More stories

  • in

    Warming Arctic summers unlikely to increase productivity of shorebirds through renesting

    1.Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Callaghan, T. V. et al. Arctic tundra and polar desert ecosystems. In Arctic Climate Impact Assessment (eds Symon, C. et al.) 243–352 (Cambridge University Press, 2005).
    Google Scholar 
    3.Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Hodgkins, R. The twenty-first-century Arctic environment: Accelerating change in the atmospheric, oceanic and terrestrial spheres. Geogr. J. 180, 429–436 (2014).Article 

    Google Scholar 
    5.Meltofte, H. et al. Effects of climate variation on the breeding ecology of Arctic shorebirds. Medd. Grønl. Biosci. 59, 1–48 (2007).
    Google Scholar 
    6.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 90, 961–971 (2012).Article 

    Google Scholar 
    8.Kwon, E. et al. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr. https://doi.org/10.1002/ecm.1383 (2019).Article 

    Google Scholar 
    9.Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).Article 

    Google Scholar 
    11.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).Article 

    Google Scholar 
    12.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. Biol. Sci. Ser. B https://doi.org/10.1098/rspb.2013.2161 (2014).Article 

    Google Scholar 
    13.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in Arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).Article 

    Google Scholar 
    14.Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life- history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tulp, I. & Schekkerman, H. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).Article 

    Google Scholar 
    16.Braegelman, S. D. Seasonality of Some Arctic Alaskan Chironomids (North Dakota State University, 2016).
    Google Scholar 
    17.Piersma, T., Brugge, M., Spaans, B. & Battley, P. F. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris). Auk 125, 140–148 (2008).Article 

    Google Scholar 
    18.Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 31, 509–521 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Danks, H. V. Life cycles in polar arthropods—Flexible or programmed?. Eur. J. Entomol. 96, 83–102 (1999).
    Google Scholar 
    20.Bolduc, E. et al. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can. Entomol. 145, 155–170 (2013).Article 

    Google Scholar 
    21.McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. https://doi.org/10.1038/srep01816 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ruthrauff, D. R. & McCaffery, B. J. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. Condor 107, 597–604 (2005).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Yalden, D. W. Variation in the growth and survival of Golden Plover Pluvialis apricaria chicks. Ibis 144, 200–209 (2002).Article 

    Google Scholar 
    24.Holmes, R. T. Breeding ecology and annual cycle adaptations of the Red-backed Sandpiper (Calidris alpina) in northern Alaska. Condor 68, 3–46 (1966).Article 

    Google Scholar 
    25.Lanctot, R. B. Blood sampling in juvenile Buff-breasted Sandpipers: Movement, mass change and survival. J. Field Ornithol. 65, 534–542 (1994).
    Google Scholar 
    26.Jamieson, S. E. Pacific Dunlin Calidris alpina pacifica show a high propensity for second clutch production. J. Ornithol. 152, 1013–1021 (2011).Article 

    Google Scholar 
    27.Colwell, M. A. Shorebird Ecology, Conservation, and Management (University of California Press, 2010).Book 

    Google Scholar 
    28.Machín, P., Fernández-Elipe, J. & Klaassen, R. H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behav. Ecol. Sociobiol. 72, 42. https://doi.org/10.1007/s00265-018-2457-y (2018).Article 

    Google Scholar 
    29.Corkery, C. A., Nol, E. & McKinnon, L. No effects of asynchrony between hatching and peak food availability on chick growth in Semipalmated Plovers (Charadrius semipalmatus) near Churchill, Manitoba. Polar Biol. 42, 593–601 (2019).Article 

    Google Scholar 
    30.Naves, L. C., Lanctot, R. B., Taylor, A. R. & Coutsoubos, N. P. How often do Arctic shorebirds lay replacement clutches?. Wader Study Gr. Bull. 115, 2–9 (2008).
    Google Scholar 
    31.Swift, R. J., Anteau, M. J., Ring, M. M., Toy, D. L. & Sherfy, M. H. Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor https://doi.org/10.1093/condor/duz066 (2020).Article 

    Google Scholar 
    32.Gates, H. R., Lanctot, R. B. & Powell, A. N. High renesting rates in Arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment. Auk 130, 372–380 (2013).Article 

    Google Scholar 
    33.Richter-Menge, J., Druckenmiller, M. L. & Jeffries, M. (eds.) Arctic Report Card 2019. https://www.arctic.noaa.gov/Report-Card. (2019).34.Weiser, E. L. et al. Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor https://doi.org/10.1093/condor/duaa026 (2020).Article 

    Google Scholar 
    35.Sandercock, B. K. Estimation of survival rates for wader populations: A review of mark-recapture methods. Wader Study Gr. Bull. 100, 163–174 (2003).
    Google Scholar 
    36.Ottvall, R. & Härdling, R. Sensitivity analysis of a migratory population of Redshanks Tringa totanus: A forewarning of a population decline?. Wader Study Gr. Bull. 107, 40–45 (2005).
    Google Scholar 
    37.Hitchcock, C. L. & Gratto-Trevor, C. Diagnosing a shorebird local population decline with a stage-structured population model. Ecology 78, 522–534 (1997).Article 

    Google Scholar 
    38.Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).Article 

    Google Scholar 
    39.Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53, 479–490 (2016).Article 

    Google Scholar 
    41.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).Article 

    Google Scholar 
    42.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. Addendum to “A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway”. Biological Conservation, 143, 2238–2247. Biol. Conserv. 145, 278–295 (2012).Article 

    Google Scholar 
    43.Pearce-Higgins, J. W. & Yalden, D. W. Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146, 335–346 (2004).Article 

    Google Scholar 
    44.Schekkerman, H., Tulp, I., Piersma, T. & Visser, G. H. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia 134, 332–342 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Tulp, I. & Schekkerman, H. Studies on Breeding Shorebirds at Medusa Bay, Taimyr, in Summer 2000 (Alterra, Green World Research, 2001).
    Google Scholar 
    46.Schekkerman, H., van Roomen, M. W. J. & Underhill, L. G. Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86, 153–168 (1998).
    Google Scholar 
    47.Tjørve, K. M. C. et al. Growth and energetics of a small shorebird species in a cold environment: The Little Stint Calidris minuta on the Taimyr Peninsula, Siberia. J. Avian Biol. 38, 552–563 (2007).Article 

    Google Scholar 
    48.Pearce-Higgins, J. W. & Yalden, D. W. Golden Plover Pluvialis apricaria breeding success on a moor managed for shooting Red Grouse Lagopus lagopus. Bird Study 50, 170–177 (2003).Article 

    Google Scholar 
    49.Loonstra, A. H. J., Verhoeven, M. A. & Piersma, T. Sex-specific growth in chicks of the sexually dimorphic Black-tailed Godwit. Ibis 160, 89–100 (2018).Article 

    Google Scholar 
    50.Taylor, A. R., Lanctot, R. B., Powell, A. N., Kendall, S. J. & Nigro, D. A. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska. Condor 113, 779–794 (2011).Article 

    Google Scholar 
    51.Meltofte, H., Høye, T. T., Schmidt, N. M. & Forchhammer, M. C. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol. 30, 601–606 (2007).Article 

    Google Scholar 
    52.Visser, G. H. & Ricklefs, R. E. Development of temperature regulation in shorebirds. Physiol. Zool. 66, 771–792 (1993).Article 

    Google Scholar 
    53.Colwell, M. A., Hurley, S. J., Hall, J. N. & Dinsmore, S. J. Age-related survival and behavior of Snowy Plover chicks. Condor 109, 638–647 (2007).Article 

    Google Scholar 
    54.Powell, A. N. The Effects of Early Experience on the Development, Behavior, and Survival of Shorebirds (University of Minnesota, 1992).
    Google Scholar 
    55.Ackerman, J. T., Herzog, M. P., Takekawa, J. Y. & Hartman, C. A. Comparative reproductive biology of sympatric species: Nest and chick survival of American Avocets and Black-necked Stilts. J. Avian Biol. 45, 609–623 (2014).Article 

    Google Scholar 
    56.Catlin, D. H., Fraser, J. D. & Felio, J. H. Demographic responses of Piping Plovers to habitat creation on the Missouri River. Wildl. Monogr. 192, 1–42 (2015).Article 

    Google Scholar 
    57.Dinsmore, S. J., Gaines, E. P., Pearson, S. F., Lauten, D. J. & Castelein, K. A. Factors affecting Snowy Plover chick survival in a managed population. Condor 119, 34–43 (2017).Article 

    Google Scholar 
    58.Dinsmore, S. J. Influence of drought on annual survival of the Mountain Plover in Montana. Condor 110, 45–54 (2008).Article 

    Google Scholar 
    59.Soikkeli, M. Breeding cycle and population dynamics in the Dunlin (Calidris alpina). Ann. Zool. Fenn. 4, 158–198 (1967).
    Google Scholar 
    60.Blomqvist, D. & Johansson, O. C. Distribution, reproductive success, and population trend in the Dunlin Calidris alpina schinzii on the Swedish west coast. Ornis Svec. 1, 39–46 (1991).
    Google Scholar 
    61.Jönsson, P. E. Reproduction and survival in a declining population of the southern Dunlin Calidris alpina schinzii. Wader Study Gr. Bull. 61, 56–68 (1991).
    Google Scholar 
    62.Pienkowski, M. W. Behaviour of young Ringed Plovers Charadrius hiaticula and its relationship to growth and survival to reproductive age. Ibis 126, 133–155 (1984).Article 

    Google Scholar 
    63.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    64.Bentzen, R. et al. Assessing development impacts on Arctic nesting birds using real and artificial nests. Polar Biol. 40, 1527–1536 (2017).Article 

    Google Scholar 
    65.McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    66.Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on Lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).Article 

    Google Scholar 
    67.Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).Article 

    Google Scholar 
    68.McGuire, R. L., Lanctot, R. B., Saalfeld, S. T., Ruthrauff, D. R. & Liebezeit, J. R. Shorebird reproductive response to exceptionally early and late springs varies across sites in Arctic Alaska. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.577652 (2020).Article 

    Google Scholar 
    69.Lackmann, A. R. Chironomids Then and Now: Climate Change Effects on a Tundra Food Web in the Alaskan Arctic (North Dakota State University, 2019).
    Google Scholar 
    70.McEwen, D. C. & Butler, M. G. Growing-season temperature change across four decades in an Arctic tundra pond. Arctic 71, 281–291 (2018).Article 

    Google Scholar 
    71.Shaftel, R. et al. Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic. Polar Biol. 44, 237–257 (2021).Article 

    Google Scholar 
    72.Butler, M., Miller, M. C. & Mozley, S. Macrobenthos. In Limnology of Tundra Ponds, Barrow, Alaska (ed. Hobbie, J. E.) 297–339 (Dowden, Hutchinson, and Ross, Inc., 1980).
    Google Scholar 
    73.Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    74.Schekkerman, H. & Boele, A. Foraging in precocial chicks of the Black-tailed Godwit Limosa limosa: Vulnerability to weather and prey size. J. Avian Biol. 40, 369–379 (2009).Article 

    Google Scholar 
    75.Krijgsveld, K. L., Reneerkens, J. W. H., McNett, G. D. & Ricklefs, R. E. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor 105, 268–278 (2003).Article 

    Google Scholar 
    76.Cosgrove, J., Dugger, B. & Lanctot, R. B. No renesting observed after experimental clutch removal in Red Phalaropes breeding near Utqiaģvik, Alaska. Wader Study 127, 236–243 (2020).Article 

    Google Scholar 
    77.Fernández, G., Buchanan, J. B., Gill, R. E. Jr., Lanctot, R. & Warnock, N. Conservation Plan for Dunlin with Breeding Populations in North America (Calidris alpina arcticola, C. a. pacifica, and C. a. hudsonia), Version 1.1 (Manomet Center for Conservation Sciences, 2010).
    Google Scholar 
    78.Lagassé, B. J. et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian flyway. Condor https://doi.org/10.1093/condor/duaa054 (2020).Article 

    Google Scholar 
    79.Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Gr. Bull. 119, 178–194 (2012).
    Google Scholar 
    80.Warnock, N. The Alaska WatchList 2017 (Audubon Alaska, 2017).
    Google Scholar 
    81.Alaska Shorebird Group. Alaska Shorebird Conservation Plan. Version III (Alaska Shorebird Group, 2019).
    Google Scholar 
    82.CAFF. Arctic Migratory Birds Initiative (AMBI): Workplan 2019–2023. CAFF Strategies Series No. 30. (Conservation of Arctic Flora and Fauna, ISBN: 978-9935-431-79-0, 2019).83.Warnock, N. D. & Gill, R. E. Dunlin (Calidris alpina), version 1.0. In Birds of the World (ed. Billerman, S. M.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    84.Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015).Article 

    Google Scholar 
    85.Weiser, E. L. et al. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. https://doi.org/10.1111/jav.01531 (2017).Article 

    Google Scholar 
    86.Villarreal, S. et al. Tundra vegetation change near Barrow, Alaska (1972–2010). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015508 (2012).Article 

    Google Scholar 
    87.Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109, 32–47 (2007).Article 

    Google Scholar 
    88.Priklonsky, S. G. Application of small automatic bows for catching birds. Zool. Zh. 39, 623–624 (1960).
    Google Scholar 
    89.Gates, H. R. et al. Differentiation of subspecies and sexes of Beringian Dunlin using morphometric measures. J. Field Ornithol. 84, 389–402 (2013).Article 

    Google Scholar 
    90.Warnock, N. & Warnock, S. Attachment of radio-transmitters to sandpipers: Review and methods. Wader Study Gr. Bull. 70, 28–30 (1993).
    Google Scholar 
    91.Bart, J., Battaglia, D. & Senner, N. Effects of color bands on Semipalmated Sandpipers banded at hatch. J. Field Ornithol. 72, 521–526 (2001).Article 

    Google Scholar 
    92.Whittier, J. B. & Leslie, D. M. Jr. Efficacy of using radio transmitters to monitor Least Tern chicks. Wilson Bull. 117, 85–91 (2005).Article 

