAElizabeth A. BallengerThe Nature Conservancy of Oregon, Burns, OR, USAOwen W. BaughmanPlant Conservation Unit, Biological Sciences, University of Cape Town, Rondebosch, South AfricaCarina BeckerUniversity of Castilla-La Mancha, Campus Universitario, Albacete, SpainManuel Esteban Lucas-BorjaUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, CanadaCarla M. Burton & Philip J. BurtonInstitute of Applied Sciences, Malta College for Arts, Sciences and Technology, Fgura, MaltaEman Calleja & Alex CaruanaPlant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaPeter J. CarrickUSDA, Agricultural Research Service, Great Basin Rangelands Research Unit, Reno, NV, USACharlie D. ClementsLendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Debrecen, HungaryBalázs Deák, Réka Kiss & Orsolya ValkóMurrang Earth Sciences, Ngunnawal Country, Canberra, Australian Capital Territory, AustraliaJessica DrakeGreat Ecology, Denver, CO, USAJoshua EldridgeUSDA-ARS Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, Sidney, MT, USAErin EspelandGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyMagda GarbowskiDepartment of Ecology, Brandenburg University of Technology, Cottbus, GermanyEnrique G. de la RivaBiodiversity Management Branch, Environmental Resource Management Department, Cape Town, South AfricaPenelope A. GreyGreening Australia, Melbourne, Victoria, AustraliaBarry HeydenrychDepartment of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch Central, Stellenbosch, South AfricaPatricia M. HolmesNatural Resource Management and Environmental Sciences, Cal Poly State University, San Luis Obispo, CA, USAJeremy J. JamesDepartment of Biology, University of Nebraska-Kearney, Kearney, NE, USAJayne Jonas-BrattenNegaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USAAndrea T. KramerDepartment of Botany, University of Granada, Granada, SpainJuan LoriteInteruniversity Institute for Earth System Research, University of Granada, Granada, SpainJuan LoriteNew Zealand Department of Conservation, Christchurch, New ZealandC. Ellery MayenceDepartamento de Biología y Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Madrid, SpainLuis Merino-MartínÖMKi – Research Institute of Organic Agriculture, Budapest, HungaryTamás MigléczHadison Park, Kimberley, South AfricaSuanne Jane MiltonWolwekraal Conservation and Research Organisation (WCRO), Prince Albert, South AfricaSuanne Jane MiltonUS Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, USAThomas A. MonacoUniversity of California, Riverside, Riverside, CA, USAArlee M. MontalvoDepartment of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid, SpainJose A. Navarro-CanoForest and Rangeland Stewardship Department, Colorado State University, Fort Collins, CO, USAMark W. PaschkeInstituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Cruz, ArgentinaPablo Luis PeriUSDA – NRCS, Bozeman, MT, USAMonica L. PokornyUSDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, USAMatthew J. RinellaPlant Science, Western Cape Department of Agriculture, Elsenburg, South AfricaNelmarie SaaymanRed Rock Resources LLC, Miles City, MT, USAMerilynn C. SchantzBush Heritage Australia, Eurardy, Western Australia, AustraliaTina ParkhurstDeptartment of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USAEric W. SeabloomHolden Arboretum, Kirtland, OH, USAKatharine L. StubleDepartment of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USAShauna M. UselmanDepartment of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USAKari VeblenDepartment of Biology, University of Regina, Regina, Saskatchewan, CanadaScott WilsonCentre of eResearch and Digital Innovation, Federation University Australia, Ballarat, Victoria, AustraliaMegan WongSchool of Geography and Ocean Science, Nanjing University, Nanjing, ChinaZhiwei XuInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USAKatharine L. Suding More

  • in

    Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050

    Tick paralysis is a common tick-borne illness in humans and animals throughout the world, caused by neurotoxins produced in the salivary glands of ticks and secreted into a host during the course of feeding by females and immature stages19. Fifty-nine ixodid and fourteen argasid ticks are currently believed to be involved in the transmission of tick paralysis worldwide19, 20. In Australia, I. holocyclus is considered to be the leading tick species implicated in the transmission of tick paralysis primarily in dogs, but also other species, viz. cats, sheep, cattle, goats, swine and horses. Humans are also occasionally affected, and the disease can be fatal2, 21. A second tick species, I. cornuatus has also been implicated in the transmission of tick paralysis in Australia; however, it is also considered a minor player in this disease22. Given the differences in their biology, distribution, and natural history of these two species, we focused on estimating the spatial distribution of I. holocyclus in the present study. We recognize, however, that it is important to consider the distributions of both species for proper epidemiological planning and management of tick paralysis in Australia.Ecological niche modeling is a well-tested approach for estimating species distributions based on abiotic factors13, 23. Several new recommendations have been made in recent years for proper construction of niche models; such as the appropriate thinning of occurrence data24, consideration of an accessible area for a species being studied (M)25, thorough exploration of model complexity26, 27, and use of multiple statistical criteria for model selection28, 29. We carefully considered all these recommendations to produce a robust spatial distribution model for I. holocyclus. The resulting replicated models were fairly consistent in predicting suitability for I. holocyclus, as indicated by moderate range estimates (Fig. 2B). Further, the MOP analysis indicated satisfactory performance of the present-day model with extrapolation only in small areas outside the predicted suitable areas. These qualities, along with the model’s very low omission rate (0.044%) gives high confidence in the predicted suitable area for this species in Australia. It will be essential, however, to confirm the actual presence of I. holocyclus outside the traditionally known areas through acarological surveys to assess our findings.The present-day spatial distribution predicted in this study (Fig. 2A) indicates that the geographic areas suitable for I. holocyclus match the currently known distribution of this species along the eastern seaboard, but the suitability also extends through most of the coastal areas in the south, and up to the Kimbolton Peninsula in Western Australia in the north. Highly suitable areas are present around and south of Perth, extending towards Albany, Western Australia. Most areas in Tasmania are also highly suitable for this species. The current distribution in the Eastern Seaboard may be wider than the traditionally known extents in some areas compared to Roberts30. It is likely that I. holocyclus will succeed in establishing permanent populations if introduced into areas that are currently free of them along the southern and northern coasts, and along the southwestern coast of Western Australia and Tasmania. Appropriate prevention of tick movement including pet inspections and quarantine will be necessary to avoid introductions.Future potential distribution of I. holocyclus in year 2050 based on both low- and high-emissions scenarios indicate moderate increases in climatic suitability from the present-day prediction (Fig. 4A,B); but noticeably also moderate to low loss of climatically suitable areas in 2050. This loss could be at least partly attributed to potential future temperature and precipitation conditions exceeding suitable ranges for these ticks in these areas, limiting their ability to survive. Predicted loss of suitable areas in future can also be observed to be irregular, and in some areas, particularly along northern Queensland and in Northern Territory, enveloped between stretches of suitable areas. Our use of relatively coarse resolution data (1 km2) limits our ability to thoroughly interpret such phenomenon, but this is likely due to variations in the geography in these areas that respond differently to future climate, as well as the potential increase in ocean temperature and subsequent influences on areas along the coast that may render them unsuitable for this species. Despite the noticeable loss in climatically suitable areas, likely no net loss in area will accrue for this species by 2050.Teo et al.31 assessed present and future potential distribution for I. holocyclus using both CLIMEX32, 33 and a novel, as-yet unpublished “climatic-range” approach to determine the suitability on monthly intervals. CLIMEX allows users to specify different upper and lower thresholds for climatic parameters, some of which were derived for their study from laboratory evaluations of I. holocyclus34. The present-day distribution reported in that study resembles our results in identification of a relatively narrow area along the East Coast as suitable; however, much of the northern and northeastern areas along the coast, the coasts of South Australia and southwestern Australia, and Tasmania are reported unsuitable. Their future predictions (2050) of the species’ potential distribution were based on two GCMs (CSIRO MK3 and MIROC-H) climate models, were also markedly different from our predictions, anticipating rather dramatic distributional loss for the species. Such model transfers are challenging, with many factors potentially producing inconsistencies35. However, the two studies reflect two fundamentally different classes of ecological niche models; CLIMEX is deterministic, whose predictions are largely constrained by user supplied threshold values for model inputs of physiological tolerance limits of a species33, whereas Maxent is a machine-learning correlative approach, in which known occurrences of a species is used in conjunction with environmental layers to determine conditions that meet a species’ environmental requirements, and therefore the suitability of geographic spaces. Although the former (CLIMEX) approach is appealing conceptually, scaling environmental dimensions between the micro-scales of physiological measurements and the macro-scales of geography is well-known to present practical and conceptual challenges36.Different ixodid ticks employ different life-history strategies in response to adverse environmental conditions, including behavioral adaptations, active uptake of atmospheric moisture, restriction of water-loss, and tolerance towards extreme temperatures37. Precisely which of these mechanisms I. holocyclus utilizes, if any at all, for its survival during diverse temperature and humidity conditions is not clearly known, but it is likely to involve multiple mechanisms. In this sense, the threshold values used by Teo et al.31, based purely on laboratory observations may have been overly restrictive, leading to a conservative distributional estimate for this species. Further, because relationships between abiotic variables and species’ occurrences are fairly complex and highly dimensional, a physiological thresholding approach wherein values are set independently for different abiotic parameters may not capture species’ relationships with environments adequately. The correlative approaches employed in the present study are data-driven, and as such may capture more of this complexity, with fewer problems of scaling across orders of magnitude of space and time.In conclusion, ticks are poikilothermic ectoparasites, whose survival, reproduction and other biological functions are regulated by ambient climatic conditions. Although ixodid ticks are known to regulate their body temperatures by moving about their habitat (vegetation), attempts to model their spatial distribution has resulted in models largely based on climate variables. Nevertheless, other factors such as host availability play a significant role in tick distribution, which unfortunately cannot be readily included in correlative ecological niche models largely because such data are rarely available. These suitability predictions, in addition to being entirely based on large-scale climate, also do not reveal the highly likely heterogeneity in abundance or density in different geographic areas within the realized climatically suitable areas. For these reasons, the distribution maps produced in this study must be used with some caution, and perhaps as a guide to target sampling and not as a substitute for thorough acarological surveys. More

