Warming Arctic summers unlikely to increase productivity of shorebirds through renesting
1.Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).PubMed
PubMed Central
Article
Google Scholar
2.Callaghan, T. V. et al. Arctic tundra and polar desert ecosystems. In Arctic Climate Impact Assessment (eds Symon, C. et al.) 243–352 (Cambridge University Press, 2005).
Google Scholar
3.Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).ADS
CAS
Article
Google Scholar
4.Hodgkins, R. The twenty-first-century Arctic environment: Accelerating change in the atmospheric, oceanic and terrestrial spheres. Geogr. J. 180, 429–436 (2014).Article
Google Scholar
5.Meltofte, H. et al. Effects of climate variation on the breeding ecology of Arctic shorebirds. Medd. Grønl. Biosci. 59, 1–48 (2007).
Google Scholar
6.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed
PubMed Central
Article
Google Scholar
7.McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 90, 961–971 (2012).Article
Google Scholar
8.Kwon, E. et al. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr. https://doi.org/10.1002/ecm.1383 (2019).Article
Google Scholar
9.Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).PubMed
PubMed Central
Article
Google Scholar
10.Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).Article
Google Scholar
11.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).Article
Google Scholar
12.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. Biol. Sci. Ser. B https://doi.org/10.1098/rspb.2013.2161 (2014).Article
Google Scholar
13.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in Arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).Article
Google Scholar
14.Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life- history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).PubMed
PubMed Central
Article
Google Scholar
15.Tulp, I. & Schekkerman, H. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).Article
Google Scholar
16.Braegelman, S. D. Seasonality of Some Arctic Alaskan Chironomids (North Dakota State University, 2016).
Google Scholar
17.Piersma, T., Brugge, M., Spaans, B. & Battley, P. F. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris). Auk 125, 140–148 (2008).Article
Google Scholar
18.Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 31, 509–521 (2016).PubMed
Article
PubMed Central
Google Scholar
19.Danks, H. V. Life cycles in polar arthropods—Flexible or programmed?. Eur. J. Entomol. 96, 83–102 (1999).
Google Scholar
20.Bolduc, E. et al. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can. Entomol. 145, 155–170 (2013).Article
Google Scholar
21.McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. https://doi.org/10.1038/srep01816 (2013).Article
PubMed
PubMed Central
Google Scholar
22.Ruthrauff, D. R. & McCaffery, B. J. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. Condor 107, 597–604 (2005).Article
Google Scholar
23.Pearce-Higgins, J. W. & Yalden, D. W. Variation in the growth and survival of Golden Plover Pluvialis apricaria chicks. Ibis 144, 200–209 (2002).Article
Google Scholar
24.Holmes, R. T. Breeding ecology and annual cycle adaptations of the Red-backed Sandpiper (Calidris alpina) in northern Alaska. Condor 68, 3–46 (1966).Article
Google Scholar
25.Lanctot, R. B. Blood sampling in juvenile Buff-breasted Sandpipers: Movement, mass change and survival. J. Field Ornithol. 65, 534–542 (1994).
Google Scholar
26.Jamieson, S. E. Pacific Dunlin Calidris alpina pacifica show a high propensity for second clutch production. J. Ornithol. 152, 1013–1021 (2011).Article
Google Scholar
27.Colwell, M. A. Shorebird Ecology, Conservation, and Management (University of California Press, 2010).Book
Google Scholar
28.Machín, P., Fernández-Elipe, J. & Klaassen, R. H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behav. Ecol. Sociobiol. 72, 42. https://doi.org/10.1007/s00265-018-2457-y (2018).Article
Google Scholar
29.Corkery, C. A., Nol, E. & McKinnon, L. No effects of asynchrony between hatching and peak food availability on chick growth in Semipalmated Plovers (Charadrius semipalmatus) near Churchill, Manitoba. Polar Biol. 42, 593–601 (2019).Article
Google Scholar
30.Naves, L. C., Lanctot, R. B., Taylor, A. R. & Coutsoubos, N. P. How often do Arctic shorebirds lay replacement clutches?. Wader Study Gr. Bull. 115, 2–9 (2008).