    Google Scholar 
    93.Lees, D. et al. An assessment of radio telemetry for monitoring shorebird chick survival and causes of mortality. Wildl. Res. 46, 622–627 (2019).Article 

    Google Scholar 
    94.Schekkerman, H., Teunissen, W. & Oosterveld, E. Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: Influence of predation and agriculture. J. Ornithol. 150, 133–145 (2009).Article 

    Google Scholar 
    95.Johnson, M., Aref, S. & Walters, J. R. Parent-offspring communication in the Western Sandpiper. Behav. Ecol. 19, 489–501 (2008).Article 

    Google Scholar 
    96.Brown, R. G. B. The aggressive and distraction behavior of the Western Sandpiper Ereunetes mauri. Ibis 104, 1–12 (1962).Article 

    Google Scholar 
    97.Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Am. 70, 51–53 (1977).Article 

    Google Scholar 
    98.Cooch, E. G. & White, G. C. (eds.) Program MARK: A Gentle Introduction, 19th ed. http://www.phidot.org/software/mark/docs/book/ (2019).99.Rotella, J. J., Dinsmore, S. J. & Shaffer, T. L. Modeling nest-survival data: A comparison of recently developed methods that can be implemented in MARK and SAS. Anim. Biodivers. Conserv. 27, 187–205 (2004).
    Google Scholar 
    100.Dinsmore, S. J., White, G. C. & Knopf, F. L. Advanced techniques for modeling avian nest survival. Ecology 83, 3476–3488 (2002).Article 

    Google Scholar 
    101.Hill, B. L. Factors Affecting Survival of Arctic-Breeding Dunlin (Calidris alpina arcticola) Adults and Chicks (University of Alaska Fairbanks, 2012).
    Google Scholar 
    102.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    103.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar  More

  • in

    Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility

    Biostimulation of ureolytic communitiesEnrichmentThe native communities of the soils were successfully grown in the enrichment media (NB5U). The cultivated communities after two subcultures were serially diluted (10–2 to 10–6) and were spread with a sterile loop over Nutrient agar plates supplemented with 2% urea. Later, 36 morphologically distinct single colonies were obtained on the urea agar base plates based on visual observation.Isolation, identification, and characterization of the ureolytic isolatesOut of 36 isolated bacteria, six isolates (BS1, BS2, BS3, BS4, LS1, and LS2) were selected after checking for the urease activity test on the urea agar base (UAB) plate. These selected isolates turned the color of the UAB plate from orange to pink within 12 h. The 16 s rRNA sequence revealed the isolates as relatives of Sporosarcina pasteurii (SP). The details of the identified isolates are provided by NCMR (details in Supplementary Table 1). The biochemical characterization (details in Supplementary Table 2) of the isolates revealed that all the isolates are Gram-positive. All the isolates were rod-shaped, endospore-forming, urease, and oxidase positive. All the isolates were not able to utilize the Lysine and ONPG, contrary to SP.Further investigation of the isolated sequence was done via the NCBI database. The sequences were submitted to the GenBank database of the NCBI (National Center for Biotechnology Information) under the accession number MW024144 to MW024149. The BLAST analysis suggested that these strains are close relatives and indicate the possibility of being novel strains of the Sporosarcina family. We found that the isolate BS1 and BS2 had 96.62% (coverage 100%) and 96.22% (coverage 99%) identity with Sporosarcina siberinisis (NCBI accession number NR 134188). BS3 had 98.8% identity (coverage 97%) with Sporosarcina pasteurii (NCBI accession number NR 104923). BS4 and LS1 had 97.4% (coverage 99%) and 97.37% identity (coverage 100%) with Sporosarcina soli (NCBI accession number NR 043527). Contrarily, LS2 was found to be related to the Pseudogracilibacillus family. LS2 was observed to be closely related to Pseudogracilibacillus auburnensis P-207 with 97.06% identity (96% coverage). Based on these findings, the Phylogenetic tree was constructed with bootstrap (1000 replicates) considering the reference sequences obtained from the BLAST analysis, as shown in Fig. 3. The threshold criteria to differentiate two species is defined as 98.65% similarity score with the reference culture from databank40, while another study has suggested that in case of similarity index is  > 99%, the unknown isolate should be assigned to a species, and if the unknown isolates have similarity score between 95 to 99% to a reference sequence, the isolate should be assigned to the genus41. However, further investigation is suggested to conclude if the reported strains are novel or merely mutants of the reference strains of the databank. Similar observations were made at Graddy et al.22, where the majority of the isolated strains (47 out of 57) from bio-stimulation soil tanks were found to be strains of the Sporosarcina genus. It is worth noting that the soil enrichment media for stimulation was rich in urea, similar to Gomez et al.42 and Graddy et al.22, which is conditional stress for selective stimulation of ureolytic microorganisms. Moreover, the isolated strains were screened based on morphology and qualitative urease activity.Figure 3Neighbor-joining phylogenetic tree based on the 16S rRNA sequence of the isolates and reference sequence from the GenBank database (NCBI).Full size imageEvaluation of biocementation potential of the isolated strainsGrowth and pHThe various parameters of the biocementation potential of the isolated strains in comparison with Sporosarcina pasteurii (SP) have been plotted in Fig. 4. The growth characteristics of the isolates in NBU media and pH during growth have been represented in Fig. 4a and b. The initial pH of the growth media is kept at 7.5. It was observed that the pH of the growth media rises to 9.5 within 24 h of growth, indicating that these strains favor an alkaline environment to grow similar to SP43. All the isolates start growing when the pH of the media rises to 8.5 or above. Isolate LS2 was observed to have slower growth when compared with other isolates. This can be explained as LS2 belongs to different genera (Pseudogracilibacillus).Figure 4(a) Growth characteristics, (b) pH, (c) specific urease activity, (d) calcium utilization rate, and (e) carbonate precipitation rate of the isolates and consortia.Full size imageSpecific urease activityThe specific urease activities of the isolates were found to be comparable with SP (shown in Fig. 4c). Based on the provided NBU media and growth condition, the specific urease activity of SP is found to be 173.44 mM urea hydrolyzed h−1 (OD600)−1, which is around 2.9 mM urea hydrolyzed min−1 (OD600)−1. The specific urease activity of the isolate BS3 was observed to be maximum as 186.6 mM urea hydrolyzed h−1 (OD600)−1 during a growth period of 24 h and pH  > 9. Consortia also demonstrated significant urease activity as 160 mM urea hydrolyzed h−1 (OD600)−1 at a growth period of 48 h. The maximum ureolytic activity in BS1 was observed after 72 h of growth with a value of 106.67 mM urea hydrolyzed h−1 (OD600)−1. Maximum specific urease activity of the isolate BS2, BS4, and LS1 was observed to be 160.2, 120, and 173.4 mM urea hydrolyzed h−1 (OD600)−1 respectively after a growth duration of 48 h. LS2 demonstrated the maximum specific urease activity of 146.4 mM urea hydrolyzed h−1 (OD600)−1. The observed order of specific urease activity at 24 h of growth period is BS3  > SP  > Consortia  > LS1  > BS2  > BS4  > LS2  > BS1. As the urease activity of the strains depends on the growth media, urea content, and environmental conditions such as pH and Temperature44, we considered the conditions at the riverbank at the time of isolation, and the pH and temperature of the growth media were set at 7.5 and 37 degrees Celsius. The specific urease measured by the electrical conductivity method is reported to be between 3 to 9.7 mM urea hydrolyzed min−1 (OD600)−1 in yeast-extract urea media at pH 7 and temperature 30 degrees Celsius43. It is reported around 5 mM urea hydrolyzed min−1 (OD600)−1 in the nutrient broth urea (2%) media at a temperature of 25 degrees Celsius44. The comparative analysis of the urease activity (measured by electrical conductivity method) was done considering SP as positive control in this study. The maximum specific urease activities of all isolates were found to be in a range of 106.67 to 186.67 mM urea hydrolyzed h−1 (OD600)−1 (1.78 to 3.11 mM urea hydrolyzed min−1 OD600–1), which indicates that all of the isolated strains are capable of biocementation43,45.Calcium utilization and carbonate precipitation potentialIt was experimentally observed that the depletion of the supplemented soluble calcium in the precipitation media (PM) was corresponding to the ureolytic activities of the isolated strains. Within 48 h of introducing 1% bacteria (OD600 = 1) in the precipitation media, the soluble calcium chloride (50 mM) was utilized to precipitate carbonate crystals, as illustrated in Fig. 4d. Within 12 h of the inoculation period, BS3 was able to utilize 75% of the supplied calcium, while SP was able to utilize only 62.5% of the soluble calcium. The order of the calcium utilization potential in the isolates was observed as BS3 ≥ LS2  > L.S.1  > Consortia  > SP  > BS4  > BS2  > BS1 during the inoculation period. Contrarily, LS2, despite being a comparatively slow urease-producing bacteria, was able to utilize calcium ions at par with other isolates. Negligible changes were observed in the soluble calcium concentration of the control group eliminating the possibility of abiotic precipitation.The carbonate precipitation rate for each isolate (1% at OD600 = 1) for the 50 mM cementation media is plotted in Fig. 4e. The isolate BS3 with maximum ureolytic activity (specific urease activity 186.6 mM urea hydrolyzed min−1 OD600–1) precipitated the highest carbonate crystals after 96 h of the incubation period. BS3 precipitated 438 mg/100 ml of carbonate crystals, which is around 87.66% precipitation from the total supplied CaCl2, while precipitation with SP was quantified as 389 mg/100 ml (78%). The precipitation in consortia was observed to be 407 mg/100 ml (81%), which is slightly higher than SP. Precipitation in other isolates was found to be significantly lower than isolate BS3. Isolate BS1and BS2 precipitated 334 mg/100 ml (67%) and 343 mg/100 ml (69%) of carbonate crystals respectively, whereas isolate LS1 and LS2 precipitated around 357 mg/100 (71%) ml of carbonate crystals each. Isolate BS4 precipitated minimum carbonate crystals 292 mg/100 ml (58%). No precipitation was observed in the negative control set. Low concentrations of bacterial cells (1%) were considered in this experiment to slow down the urea hydrolysis in order to differentiate the calcium utilization potential of the isolated strains. This approach was modified from Dhami et al.46, and our results show agreement with their finding where 1% of SP cells depletes the 25 mM of CaCl2 within 24 h. It was observed that all the isolates took approximately 48 h to deplete the 50 mM CaCl2. The depletion of soluble calcium concentration was rapid in the initial 24 h in all the isolates. After 48 h, the residual soluble calcium was observed to be in the range of 2.5–5 mM in all the isolates (except BS1 and BS2), which might be due to loss of super-saturation caused by the unavailability of nutrient for bacterial cells to continue urea hydrolysis in the precipitation media13,43,47. The mineralogy of precipitated carbonate polymorphs (calcite, aragonite, vaterite) and the residual calcium are also influenced by pH, temperature, saturation index, dissolved organic carbon concentration, and the Ca2+ /CO32−ratio along with the presence of metabolites in the precipitation media13,47,48. As maximum precipitation was recovered with the isolate BS3, the isolate BS3 was selected for further investigation on soil improvement.Microstructure analysis of the precipitatesThe FESEM images of the carbonate crystal precipitated from BS3 were investigated further. The shape of the precipitated crystals was observed to be rhombohedral and trigonal (Fig. 5a). The average size of the crystals was observed in a range of 25 to 50 microns. The entrapped bacteria and rod-shaped bacterial imprints were identified (Fig. 5b), indicating that the bacteria acted as a nucleation site14. The smaller crystals were observed to coagulate in layers to develop larger calcite crystals. The entrapped bacteria were noticed on the grown and coagulated calcite crystal in Fig. 5c. After taking the FESEM image (Fig. 5a) of the precipitate, EDX analysis was conducted, and the elemental composition suggested an abundance of calcium, carbon, and oxygen, which indicates the presence of calcium carbonate crystals (Supplementary Fig. 1). XRD analysis was conducted to confirm the mineralogy of the precipitates, and the majority of the observed peaks of the XRD plot belonged to calcite, which is consistent with the observation of rhombohedral crystal shapes in the FESEM image. The XRD analysis also suggested an insignificant presence of aragonite in the precipitates.Figure 5FESEM images of the calcite precipitated from BS3 (a) Coagulated crystals (b) Bacterial imprints, (c) Entrapped bacteria on the precipitates.Full size imageApplication of native communities on riverbank soil and its influence on soil strengthNeedle penetration resistance of treated soilThe average NPI (N/mm) for different cases has been shown in Fig. 6a. No notable resistance was observed in the loose untreated sand (control) against the needle penetration. With one bio cementation cycle treatment, the consortia-treated soil sample (Consortia-BC1) demonstrated a higher value of NPI (5.15 N/mm) than SP-BC1 (4.19 N/mm) and BS3-BC1 (4.64 N/mm). The increase in the biocementation cycle treatment significantly improved the needle penetration resistance. Sample BS3-BC2 showed 116% improvement with the NPI value of 10.03 N/mm when compared to one cycle treated sample BS3-BC1. A similar trend was observed in the sample BS3-BC3 (NPI = 16.12 N/mm), which showed around 347% improvement in NPI when compared to sample BS3-BC1. From the needle penetration test, it was evident that the penetration resistance of treated soil improves significantly with the increased level of biocementation cycles, indirectly indicating an improvement in the soil erodibility resilience. Since non-uniformity is one of the undesired traits of MICP, a contour was plotted corresponding to the 25 points NPI, as shown in Fig. 6b. The contrasting color difference in the contours of the samples BS3-BC1, BS3-BC2, and BS-BC3 clearly demonstrates the stark difference in the strength of treated samples. The non-uniformity in the strength of treated soil crust of sample BS3-BC2 and BS3-BC3 can also be realized with the contrasting color gradient of the NPI contours.Figure 6Comparison of the Needle penetration resistance (N/mm) of the treated soil specimen (a) average values and (b) the contours.Full size imageSince the rate of penetration has an insignificant influence on the test results, the needle penetration test is recommended by the International Society of Rock Mechanics (ISRM) for quick, non-destructive testing of the strength of the stabilized soils and soft rocks49. As a large number of tests can be conducted due to the small diameter of the needle without destroying the sample, the needle penetration test is a better alternative to evaluate the local grain bonding in the biocemented soil than bulk strength properties like unconfined compressive strength and calcite content. Another rationale for choosing needle penetration test over conventional soil strength evaluation tests was that a pocket type penetrometer could be developed with the configuration in the present study for non-destructive monitoring of the soil strength improvement with biocementation application in the field. The response of the needle penetration resistance in terms of nominal strain (ratio of penetration to rod diameter) also indicated that the measured responses are independent of needle diameter for a small range, i.e., 1 to 3 mm49,50. A portable penetrometer of Maruto. Co. ltd. (needle maximum diameter 0.84 mm at 12 mm from the tip) have been correlated with high confidence value to conventional physicochemical parameters such as unconfined compressive strength (UCS), elasticity modulus, and elastic wave velocity in several studies50. In our setup, we have utilized a similar configuration chenille 22 needle with (maximum diameter 0.86 mm at 9 mm from the tip) and a penetration rate of 15 mm/minute for measuring the strength properties of cemented soil. Adopting the UCS and NPI correlation suggested by Ulusay et al.51, the UCS of samples BS3-BC1, BS3-BC2, and BS3-BC3 are around 1.67 MPa, 3.4 Mpa, and 5.3 Mpa.It is worth noting that in the needle penetration resistance tests, the boundary of the Petri dish can influence the test results. Therefore, trials were conducted and based on the findings, all penetrations were conducted at points at least five times the diameter of the needle away from the boundary to negate the influence of boundary conditions. The maximum penetration was conducted only up to 50% of the depth of prepared biocemented soil samples in the Petri dishes to avoid inference from the bottom of the Petri dish.Erodibility test in the hydraulic flumeTo investigate the influence of hydraulic current on different levels of biocementation, all the treated samples were exposed to hydraulic current gradually varying from gentle flow (0.06 m/s) to five times the critical velocity (0.75 m/s) in a 45-min duration test and soil mass loss percentage by the initial dry mass of the treated sample is presented as a measure of soil erodibility in Fig. 7. As expected, with an increase of biocementation cycles, i.e., calcite content, the soil erodibility reduced substantially. The initial dry weight of the samples control, BC1, BC2, and BC3, were measured as 398, 403, 406, and 410 g, respectively. Approximately 7.3% of calcite content resulted in a drastic reduction in erodibility (12% mass loss), while 56% soil mass loss was recorded for control (untreated sand). One biocementation cycle treatment (sample BS3-BC1) produced an average of 2.5% of calcite, reducing the soil loss to 31%. Sample BS3-BC2 with 4.93% calcite content resulted in 22% soil mass loss during the hydraulic flume test. It is worth noting that higher precipitation in the soil pores may hinder the flow of water in the soil matrix and increase the pore water pressure resulting in catastrophic failures. However, the MICP technique is reported to be a great tool to improve soil strength, maintaining an adequate hydraulic conductivity to prevent the build-up of the excess pore water pressure11. Theoretically, the percentage pore volume filled with precipitates for samples BS3-BC1, BS3-BC2, and BS3-BC3 considering the observed calcite contents and pore volume (100 ml) is around 3.7, 7.14, and 11.08%. The influence of pore water pressure on erodibility has not been established in the present study, and it certainly is one of the exciting parameters to consider for future studies.Figure 7Weight of the eroded soil (%) after the hydraulic flume test.Full size imageFrom the visual observation of the soil specimen after the flume test, it was evident that the soil particles start bonding with an increased level of bio cementation. A tough crust was formed on the top of BS3-BC2 and BS3-BC3 the samples, which got eroded with the fluvial current. Insignificant aggregation was observed in the sample BS3-BC1. However, with two and three cycles of biocementation treatment (BS3-BC2 and BS3-BC3), the biocemented soil particles (BCS) were evidently noticed (photos are shown in Supplementary Fig. 4).Clarà Saracho et al.27 addressed the erosion due to tangential flow (similar to river current) by treating the soil specimen with ten pore volume of low concentration of cementation media (0.02 M to 0.1 M) by injection strategy and tested the specimen in the flow velocity ranging from 0.035 to 0.185 m/sec for 120 min in a modified erosion function apparatus (EFA). The study concluded that the treatment with 0.08 M cementation media (calcite content varying from 1.2 to 4%) resulted in negligible erosion in the stated test conditions, and with the increase in MICP treatment, a shift in the erosion mode from particulate mode to block failure was observed indicating that with the increase in calcite content and needle penetration resistance, there might be a threshold for biocemented soil, where the soil erosion might be catastrophic due to block failure. However, in this study, a consistent decrease in soil erodibility is observed with the increase in needle penetration resistance. We found that 7.3% of calcite content was required to control the soil erodibility substantially in the test flow range (0.06 m/s to 0.75 m/s). A similar trend was observed by Kou et al.52 and Chung et al.53, where consistent reduction in wave-induced erosion and rainfall-induced erosion was observed with an increase in needle penetration resistance for biocemented fine sand treated with the exogenous bacteria.Another aspect to note in the context of the applied treatment is the produced ammonia which can be toxic for riparian flora and fauna15. From stochiometric calculations, for each biocementation cycle, the produced ammonia is evaluated as 8.5 kg per metric ton of soil treated, and for the best performing treatment approach, i.e., BS3-BC3, the ammonia generated is evaluated as 2.63% by weight of the retained soil. The acceptable limit of ammonia in the surface water was recommended as 17 mg per liter for acute exposure and 1.9 mg/l for chronic exposure for protecting the aquatic life in the freshwater as per the environmental protection agency54. With the MICP technique, the threat of produced ammonia crossing the maximum acceptable quantity is highly plausible; however, for the field application, the ammonia generated can be reduced by reducing the quantity of reagents and increasing the period of applications. It is to be noted that the produced ammonia will also be subjected to dilution in the river stream. The average discharge of the Brahmaputra river is around 19.8 megaliters per second in the Assam valley33. Therefore, the area of the riverbank to be biocemented must be decided judiciously with the context of the produced ammonia quantity and its possible dilution to non-toxic levels.Microstructure and mineralogical analysis of the biocemented samplesTo investigate the influence of different biocementation levels on the erodibility of the treated sand grains, FESEM imaging was conducted for light biocemented samples (BS3-BC1) and heavy biocemented samples (BS3-BC3). While precipitated crystals were observed to be growing on the grooves of sand grains in the light biocemented sample (BS3-BC1), bridging of sand grains with rhombohedral crystals was observed in the heavy biocemented sample (BS3-BC3), as shown in Fig. 8. The effective calcium carbonate bridging between sand grains increases the frictional and cohesive property of sand grains55,56, leading to a substantial reduction in the erodibility of the soil. Bacterial imprints were observed in both cases, suggesting the precipitation to be biodgenic14. Further EDX analysis on a bridged sand grain (Supplementary Fig. 5) suggested an abundance of silicon and oxygen on the sand grains with a trace amount of chlorine and calcium. This indicates the presence of residual calcium chloride on silica grains. The EDX analysis on the grain bridge indicated the presence of calcium, carbon, and oxygen, suggesting CaCO3 precipitation. XRD analysis on treated and untreated sand confirmed the precipitation of calcite. Most of the peaks correspond to quartz (silica). In the biocemented sand sample, a visible peak of calcite was observed at around 29 degrees of 2Ɵ (Details in Supplementary Fig. 6). Therefore, the incorporation of microbial calcite as a binding agent for loose grain silica soil was found to reduce the soil erodibility.Figure 8FESEM images of the treated sand grains (a). Calcite crystal growing on the sand grains on BS3- BC1 sample (b). Calcite bridging in BS3-BC3 samples.Full size image More