  • in

    Mangroves and coastal topography create economic “safe havens” from tropical storms

    Data constructionWe construct an annual panel dataset from 2000 to 2012 of 2549 coastal communities within 102 countries. Population counts from 2000 to 2012 for each community were calculated from the Landscan population database27 and coastal communities were defined as the lowest level administration units with an ocean coastline of each country using the Global Administrative Areas Database v2.7. Using the National Oceanic and Atmospheric Administration’s (NOAA) global nighttime lights data, we examine trends in economic activity before and after a cyclone event. The growth rate in average annual luminosity from nighttime lights trends with economic growth and has been used as an effective proxy for local economic activity22,24,28,29,30,31,32.However, trends in nighttime luminosity should not be interpreted as a measure of economic growth. Instead, we focus on tracking the dynamic impacts of nighttime luminosity (e.g. deviations from trends) that indicates whether an exposed community’s economic activity recovers or suffers permanent damage. The average elevation of each coastal community was calculated using a void-filled Shuttle Radar Topography Mission (SRTM) data at 3 arc-seconds, or approximately 90 m2 at the equator33. The SRTM has the potential to result in an overestimation of elevation in heavily built environment areas or areas of dense high forest canopies compared against locations without such trees. However, during the timeframe of our analysis, the SRTM product was the most appropriate and available product.The mangrove coverage dataset was adapted from the Continuous Global Mangrove Forest Cover for the 21st Century (CGMFC-21) database for the years 2000 to 201212. The coastline length of each community, based on Global Self-Consistent, Hierarchical, High-Resolution Shoreline Database v2.3.5 full resolution data34, was used to normalize the area of mangroves offshore of each coastal community creating a measurement for the “width” of mangroves per meter of coastline.Tropical storm locations for all years were recreated from the International Best Track Archive for Climate Stewardship (IBTrACS) Annual Tropical Cyclone Best Track Database35. Precise measurements of exposure, combined with high-resolution luminosity data, allows to distinguish the heterogeneous impacts of cyclones on exposed communities and the capacity for mangroves to shelter coastal economic activity at different elevations and for different mangrove widths. The intensity of exposure is measured by the distance of the cyclone’s “eye” from the exposed village’s nearest boundary.Tropical cyclone wind profile36, villages passing within 100 km of the cyclone’s eye were likely to experience maximum wind velocity and surface level pressure whereas those villages passing within more distant bands—i.e., 100–200 km and 200–300 km, were likely to experience similar surface level pressure but a non-linear reduction in wind velocity. Binning wind velocities in this way recognizes the highly non-linear relationship between wind velocity and on-the-ground damages from cyclone events37. We therefore expect the capacity for mangroves and elevation to shelter economic activity also to depend on this intensity of exposure.Our full sample encompasses nearly 400 million individuals in 102 countries and 2549 mangrove-holding communities (Table 1). Based on 2019 fiscal year World Bank categorizations, most of our sample resides in developing countries (85.1%) with 46.7% in lower-middle income (gross national income/per capita between $996 and $3895) and 35.3% in upper-middle income countries (gross national income/ per capita between $3896 and $12,056). We also find that most mangrove coverage in our sample exists within developing countries (88.7%) and overwhelmingly in upper-middle income countries (56.0%) in the Latin America and Caribbean (LAC) and East Asian and Pacific (EAP) developing regions. While only 14.9% of our sample’s global population resides in LAC countries, these countries account for 39.8% of mangrove holdings in our sample whereas the 45.5% of the population residing in EAP countries only account for 30.3% of mangrove coverage.Empirical strategyWe use a distributed-lag autoregressive model to measure the initial and permanent effect of cyclone exposure on economic activity in coastal communities. The growth in economic activity for each coastal community is proxied by the difference in logs between years, (growth={ln}left(luminosit{y}_{t}right)-{ln}left(luminosit{y}_{t-1}right)). Our estimating equation is$$growt{h}_{i,j,t}=sumlimits_{L=0}^{n}{[beta }_{L} x {C}_{i,j,t-L}]+{gamma }_{j}+{delta }_{t}+eta {X}_{i,j,t}+{epsilon }_{i,j,t}$$
    (1)

    where the (beta) coefficients capture the marginal effects, across three bins of cyclone exposure, on the growth rate of luminosity for the (j{^{prime}}th) administrative unit, within country (i), and in time (t-L) where (t) is the observed year and L is the number of lags ranging from (0 ; to ;n). Here, ({C}_{i,j,t}) is a vector of cyclone exposures binned by the distance from the cyclone’s “eye” to the nearest boundary of the exposed community ( More