Google Scholar
31.Swift, R. J., Anteau, M. J., Ring, M. M., Toy, D. L. & Sherfy, M. H. Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor https://doi.org/10.1093/condor/duz066 (2020).Article
Google Scholar
32.Gates, H. R., Lanctot, R. B. & Powell, A. N. High renesting rates in Arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment. Auk 130, 372–380 (2013).Article
Google Scholar
33.Richter-Menge, J., Druckenmiller, M. L. & Jeffries, M. (eds.) Arctic Report Card 2019. https://www.arctic.noaa.gov/Report-Card. (2019).34.Weiser, E. L. et al. Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor https://doi.org/10.1093/condor/duaa026 (2020).Article
Google Scholar
35.Sandercock, B. K. Estimation of survival rates for wader populations: A review of mark-recapture methods. Wader Study Gr. Bull. 100, 163–174 (2003).
Google Scholar
36.Ottvall, R. & Härdling, R. Sensitivity analysis of a migratory population of Redshanks Tringa totanus: A forewarning of a population decline?. Wader Study Gr. Bull. 107, 40–45 (2005).
Google Scholar
37.Hitchcock, C. L. & Gratto-Trevor, C. Diagnosing a shorebird local population decline with a stage-structured population model. Ecology 78, 522–534 (1997).Article
Google Scholar
38.Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).Article
Google Scholar
39.Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
40.Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53, 479–490 (2016).Article
Google Scholar
41.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).Article
Google Scholar
42.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. Addendum to “A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway”. Biological Conservation, 143, 2238–2247. Biol. Conserv. 145, 278–295 (2012).Article
Google Scholar
43.Pearce-Higgins, J. W. & Yalden, D. W. Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146, 335–346 (2004).Article
Google Scholar
44.Schekkerman, H., Tulp, I., Piersma, T. & Visser, G. H. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia 134, 332–342 (2003).ADS
PubMed
Article
PubMed Central
Google Scholar
45.Tulp, I. & Schekkerman, H. Studies on Breeding Shorebirds at Medusa Bay, Taimyr, in Summer 2000 (Alterra, Green World Research, 2001).
Google Scholar
46.Schekkerman, H., van Roomen, M. W. J. & Underhill, L. G. Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86, 153–168 (1998).
Google Scholar
47.Tjørve, K. M. C. et al. Growth and energetics of a small shorebird species in a cold environment: The Little Stint Calidris minuta on the Taimyr Peninsula, Siberia. J. Avian Biol. 38, 552–563 (2007).Article
Google Scholar
48.Pearce-Higgins, J. W. & Yalden, D. W. Golden Plover Pluvialis apricaria breeding success on a moor managed for shooting Red Grouse Lagopus lagopus. Bird Study 50, 170–177 (2003).Article
Google Scholar
49.Loonstra, A. H. J., Verhoeven, M. A. & Piersma, T. Sex-specific growth in chicks of the sexually dimorphic Black-tailed Godwit. Ibis 160, 89–100 (2018).Article
Google Scholar
50.Taylor, A. R., Lanctot, R. B., Powell, A. N., Kendall, S. J. & Nigro, D. A. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska. Condor 113, 779–794 (2011).Article
Google Scholar
51.Meltofte, H., Høye, T. T., Schmidt, N. M. & Forchhammer, M. C. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol. 30, 601–606 (2007).Article
Google Scholar
52.Visser, G. H. & Ricklefs, R. E. Development of temperature regulation in shorebirds. Physiol. Zool. 66, 771–792 (1993).Article
Google Scholar
53.Colwell, M. A., Hurley, S. J., Hall, J. N. & Dinsmore, S. J. Age-related survival and behavior of Snowy Plover chicks. Condor 109, 638–647 (2007).Article
Google Scholar
54.Powell, A. N. The Effects of Early Experience on the Development, Behavior, and Survival of Shorebirds (University of Minnesota, 1992).
Google Scholar
55.Ackerman, J. T., Herzog, M. P., Takekawa, J. Y. & Hartman, C. A. Comparative reproductive biology of sympatric species: Nest and chick survival of American Avocets and Black-necked Stilts. J. Avian Biol. 45, 609–623 (2014).Article
Google Scholar
56.Catlin, D. H., Fraser, J. D. & Felio, J. H. Demographic responses of Piping Plovers to habitat creation on the Missouri River. Wildl. Monogr. 192, 1–42 (2015).Article
Google Scholar
57.Dinsmore, S. J., Gaines, E. P., Pearson, S. F., Lauten, D. J. & Castelein, K. A. Factors affecting Snowy Plover chick survival in a managed population. Condor 119, 34–43 (2017).Article
Google Scholar
58.Dinsmore, S. J. Influence of drought on annual survival of the Mountain Plover in Montana. Condor 110, 45–54 (2008).Article
Google Scholar
59.Soikkeli, M. Breeding cycle and population dynamics in the Dunlin (Calidris alpina). Ann. Zool. Fenn. 4, 158–198 (1967).