  • in

    The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host

    1.Arbour, J. H. & Santana, S. E. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution 71, 1600–1613 (2017).PubMed 
    Article 

    Google Scholar 
    2.Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).3.Cotton, A., Clark, F., Boubli, J. & Schwitzer, C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31–18 (Oxford University Press, 2016).
    Google Scholar 
    4.Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    5.West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).Article 

    Google Scholar 
    6.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160167 (2017).Article 

    Google Scholar 
    7.Ramey, A. M. & Ahlstrom, C. A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 56, 1–15 (2020).PubMed 
    Article 

    Google Scholar 
    8.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    12.Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 7, 225–237 (2016).Article 

    Google Scholar 
    13.Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018).14.Campbell, T. P. et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584–1599 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Buzzard, P. J. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. Int. J. Primatol. 27, 529–558 (2006).Article 

    Google Scholar 
    16.Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325–350 (Springer, 2004).17.Krishnadas, M., Chandrasekhara, K. & Kumar, A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 73, 1250–1260 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Swedell, L., Hailemeskel, G. & Schreier, A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 79, 476–490 (2008).Article 

    Google Scholar 
    19.Basabose, A. K. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 58, 1–21 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122–150 (2017).Article 

    Google Scholar 
    21.Newton-Fisher, N. E. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 37, 344–354 (1999).Article 

    Google Scholar 
    22.Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C. & Nguyen, V. T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 79, e22667 (2017).Article 

    Google Scholar 
    23.Fan, P.-F., Fei, H.-L., Scott, M. B., Zhang, W. & Ma, C.-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 144, 2247–2254 (2011).Article 

    Google Scholar 
    24.Fan, P. F., Fei, H. L. & Ma, C. Y. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 74, 632–641 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.McConkey, K. R., Ario, A., Aldy, F. & Chivers, D. J. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 24, 19–32 (2003).Article 

    Google Scholar 
    26.Amora, T. D., BeltrÃO-Mendes, R. & Ferrari, S. F. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 75, 333–341 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Dietz, J. M., Peres, C. A. & Pinder, L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). Am. J. Primatol. 41, 289–305 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).29.Heymann, E. W., Knogge, C. & Tirado Herrera, E. R. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 51, 153–158 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961–992 (2001).Article 

    Google Scholar 
    31.Anapol, F. & Lee, S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94, 239–261 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Nash, L. T. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 29, 113–137 (1986).Article 

    Google Scholar 
    33.Abreu, F., De la Fuente, M. F. C., Schiel, N. & Souto, A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 61, 221–229 (2016).Article 

    Google Scholar 
    34.Cunha, A. A., Vieira, M. V. & Grelle, C. E. V. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 9, 351–359 (2006).Article 

    Google Scholar 
    35.Passamani, M. & Rylands, A. B. Feeding behavior of Geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates 41, 27–38 (2000).PubMed 
    Article 

    Google Scholar 
    36.Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at Caxiuanã National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221–240 (Springer, 2009).37.Yépez, P., De La Torre, S. & Snowdon, C. T. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 66, 145–158 (2005).PubMed 
    Article 

    Google Scholar 
    38.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    39.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).PubMed 
    Article 

    Google Scholar 
    41.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Lugli, G. A. et al. Evolutionary development and co‐phylogeny of primate‐associated bifidobacteria. Environ. Microbiol. (2020).43.Milani, C. et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 11, 2834–2847 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Lugli, G. A. et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 18, 568 (2017).Article 
    CAS 

    Google Scholar 
    45.Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285–306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020).49.Duranti, S. et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov.. Int. J. Syst. Evol. Microbiol. 70, 2288–2297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018).51.Neuzil-Bunesova, V. et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int. J. Syst. Evol. Microbiol. 70, 5040–5047 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Vlková, E. et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34, 27–33 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).
    Google Scholar 
    54.WagnerMackenzie, B. et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 19, 381–392 (2017).CAS 
    Article 

    Google Scholar 
    55.Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7 (2016).56.Binda, C. et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421–428 (2018).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tojo, R. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Rodriguez, C. I. & Martiny, J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 21, 1–12 (2020).Article 

    Google Scholar 
    59.Sharma, V., Mobeen, F. & Prakash, T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9, 477 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Sun, Z. et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One 10, 0117912 (2015).
    Google Scholar 
    61.Frey, J. C. et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72, 3788–3792 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021).63.Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements 4 (2016).64.Owens, L. A. et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 12, 1–16 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    65.Vlková, E., Rada, V., Šmehilová, M. & Killer, J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263–269 (2008).Article 
    CAS 

    Google Scholar 
    66.Wang, L. et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 10, 1721 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wei, Y. et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 9, 888 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    69.Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Korpela, K. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 6, 1–11 (2018).Article 

    Google Scholar 
    71.Timperio, A. M., Gorrasi, S., Zolla, L. & Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One 12, 0181860 (2017).Article 
    CAS 

    Google Scholar 
    72.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Brown, C. J. et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 81, e983 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Killer, J. et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7, e00579 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Milani, C. et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 90, 493–503 (2014).CAS 
    PubMed 

    Google Scholar 
    76.Srinivasan, R. et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One 10, e0117617 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Maiden, M. C. J. et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 11, 728–736 (2013).CAS 
    Article 

    Google Scholar 
    78.Lugli, G. A. et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 41, 173–183 (2018).PubMed 
    Article 

    Google Scholar 
    79.Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).80.Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180, 717–733 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Hernández‐Rodríguez, D., Vásquez‐Aguilar, A. A., Serio‐Silva, J. C., Rebollar, E. A. & Azaola‐Espinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol. 48, 99–105 (2019).82.Zhu, L. et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus). Msystems 5, e00910-00919 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kap, Y. S. et al. Targeted diet modification reduces multiple sclerosis–like disease in adult marmoset monkeys from an outbred colony. J. Immunol. 201, 3229–3243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 
    Article 

    Google Scholar 
    85.Xu, B. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 16, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    86.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol. 61, 1315–1321 (2011).88.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small‐bodied primate. Am. J. Primatol. 81, e23003 (2019).90.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    92.Koo, B. S. et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 49, 56–59 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett. 364 (2017).94.Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre 20, 100199 (2019).95.McKenzie, V. J., Kueneman, J. G. & Harris, R. N. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 1429, 18–30 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1–18 (2018).CAS 
    Article 