  • in

    Study on environmental behaviour of fluopyram in different banana planting soil

    Chemicals and reagentsThe fluopyram standard was purchased from the Environmental Protection Monitoring Institute of the Ministry of Agriculture of China at a concentration of 1000 mg/L. Analytical grade acetonitrile, acetone, dichloromethane, and sodium chloride were purchased from the Guangzhou Chemical Reagent Factory. Chromatographic grade Methanol and n-hexane were available from Thermo Fisher Scientific. Purified water was prepared using a Milli-Q reverse osmosis system (Millipore, Milford, MA, USA). Strata Florisil (FL-PR) 500 mg/6 mL SPE manufactured by Strata™ (5.0 mL n-hexane–acetone (9:1, V/V) solution pre-rinsing cartridge).A standard solution of 1000 μg/mL fluopyram was diluted in n-hexane, and the matrix extract of the blank sample was obtained by the extraction method. The matrix standard solutions of 0.025, 0.05, 0.10, 0.15 and 0.50 μg/mL were obtained by the step dilution. All prepared solutions were stored at temperature of 4 °C until further use.Soil sample collectionHainan latosol was collected from the Bailian banana experimental base in Chengmai (Hainan), Yunnan sandy soil was collected from Taoyuan banana experimental base in Longtou Street, Kunming (Yunnan) and Fujian plain alluvial soil was collected from the Zhangzhou banana experimental base (Fujian). 5–10 soil sampling points were randomly selected in each banana experimental base; the soil samples were collected from depths of 0–10 cm, and debris such as gravel, weeds, and plant roots were removed from each sample. The soil samples were obtained by the quarter method after mixing, dried, and stored after 20 mesh screening.Extraction and purification of flupyramSoil sample extraction was conducted as follows: in a 200 mL conical flask, 20.0 g of the drying soil sample and 40.0 mL acetonitrile was added. After shaking on a reciprocating shaker for 2 h, the mixture was filtered through filter paper. The filtrate was transferred to a stoppered measuring cylinder with 6.0 g NaCl. The stopper was inserted, and the mixture was vigorously shaken for 2 min. The mixture was left at 25 ± 2 °C for more than 30 min to separate the acetonitrile and aqueous solutions. Meanwhile, 10.0 mL of the supernatant were accurately transferred into a 100 mL round-bottom flask and concentrated by a rotatory evaporator at 40 °C to near dryness, which was dissolved in a 5.0 mL n-hexane–acetone (9:1, v/v) solution, vortexed, and mixed well for purification.Water sample extraction is shown below. A 20 mL water sample was transferred to a separatory funnel with 40.0 mL dichloromethane. After vigorously shaking it for 2 min and then letting it stand for 30 min, the lower layer solution was collected in a 100 mL round-bottom flask. The collected fluid was concentrated by a rotatory evaporator at 40 °C to near dryness and dissolved in 5.0 mL n-hexane–acetone (9:1, v/v) solution, vortexed, and mixed well for purification.Sample purification is described below. A 5.0 mL n-hexane–acetone (9:1, v/v) was used to preach the Strata Florisil (FL-PR) 500 mg/6 mL extraction column. When the leaching solvent level reached the surface of the column adsorption layer, the solution sample was immediately poured into the column be purified. Then, the purified solution was collected in a 100 mL round-bottom flask. A 5.0 mL n-hexane–acetone (9:1, v/v) solution was used to rinse the round-bottom flask residuum, after which the rinse solution was applied to elute the Florisil column. The rinsing and elution steps were repeated three times. The collected fluid was concentrated by a rotatory evaporator at 40 °C to near dryness and dissolved in 2.5 mL n-hexane for analysis.Instrumental conditionThe test was performed using the Theomer DSQII gas chromatography-mass spectrometer (GC–MS) with Xcalibur 2.0, software for data acquisition and analysis. A SLB-5MS analytical column (30 m × 0.25 mm × 0.25 μm) was used as chromatographic column. The injection volume was 1 μL without split injection, the carrier gas was helium (He, ≥ 99.999% purity), and the carrier gas flow rate was set to 1.0 mL/min. The protective gas was nitrogen (N2, ≥ 99.999% purity), and the injection port temperature was 250 °C. The chromatographic column temperature program was set as follows: the initial temperature at 80 °C was maintained for 1 min; then it was raised to 240 °C at a speed of 20 °C/min and maintained for 3 min; finally, the temperature was raised at a rate of 50 °C/min until 280 °C, where it was maintained for 7 min.The MS was operated in electron ionisation (EI) mode with an ionising energy of 70 eV. MS data were acquired in both full scan (m/z 50–500) mode for identification and selected ion monitoring (SIM) mode for quantification. The temperatures of the ion source and transfer line were 250 °C and 280 °C, respectively. The retention time of fluopyram was 10.59 min. The quantifier ions were m/z 223, and the qualifier ions were m/z 195 and m/z 173.Analytical method validationFirst, we addressed the linearity. The matrix standard of fluopyram was prepared in the range of 0.025–0.50 μg/mL and the determination was carried out, with the concentration of fluopyram matrix standard solution as the abscissa and the peak area obtained from the GC–MS as the ordinate. Linearity was calculated by plotting the relationship between the concentration and the peak area.The sensitivity analysis relied on the LOD and the limit of quantitation (LOQ). To evaluate the sensitivity of the method, they were obtained by adding the standard solution of fluopyram at the lowest concentration level in line with the requirements of the analytical method for blank samples. The LOD was the corresponding concentration when the signal-to-noise ratio (S/N) was 3, and S/N = 10 corresponds to the LOQ.Accuracy and precision were estimated as well. To determine the reliability of the method, fluopyram standard solutions with different concentrations were added to the blank sample for the recovery experiment. Fluopyram standard solutions with concentrations of 0.008, 0.600, and 1.000 mg/kg were added to the blank samples. This procedure was repeated five times for each concentration. The samples were subjected to extract, purify and analysis under the method the same conditions as described above. The recovery was calculated for the accuracy of the method, and the RSD was calculated for the precision.Soil dissipation experimentIn a number of 100 mL clean and sterilized conical flasks with covers, 20.0 g of soil was added (net weight converted by water content); then, 0.1 mL 1000 μg/mL fluopyram standard solution was pipetted into the conical flasks. Ultrapure water was added. The water was controlled to occupy 60% of the total volume. The flasks were shaken on a constant temperature oscillator for 2 min to mix the fluopyram evenly. Then, they were placed in an artificial climate incubator and exposed to light at 25 ± 2 °C for 12 h per day. According to the different soil types, they were divided into three treatment groups: Hainan, Yunnan, and Fujian. Each treatment group had three parallels and three blanks. The detection intervals were 2 h, 1, 3, 7, 14, 21, 28, 42 and 60 day, while the detection of fluopyram was performed based on the interval according to the shown methods. The dissipation kinetics of fluopyram in banana planting soil conformed to the first-order kinetic equation Ct = C0e−kt, where Ct is a pesticide concentration (mg/kg) at different times (day), C0 is an initial concentration (mg/kg), and k is the dissipation rate constant. The half-life of fluopyram is determined using Eq. (1).$$T_{1/2} = , ln 2/k$$
    (1)
    Soil adsorption experimentUsing the oscillation balance method, 5.0 g of soil was put into the 250 mL conical flasks with cover, which contained 25 mL fluopyram aqueous solutions with mass concentrations of 0.02, 0.1, 0.5, 2.5 and 4.0 mg/L (containing 0.01 mol/L CaCl2), respectively. The soils were divided into three treatment groups: Hainan, Yunnan, and Fujian (based on the different soil types). The fluopyram aqueous solution and the blank soil aqueous solution (both containing 0.01 mol/L CaCl2) were used as controls. Each treatment group had three replicates. The conical flasks were then placed in a constant temperature oscillator at 25 ± 2 °C for 24 h to prepare the suspension. The suspension was transferred to a centrifuge tube for high-speed centrifugation, and 80% of the total volume of the supernatant was used for determination. The fluopyram in the supernatant was extracted and determined under the methods as described above, and the Freundlich equation model (see Eq. 2) was used to describe the adsorption law for fluopyram in soil.$${text{Freundlich: }}C_{s} = K_{f} times C_{e}^{1/n}$$
    (2)
    where Cs is adsorption content of pesticide in soil (mg/kg), Ce is concentration of the pesticide in aqueous solution at adsorption equilibrium (mg/L), Kf is the soil adsorption coefficient of the Freundlich model (L/kg), indicating the pesticide adsorption capacity of the soil and 1/n is a slope rate of the curve between Cs and Ce, reflecting the heterogeneity of the adsorbent surface.The relationship between the adsorption free energy of soil to pesticides (ΔG, kJ/mol) and the soil adsorption coefficient Koc is expressed using Eq. (3).$$Delta G , = – RTln K_{oc}$$
    (3)
    where Koc is the soil adsorption coefficient (Koc = Kf/OC × 100) expressed by organic carbon content (L/kg), OC is soil organic carbon content (%), R is the molar gas constant (J/K mol), and T is absolute temperature (K).Soil leaching experimentA plexiglass tube with an inner diameter of 5 cm and a length of 40 cm was used as a packed column. A layer of cotton, a 1 cm thick quartz sand layer, and a layer of filter paper were added at the bottom of the column. Dry soil (700–800.0 g) was weighed for filling, and the column was fully wetted with ultrapure water to prepare a 30 ± 0.2 cm high leaching soil column. 0.1 mL of 1000 μg/mL fluopyram solution was further added to 5.0 g of soil. After the solution completely volatilized, it was evenly spread on the top of the soil column, and a layer of filter paper and a layer of 1 cm thick quartz sand were added to the top of the soil. During the test, ultrapure water was used for washing the soil column for 10 h at a speed of 30 mL/h, and the leaching solution was collected. After washing, the soil column was removed and was cut into four sections of 1–5, 5–10, 10–20 and 20–30 cm. The residues of fluopyram in the soil samples and leaching solutions were extracted and determined under the methods as described above. According to the three soil types, they were divided into Hainan, Yunnan and Fujian treatment groups, where each group received another parallel treatment. More

  • in

    Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers

    1.Jiang, X., Yang, G. P., Wei, Q. W. & Zou, G. W. Analysis of the genetic structure of spotted sea bass (Lateolabrax maculatus) inhabiting the Chinese Coast. Period. Ocean Univ. China 39, 271–274 (2009) (In Chinese with English abstract).
    Google Scholar 
    2.Clifford, S. L., McGinnity, P. & Ferguson, A. Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can. J. Fish. Aquat. Sci. 55, 358–363 (1998).Article 

    Google Scholar 
    3.Bourret, V., O’Reilly, P. T., Carr, J. W., Berg, P. R. & Bernatchez, L. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106, 500–510 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Hutchings, J. A. & Fraser, D. J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294–313 (2008).PubMed 
    Article 

    Google Scholar 
    5.Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).Article 

    Google Scholar 
    6.Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytius galloprovincialis) in Central and Eastern Mediterranean: Genesc panmixia in the Aegean and the Ionian Sea. J. Mar. Biol. Assoc. U.K. 94, 797–809 (2014).Article 

    Google Scholar 
    7.Liu, J. X., Gao, T. X., Yokogawa, K. & Zhang, Y. P. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol. 39(3), 799–811 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hu, Z. M., Gao, T. X., Han, Z. Q. & Song, L. Studies on genetic differentiation of the spotted sea bass (Lateolabrax maculatus) and Japanese sea bass (Lateolabrax japonicus). Period. Ocean Uni. China 37(3), 413–418 (2007) (In Chinese with English abstract).CAS 

    Google Scholar 
    9.Nakayama, K., Kineshita, I. & Seikai, T. Morphologlcal comparisons during early stage rearing of Chinese and Japanese forms of the temperate bass, Lateolabrax japonicus. Jpn. J. Ichthyol. 43(1), 13–20 (1996).
    Google Scholar 
    10.Lou, D., Gao, T. X. & Zhang, X. M. The advances on germplasm resources study of Lateolabrax. J. Zhejiang Ocean Univ. (Natural Science) 19(2), 162–167 (2000) (Chinese in English abstract).
    Google Scholar 
    11.Lou, D. et al. Study on genetic variation in Chinese and Japanese sea bass. Journal of Ocean University of Qingdao 33(1), 22–28 (2003) (In Chinese in English abstract).
    Google Scholar 
    12.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. The analysis of genetic variation of Lateolabrax japonicus from Rizhao of Shandong and Xiamen of Fujian by isozyme and RAPD methods. Acta Oceanol. Sin. 27(3), 119–123 (2005) (In Chinese with English abstract).CAS 

    Google Scholar 
    13.Liu, M. Y., Jiang, Q. C. & Yang, J. X. Analysis on mitochondrial DNA cytochrome b gene of Lateolabrax japonicas from different seas. J. Nanjing Normal Univ. (Natural Science Edition) 33(1), 102–106 (2010) (In Chinese with English abstract).
    Google Scholar 
    14.Wang, W. et al. Population genetic diversity of Chinese sea bass (Lateolabrax maculatus) from southern coastal regions of China based on mitochondrial COI gene sequences. Biochem. Syst. Ecol. 71, 114–140 (2017).CAS 
    Article 

    Google Scholar 
    15.Wang, G. X. et al. Genetic variability in six Lateolabrax maculatus populations inhabiting the Chinese coast. J. Fish. Sci. China 24(2), 395–402 (2017) (In Chinese with English abstract).
    Google Scholar 
    16.Chapuis, M. P., Loiseau, A., Michalakis, Y., Lecoq, M. & Estoup, A. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Mol. Ecol. Notes 5(3), 554–557 (2005).CAS 
    Article 

    Google Scholar 
    17.Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Tan, Y., Fang, L., Qiu, M., Huo, Z. M. & Yan, Y. W. Population genetic of the Manila clam (Ruditapes philippinarum) in East Asia. Sci. Rep. 10, 21890 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Agulló, M. et al. Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations. Sci. Rep. 10, 21505 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.An, H. S., Lee, J. W. & Kim, H. Y. Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers. Genes Genom. 35(5), 671–680 (2013).Article 

    Google Scholar 
    21.An, H. S., Kim, H. Y. & Kim, J. B. Genetic characterization of hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) using multiplex polymerase chain reaction assays. Genet. Mol. Res. 13(3), 6701–6715 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Shaw, P. W., Turan, C., Wright, J. M., O’Connell, M. & Carvalho, G. R. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83, 490–499 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Shao, C. W., Chen, S. L., Xu, G. B., Liao, X. L. & Tian, Y. S. Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus. Conserv. Genet. 10, 623–625 (2009).CAS 
    Article 

    Google Scholar 
    24.Zhang, H. R., Niu, S. F., Wu, R. X., Zhai, Y. & Tian, L. T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66, 326–330 (2016).CAS 
    Article 

    Google Scholar 
    25.Zhao, Y. et al. Isolation of microsatellite markers for Lateolabrax japonicus and polymorphic analysis. Zool. Res. 32(5), 515–520 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    26.Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Wan, N. W., Rolland, J. L., Bonhomme, F. & Phongdara, A. Population genetic structure of Penaeus merguiensis, Thailand based on nuclear DNA variation. J. Exp. Mar. Biol. Ecol. 311(1), 63–78 (2004).Article 
    CAS 

    Google Scholar 
    28.Xiao, Q. Z. et al. Genetic diversity analysis of wild and cultured megalopa population of Eriocheir sinensis from Yangtze River. Genom. Appl. Biol. 36(5), 1935–1945 (2017) (In Chinese with English abstract).
    Google Scholar 
    29.Liu, F. et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297, 51–56 (2009).CAS 
    Article 

    Google Scholar 
    30.Halasz, J., Pedryc, A., Ercisli, S., Yilmaz, K. U. & Hegedus, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J. Am. Soc. Hortic. Sci. 135(5), 410–417 (2010).Article 

    Google Scholar 
    31.Wang, S. H., Zhang, C., Shang, M., Wu, X. G. & Cheng, Y. X. Genetic diversity and population structure of native mitten crab (Eriocheir sensu stricto) by microsatellite markers and mitochondrial COI gene sequence. Gene 693, 101–113 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of genetic variation by isozymes between two stocks of the sea Bass (Lateolabrax japonicus) from Rizhao & Xiamen sea areas, China. J. Zhejiang Ocean Univ. Nat. Sci. 22(2), 121–124 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    33.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of RAPD genetic variation between two stocks of sea bass (Lateolabrax aponicus) from Shandong Rizhao and Fujian Xiamen sea areas. Oceanol. Limnol. Sin. 34(6), 618–624 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    34.Machado-Schiaffino, G. & Garcia-Vazquez, E. Isolation and characterization of microsatellite loci in Merluccius australis and cross-species amplification. Mol. Ecol. Resour. 9(2), 585–587 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Freeland, J. R. Molecular ecology 112–116 (Wiley, Chichester, 2005).
    Google Scholar 
    36.Li, D. Y., Yin, Q. Q., Hou, N., Sun, X. W. & Liang, L. Q. Genetic diversity of different ecologo-geographical populations of yellow catfish Pelteobagrus eupogon. Oceanol. Limnol. Sin. 40(4), 460–469 (2009) (In Chinese with English abstract).CAS 

    Google Scholar 
    37.Shoji, J. & Tanaka, M. Influence of spring river flow on the recruitment of Japanese sea perch Lateolabrax japonicus into the Chikugo estuary, Japan. . Sci. Mar. 70(2), 159–164 (2006).Article 

    Google Scholar 
    38.Liu, B., Kuang, Y. Y., Tong, G. X. & Yin, J. S. Analysis of genetic diversity on 9 wild stocks of Taimen (Hucho taimen) by microsatellite markers. Zool. Res. 32(6), 597–604 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    39.Clegg, S. M. et al. Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA 99, 8127–8132 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Pruett, C. L. & Winker, K. Northwestern song sparrow populations show genetic effects of sequential colonization. Mol. Ecol. 14, 1421–1434 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.An, H. S. et al. Population genetic structure of the sea bass (Lateolabrax japonicus) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes Genom. 36, 247–259 (2014).CAS 
    Article 

    Google Scholar 
    42.Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. M. & Shipley, P. F. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    43.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).MathSciNet 
    MATH 

    Google Scholar 
    44.Raymond, M. & Rousset, F. GENEPOP (version 12): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    45.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    46.Wang, S. H. et al. Identification and genetic diversity analysis of Chinese mitten crab (Eriocheir sinensis) in the Liao river area. J. Northeast. Agric. Univ. 25, 43–53 (2018).
    Google Scholar 
    47.Tamura, K. et al. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    49.Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 111, 675–689 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multi locus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Jombart, T. Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Warming Arctic summers unlikely to increase productivity of shorebirds through renesting

    1.Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Callaghan, T. V. et al. Arctic tundra and polar desert ecosystems. In Arctic Climate Impact Assessment (eds Symon, C. et al.) 243–352 (Cambridge University Press, 2005).
    Google Scholar 
    3.Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Hodgkins, R. The twenty-first-century Arctic environment: Accelerating change in the atmospheric, oceanic and terrestrial spheres. Geogr. J. 180, 429–436 (2014).Article 

    Google Scholar 
    5.Meltofte, H. et al. Effects of climate variation on the breeding ecology of Arctic shorebirds. Medd. Grønl. Biosci. 59, 1–48 (2007).
    Google Scholar 
    6.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 90, 961–971 (2012).Article 

    Google Scholar 
    8.Kwon, E. et al. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr. https://doi.org/10.1002/ecm.1383 (2019).Article 

    Google Scholar 
    9.Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).Article 

    Google Scholar 
    11.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).Article 

    Google Scholar 
    12.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. Biol. Sci. Ser. B https://doi.org/10.1098/rspb.2013.2161 (2014).Article 

    Google Scholar 
    13.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in Arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).Article 

    Google Scholar 
    14.Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life- history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tulp, I. & Schekkerman, H. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).Article 