    Google Scholar 
    97.Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123–126 (1973).98.Rada, V. & Petr, J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43, 127–132 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Orban, J. I. & Patterson, J. A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40, 221–224 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Kim, B. J., Kim, H.-Y., Yun, Y.-J., Kim, B.-J. & Kook, Y.-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 60, 2697–2704 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95–98 ([London]: Information Retrieval Ltd., c1979-c2000.).102.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress 41, D590–D596 (2012).Article 
    CAS 

    Google Scholar 
    105.Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press 97 (1949).106.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    107.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    108.fundamental algorithms for scientific computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods 17, 261–272 (2020).Article 
    CAS 

    Google Scholar 
    109.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference 57 (Austin, TX, 2010).110.MacKinnon, J. G. & White, H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29, 305–325 (1985).Article 

    Google Scholar  More

  • in

    Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris)

    1.Pagano, M. C. & Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production Vol. 1 (ed. Miransari, M.) 1–26 (Academic Press, 2016).
    Google Scholar 
    2.FAOSTAT. Food and Agriculture Organisation Statistical Database http://www.apps.fao.org/faostat. Accessed 23 May 2021.3.MacDonald, R. S. et al. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J. Nutr. 135, 1239–1242 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Tidke, S. A. et al. Assessment of anticancer, anti-inflammatory and antioxidant properties of isoflavones present in soybean. Res. J. Phytochem. 12, 35–42 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Hill, J. H. & Whitham, S. A. Control of virus diseases in soybeans. Adv. Virus Res. 90, 355–390 (2014).PubMed 
    Article 

    Google Scholar 
    6.Tian, B. et al. Host adaptation of soybean dwarf virus following serial passages on pea (Pisum sativum) and soybean (Glycine max). Viruses 9, 155 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    7.Wang, R. Y., Kritzman, A., Hershman, D. E. & Ghabrial, S. A. Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis. 90, 920–926 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hesler, L. S., Dashiell, E., Jonathan, A. E. & Lundgren, G. Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 154, 91–99 (2007).Article 

    Google Scholar 
    9.Baldin, E. L. L. et al. Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Fla. Entomol. 101, 223–228 (2018).Article 

    Google Scholar 
    10.Chang, H.-X. & Hartman, G. L. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front. Plant Sci. 8, 670. https://doi.org/10.3389/fpls.2017.00670 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bansal, R., Mian, M. A. R. & Michel, A. Characterizing resistance to soybean aphid (Hemiptera: Aphididae): Antibiosis and antixenosis assessment. J. Econ. Entomol. https://doi.org/10.1093/jee/toab038 (2021).Article 
    PubMed 

    Google Scholar 
    12.Klein, A. T. et al. Investigation of the chemical interface in the soybean−aphid and rice−bacteria interactions using MALDI-Mass Spectrometry Imaging. Anal. Chem. 87, 5294–5301 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Hohenstein, J. D. et al. Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front. Plant Sci. 10, 310 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Blackman, R. L. & Eastop, V. F. Taxonomic issues. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 1–36 (CABI, 2017).
    Google Scholar 
    15.Wale, M., Jembere, B. & Seyoum, E. Occurrence of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on wild leguminous plants in West Gojam, Ethiopia, Sinet. Ethiopian J. Sci. 26, 83–87 (2003).
    Google Scholar 
    16.Chan, C. K., Forbes, A. R. & Raworth, D. A. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Tech. Bull. 3E, 1–216 (1991).
    Google Scholar 
    17.Rashed, A. et al. Vector-borne viruses of pulse crops, with a particular emphasis on North American cropping system. Ann. Entomol. Soc. Am. 111, 205–227 (2018).CAS 
    Article 

    Google Scholar 
    18.Stavrinides, J., McCloskey, J. K. & Ochman, H. Pea Aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl. Environ. Microbiol. 75, 2230–2235 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106, 7495–7500 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Caillaud, M. C. & Via, S. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156, 606–621 (2000).PubMed 
    Article 

    Google Scholar 
    21.Ferrari, J., Godfray, H. C., Faulconbridge, A. S., Prior, K. & Via, S. Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60, 1574–1584 (2006).PubMed 
    Article 

    Google Scholar 
    22.Mitku, G. & Damte, T. Development, reproduction, and host preference of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on selected lentil genotypes and resistance index of these selected lentil genotypes to pea aphid. Int. J. Entomol. Res. 4, 16–22 (2019).
    Google Scholar 
    23.Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Kordan, B. et al. European yellow lupine Lupinus luteus and narrow-leaf lupine Lupinus angustifolius as hosts for the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 128, 139–146 (2008).Article 

    Google Scholar 
    25.Kordan, B. et al. Susceptibility of forage legumes to infestation by the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Crop Pasture Sci. 69, 775–784 (2018).Article 

    Google Scholar 
    26.Kordan, B. et al. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 112, 465–474 (2019).PubMed 
    Article 

    Google Scholar 
    27.Pettersson, J., Tjallingii, W. F. & Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 173–195 (CABI, 2017).Chapter 

    Google Scholar 
    28.Martin, B., Collar, J. L., Tjallingi, W. F. & Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Garzo, E., Moreno, A., Plaza, M. & Fereres, A. Feeding behavior and virus-transmission ability of insect vectors exposed to systemic insecticides. Plants 9, 895. https://doi.org/10.3390/plants9070895 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    30.Onstad, D. W. & Knolhoff, L. Arthropod resistance to crops. In Insect Resistance Management (ed. Onstad, D. W.) 293–326 (Academic Press, 2014).Chapter 

    Google Scholar 
    31.Smith, C. M. & Clement, S. L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57, 309–328 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 

    Google Scholar 
    33.Smith, C. M. & Chuang, W. P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    34.Dogimont, C., Bendahmane, A., Chovelon, V. & Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C. R. Biol 333, 566–573 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Chandran, P. et al. Feeding behavior comparison of soybean aphid (Hemiptera: Aphididae) biotypes on different soybean genotypes. J. Econ. Entomol. 106, 2234–2240 (2013).PubMed 
    Article 

    Google Scholar 
    36.Simmonds, M. S. J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64, 21–30 (2003).CAS 
    Article 

    Google Scholar 
    37.Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Morkunas, I. et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 253, 1063–1079 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Woźniak, A. et al. The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int. J. Mol. Sci. 18, 329. https://doi.org/10.3390/ijms18020329 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    40.Buer, C. S., Muday, G. K. & Djordjevic, M. A. Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal. Behav. 3, 415–417 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Petrussa, E. et al. Plant flavonoids: Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950–14973 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 20, 576–585 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Alseekh, S., de Souza, L. P., Benina, M. & Fernie, A. L. The style and substance of plant flavonoid decoration; Towards defining both structure and function. Phytochemistry 174, 112347. https://doi.org/10.1016/j.phytochem.2020.112347 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Klingauf, F. A. Host plant finding and acceptance. In Aphids, Their Biology, Natural Enemies and Control Vol. 2 (eds Minks, A. K. & Harrewijn, P.) 209–223 (Elsevier, 1987).
    Google Scholar 
    45.Tjallingii, W. F. & Mayoral, A. M. Criteria for host plant acceptance by aphids. In Proceeding 8th International Symposium Insect–Plant Relationships (eds Menken, S. B. J. et al.) 280–282 (Kluwer Academic Publishers, 1992).Chapter 

    Google Scholar 
    46.Wensler, R. J. & Filshie, B. K. Gustatory sense organs in the food canal of aphids. J. Morph. 129, 473–492 (1969).Article 

    Google Scholar 
    47.Gabryś, B. & Tjallingii, W. F. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104, 89–93 (2002).Article 

    Google Scholar 
    48.Philippi, J. et al. Correlation of the alkaloid content and composition of narrow-leafed lupins (Lupinus angustifolius L.) to aphid susceptibility. J. Pest Sci. 89, 359–373 (2016).Article 

    Google Scholar 
    49.Van Hoof, H. A. An investigation of the biological transmission of a non-persistent virus. Doctoral thesis (Van Putten and Oortmijer, 1958).50.Dancewicz, K., Szumny, A., Wawrzeńczyk, C. & Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 21, 8029. https://doi.org/10.3390/ijms21218029 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    51.Kordan, B. et al. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. J. Pest. Sci. 94, 435–449 (2021).Article 

    Google Scholar 
    52.Pritchard, J. & Vickers, L. H. Aphids and stress. In Aphids as Crop Pests (eds Van Emden, H. F. & Harrington, R.) 132–147 (CABI, 2017).Chapter 

    Google Scholar 
    53.Pompon, J. & Pelletier, Y. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull. Entomol. Res. 102, 550–557 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.van Emden, H. F. Host-plant resistance. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 515–532 (CABI, 2017).Chapter 

    Google Scholar 
    55.Gould, K. S. & Lister, C. Flavonoid functions in plants. In Flavonoids, Chemistry, Biochemistry and Applications (eds Andersen, Ø. M. & Markham, K. R.) 397–442 (CRC Press, 2006).
    Google Scholar 
    56.Goławska, S., Kapusta, I., Łukasik, I. & Wójcicka, A. Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pestycydy. 3–4, 71–77 (2008).
    Google Scholar 
    57.Goławska, S. & Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest Sci. 85, 443–450 (2012).Article 

    Google Scholar 
    58.Goławska, S. et al. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish J. Environ. Stud. 19, 913–919 (2010).
    Google Scholar 
    59.Johnson, A. D. & Singh, A. Larvicidal activity and biochemical effects of apigenin against filarial vector Culex quinquefasciatus. Int. J. Life. Sci. Sci. Res. 3, 1315–1321 (2017).
    Google Scholar 
    60.Boué, S. M. & Raina, A. K. Effects of plant flavonoids on fecundity, survival, and feeding of the formosan subterranean termite. J. Chem. Ecol. 29, 2575–2584 (2003).PubMed 
    Article 

    Google Scholar 
    61.Xu, D. et al. Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J. Pest Sci. 82, 195–202 (2009).Article 

    Google Scholar 
    62.Goławska, S., Sprawka, I. & Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 55, 137–144 (2014).Article 
    CAS 

    Google Scholar 
    63.Zavala, J. A., Scopel, A. L. & Ballaré, C. L. Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156, 121–130 (2001).Article 

    Google Scholar 
    64.Bentivenha, J. P. F. et al. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 12, 311–320 (2018).Article 

    Google Scholar 
    65.Hoffmann-Campo, C. B., Harborne, J. B. & McCaffery, A. R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 98, 181–194 (2001).Article 

    Google Scholar 
    66.Yuan, E. et al. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects. 10, 97. https://doi.org/10.3390/insects10040097 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    67.Meng, F. et al. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theor Appl. Genet. 123, 1459–1465 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Murakami, S. et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Lattanzio, V. et al. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 48, 5316–5320 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Delgado-Núñez, E. J. et al. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10, 773 (2020).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    71.Gómez, J. D., Vital, C. E., Oliveira, M. G. A. & Ramos, H. J. O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE https://doi.org/10.1371/journal.pone.0205010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Khan, M. A. M., Ulrichs, C. & Mewis, I. Effect of water stress and aphid herbivory on flavonoids in broccoli (Brassica oleracea var. italica Plenck). J. Appl. Bot. Food Qual. 84, 178–182 (2011).CAS 

    Google Scholar 
    73.Bale, J. S., Ponder, K. L. & Pritchard, J. Coping with stress. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 287–309 (CABI, 2007).Chapter 

    Google Scholar 
    74.Atteyat, M., Abu-Romman, S., Abu-Darwish, M. & Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald). J. Agric. Sci. 4, 227–236 (2012).
    Google Scholar 
    75.Tjallingii, W. F. & Hogen Esch, T. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18, 317–328 (1993).Article 

    Google Scholar 
    76.Cherqui, A. & Tjallingii, W. F. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol. 46, 1177–1186 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Silva-Sanzana, C., Estevez, J. M. & Blanco-Herrera, F. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. J. Exp. Bot. 71, 3854–3864 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Alvarez, A. E. et al. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to aphid Myzus persicae. Entomol. Exp. Appl. 121, 145–157 (2006).Article 

    Google Scholar 
    79.Alvarez, A. E. et al. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol. Exp. Appl. 125, 135–144 (2007).Article 

    Google Scholar 
    80.Machado-Assefh, C. R. & Alvarez, A. E. Probing behavior of aposymbiotic green peach aphid (Myzus persicae) on susceptible Solanum tuberosum and resistant Solanum stoloniferum plants. Insect Sci. 25, 127–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Common Catalogue of Varieties of Agricultural Plant Species [CCA]. 37th complete edition. Official Journal of the European Union C 13/1 (2019). Accessed 23 May 2021.82.Porejestrowe doświadczalnictwo odmianowe. Charakterystyka odmian. http://www.coboru.gov.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=SOS. Accessed 23 May 2021.83.Meier, U. Growth stages of mono- and dicotyledonous plants: BBCH. Monograph (Julius Kühn-Institut, 2018).84.Beer, K., Joschinski, J., Sastre, A. A., Kraus, J. & Helfrich-Forster, C. A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci. Rep. 7, 1–5. https://doi.org/10.1038/s41598-017-15014-3 (2017).CAS 
    Article 

    Google Scholar 
    85.Joschinski, J., Beer, K., Helfrich-Forster, C. & Krauss, J. Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect. Sci. 16, 1–5 (2016).Article 

    Google Scholar 
    86.Graham, T. L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594–603 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Lee, J. H. et al. Characterization of isoflavones accumulation in developing leaves of soybean (Glycine max) cultivars. J. Korean Soc. Appl. Biol. Chem. 52(2), 139–143 (2009).CAS 
    Article 

    Google Scholar 
    88.Magarelli, G. et al. Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods. Microchem. J. 117, 149–155 (2014).CAS 
    Article 

    Google Scholar 
    89.Perlatti, B. et al. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. J. Braz. Chem. Soc. 27(3), 475–483 (2016).CAS 