    Google Scholar 
    16.Braegelman, S. D. Seasonality of Some Arctic Alaskan Chironomids (North Dakota State University, 2016).
    Google Scholar 
    17.Piersma, T., Brugge, M., Spaans, B. & Battley, P. F. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris). Auk 125, 140–148 (2008).Article 

    Google Scholar 
    18.Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 31, 509–521 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Danks, H. V. Life cycles in polar arthropods—Flexible or programmed?. Eur. J. Entomol. 96, 83–102 (1999).
    Google Scholar 
    20.Bolduc, E. et al. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can. Entomol. 145, 155–170 (2013).Article 

    Google Scholar 
    21.McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. https://doi.org/10.1038/srep01816 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ruthrauff, D. R. & McCaffery, B. J. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. Condor 107, 597–604 (2005).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Yalden, D. W. Variation in the growth and survival of Golden Plover Pluvialis apricaria chicks. Ibis 144, 200–209 (2002).Article 

    Google Scholar 
    24.Holmes, R. T. Breeding ecology and annual cycle adaptations of the Red-backed Sandpiper (Calidris alpina) in northern Alaska. Condor 68, 3–46 (1966).Article 

    Google Scholar 
    25.Lanctot, R. B. Blood sampling in juvenile Buff-breasted Sandpipers: Movement, mass change and survival. J. Field Ornithol. 65, 534–542 (1994).
    Google Scholar 
    26.Jamieson, S. E. Pacific Dunlin Calidris alpina pacifica show a high propensity for second clutch production. J. Ornithol. 152, 1013–1021 (2011).Article 

    Google Scholar 
    27.Colwell, M. A. Shorebird Ecology, Conservation, and Management (University of California Press, 2010).Book 

    Google Scholar 
    28.Machín, P., Fernández-Elipe, J. & Klaassen, R. H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behav. Ecol. Sociobiol. 72, 42. https://doi.org/10.1007/s00265-018-2457-y (2018).Article 

    Google Scholar 
    29.Corkery, C. A., Nol, E. & McKinnon, L. No effects of asynchrony between hatching and peak food availability on chick growth in Semipalmated Plovers (Charadrius semipalmatus) near Churchill, Manitoba. Polar Biol. 42, 593–601 (2019).Article 

    Google Scholar 
    30.Naves, L. C., Lanctot, R. B., Taylor, A. R. & Coutsoubos, N. P. How often do Arctic shorebirds lay replacement clutches?. Wader Study Gr. Bull. 115, 2–9 (2008).
    Google Scholar 
    31.Swift, R. J., Anteau, M. J., Ring, M. M., Toy, D. L. & Sherfy, M. H. Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor https://doi.org/10.1093/condor/duz066 (2020).Article 

    Google Scholar 
    32.Gates, H. R., Lanctot, R. B. & Powell, A. N. High renesting rates in Arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment. Auk 130, 372–380 (2013).Article 

    Google Scholar 
    33.Richter-Menge, J., Druckenmiller, M. L. & Jeffries, M. (eds.) Arctic Report Card 2019. https://www.arctic.noaa.gov/Report-Card. (2019).34.Weiser, E. L. et al. Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor https://doi.org/10.1093/condor/duaa026 (2020).Article 

    Google Scholar 
    35.Sandercock, B. K. Estimation of survival rates for wader populations: A review of mark-recapture methods. Wader Study Gr. Bull. 100, 163–174 (2003).
    Google Scholar 
    36.Ottvall, R. & Härdling, R. Sensitivity analysis of a migratory population of Redshanks Tringa totanus: A forewarning of a population decline?. Wader Study Gr. Bull. 107, 40–45 (2005).
    Google Scholar 
    37.Hitchcock, C. L. & Gratto-Trevor, C. Diagnosing a shorebird local population decline with a stage-structured population model. Ecology 78, 522–534 (1997).Article 

    Google Scholar 
    38.Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).Article 

    Google Scholar 
    39.Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53, 479–490 (2016).Article 

    Google Scholar 
    41.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).Article 

    Google Scholar 
    42.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. Addendum to “A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway”. Biological Conservation, 143, 2238–2247. Biol. Conserv. 145, 278–295 (2012).Article 

    Google Scholar 
    43.Pearce-Higgins, J. W. & Yalden, D. W. Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146, 335–346 (2004).Article 

    Google Scholar 
    44.Schekkerman, H., Tulp, I., Piersma, T. & Visser, G. H. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia 134, 332–342 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Tulp, I. & Schekkerman, H. Studies on Breeding Shorebirds at Medusa Bay, Taimyr, in Summer 2000 (Alterra, Green World Research, 2001).
    Google Scholar 
    46.Schekkerman, H., van Roomen, M. W. J. & Underhill, L. G. Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86, 153–168 (1998).
    Google Scholar 
    47.Tjørve, K. M. C. et al. Growth and energetics of a small shorebird species in a cold environment: The Little Stint Calidris minuta on the Taimyr Peninsula, Siberia. J. Avian Biol. 38, 552–563 (2007).Article 

    Google Scholar 
    48.Pearce-Higgins, J. W. & Yalden, D. W. Golden Plover Pluvialis apricaria breeding success on a moor managed for shooting Red Grouse Lagopus lagopus. Bird Study 50, 170–177 (2003).Article 

    Google Scholar 
    49.Loonstra, A. H. J., Verhoeven, M. A. & Piersma, T. Sex-specific growth in chicks of the sexually dimorphic Black-tailed Godwit. Ibis 160, 89–100 (2018).Article 

    Google Scholar 
    50.Taylor, A. R., Lanctot, R. B., Powell, A. N., Kendall, S. J. & Nigro, D. A. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska. Condor 113, 779–794 (2011).Article 

    Google Scholar 
    51.Meltofte, H., Høye, T. T., Schmidt, N. M. & Forchhammer, M. C. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol. 30, 601–606 (2007).Article 

    Google Scholar 
    52.Visser, G. H. & Ricklefs, R. E. Development of temperature regulation in shorebirds. Physiol. Zool. 66, 771–792 (1993).Article 

    Google Scholar 
    53.Colwell, M. A., Hurley, S. J., Hall, J. N. & Dinsmore, S. J. Age-related survival and behavior of Snowy Plover chicks. Condor 109, 638–647 (2007).Article 

    Google Scholar 
    54.Powell, A. N. The Effects of Early Experience on the Development, Behavior, and Survival of Shorebirds (University of Minnesota, 1992).
    Google Scholar 
    55.Ackerman, J. T., Herzog, M. P., Takekawa, J. Y. & Hartman, C. A. Comparative reproductive biology of sympatric species: Nest and chick survival of American Avocets and Black-necked Stilts. J. Avian Biol. 45, 609–623 (2014).Article 

    Google Scholar 
    56.Catlin, D. H., Fraser, J. D. & Felio, J. H. Demographic responses of Piping Plovers to habitat creation on the Missouri River. Wildl. Monogr. 192, 1–42 (2015).Article 

    Google Scholar 
    57.Dinsmore, S. J., Gaines, E. P., Pearson, S. F., Lauten, D. J. & Castelein, K. A. Factors affecting Snowy Plover chick survival in a managed population. Condor 119, 34–43 (2017).Article 

    Google Scholar 
    58.Dinsmore, S. J. Influence of drought on annual survival of the Mountain Plover in Montana. Condor 110, 45–54 (2008).Article 

    Google Scholar 
    59.Soikkeli, M. Breeding cycle and population dynamics in the Dunlin (Calidris alpina). Ann. Zool. Fenn. 4, 158–198 (1967).
    Google Scholar 
    60.Blomqvist, D. & Johansson, O. C. Distribution, reproductive success, and population trend in the Dunlin Calidris alpina schinzii on the Swedish west coast. Ornis Svec. 1, 39–46 (1991).
    Google Scholar 
    61.Jönsson, P. E. Reproduction and survival in a declining population of the southern Dunlin Calidris alpina schinzii. Wader Study Gr. Bull. 61, 56–68 (1991).
    Google Scholar 
    62.Pienkowski, M. W. Behaviour of young Ringed Plovers Charadrius hiaticula and its relationship to growth and survival to reproductive age. Ibis 126, 133–155 (1984).Article 

    Google Scholar 
    63.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    64.Bentzen, R. et al. Assessing development impacts on Arctic nesting birds using real and artificial nests. Polar Biol. 40, 1527–1536 (2017).Article 

    Google Scholar 
    65.McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    66.Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on Lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).Article 

    Google Scholar 
    67.Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).Article 

    Google Scholar 
    68.McGuire, R. L., Lanctot, R. B., Saalfeld, S. T., Ruthrauff, D. R. & Liebezeit, J. R. Shorebird reproductive response to exceptionally early and late springs varies across sites in Arctic Alaska. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.577652 (2020).Article 