    Google Scholar 
    90.Biesaga, M. & Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 136, 46–54 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Sergiel, I., Pohl, P. & Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 145, 404–408 (2014).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Population consequences of climate change through effects on functional traits of lentic brown trout in the sub-Arctic

    Sampling and dataThe data consist of gillnet catches of brown trout (N = 5733, caught during 2008–2009) from 21 lakes situated along an altitudinal gradient (30 m above sea level, m.a.s.l.-800 m.a.s.l.) in mid-Norway and Sweden (Fig. 5). The lakes were sampled within three main types of vegetation zonation in the catchment area that ranged from the southern boreal to the alpine zone. The lowland lakes were situated in the southern boreal zone dominated by coniferous woodland and forest, but there were also large areas of alder (Alnus sp.) as well as some broad-leaved deciduous woodland. Average annual and July air temperature are 4–6 and 12–16 °C, respectively46. Middle boreal catchment area is dominated by coniferous woodland, forest and mires. Average annual and July air temperature are, respectively, 2–4 and 8–12°C46. Vegetation around the high altitude lakes were dominated by bilberry (Vaccinium myrtillus), grass heaths and dwarf birch (Betula nana) scrub, with annual and July air temperature of − 2 to 0 and 6–12°C46. The clustering of lakes within vegetations zones can be seen in Fig. 5. The epilimnetic water temperature across a sample of the lakes in the altitudinal gradient in this study seems to be within the general trends in the air temperature47.Figure 5Study lake positions (filled dots) and names. Unfilled large circles connects the different lakes with the most representative weather stations (stars) in the area (in terms of altitude, vegetation zones and landscape). The dashed line constitute the national border between Norway and Sweden. The figure was produced using Adobe illustrator.Full size imageAll lakes were sampled using standardised gillnet series consisting of single mesh nets (25 × 1.5 m) with mesh sizes 12.5, 16, 19.5, 24, 29 and 35 mm47. Three nets were linked together making chains with alternating mesh sizes in order to represent all mesh sizes at different depths in each lake at each sampling. This gillnet series catches brown trout with a slight bias in favour of larger individuals48 that was assumed similar in all lakes. The nets were distributed along the shoreline, and the lakes were fished during summer, with different effort (i.e., number of gillnet series) depending on lake size. Weight per unit catch effort (CPUE) based on total weight of the brown trout catch per 100 m2 gillnet area per night was used as a proxy for biomass density. Since, differences in environmental conditions across lakes cause large variations in body size and hence per capita resource demands, biomass was considered a better measure of population density than number of individuals for among-lake comparisons. Length (total length, mm) and weight (g) at catch were measured for every individual in the full data set. Age, sex, maturation status and back-calculation of length-at-age was undertaken for a randomly selected representative subset (N = 889) of the data. Growth and spawning probability ogives49 were modeled based on this subset. Scale samples and otoliths were taken and used for age determination, of which scales were used primarily, and scales were used for back-calculation of growth50. Distance between the annuli was measured, and a direct proportional relationship between the length of the fish and the scale radius was assumed51. If the scales were difficult to read, which was the case for more slow-growing individuals from the low altitude lakes were the annuli were less distinct, otoliths were used for determining the age. As we did not have complete records of water temperature, area and time specific summer air temperature and precipitation measurements were obtained from an online database (www.eklima.no, Norwegian Metrological Institute). The database contained historical weather data from the closest representative (i.e., corresponding in distance, altitude and operational period) weather stations to the respective lakes (Fig. 5). This resulted in overlapping temperature and precipitation regimes for some of the lakes as there were in total five different weather stations that were most representative within the area containing the 21 lakes. Further, as there was some variation in how complete the different measurements were within years, we also had to calculate the sum of summer precipitation for a shorter period of the summer compared to the average mean air temperature. Both measurements still being good proxies for experienced summer conditions in the bulk of the growth season. The effect of temperature and precipitation was thus derived from the spatio-temporal variation in observations between these five weather stations, where the historic temporal variation corresponds to recorded climate components relevant to years for the back calculated age of the individual fish in the specific lakes (resulting in a total of 29 distinct measurements, see variation in Table 2) Epilimnetic water of lakes usually reflects warming trends in air temperature well, however hypolimnetic temperature variation might not be very correlated to the air temperature. Yet, changes in air temperature might indeed influence the thermal stratification of a lake and thus the environment and conditions for a fish52. There are good reasons to believe that most of the lakes in our study obtained some sort of thermal stratification during the summer season. Nonetheless, we chose not to model air to water temperature for the few measurements of water temperatures we had, and extrapolate this relationship to the full spatio-temporal resolution of the data. The rationale for this was threefold: (1) We were interested in exploring potential effects and relationships of easily available climate components, such as air temperature, simplifying the model concept; (2) we did not have access to detailed data on lake bathymetry so that hypothetical modeled air-to-water relationships would be rather uncertain; (3) we had no detailed information on how the brown trout was distributed in the water column during the summer period in study lakes. However, compared to similar lakes, there are reasons to believe that brown trout mainly feed and stay in the upper six meters of the water column, as well as epibenthic areas with high invertebrate abundances53,54, where both areas often are overlapping and highly influenced by the air temperature.Table 2 Description of candidate variables used in the model selection process determining the most supported model for individual growth of brown trout.Full size tableData analysis and model descriptionsOverall processWe used linear mixed model approaches to parameterize environmental effects on key life history traits for brown trout. Specifically: Length at age was parameterized as function of the environment (e.g., summer temperature, population density, winter NAO and summer precipitation). Spawning probability were modeled as functions of individual length and age. We also allowed either the age effect or length effect on spawning probability to vary with temperature or summer precipitation. Individual fecundity (number of eggs produced) was predicted as a function of length and spawning probability. Annual survival estimates from age 1 and up was accessed using catch curve analysis, while first year survival was estimated based on a stock-recruitment function. The estimated parameters were utilized to feed an age structured matrix projection model23, enabling long-term population viability projections in an changing environment (see overview in Fig. 6). Although there are several choices of population models that might be utilized for inferring the population dynamics, such as IBMs55 and IPMs56, the age structured matrix model was deemed especially suited to model our systems as they are highly seasonal (with very reduced growth during winter) and thus producing a clear age structure in the data. Further description of the various modeling approaches are described below. All statistical analyses was done in R57.Figure 6A schematic overview of the processes involved in our model-setup. Red lines indicate drivers and connections acting on individual life history traits, blue lines indicates traits driving the population model and green lines indicates links to climate variables. In short, existing area and time specific climate data on summer precipitation (Prec) and mean summer air temperature (Temp), as well as time specific data on winter NAO-index (recorded NAO values during December, January, February and March, NAO.DJFM), were used to parameterize models for length at age 1 and length at age  > 1, as well as spawning probability at age. Length at age 1 was allowed to affect length at age  > 1, and in the simulations achieved length at age  > 1 was also influenced by the achieved length the previous year (L*). Length at age and spawning probability, both defined by climate variables, interacted in defining how many eggs a female was likely to produce (i.e. fecundity). Survival from eggs to small juvenile fish was based on a stock-recruitment relationship, where the stock was defined by the results from the population model (expected number of fish). Expected number of fish across all ages was also allowed to affect length at age  > 1. The model parameters was used to simulate long term population dynamics, where we also varied expected temperature change scenarios (steadily increasing mean temperatures and temperature variation, respectively, as well as a combination of the two latter scenarios). The populations long term rate of increase (λ) was inferred using the age structured population matrix model.Full size imageSize at ageData inspections prior to model development showed length at age to be surprisingly linear within the size and age distribution in our data (i.e. no obvious signs of asymptotic growth for fish in any of the sampled lakes). Length (L) was thus explored using a linear mixed effects model approach with the lme4-package58. Denoted, length for individual j in population i (Lij) could thus be expressed as:$${L}_{ij}={sumlimits_{k=1}^{p}}{chi }_{ijk}{beta }_{k}$$Here, β = (β1, …, βp)T is px1 vector (one column matrix) of unknown regression parameters, χiT = (χi1, …, χip) ∈ ℝp is the explanatory variables of interest (k + p  1, age was always included as a variable, and we also tested models including an effect of CPUE and first year growth on subsequent growth trajectories. Multiple candidate models where the different environmental effects were allowed to vary with age were constructed (Supplementary information S1). Population ID and individual ID were included as nested random effects in all candidate models exploring size at age  > 1, and population ID was included as a random effect for the models exploring size at age 1. The most supported models were selected based on AIC-values59. During the population simulation the variation in the predictions attributed to the random effect(s) was treated as random noise, and not explicitly included in the simulations.Spawning probabilityBrown trout is an iteroparous species, however under normal food conditions and harsh winters in Norway it might not spawn every year following maturity. Accordingly, we modelled likelihood of spawning at age, derived from the number of female individuals that was going to spawn the following autumn, rather than probability of maturation at age. Aging effects on spawning probability was included in the modelling as skipped-spawning individuals (i.e., mature females that skip spawning episodes, sensu Rideout and Tomkiewicz 60) were coded as non-spawners in the analysis. Probability of spawning (P) was calculated based on a maturation-ogives approach61, utilizing generalized linear mixed effects models in the lme4-package58. Binomial models as two-dimensional ogives, o(A, L) were considered in the model selection. Here, A and L represent age and length, respectively. In addition, we also explored how these ogives might change due to either a temperature effect, summer precipitation effect, or a measure of fish abundance (CPUE) including either as an additive effect in some candidate models (see Supplementary information S2). Population ID was always included as a random effect. In general, the probability of spawning could thus be described as:$${mathrm{Pr}left(spawningright)}_{ij}={beta }_{0i}+{beta }_{1i}{A}_{ij}+{beta }_{2i}{L}_{ij}+{beta }_{3i}{A}_{ij}{L}_{ij}+{beta }_{4i}{x}_{1i}+{a}_{i}+{varepsilon }_{ij}$$
    where βs represent coefficients under estimation, Aij = age of individual j in population i, L = individual length, x1 represent a lake-specific environmental variable (if present in the candidate model, either summer temperature, CPUE or precipitation), ai is the estimated random lake-specific intercept and εij is the random residual variation assumed normally distributed on logit scale. The most supported model was selected based on AICc-values59.FecundityFemale fecundity (i.e., number of eggs per female) was predicted as a function of female length (mm) and two constants based upon published values for brown trout from Norway (F = e log(l)*2.21–6.15)62 multiplied by the probability of spawning (P) at size and age.SurvivalAnnual survival rates (s) for fish age ≥ 1 were based on estimations from catch-curve slopes utilizing the Chapman-Robson function in the FSA-package63. The survival was estimated based on descending catch curves, i.e., where numbers of caught individuals decreased as a function of age in the catch. Based on this slope we can derive an instantaneous mortality rate (Z), and from this the annual survival rate could be estimated from S = e-Z. Due to a restricted number of populations available for survival rates, the survival was estimated across all population. As it is unlikely that S would be constant across all age classes we choose to make age specific survival rates, Sa, where the S1 (survival from age one to age two) was reduced, and S3-5 was slightly increased whereas all other Sa = S. The respective reduction and increase are described more in detail below. Survival rates for age 0–1, S0, was based on a stock-recruitment function (see further description under “Climate scenarios, calibration and population projections”).The projection matrixPopulation projections were derived utilizing an age-structured matrix population model23 in the popbio-package in R64. Changes in the age structure and abundance of brown trout was modelled from Nt+1 = K(E,N,t)Nt or rather:$${left[begin{array}{c}{N}_{1}\ {N}_{2}\ vdots \ vdots \ {N}_{{a}_{max}}end{array}right]}_{t+1}=left[begin{array}{ccccc}{f}_{1}left(L,P,{N}_{t}right){s}_{0}left({E}_{t}right)& {f}_{2}left(L,P,{N}_{t}right){s}_{0}left({E}_{t}right)& cdots & cdots & {f}_{{a}_{max}}left(L,P,{N}_{t}right){s}_{0}left({E}_{t}right)\ {s}_{a}& 0& cdots & cdots & 0\ 0& {s}_{a}& cdots & cdots & 0\ vdots & vdots & vdots & vdots & vdots \ 0& 0& 0& {s}_{a}& 0end{array}right]times {left[begin{array}{c}{N}_{1}\ {N}_{2}\ vdots \ vdots \ {N}_{{a}_{max}}end{array}right]}_{t}$$
    where Nt is the abundance of brown trout across all age classes a = 1,…, amax at year t. Census time is chosen so that reproduction occurs at the beginning of each annual season. fa is the fecundity at age a (i.e., the number of offspring produced per individual of age a during a year). More specifically, f varies according to f(L,P,N), where variations in L (length) and P (probability to spawn) in turn is defined by climate variables and the number of individuals N. s is a constant and represent the survival probability of individuals from age a to age a + 1, and amax is the maximum age considered in the model. amax was set to 10 years in the simulations, as was also was the age of the oldest fish in the aged subset of the data (see frequency table in Supplementary information S2). Although varying between systems, the maximum age observed and simulated also corresponds to expected maximum age found in other systems in Norway65. S0 is a function of E, the numbers of eggs laid, where the relationship is determined by a stock-recruitment function.Consequently, K(E,N,t), the Leslie matrix, is a function of N and E. In each time step, the survival of individuals in age class amax is 0, whereas individuals at all other ages spawn and experience mortality as defined above. From the Leslie matrix K, we can infer the population’s long-term rate of increase, λ, from the dominant eigenvector of the matrix23.Climate scenarios, calibration and population projectionsTo explore the population effects of changes in summer air temperature or winter conditions we simulated different 100-years climate-change scenarios for a single lake, which included variations the climate variables in focus. The first scenario represented a status quo setting. Here, annual average summer air temperatures were randomly drawn from a normal distribution with mean and standard deviation from observed summer air temperatures from 1998–2009 in the study area. The second climate scenario randomly assigned temperatures as in scenario one, as well as allowing for more and more fluctuating annual summer temperatures as time progressed. This was done by adding a random variable t (~ N(0,0.03) times the number of the specific year (i.e., 1–100) in the 100-years climate change scenario. The third climate scenario, drew annual summer temperatures as in the first scenario, but included an increase in the average air summer temperature by 0.04 °C each year (i.e., 4 °C in total for the 100-year-scenario which is close to the expected mean increase in regional temperature following the regionally down-scaled RCP8.5 IPCC scenario66). The fourth climate scenario included an average summer temperature increase of 0.02 °C each year (close to the expected average temperature increase following the regionally down-scaled RCP4.5 IPCC scenario66), as well as allowing for more and more fluctuating annual summer temperatures as time progressed (as in scenario two). For all climate scenarios above, annual winter NAO-values was randomly drawn from a uniform distribution between − 1.5 and 1.5.We also simulated a second set of climate change scenarios, where summer temperatures were as described in the four scenarios above, however in all these scenarios we also included a trend of higher winter NAO values (meaning a general trend of warmer winters with more precipitation/snow in the study area, as predicted by the down scaled climate scenarios66). This was done by letting annual NAO-values be drawn from a random normal distribution with mean = 0.5, and standard deviation of 0.5.During the calibration process for the simulations, we altered the age specific survival estimates S1 and S3-5 so that average lambdas for the status quo climate scenario was relatively stable and close to 1 (i.e. no large changes in population size) based on 100 iterations of a 100 year-climate scenario. Specifically, S1 = S*0.6 and S3-5 = S*1.2, which is also assumed to be within the realistic range of survival rates for the specific age classes in the focal populations. S0 was derived from a stock recruitment function, and was thus allowed to vary as a function of density in the population. Specifically, from the total egg number (Et) at year t and the number of one-year olds at year t + 1 (N1,t+1) the stock-recruitment function could be estimated by fitting a Shepherd function67:$${N}_{1,t+1}=frac{a{E}_{t}}{{left(1+b{E}_{t}right)}^{c}}$$
    where a = 0.04, b = 0.0000003 and c = 3.5. E is number of eggs deposited during t-1 spawning season, estimated as the total fecundity. The estimated N1,t+1 was used to estimate first-year survival (s0) from:$${s}_{0,t}=mathrm{ln}left({E}_{t-1}right)-mathrm{ln}left({N}_{1,t}right)$$All 100-years scenarios were simulated with 100 iterations to extract the variation in the expected population projections. CPUE in the simulations was included as a dynamic variable in the growth model, recalculated through the matrix projection model for each time step, i.e. year. Length at age, spawning probability and fecundity was predicted for each time step (i.e. pr year) as described above. The spawning probability did however not vary annually according to changes in the environment but was predicted according to the mean values of the environmental variables across all years the climate scenario. However, for climate scenarios with increasing mean temperature over time, the expected spawning probability was a function of the gradual mean temperature increase. Thus, by allowing the spawning probability reaction norm gradually to follow changes in the temperature, as predicted from the spawning model, we allowed the populations to gradually adapt the reaction norm to the respective changes. More

  • in

    Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors

    1.Tripet, F., Toure, Y. T., Dolo, G. & Lanzaro, G. C. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am. J. Tropical Med. Hyg. 68, 1–5 (2003).Article 

    Google Scholar 
    2.Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988).Article 

    Google Scholar 
    3.Cator, L. J., Wyer, C. A. S. & Harrington, L. C. Mosquito sexual selection and reproductive control programs. Trends Parasitol. 37, 330–339 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Charlwood, J. D. & Jones, M. D. R. Mating behaviour in the mosquito, Anopheles gambiae s.1.save. Physiol. Entomol. 4, 111–120 (1979).Article 

    Google Scholar 
    5.Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 1395–1401 (2020).7.Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cator, L. J., Ng’Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behav. Ecol. 21, 1033–1039 (2010).Article 

    Google Scholar 
    9.Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Simões, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–385 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Sawadogo, S. P. et al. Effects of age and size on Anopheles gambiae s.s. male mosquito mating success. J. Med. Entomol. 50, 285–293 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ng’habi, K. R. et al. Sexual selection in mosquito swarms: may the best man lose? Anim. Behav. 76, 105–112 (2008).Article 

    Google Scholar 
    14.Howell, P. I. & Knols, B. G. J. Male mating biology. Malar. J. 8, S8-S8, https://doi.org/10.1186/1475-2875-8-S2-S8 (2009).CAS 
    Article 

    Google Scholar 
    15.Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites Vectors 12, 386–386 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ferveur, J.-F. & Cobb, M. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press 325–343 (2010).18.Theresa, L. S. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38, 394–405 (1998).Article 

    Google Scholar 
    19.Chung, H. et al. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343, 1148–1151 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Grigoraki, L., Grau-Bové, X., Carrington Yates, H., Lycett, G. J. & Ranson, H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 9, e58019 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Lang, J. T. & Foster, W. A. Is there a female sex pheromone in the mosquito Culiseta inornata? Environ. Entomol. 5, 1109–1115 (1976).Article 

    Google Scholar 
    24.Nijout, H. F. C. J. & George, B. Reproductive isolation in Stepgomyia mosquitoes. III Evidence for a sexual pheromone. Entomol. Exp. Appl. 14, 399–412 (1971).Article 

    Google Scholar 
    25.Lang, J. T. Contact sex pheromone in the mosquito Culiseta inornata (Diptera: Culicidae). J. Med. Entomol. 14, 448–454 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Polerstock, A. R., Eigenbrode, S. D. & Klowden, M. J. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and aedes Aegypti (Diptera: Culicidae). J. Med. Entomol. 39, 545–552 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl Acad. Sci. USA 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc. Biol. Sci. 286, 20191091 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Yahouedo, G. A. et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 7, 11091 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 1691–1696 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.World Health Organization. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization (2013).33.Toe, K. H., N’Fale, S., Dabire, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16, 146 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Kwiatkowska, R. M. et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 519, 98–106 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ingham, V. A. et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 15, 1018 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Blows, M. W. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. Biol. Sci. 269, 1113–1118 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lane, S. M., Dickinson, A. W., Tregenza, T. & House, C. M. Sexual selection on male cuticular hydrocarbons via male-male competition and female choice. J. Evol. Biol. 29, 1346–1355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Steiger, S. et al. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc. Biol. Sci. 280, 20132353–20132353 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    39.Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822–830, https://doi.org/10.1002/bies.201500014 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Sawadogo, S. P. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Arcaz, A. C. et al. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. J. Exp. Biol. 219, 1675–1688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Hidalgo, K. et al. Distinct physiological, biochemical and morphometric adjustments in the malaria vectors Anopheles gambiae and A. coluzzii as means to survive dry season conditions in Burkina Faso. J. Exp. Biol. 70, 102–116 (2018).43.Wagoner, K. M. et al. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes. Parasit. Vectors 7, 294 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Wicker, C. & Jallon, J. M. Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). EJE 92, 197–202 (1995).CAS 

    Google Scholar 
    45.Andersson, M. Sexual Selection. Princeton University Press (1994).46.Fisher, R. The Genetical Theory of Natural Selection. The Clarendon Press, Oxford (1930).47.Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: “The Sexy Son Hypothesis”. Am. Nat. 113, 201–208 (1979).Article 

    Google Scholar 
    48.Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Rundle, H. D., Chenoweth, S. F. & Blows, M. W. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60, 2218–2225 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, 13677–13681, https://doi.org/10.1073/pnas.1104738108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Charlwood, J. D. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique. J. Vector Ecol. 36, 382–394, https://doi.org/10.1111/j.1948-7134.2011.00179.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS ONE 6, e24968–e24968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163, https://doi.org/10.1186/1475-2875-7-163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184–184, https://doi.org/10.1186/1471-2148-11-184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Niang, A. et al. Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa? Parasit. Vectors 8, 586–586, https://doi.org/10.1186/s13071-015-1190-x (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caputo, B. et al. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. J. Mass Spectrom. 40, 1595–1604, https://doi.org/10.1002/jms.961 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    Article 

    Google Scholar 
    58.Charlwood, J. Biological variation in Anopheles darlingi root. Mem. Inst. Oswaldo Cruz. 91, 391–398 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    First modern human settlement recorded in the Iberian hinterland occurred during Heinrich Stadial 2 within harsh environmental conditions

    1.Zilhão, J. Neandertal-modern human contact in Western Eurasia: issues of dating, taxonomy, and cultural associations. In Dynamics of Learning in Neanderthals and Modern humans Volume 1: Cultural Perspectives (eds Akazawa, T., Nishiaki, K. & Aoko. Y.), 21–57 (Springer, 2013).2.Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad Sci. 113(40), 11162–11167. https://doi.org/10.1073/pnas.1605834113 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    3.Gravina, B. et al. No reliable evidence for a Neanderthal-Châtelperronian Association at La Roche-à-Pierrot, Saint-Césaire. Sci. Rep. 8, 15134. https://doi.org/10.1038/s41598-018-33084-9 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    4.Wood, R. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. J. Hum Evol. 69, 91–109. https://doi.org/10.1016/j.jhevol.2013.12.017 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    5.Marín-Arroyo, A. B. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13(4), e0194708. https://doi.org/10.1371/journal.pone.0194708 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    6.Wood, R. et al. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using radiocarbon dating to assess site taphonomy. Quat. Int. 474(A), 56–70. https://doi.org/10.1016/j.quaint.2016.03.005 (2018).Article 

    Google Scholar 
    7.Teyssandier, N. & Zilhão, J. On the entity and antiquity of the Aurignacian at Willendorf (Austria): Implications for modern human emergence in Europe. J. Paleolithic Archaeol. 1, 107–138. https://doi.org/10.1007/s41982-017-0004-4 (2018).Article 

    Google Scholar 
    8.Dinnis, R., Bessudnov, A., Chiotti, L., Flas, D. & Michel, A. Thoughts on the structure of the European Aurignacian, with Particular Focus on Hohle Fels IV. Proc. Prehist. Soc. 85, 29–60. https://doi.org/10.1017/ppr.2019.11 (2019).Article 

    Google Scholar 
    9.Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302. https://doi.org/10.1038/s41586-020-2259-z (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    10.Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801. https://doi.org/10.1038/s41559-020-1136-3 (2020).Article 

    Google Scholar 
    11.Straus, L. G. The Upper Paleolithic of Iberia. Trab. de Prehist. 75(1), 9–51. https://doi.org/10.3989/tp.2018.12202 (2018).Article 

    Google Scholar 
    12.Zilhão, J. et al. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435. https://doi.org/10.1016/j.heliyon.2017.e00435 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Zilhão, J. et al. A revised, Last Interglacial chronology for the Middle Palaeolithic sequence of Gruta da Oliveira (Almonda karst system, Torres Novas, Portugal). Quat. Sci. Rev. 258, 106885. https://doi.org/10.1016/j.quascirev.2021.106885 (2021).Article 

    Google Scholar 
    14.Aubry, T. et al. Timing of the Middle-to-Upper Palaeolithic transition in the Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal). Quat. Res. 98, 81–101. https://doi.org/10.1017/qua.2020.43 (2020).15.Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212. https://doi.org/10.1038/s41559-018-0753-6 (2019).Article 
    PubMed 

    Google Scholar 
    16.Haws, J. A. et al. The early Aurignacian dispersal of modern humans into westernmost Eurasia. Proc. Natl Acad. Sci. USA 117(41), 25414–25422. https://doi.org/10.1073/pnas.2016062117 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    17.Anderson, L., Reynolds, N. & Teyssandier, N. No reliable evidence for a very early Aurignacian in Southern Iberia. Nat. Ecol. Evol. 3, 713. https://doi.org/10.1038/s41559-019-0885-3 (2019).Article 
    PubMed 

    Google Scholar 
    18.de la Peña, P. Dating on its own cannot resolve hominin occupation patterns. Nat. Ecol. Evol. 3, 712. https://doi.org/10.1038/s41559-019-0886-2 (2019).Article 
    PubMed 

    Google Scholar 
    19.Morales, J. I. et al. The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia). PLoS ONE 14(5), e0215832. https://doi.org/10.1371/journal.pone.0215832 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    20.Alcaraz-Castaño, M. Central Iberia around the Last Glacial Maximum. Hopes and prospects. J. Anthropol. Res. 71(4), 565–578. https://doi.org/10.3998/jar.0521004.0071.406 (2015).Article 

    Google Scholar 
    21.Mosquera, M. et al. Valle de las Orquídeas: un yacimiento al aire libre del Pleistoceno Superior en la Sierra de Atapuerca (Burgos). Trab. de Prehist. 64(2), 143–155. https://doi.org/10.3989/tp.2007.v64.i2.113 (2007).Article 

    Google Scholar 
    22.Carretero, J. M. et al. A Late Pleistocene-Early Holocene archaeological sequence of Portalón de Cueva Mayor (Sierra de Atapuerca, Burgos, Spain). Munibe (Antropologia-Arkeologia). 59, 67–80 (2008).23.Aubry, T., Luis, L., Mangado Llach, J. & Matías, H. We will be known by the tracks we leave behind: Exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). J. Anthropol. Archaeol. 31, 528–550. https://doi.org/10.1016/j.jaa.2012.05.003 (2012).Article 

    Google Scholar 
    24.Gaspar, R., Ferreira, J., Carrondo, J., Silva, M. J. & García-Vadillo, F. J. Open-air Gravettian lithic assemblages from Northeast Portugal: The Foz do Medal site (Sabor valley). Quat. Int. 406, 44–64. https://doi.org/10.1016/j.quaint.2015.12.054 (2016).Article 

    Google Scholar 
    25.Alcaraz-Castaño, M. et al. Los orígenes del Solutrense y la ocupación pleniglaciar del interior de la Península Ibérica: implicaciones del nivel 3 de Peña Capón (valle del Sorbe, Guadalajara). Trab. de Prehist. 70(1), 28–53. http://tp.revistas.csic.es/index.php/tp/article/view/637/659(2013).26.Alcaraz-Castaño, M., Alcolea-González, J.J., Balbín Behrmann, R. de, Kehl, M., Weniger, G.C. Recurrent Human Occupations in Central Iberia around the Last Glacial Maximum. The Solutrean Sequence of Peña Capón Updated. In Human Adaptations to the Last Glacial Maximum: The Solutrean and Its Neighbors (eds. I. Schmidt & J. Cascalheira), 148–170 (Cambridge Scholars Publishing, Cambridge, UK, 2019).27.Straus, L. G. The human occupations of southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. J. Anthropol. Res. 71(4), 465–492. https://doi.org/10.3998/jar.0521004.0071.401 (2015).Article 