    Google Scholar 
    69.Lackmann, A. R. Chironomids Then and Now: Climate Change Effects on a Tundra Food Web in the Alaskan Arctic (North Dakota State University, 2019).
    Google Scholar 
    70.McEwen, D. C. & Butler, M. G. Growing-season temperature change across four decades in an Arctic tundra pond. Arctic 71, 281–291 (2018).Article 

    Google Scholar 
    71.Shaftel, R. et al. Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic. Polar Biol. 44, 237–257 (2021).Article 

    Google Scholar 
    72.Butler, M., Miller, M. C. & Mozley, S. Macrobenthos. In Limnology of Tundra Ponds, Barrow, Alaska (ed. Hobbie, J. E.) 297–339 (Dowden, Hutchinson, and Ross, Inc., 1980).
    Google Scholar 
    73.Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    74.Schekkerman, H. & Boele, A. Foraging in precocial chicks of the Black-tailed Godwit Limosa limosa: Vulnerability to weather and prey size. J. Avian Biol. 40, 369–379 (2009).Article 

    Google Scholar 
    75.Krijgsveld, K. L., Reneerkens, J. W. H., McNett, G. D. & Ricklefs, R. E. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor 105, 268–278 (2003).Article 

    Google Scholar 
    76.Cosgrove, J., Dugger, B. & Lanctot, R. B. No renesting observed after experimental clutch removal in Red Phalaropes breeding near Utqiaģvik, Alaska. Wader Study 127, 236–243 (2020).Article 

    Google Scholar 
    77.Fernández, G., Buchanan, J. B., Gill, R. E. Jr., Lanctot, R. & Warnock, N. Conservation Plan for Dunlin with Breeding Populations in North America (Calidris alpina arcticola, C. a. pacifica, and C. a. hudsonia), Version 1.1 (Manomet Center for Conservation Sciences, 2010).
    Google Scholar 
    78.Lagassé, B. J. et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian flyway. Condor https://doi.org/10.1093/condor/duaa054 (2020).Article 

    Google Scholar 
    79.Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Gr. Bull. 119, 178–194 (2012).
    Google Scholar 
    80.Warnock, N. The Alaska WatchList 2017 (Audubon Alaska, 2017).
    Google Scholar 
    81.Alaska Shorebird Group. Alaska Shorebird Conservation Plan. Version III (Alaska Shorebird Group, 2019).
    Google Scholar 
    82.CAFF. Arctic Migratory Birds Initiative (AMBI): Workplan 2019–2023. CAFF Strategies Series No. 30. (Conservation of Arctic Flora and Fauna, ISBN: 978-9935-431-79-0, 2019).83.Warnock, N. D. & Gill, R. E. Dunlin (Calidris alpina), version 1.0. In Birds of the World (ed. Billerman, S. M.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    84.Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015).Article 

    Google Scholar 
    85.Weiser, E. L. et al. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. https://doi.org/10.1111/jav.01531 (2017).Article 

    Google Scholar 
    86.Villarreal, S. et al. Tundra vegetation change near Barrow, Alaska (1972–2010). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015508 (2012).Article 

    Google Scholar 
    87.Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109, 32–47 (2007).Article 

    Google Scholar 
    88.Priklonsky, S. G. Application of small automatic bows for catching birds. Zool. Zh. 39, 623–624 (1960).
    Google Scholar 
    89.Gates, H. R. et al. Differentiation of subspecies and sexes of Beringian Dunlin using morphometric measures. J. Field Ornithol. 84, 389–402 (2013).Article 

    Google Scholar 
    90.Warnock, N. & Warnock, S. Attachment of radio-transmitters to sandpipers: Review and methods. Wader Study Gr. Bull. 70, 28–30 (1993).
    Google Scholar 
    91.Bart, J., Battaglia, D. & Senner, N. Effects of color bands on Semipalmated Sandpipers banded at hatch. J. Field Ornithol. 72, 521–526 (2001).Article 

    Google Scholar 
    92.Whittier, J. B. & Leslie, D. M. Jr. Efficacy of using radio transmitters to monitor Least Tern chicks. Wilson Bull. 117, 85–91 (2005).Article 

    Google Scholar 
    93.Lees, D. et al. An assessment of radio telemetry for monitoring shorebird chick survival and causes of mortality. Wildl. Res. 46, 622–627 (2019).Article 

    Google Scholar 
    94.Schekkerman, H., Teunissen, W. & Oosterveld, E. Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: Influence of predation and agriculture. J. Ornithol. 150, 133–145 (2009).Article 

    Google Scholar 
    95.Johnson, M., Aref, S. & Walters, J. R. Parent-offspring communication in the Western Sandpiper. Behav. Ecol. 19, 489–501 (2008).Article 

    Google Scholar 
    96.Brown, R. G. B. The aggressive and distraction behavior of the Western Sandpiper Ereunetes mauri. Ibis 104, 1–12 (1962).Article 

    Google Scholar 
    97.Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Am. 70, 51–53 (1977).Article 

    Google Scholar 
    98.Cooch, E. G. & White, G. C. (eds.) Program MARK: A Gentle Introduction, 19th ed. http://www.phidot.org/software/mark/docs/book/ (2019).99.Rotella, J. J., Dinsmore, S. J. & Shaffer, T. L. Modeling nest-survival data: A comparison of recently developed methods that can be implemented in MARK and SAS. Anim. Biodivers. Conserv. 27, 187–205 (2004).
    Google Scholar 
    100.Dinsmore, S. J., White, G. C. & Knopf, F. L. Advanced techniques for modeling avian nest survival. Ecology 83, 3476–3488 (2002).Article 

    Google Scholar 
    101.Hill, B. L. Factors Affecting Survival of Arctic-Breeding Dunlin (Calidris alpina arcticola) Adults and Chicks (University of Alaska Fairbanks, 2012).
    Google Scholar 
    102.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    103.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar  More

  • in

    The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host

    1.Arbour, J. H. & Santana, S. E. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution 71, 1600–1613 (2017).PubMed 
    Article 

    Google Scholar 
    2.Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).3.Cotton, A., Clark, F., Boubli, J. & Schwitzer, C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31–18 (Oxford University Press, 2016).
    Google Scholar 
    4.Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    5.West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).Article 

    Google Scholar 
    6.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160167 (2017).Article 

    Google Scholar 
    7.Ramey, A. M. & Ahlstrom, C. A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 56, 1–15 (2020).PubMed 
    Article 

    Google Scholar 
    8.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    12.Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 7, 225–237 (2016).Article 

    Google Scholar 
    13.Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018).14.Campbell, T. P. et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584–1599 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Buzzard, P. J. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. Int. J. Primatol. 27, 529–558 (2006).Article 

    Google Scholar 
    16.Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325–350 (Springer, 2004).17.Krishnadas, M., Chandrasekhara, K. & Kumar, A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 73, 1250–1260 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Swedell, L., Hailemeskel, G. & Schreier, A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 79, 476–490 (2008).Article 

    Google Scholar 
    19.Basabose, A. K. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 58, 1–21 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122–150 (2017).Article 

    Google Scholar 
    21.Newton-Fisher, N. E. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 37, 344–354 (1999).Article 

    Google Scholar 
    22.Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C. & Nguyen, V. T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 79, e22667 (2017).Article 

    Google Scholar 
    23.Fan, P.-F., Fei, H.-L., Scott, M. B., Zhang, W. & Ma, C.-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 144, 2247–2254 (2011).Article 

    Google Scholar 
    24.Fan, P. F., Fei, H. L. & Ma, C. Y. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 74, 632–641 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.McConkey, K. R., Ario, A., Aldy, F. & Chivers, D. J. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 24, 19–32 (2003).Article 

    Google Scholar 
    26.Amora, T. D., BeltrÃO-Mendes, R. & Ferrari, S. F. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 75, 333–341 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Dietz, J. M., Peres, C. A. & Pinder, L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). Am. J. Primatol. 41, 289–305 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).29.Heymann, E. W., Knogge, C. & Tirado Herrera, E. R. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 51, 153–158 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961–992 (2001).Article 

    Google Scholar 
    31.Anapol, F. & Lee, S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94, 239–261 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Nash, L. T. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 29, 113–137 (1986).Article 

    Google Scholar 
    33.Abreu, F., De la Fuente, M. F. C., Schiel, N. & Souto, A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 61, 221–229 (2016).Article 

    Google Scholar 
    34.Cunha, A. A., Vieira, M. V. & Grelle, C. E. V. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 9, 351–359 (2006).Article 

    Google Scholar 
    35.Passamani, M. & Rylands, A. B. Feeding behavior of Geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates 41, 27–38 (2000).PubMed 
    Article 

    Google Scholar 
    36.Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at Caxiuanã National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221–240 (Springer, 2009).37.Yépez, P., De La Torre, S. & Snowdon, C. T. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 66, 145–158 (2005).PubMed 
    Article 