    Google Scholar 
    28.Schmidt, I. et al. Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quat. Int. 274(1), 179–204. https://doi.org/10.1016/j.quaint.2012.01.018 (2012).Article 

    Google Scholar 
    29.Burke, A. et al. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia. J. Hum. Evol. 73, 35–46. https://doi.org/10.1016/j.jhevol.2014.06.003 (2014).Article 
    PubMed 

    Google Scholar 
    30.Burke, A. et al. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217–229. https://doi.org/10.1016/j.quascirev.2017.04.001 (2017).ADS 
    Article 

    Google Scholar 
    31.Lüdwig, P., Shao, Y., Kehl, M. & Weniger, G.-C. The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns. Glob. Planet. Change. 170, 34–47. https://doi.org/10.1016/j.gloplacha.2018.08.006 (2018).ADS 
    Article 

    Google Scholar 
    32.Wren, C. D. & Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 14(6), e0217996. https://doi.org/10.1371/journal.pone.0217996 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Klein, K. et al. Human existence potential in Europe during the Last Glacial Maximum. Quat. Int. https://doi.org/10.1016/j.quaint.2020.07.046 (2020).Article 

    Google Scholar 
    34.Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657. https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).ADS 
    Article 

    Google Scholar 
    35.Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).Article 

    Google Scholar 
    36.Banks, W. E. et al. Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. J. Archaeol. Sci. 35, 481–491. https://doi.org/10.1016/j.jas.2007.05.011 (2008).Article 

    Google Scholar 
    37.Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the last glacial maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    38.Sala, N. et al. Central Iberia in the Middle MIS 3. Paleoecological inferences during the period 34–40 cal kyr BP. Quat. Sci. Rev. 228, 106027 (2020).Article 

    Google Scholar 
    39.Sala, N. et al. Cueva de los Torrejones revisited. New insights on the paleoecology of inland Iberia during the Late Pleistocene. Quat. Sci. Rev. 253, 106765 (2021).Article 

    Google Scholar 
    40.Wolf, D. et al. Climate deteriorations and Neanderthal demise in interior Iberia. Sci. Rep. 8, 7048. https://doi.org/10.1038/s41598-018-25343-6 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    41.Wolf, D. et al. Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period. Quat. Res. 101, 84-113.https://doi.org/10.1017/qua.2020.119(2021).42.Zilhão, J. et al. Pego do Diabo (Loures, Portugal). Dating the emergence of anatomical modernity in westernmost Eurasia. PLoS ONE 5, e8880. https://doi.org/10.1371/journal.pone.0008880(2010).43.Cascalheira, J. et al. Paleoenvironments and human adaptations during the Last Glacial Maximum in the Iberian Peninsula: A review. Quat. Int. 581-582, 28-51. https://doi.org/10.1016/j.quaint.2020.08.005(2021).44.Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets (University of California Press, 2001).45.Kelly, R. L. The Lifeways of Hunter-Gatherers. The Foraging Spectrum (Cambridge University Press, 2013, 2nd edition).46.Bettinger, R. L., Garvey, R. & Tushingham, S. Hunter-Gatherers: Archaeological and Evolutionary Theory (Springer, 2015, 2nd edition).47.Gamble, C., Davies, W., Pettitt, P. & Richards, M. Climate change and evolving human diversity in Europe during the last glacial. Phil. Trans. R. Soc. B 359, 243–254. https://doi.org/10.1098/rstb.2003.1396 (2014).Article 

    Google Scholar 
    48.d’Errico, F. & Banks, W. Identifying Mechanisms behind Middle Paleolithic and Middle Stone Age Cultural Trajectories. Curr. Anthropol. 54(S8), S371–S387. https://doi.org/10.1086/673388 (2013).Article 

    Google Scholar 
    49.Collard, M., Vaesen K., Cosgrove, R. & Roebroeks, W. The empirical case against the ‘demographic turn’ in Palaeolithic archaeology. Phil. Trans. R. Soc. B 371, 20150242. https://doi.org/10.1098/rstb.2015.0242 (2016).50.Banks, W. E. et al. Investigating links between ecology and bifacial tool types in Western Europe during the Last Glacial Maximum. J. Archaeol. Sci. 36(12), 2853–2867. https://doi.org/10.1016/j.jas.2009.09.014 (2009).Article 

    Google Scholar 
    51.Bradtmöller, M., Pastoors, A., Weninger, B. & Weniger, G.-C. The repeated replacement model—Rapid climate change and population dynamics in Late Pleistocene Europe. Quat. Int. 247, 38–49. https://doi.org/10.1016/j.quaint.2010.10.015 (2012).Article 

    Google Scholar 
    52.Cascalheira, J. & Bicho, N. Hunter–gatherer ecodynamics and the impact of the Heinrich event 2 in Central and Southern Portugal. Quat. Int. 318, 117–127 (2013).Article 

    Google Scholar 
    53.Bicho, N., Cascalheira, J., Marreiros, J. & Pereira, T. Rapid climatic events and long term cultural change: The case of the Portuguese Upper Paleolithic. Quat. Int. 428, 3–16. https://doi.org/10.1016/j.quaint.2015.05.044 (2017).Article 

    Google Scholar 
    54.Cascalheira, J. & Bicho, N. Testing the impact of environmental change on hunter-gatherer settlement organization during the Upper Paleolithic in western Iberia. J. Quat. Sci. 33(3), 323–334 (2018).Article 

    Google Scholar 
    55.Weniger, G-C. et al. Late Glacial rapid climate change and human response in the Westernmost Mediterranean (Iberia and Morocco). PLoS ONE 14(12), e0225049. https://doi.org/10.1371/journal.pone.0225049(2019).56.McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late Glacial and Early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Phil. Trans. R. Soc. B 376, 20190724. (2021).57.Portero García, J. M. et al. Mapa Geológico de España 1:50.000, MAGNA n. 486, Jadraque. (Instituto Geológico y Minero de España, Madrid, 1994).58.Portero García, J. M., et al. Mapa Geológico de España 1:50.000, MAGNA n. 485, Valdepeñas de la Sierra, (Instituto Geológico y Minero de España, Madrid, 1995).59.Pérez-González, A. Depresión del Tajo. In Geomorfología de España (ed. Gutiérrez Elorza, M.), 389–436 (Rueda, Madrid, 1994).60.Silva, P. G., Roquero, E., López-Recio, M., Huerta, P. & Martínez-Graña, A. M. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero basins, Central Spain). Quat. Sci. Rev. 166, 188–203. https://doi.org/10.1016/j.quascirev.2016.05.027 (2017).ADS 
    Article 

    Google Scholar 
    61.Angelucci, D. E. The recognition and description of knapped lithic artifacts in thin section. Geoarchaeology 25(2), 220–232. https://doi.org/10.1002/gea.20303 (2010).Article 

    Google Scholar 
    62.Kooistra, M. J. & Pulleman, M. M. Features Related to Faunal Activity. In Interpretation of Micromorphological Features of Soils and Regoliths (eds. Stoops, G., Marcelino, V. & Mess, F.), 397–440 (Elsevier, Amsterdam, 2010).63.Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309. https://doi.org/10.1038/nature13621 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    64.Cascalheira, J. & Bicho, N. On the chronological structure of the Solutrean in Southern Iberia. PLoS ONE 10(9), e0137308. https://doi.org/10.1371/journal.pone.0137308 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    65.Pettitt, P. & Zilhão, J. Problematizing Bayesian approaches to prehistoric chronologies. World Archaeol. 47(4), 525–542. https://doi.org/10.1080/00438243.2015.1070082 (2015).Article 

    Google Scholar 
    66.Douka, K., Chiotti, L., Nespoulet, R. & Higham, T. A refined chronology for the Gravettian sequence of Abri Pataud. J. Hum. Evol. 141, 10230. https://doi.org/10.1016/j.jhevol.2019.102730 (2020).Article 

    Google Scholar 
    67.Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007 (2014).ADS 
    Article 

    Google Scholar 
    68.Sánchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev., 29(21–22), 2823–2827. https://doi.org/10.1016/j.quascirev.2009.11.014(2010).69.Clark, P. U. et al. The last glacial maximum. Science 325(5941), 710–714. https://doi.org/10.1126/science.1172873 (2009).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    70.López-Sáez, J. A. et al. Discrimination of Scots pine forests in the Iberian Central System (Pinus sylvestris var. iberica) by means of pollen analysis. Phytosociological considerations. Lazaroa, 34, 191–208. https://doi.org/10.5209/rev_LAZA.2013.v34.n1.43599 (2013).71.Aranbarri, J. et al. Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of southwestern Europe. Glob. Planet. Change 114, 50–65. https://doi.org/10.1016/j.gloplacha.2014.01.003 (2014).ADS 
    Article 

    Google Scholar 
    72.Broothaerts, N. et al. Reconstructing past arboreal cover based on modern and fossil pollen data: A statistical approach for the Gredos Range (Central Spain). Rev. Palaeobot. Palynol. 255, 1–13. https://doi.org/10.1016/j.revpalbo.2018.04.007 (2018).Article 

    Google Scholar 
    73.López-Sáez, J. A., et al. Vegetation history, climate and human impact in the Spanish Central System over the last 9,000 years. Quat. Int. 353, 98–122. https://doi.org/10.1016/j.quaint.2013.06.034 (2014).74.López-Sáez, J. A., Sánchez-Mata, D. & Gavilán, R. G. Syntaxonomical update on the relict groves of Scots pine (Pinus sylvestris L. var. iberica Svoboda) and Spanish black pine (Pinus nigra Arnold subsp. salzmannii (Dunal) Franco) in the Gredos range (central Spain). Lazaroa 37, 153–172. https://doi.org/10.5209/LAZA.54043 (2016).75.López-Sáez, J. A., Alba-Sánchez, F., López-Merino, L. & Pérez-Díaz, S. Modern pollen analysis: A reliable tool for discriminating Quercus rotundifolia communities in Central Spain. Phytocoenologia 40, 57–72. https://doi.org/10.1127/0340-269X/2010/0040-0430 (2010).Article 

    Google Scholar 
    76.Sánchez-Mata, D., Gavilán, R. G. & de la Fuente, V. The Sistema Central (Central Range). In The Vegetation of the Iberian Peninsula (ed. Loidi, J.), vol. 1, 549–588 (Springer, Utrecht, 2017).77.López-Sáez, J. A. et al. A palynological approach to the study of Quercus pyrenaica forest communities in the Spanish Central System. Phytocoenologia 45, 107–124. https://doi.org/10.1127/0340-269X/2014/0044-0572 (2015).Article 

    Google Scholar 
    78.van der Knaap, W. O. et al. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen percentage threshold values. Quat. Sci. Rev. 24(645–680), 2005. https://doi.org/10.1016/j.quascirev.2004.06.013 (2005).Article 

    Google Scholar 
    79.Abel-Schaad, D. et al. Persistence of tree relicts through the Holocene in the Spanish Central System. Lazaroa 35, 107–131. https://doi.org/10.5209/rev_LAZA.2014.v35.41932 (2014).Article 

    Google Scholar 
    80.López-Sáez, J. A. et al. Late Glacial-early Holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: The Navamuño record, Béjar range (Spain). Quat. Sci. Rev. 230, 106167. https://doi.org/10.1016/j.quascirev.2020.106167 (2020).Article 

    Google Scholar 
    81.López-Merino, L., López-Sáez, J. A., Ruiz-Zapata, M.B. & Gil-García, M. J. Reconstructing the history of beech (Fagus sylvatica L.) in north-western Iberian Range (Spain): From Late-Glacial refugia to Holocene anthropic induced forests. Rev. Palaeobot. Palynol. 152, 58–65. https://doi.org/10.1016/j.revpalbo.2008.04.003 (2008).82.Ruiz-Alonso, M., Pérez-Díaz, S. & López-Sáez, J. A. From glacial refugia to the current landscape configuration: permanence, expansion and forest management of Fagus sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula). Veget. Hist. Archaeobot. 28, 481–496. https://doi.org/10.1007/s00334-018-0707-6(2019). 83.Cuenca-Bescós G, Straus, L. G., González Morales, M. R & García Pimienta J.C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci., 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).84.López-García, J. M, Cuenca-Bescós, G., Finlayson, C., Brown, K. & Giles Pacheco, F. Palaeoenvironmental and palaeoclimatic proxies of the Gorham’s cave small mammal sequence Gibraltar southern Iberia. Quat. Int., 243, 137–142. https://doi.org/10.1016/j.quaint.2010.12.032 (2011).85.Garcia-Ibaibarriaga, N. et al. A palaeoenvironmental estimate in Askondo (Bizkaia, Spain) using small vertebrates. Quat. Int. 364, 244–254. https://doi.org/10.1016/j.quaint.2014.09.069 (2015).Article 

    Google Scholar 
    86.Baca, M. et al. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quat. Sci. Rev. 233, 106239. https://doi.org/10.1016/j.quascirev.2020.106239 (2020).Article 

    Google Scholar 
    87.Yravedra, J. et al. Not so deserted…paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum. Quat. Sci. Rev. 140, 21–38. https://doi.org/10.1016/j.quascirev.2016.03.021 (2016).88.Alcolea-González, J. J. et al. Avance al estudio del poblamiento paleolítico del Alto Valle del Sorbe (Muriel, Guadalajara). In Il Congreso de Arqueología Peninsular I, Paleolítico y Epipaleolítico (eds. Balbín R. de & Bueno, P.), 201–218 (Fundacion Rei Afonso Henriques, Zamora, 1997).89.Smith P. Le Solutréen en France (Delmas, Bordeaux, 1966).90.Fullola, J. M. El Solutreo-Gravetiense o Parpallense, industria mediterránea. Zephyrvs XXVIII–XXIX, 125–33 (1978).91.Villaverde, V. & Peña, J. L. Piezas con escotadura del Paleolitico Superior Valenciano. (Servicio de Investigación Prehistórica, Valencia, 1981).92.de la Rasilla, M. Secuencia y cronoestratigrafía del solutrense cantábrico. Trab. de Prehist. 46, 35–46. https://doi.org/10.3989/tp.1989.v46.i0.585 (1989).Article 