    Google Scholar 
    38.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    39.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).PubMed 
    Article 

    Google Scholar 
    41.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Lugli, G. A. et al. Evolutionary development and co‐phylogeny of primate‐associated bifidobacteria. Environ. Microbiol. (2020).43.Milani, C. et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 11, 2834–2847 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Lugli, G. A. et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 18, 568 (2017).Article 
    CAS 

    Google Scholar 
    45.Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285–306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020).49.Duranti, S. et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov.. Int. J. Syst. Evol. Microbiol. 70, 2288–2297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018).51.Neuzil-Bunesova, V. et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int. J. Syst. Evol. Microbiol. 70, 5040–5047 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Vlková, E. et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34, 27–33 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).
    Google Scholar 
    54.WagnerMackenzie, B. et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 19, 381–392 (2017).CAS 
    Article 

    Google Scholar 
    55.Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7 (2016).56.Binda, C. et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421–428 (2018).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tojo, R. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Rodriguez, C. I. & Martiny, J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 21, 1–12 (2020).Article 

    Google Scholar 
    59.Sharma, V., Mobeen, F. & Prakash, T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9, 477 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Sun, Z. et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One 10, 0117912 (2015).
    Google Scholar 
    61.Frey, J. C. et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72, 3788–3792 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021).63.Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements 4 (2016).64.Owens, L. A. et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 12, 1–16 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    65.Vlková, E., Rada, V., Šmehilová, M. & Killer, J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263–269 (2008).Article 
    CAS 

    Google Scholar 
    66.Wang, L. et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 10, 1721 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wei, Y. et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 9, 888 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    69.Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Korpela, K. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 6, 1–11 (2018).Article 

    Google Scholar 
    71.Timperio, A. M., Gorrasi, S., Zolla, L. & Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One 12, 0181860 (2017).Article 
    CAS 

    Google Scholar 
    72.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Brown, C. J. et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 81, e983 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Killer, J. et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7, e00579 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Milani, C. et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 90, 493–503 (2014).CAS 
    PubMed 

    Google Scholar 
    76.Srinivasan, R. et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One 10, e0117617 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Maiden, M. C. J. et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 11, 728–736 (2013).CAS 
    Article 

    Google Scholar 
    78.Lugli, G. A. et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 41, 173–183 (2018).PubMed 
    Article 

    Google Scholar 
    79.Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).80.Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180, 717–733 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Hernández‐Rodríguez, D., Vásquez‐Aguilar, A. A., Serio‐Silva, J. C., Rebollar, E. A. & Azaola‐Espinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol. 48, 99–105 (2019).82.Zhu, L. et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus). Msystems 5, e00910-00919 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kap, Y. S. et al. Targeted diet modification reduces multiple sclerosis–like disease in adult marmoset monkeys from an outbred colony. J. Immunol. 201, 3229–3243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 
    Article 

    Google Scholar 
    85.Xu, B. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 16, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    86.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol. 61, 1315–1321 (2011).88.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small‐bodied primate. Am. J. Primatol. 81, e23003 (2019).90.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    92.Koo, B. S. et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 49, 56–59 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett. 364 (2017).94.Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre 20, 100199 (2019).95.McKenzie, V. J., Kueneman, J. G. & Harris, R. N. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 1429, 18–30 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1–18 (2018).CAS 
    Article 

    Google Scholar 
    97.Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123–126 (1973).98.Rada, V. & Petr, J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43, 127–132 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Orban, J. I. & Patterson, J. A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40, 221–224 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Kim, B. J., Kim, H.-Y., Yun, Y.-J., Kim, B.-J. & Kook, Y.-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 60, 2697–2704 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95–98 ([London]: Information Retrieval Ltd., c1979-c2000.).102.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress 41, D590–D596 (2012).Article 
    CAS 

    Google Scholar 
    105.Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press 97 (1949).106.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    107.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    108.fundamental algorithms for scientific computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods 17, 261–272 (2020).Article 
    CAS 

    Google Scholar 
    109.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference 57 (Austin, TX, 2010).110.MacKinnon, J. G. & White, H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29, 305–325 (1985).Article 

    Google Scholar  More

  • in

    Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris)

    1.Pagano, M. C. & Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production Vol. 1 (ed. Miransari, M.) 1–26 (Academic Press, 2016).
    Google Scholar 
    2.FAOSTAT. Food and Agriculture Organisation Statistical Database http://www.apps.fao.org/faostat. Accessed 23 May 2021.3.MacDonald, R. S. et al. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J. Nutr. 135, 1239–1242 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Tidke, S. A. et al. Assessment of anticancer, anti-inflammatory and antioxidant properties of isoflavones present in soybean. Res. J. Phytochem. 12, 35–42 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Hill, J. H. & Whitham, S. A. Control of virus diseases in soybeans. Adv. Virus Res. 90, 355–390 (2014).PubMed 
    Article 

    Google Scholar 
    6.Tian, B. et al. Host adaptation of soybean dwarf virus following serial passages on pea (Pisum sativum) and soybean (Glycine max). Viruses 9, 155 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    7.Wang, R. Y., Kritzman, A., Hershman, D. E. & Ghabrial, S. A. Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis. 90, 920–926 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hesler, L. S., Dashiell, E., Jonathan, A. E. & Lundgren, G. Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 154, 91–99 (2007).Article 

    Google Scholar 
    9.Baldin, E. L. L. et al. Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Fla. Entomol. 101, 223–228 (2018).Article 

    Google Scholar 
    10.Chang, H.-X. & Hartman, G. L. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front. Plant Sci. 8, 670. https://doi.org/10.3389/fpls.2017.00670 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bansal, R., Mian, M. A. R. & Michel, A. Characterizing resistance to soybean aphid (Hemiptera: Aphididae): Antibiosis and antixenosis assessment. J. Econ. Entomol. https://doi.org/10.1093/jee/toab038 (2021).Article 
    PubMed 

    Google Scholar 
    12.Klein, A. T. et al. Investigation of the chemical interface in the soybean−aphid and rice−bacteria interactions using MALDI-Mass Spectrometry Imaging. Anal. Chem. 87, 5294–5301 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Hohenstein, J. D. et al. Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front. Plant Sci. 10, 310 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Blackman, R. L. & Eastop, V. F. Taxonomic issues. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 1–36 (CABI, 2017).
    Google Scholar 
    15.Wale, M., Jembere, B. & Seyoum, E. Occurrence of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on wild leguminous plants in West Gojam, Ethiopia, Sinet. Ethiopian J. Sci. 26, 83–87 (2003).
    Google Scholar 
    16.Chan, C. K., Forbes, A. R. & Raworth, D. A. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Tech. Bull. 3E, 1–216 (1991).
    Google Scholar 
    17.Rashed, A. et al. Vector-borne viruses of pulse crops, with a particular emphasis on North American cropping system. Ann. Entomol. Soc. Am. 111, 205–227 (2018).CAS 
    Article 

    Google Scholar 
    18.Stavrinides, J., McCloskey, J. K. & Ochman, H. Pea Aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl. Environ. Microbiol. 75, 2230–2235 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106, 7495–7500 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Caillaud, M. C. & Via, S. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156, 606–621 (2000).PubMed 
    Article 

    Google Scholar 
    21.Ferrari, J., Godfray, H. C., Faulconbridge, A. S., Prior, K. & Via, S. Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60, 1574–1584 (2006).PubMed 
    Article 

    Google Scholar 
    22.Mitku, G. & Damte, T. Development, reproduction, and host preference of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on selected lentil genotypes and resistance index of these selected lentil genotypes to pea aphid. Int. J. Entomol. Res. 4, 16–22 (2019).
    Google Scholar 
    23.Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Kordan, B. et al. European yellow lupine Lupinus luteus and narrow-leaf lupine Lupinus angustifolius as hosts for the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 128, 139–146 (2008).Article 

    Google Scholar 
    25.Kordan, B. et al. Susceptibility of forage legumes to infestation by the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Crop Pasture Sci. 69, 775–784 (2018).Article 

    Google Scholar 
    26.Kordan, B. et al. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 112, 465–474 (2019).PubMed 
    Article 

    Google Scholar 
    27.Pettersson, J., Tjallingii, W. F. & Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 173–195 (CABI, 2017).Chapter 

    Google Scholar 
    28.Martin, B., Collar, J. L., Tjallingi, W. F. & Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Garzo, E., Moreno, A., Plaza, M. & Fereres, A. Feeding behavior and virus-transmission ability of insect vectors exposed to systemic insecticides. Plants 9, 895. https://doi.org/10.3390/plants9070895 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    30.Onstad, D. W. & Knolhoff, L. Arthropod resistance to crops. In Insect Resistance Management (ed. Onstad, D. W.) 293–326 (Academic Press, 2014).Chapter 

    Google Scholar 
    31.Smith, C. M. & Clement, S. L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57, 309–328 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 

    Google Scholar 
    33.Smith, C. M. & Chuang, W. P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    34.Dogimont, C., Bendahmane, A., Chovelon, V. & Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C. R. Biol 333, 566–573 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Chandran, P. et al. Feeding behavior comparison of soybean aphid (Hemiptera: Aphididae) biotypes on different soybean genotypes. J. Econ. Entomol. 106, 2234–2240 (2013).PubMed 
    Article 

    Google Scholar 
    36.Simmonds, M. S. J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64, 21–30 (2003).CAS 
    Article 

    Google Scholar 
    37.Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Morkunas, I. et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 253, 1063–1079 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Woźniak, A. et al. The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int. J. Mol. Sci. 18, 329. https://doi.org/10.3390/ijms18020329 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    40.Buer, C. S., Muday, G. K. & Djordjevic, M. A. Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal. Behav. 3, 415–417 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Petrussa, E. et al. Plant flavonoids: Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950–14973 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 20, 576–585 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Alseekh, S., de Souza, L. P., Benina, M. & Fernie, A. L. The style and substance of plant flavonoid decoration; Towards defining both structure and function. Phytochemistry 174, 112347. https://doi.org/10.1016/j.phytochem.2020.112347 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Klingauf, F. A. Host plant finding and acceptance. In Aphids, Their Biology, Natural Enemies and Control Vol. 2 (eds Minks, A. K. & Harrewijn, P.) 209–223 (Elsevier, 1987).
    Google Scholar 
    45.Tjallingii, W. F. & Mayoral, A. M. Criteria for host plant acceptance by aphids. In Proceeding 8th International Symposium Insect–Plant Relationships (eds Menken, S. B. J. et al.) 280–282 (Kluwer Academic Publishers, 1992).Chapter 

    Google Scholar 
    46.Wensler, R. J. & Filshie, B. K. Gustatory sense organs in the food canal of aphids. J. Morph. 129, 473–492 (1969).Article 

    Google Scholar 
    47.Gabryś, B. & Tjallingii, W. F. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104, 89–93 (2002).Article 

    Google Scholar 
    48.Philippi, J. et al. Correlation of the alkaloid content and composition of narrow-leafed lupins (Lupinus angustifolius L.) to aphid susceptibility. J. Pest Sci. 89, 359–373 (2016).Article 

    Google Scholar 
    49.Van Hoof, H. A. An investigation of the biological transmission of a non-persistent virus. Doctoral thesis (Van Putten and Oortmijer, 1958).50.Dancewicz, K., Szumny, A., Wawrzeńczyk, C. & Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 21, 8029. https://doi.org/10.3390/ijms21218029 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    51.Kordan, B. et al. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. J. Pest. Sci. 94, 435–449 (2021).Article 

    Google Scholar 
    52.Pritchard, J. & Vickers, L. H. Aphids and stress. In Aphids as Crop Pests (eds Van Emden, H. F. & Harrington, R.) 132–147 (CABI, 2017).Chapter 

    Google Scholar 
    53.Pompon, J. & Pelletier, Y. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull. Entomol. Res. 102, 550–557 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.van Emden, H. F. Host-plant resistance. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 515–532 (CABI, 2017).Chapter 

    Google Scholar 
    55.Gould, K. S. & Lister, C. Flavonoid functions in plants. In Flavonoids, Chemistry, Biochemistry and Applications (eds Andersen, Ø. M. & Markham, K. R.) 397–442 (CRC Press, 2006).
    Google Scholar 
    56.Goławska, S., Kapusta, I., Łukasik, I. & Wójcicka, A. Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pestycydy. 3–4, 71–77 (2008).
    Google Scholar 
    57.Goławska, S. & Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest Sci. 85, 443–450 (2012).Article 

    Google Scholar 
    58.Goławska, S. et al. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish J. Environ. Stud. 19, 913–919 (2010).
    Google Scholar 
    59.Johnson, A. D. & Singh, A. Larvicidal activity and biochemical effects of apigenin against filarial vector Culex quinquefasciatus. Int. J. Life. Sci. Sci. Res. 3, 1315–1321 (2017).
    Google Scholar 
    60.Boué, S. M. & Raina, A. K. Effects of plant flavonoids on fecundity, survival, and feeding of the formosan subterranean termite. J. Chem. Ecol. 29, 2575–2584 (2003).PubMed 
    Article 

    Google Scholar 
    61.Xu, D. et al. Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J. Pest Sci. 82, 195–202 (2009).Article 

    Google Scholar 
    62.Goławska, S., Sprawka, I. & Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 55, 137–144 (2014).Article 
    CAS 

    Google Scholar 
    63.Zavala, J. A., Scopel, A. L. & Ballaré, C. L. Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156, 121–130 (2001).Article 

    Google Scholar 
    64.Bentivenha, J. P. F. et al. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 12, 311–320 (2018).Article 

    Google Scholar 
    65.Hoffmann-Campo, C. B., Harborne, J. B. & McCaffery, A. R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 98, 181–194 (2001).Article 

    Google Scholar 
    66.Yuan, E. et al. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects. 10, 97. https://doi.org/10.3390/insects10040097 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    67.Meng, F. et al. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theor Appl. Genet. 123, 1459–1465 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Murakami, S. et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Lattanzio, V. et al. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 48, 5316–5320 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Delgado-Núñez, E. J. et al. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10, 773 (2020).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    71.Gómez, J. D., Vital, C. E., Oliveira, M. G. A. & Ramos, H. J. O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE https://doi.org/10.1371/journal.pone.0205010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Khan, M. A. M., Ulrichs, C. & Mewis, I. Effect of water stress and aphid herbivory on flavonoids in broccoli (Brassica oleracea var. italica Plenck). J. Appl. Bot. Food Qual. 84, 178–182 (2011).CAS 

    Google Scholar 
    73.Bale, J. S., Ponder, K. L. & Pritchard, J. Coping with stress. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 287–309 (CABI, 2007).Chapter 

    Google Scholar 
    74.Atteyat, M., Abu-Romman, S., Abu-Darwish, M. & Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald). J. Agric. Sci. 4, 227–236 (2012).
    Google Scholar 
    75.Tjallingii, W. F. & Hogen Esch, T. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18, 317–328 (1993).Article 

    Google Scholar 
    76.Cherqui, A. & Tjallingii, W. F. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol. 46, 1177–1186 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Silva-Sanzana, C., Estevez, J. M. & Blanco-Herrera, F. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. J. Exp. Bot. 71, 3854–3864 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Alvarez, A. E. et al. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to aphid Myzus persicae. Entomol. Exp. Appl. 121, 145–157 (2006).Article 

    Google Scholar 
    79.Alvarez, A. E. et al. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol. Exp. Appl. 125, 135–144 (2007).Article 

    Google Scholar 
    80.Machado-Assefh, C. R. & Alvarez, A. E. Probing behavior of aposymbiotic green peach aphid (Myzus persicae) on susceptible Solanum tuberosum and resistant Solanum stoloniferum plants. Insect Sci. 25, 127–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Common Catalogue of Varieties of Agricultural Plant Species [CCA]. 37th complete edition. Official Journal of the European Union C 13/1 (2019). Accessed 23 May 2021.82.Porejestrowe doświadczalnictwo odmianowe. Charakterystyka odmian. http://www.coboru.gov.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=SOS. Accessed 23 May 2021.83.Meier, U. Growth stages of mono- and dicotyledonous plants: BBCH. Monograph (Julius Kühn-Institut, 2018).84.Beer, K., Joschinski, J., Sastre, A. A., Kraus, J. & Helfrich-Forster, C. A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci. Rep. 7, 1–5. https://doi.org/10.1038/s41598-017-15014-3 (2017).CAS 
    Article 

    Google Scholar 
    85.Joschinski, J., Beer, K., Helfrich-Forster, C. & Krauss, J. Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect. Sci. 16, 1–5 (2016).Article 

    Google Scholar 
    86.Graham, T. L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594–603 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Lee, J. H. et al. Characterization of isoflavones accumulation in developing leaves of soybean (Glycine max) cultivars. J. Korean Soc. Appl. Biol. Chem. 52(2), 139–143 (2009).CAS 
    Article 

    Google Scholar 
    88.Magarelli, G. et al. Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods. Microchem. J. 117, 149–155 (2014).CAS 
    Article 

    Google Scholar 
    89.Perlatti, B. et al. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. J. Braz. Chem. Soc. 27(3), 475–483 (2016).CAS 

    Google Scholar 
    90.Biesaga, M. & Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 136, 46–54 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Sergiel, I., Pohl, P. & Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 145, 404–408 (2014).CAS 
    PubMed 
    Article 

    Google Scholar  More