    Google Scholar 
    93.Zilhão J. O Paleolítico Superior da Estremadura portuguesa. (Edições Colibri, Lisboa, II vols., 1997).94.Straus, L. G. Once more into the breach: Solutrean chronology. Munibe 38, 35–38 (1986).
    Google Scholar 
    95.Calvo, A. & Prieto, A. El final del Gravetiense y el comienzo del Solutrense en la Península Ibérica. Un estado de la cuestión acerca de la cronología radiocarbónica en 2012. Espacio, Tiempo y Forma 5, 131–148. https://doi.org/10.5944/etfi.5.2012.5377 (2012). 96.Zilhão, J. Seeing the leaves and not missing the forest: a Portuguese perspective of the Solutrean. In Pleistocene foragers on the Iberian Peninsula: their culture and environment (eds. Pastoors A, Auffermann B.), 201–216 (Neanderthal Museum, Mettmann, 2013).97.González-Sampériz, P. et al. Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Rev. Palaeobot. Palynol. 162(3), 427–457. https://doi.org/10.1016/j.revpalbo.2010.03.009 (2010).Article 

    Google Scholar 
    98.González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: The Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425. https://doi.org/10.1016/j.quascirev.2020.106425 (2020).Article 

    Google Scholar 
    99.Cacho, I. et al. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanogr. Paleoclimatol. 16, 40–52. https://doi.org/10.1029/2000PA000502 (2001).100.Fletcher, W. J. & Sánchez Goñi, M. F. Orbital and sub-orbital climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quat. Sci. Rev. 70, 451–464. https://doi.org/10.1016/j.yqres.2008.07.002 (2008).101.Sánchez Goñi, M. F. et al. Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151. https://doi.org/10.1016/j.quascirev.2008.03.003(2008).102.Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034. https://doi.org/10.1038/srep02034 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Carrasco, R., Pedraza, J., Domínguez-Villar, D., Willenbring, J. & Villa, J. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163–177. https://doi.org/10.1016/j.quascirev.2015.09.021 (2015).ADS 
    Article 

    Google Scholar 
    104.Valdeolmillos, A., Dorado-Valiño, M., Ruiz-Zapata, B., Bardají, T. & Bustamante, I. Palaeoclimatic record of the Last Glacial Cycle at las Tablas de Daimiel National Park (Southern Iberian Meseta, Spain). In Quaternary climatic changes and environmental crises in the Mediterranean region (eds. Ruiz-Zapata, B. et al.), 221–228 (Universidad de Alcalá, Alcalá de Henares, 2003).105.Vegas, J. et al. Identification of arid phases during the last 50 kyr Cal BP from the Fuentillejo maar lacustrine record (Campo de Calatrava Volcanic Field, Spain). J. Quat. Sci. 25, 1051–1062. https://doi.org/10.1002/jqs.1262 (2010).Article 

    Google Scholar 
    106.Alcolea-González, J. J. & Balbín-Behrmann, R. de. El Arte rupestre Paleolítico del interior peninsular. In Arte sin artistas. Una mirada al Paleolítico, 187–207 (Museo Arqueológico Regional, Comunidad de Madrid, Madrid, 2012).107.Alcaraz-Castaño, M. et al. The human settlement of Central Iberia during MIS 2: New technological, chronological and environmental data from the Solutrean workshop of Las Delicias (Manzanares River valley, Spain). Quat. Int. 431, 104–124. https://doi.org/10.1016/j.quaint.2015.06.069 (2017).108.Aubry, T., Luis, L., Mangado Llach, J. & Matias, H. Adaptation to resources and environments during the last glacial maximum by hunter-gatherer societies in Atlantic Europe. J. Anthropol. Res. 71, 521–544. https://doi.org/10.3998/jar.0521004.0071.404 (2015).109.Aubry, T. et al. Upper Paleolithic lithic raw material sourcing in Central and Northern Portugal as an aid to reconstructing hunter-gatherer societies. J. Lithic Stud. 3(2), 7–28. https://doi.org/10.2218/jls.v3i2.1436 (2016).Article 

    Google Scholar 
    110.Alcaraz-Castaño, M. et al. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12(7), e0180823. https://doi.org/10.1371/journal.pone.0180823 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    111.Kehl, M. et al. The rock shelter Abrigo del Molino (Segovia, Spain) and the timing of the late Middle Palaeolithic in Central Iberia. Quat. Res. 90, 180–200. https://doi.org/10.1017/qua.2018.13 (2018).Article 
    CAS 

    Google Scholar 
    112.Hoffecker, J. Desolate landscapes. Ice-age settlement in Eastern Europe. (Rutgers University Press, London, 2002).113.Nigst, P. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. 111(40), 14394–14399. https://doi.org/10.1073/pnas.1412201111 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    114.Terberger T. Le Dernier Maximum glaciaire entre le Rhin et le Danube, un réexamen critique. In Le Paléolithique supérieur ancien de l’Europe du Nord-Ouest (dirs. Bodu, P. et al.), 415–443 (Société Préhistorique Française, Mémoire LVI, Paris, 2013).  115.Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).Article 

    Google Scholar 
    116.Verpoorte, A. Limiting factors on early modern human dispersals: The human biogeography of late Pleniglacial Europe. Quatern. Int. 201(1–2), 77–85 (2009).Article 

    Google Scholar 
    117.Slimak, L. Late Mousterian Persistence near the Arctic Circle. Science 332(6031), 841–845. https://doi.org/10.1126/science.1203866 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    118.Rethemeyer, J. et al. Status report on sample preparation facilities for 14C analysis at the new CologneAMS center. Nucl. Instrum. Methods Phys. Res. B 294, 168–172. https://doi.org/10.1016/j.nimb.2012.02.012 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    119.Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103–112. https://doi.org/10.1017/S0033822200045069 (2010).Article 
    CAS 

    Google Scholar 
    120.Wood, R. E. et al. Testing the ABOx-SC method: dating known age charcoals associated with the Campanian Ignimbrite. Quat. Geochronol. 9, 16–26. https://doi.org/10.1016/j.quageo.2012.02.003 (2012).Article 

    Google Scholar 
    121.Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    122.Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).Article 
    CAS 

    Google Scholar 
    123.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3), 1023–1045. https://doi.org/10.1017/S0033822200034093 (2009).Article 

    Google Scholar 
    124.Burjachs, F., López-Sáez, J. A. & Iriarte, M. J. Metodología Arqueopalinológica. In La recogida de muestras en Arqueobotánica: objetivos y propuestas metodológicas. La gestión de los recursos vegetales y la transformación del paleopaisaje en el Mediterráneo occidental (eds. Buxó, R. & Piqué, R.), 11–18 (Museu d’Arqueologia de Catalunya, Barcelona, 2003).125.López-Sáez, J. A., López-García, P. & Burjachs, F. Arqueopalinología: Síntesis Crítica. Polen 12, 5–35 (2003).
    Google Scholar 
    126.Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis (Blackwell Scientific Publications, 1991).
    Google Scholar 
    127.Reille, M. Pollen et spores d’Europe et d’Afrique du Nord. (Marseille: Laboratoire de Botanique Historique et Palynologie, 1999).128.Desprat, S. et al. Pinus nigra (Spanish black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: a morphological study of modern and fossil pollen. J. Biogeogr. 42, 1998–2009. https://doi.org/10.1111/jbi.12566 (2015).Article 

    Google Scholar 
    129.Grimm, E. C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 (1987).ADS 
    Article 

    Google Scholar 
    130.Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New. Phytol. 132, 155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x (1996).Article 
    PubMed 
    CAS 

    Google Scholar 
    131.Grimm, E. C. Tilia version 2. (Illinois State Museum. Research and Collection Center, Springfield, 1992).132.Grimm, E. D. TGView. (Illinois State Museum, Research and Collection Center, Springfield, 2004).133.Schweingruber F.H. Microscopic Wood Anatomy; Structural variability of stems and twigs in recent and subfossil woods from Central Europe. (Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research, 1990, 3rd edition).134.Hather, J. G. The Identification of the Northern European Woods. A Guide for Archaeologists and Conservators (Archetype Publications, 2000).
    Google Scholar 
    135.Vernet, J. L., Ogereau, P., Figueiral, I., Machado, C., Uzquiano, C. Guide d’identification des charbons de bois préhistoriques et récents. Sud-Ouest de l’Europe: France, Péninsule Ibérique et Îles Canaries (CNRS Éditions, Paris, 2001).136.Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci. 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).Article 

    Google Scholar 
    137.López-García, J. M. Los micromamíferos del Pleistoceno Superior en la Península Ibérica. Evoluión de la diversidad taxonómica y cambios paleoambientales y paleoclimáticos (Editorial Académica Española, 2011).138.Moya-Sola, R. & Cuenca-Bescós, G. Biometría mandibular y dentaria de las musarañas del género Sorex Linnaeus, 1758 en la región central y occidental de los Pirineos. Galemys 31, 11–25. https://doi.org/10.7325/Galemys.2019.A2 (2019).Article 

    Google Scholar 
    139.Lyman, R. L. Relative abundance of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios 9(3), 288–298. https://doi.org/10.2307/3515203 (1994).ADS 
    Article 

    Google Scholar 
    140.Brain, C. K. The contribution of Namib Desert Hottentot to understanding of Australopithecus bone accumulations. Sci. Pap. Namibian Desert Res. Station 32, 1–11 (1969).
    Google Scholar 
    141.Barba, R. & Domínguez-Rodrigo M. The Taphonomic Relevance of the Analysis of Bovid Long Limb Bone Shaft Features and Their Application to Element Identification. Study of Bone Thickness and Morphology of the Medullar Cavity. J. Taphon. 3, 29–42 (2005).142.Yravedra, J. & Domínguez-Rodrigo, M. The shaft-based methodological approach to the quantification of long limb bones and its relevance to understanding hominid subsistence in the Pleistocene: application to four Palaeolithic sites. J. Quat. Sci. 24(1), 85–96. https://doi.org/10.1002/jqs.1164 (2009).Article 

    Google Scholar 
    143.Inizan, M. L., Reduron, M., Roche, H. & Tixier J. Préhistoire de la Pierre Taillée. T. 4. Technologie de la pierre taillée. (CREP, Meudon, Paris, 1995).144.Soressi, M. & Geneste, J.-M. The history and efficacy of the Chaîne Opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology 2011, 334–350. https://doi.org/10.4207/PA.2011.ART63 (2011).Article 

    Google Scholar 
    145.Nelson, M. C. The study of technological organization. Archaeol. Method. Theory 3, 57–100 (1991).
    Google Scholar 
    146.Kelly, R. L. The three sides of a biface. Am. Antiq. 53(4), 717–734. https://doi.org/10.2307/281115 (1998).Article 

    Google Scholar 
    147.Robinson, E. & Sellet, F. (eds.). Lithic Technological Organization and Paleoenvironmental Change. Global and Diachronic Perspectives. https://doi.org/10.1007/978-3-319-64407-3(Springer, 2018). 148.Pelegrin, J. & Chauchat, C. Tecnología y función de las puntas de Paijan: el aporte de la experimentación. Lat. Am. Antiq. 4(4), 367–382 (1993).Article 

    Google Scholar 
    149.Callahan, E. The Basics of Biface Knapping in the Eastern Fluted Point Tradition: a Manual for Flintknappers and Lithic Analysts. (Piltdown Productions, 2000, 4th edition).
    Google Scholar 
    150.Aubry, T. et al. Solutrean laurel leaf production at Maîtreaux: An experimental approach guided by techno-economic analysis. World. Archaeol. 40, 48–66 (2008).Article 

    Google Scholar  More

  • in

    Beneficial insects are associated with botanically rich margins with trees on small farms

    1.Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).Article 
    PubMed 

    Google Scholar 
    2.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).Article 

    Google Scholar 
    3.Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).Article 

    Google Scholar 
    4.Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).Article 

    Google Scholar 
    5.Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).CAS 
    Article 

    Google Scholar 
    6.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).Article 

    Google Scholar 
    8.Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).Article 

    Google Scholar 
    9.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).Article 

    Google Scholar 
    11.Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).Article 

    Google Scholar 
    12.Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).Article 

    Google Scholar 
    13.Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).Article 

    Google Scholar 
    14.Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).Article 

    Google Scholar 
    15.Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).Article 

    Google Scholar 
    17.Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).Article 

    Google Scholar 
    18.Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).Article 
    PubMed 

    Google Scholar 
    19.Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).Article 

    Google Scholar 
    21.Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).Article 

    Google Scholar 
    23.Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).Article 

    Google Scholar 
    24.Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).25.Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).Article 

    Google Scholar 
    26.Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).Article 

    Google Scholar 
    27.Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).Article 

    Google Scholar 
    28.Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).30.ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).31.Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).Article 

    Google Scholar 
    32.Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).Article 

    Google Scholar 
    33.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).Article 

    Google Scholar 
    34.Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).Article 

    Google Scholar 
    35.Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).Article 

    Google Scholar 
    36.Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).Article 

    Google Scholar 
    37.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).Article 

    Google Scholar 
    38.Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).39.Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).Article 

    Google Scholar 
    41.Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).
    Google Scholar 
    42.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).Article 

    Google Scholar 
    43.Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).CAS 
    Article 

    Google Scholar 
    44.Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).Article 

    Google Scholar 
    45.Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).Article 

    Google Scholar 
    46.Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).Article 

    Google Scholar 
    47.Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).Article 

    Google Scholar 
    48.Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    49.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    50.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    51.Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).
    Google Scholar 
    52.Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).Article 

    Google Scholar 
    53.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    54.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).
    Google Scholar  More