Google Scholar
60.Blomqvist, D. & Johansson, O. C. Distribution, reproductive success, and population trend in the Dunlin Calidris alpina schinzii on the Swedish west coast. Ornis Svec. 1, 39–46 (1991).
Google Scholar
61.Jönsson, P. E. Reproduction and survival in a declining population of the southern Dunlin Calidris alpina schinzii. Wader Study Gr. Bull. 61, 56–68 (1991).
Google Scholar
62.Pienkowski, M. W. Behaviour of young Ringed Plovers Charadrius hiaticula and its relationship to growth and survival to reproductive age. Ibis 126, 133–155 (1984).Article
Google Scholar
63.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
Google Scholar
64.Bentzen, R. et al. Assessing development impacts on Arctic nesting birds using real and artificial nests. Polar Biol. 40, 1527–1536 (2017).Article
Google Scholar
65.McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article
Google Scholar
66.Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on Lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).Article
Google Scholar
67.Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).Article
Google Scholar
68.McGuire, R. L., Lanctot, R. B., Saalfeld, S. T., Ruthrauff, D. R. & Liebezeit, J. R. Shorebird reproductive response to exceptionally early and late springs varies across sites in Arctic Alaska. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.577652 (2020).Article
Google Scholar
69.Lackmann, A. R. Chironomids Then and Now: Climate Change Effects on a Tundra Food Web in the Alaskan Arctic (North Dakota State University, 2019).
Google Scholar
70.McEwen, D. C. & Butler, M. G. Growing-season temperature change across four decades in an Arctic tundra pond. Arctic 71, 281–291 (2018).Article
Google Scholar
71.Shaftel, R. et al. Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic. Polar Biol. 44, 237–257 (2021).Article
Google Scholar
72.Butler, M., Miller, M. C. & Mozley, S. Macrobenthos. In Limnology of Tundra Ponds, Barrow, Alaska (ed. Hobbie, J. E.) 297–339 (Dowden, Hutchinson, and Ross, Inc., 1980).
Google Scholar
73.Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
Google Scholar
74.Schekkerman, H. & Boele, A. Foraging in precocial chicks of the Black-tailed Godwit Limosa limosa: Vulnerability to weather and prey size. J. Avian Biol. 40, 369–379 (2009).Article
Google Scholar
75.Krijgsveld, K. L., Reneerkens, J. W. H., McNett, G. D. & Ricklefs, R. E. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor 105, 268–278 (2003).Article
Google Scholar
76.Cosgrove, J., Dugger, B. & Lanctot, R. B. No renesting observed after experimental clutch removal in Red Phalaropes breeding near Utqiaģvik, Alaska. Wader Study 127, 236–243 (2020).Article
Google Scholar
77.Fernández, G., Buchanan, J. B., Gill, R. E. Jr., Lanctot, R. & Warnock, N. Conservation Plan for Dunlin with Breeding Populations in North America (Calidris alpina arcticola, C. a. pacifica, and C. a. hudsonia), Version 1.1 (Manomet Center for Conservation Sciences, 2010).
Google Scholar
78.Lagassé, B. J. et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian flyway. Condor https://doi.org/10.1093/condor/duaa054 (2020).Article
Google Scholar
79.Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Gr. Bull. 119, 178–194 (2012).
Google Scholar
80.Warnock, N. The Alaska WatchList 2017 (Audubon Alaska, 2017).
Google Scholar
81.Alaska Shorebird Group. Alaska Shorebird Conservation Plan. Version III (Alaska Shorebird Group, 2019).
Google Scholar
82.CAFF. Arctic Migratory Birds Initiative (AMBI): Workplan 2019–2023. CAFF Strategies Series No. 30. (Conservation of Arctic Flora and Fauna, ISBN: 978-9935-431-79-0, 2019).83.Warnock, N. D. & Gill, R. E. Dunlin (Calidris alpina), version 1.0. In Birds of the World (ed. Billerman, S. M.) (Cornell Lab of Ornithology, 2020).
Google Scholar
84.Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015).Article
Google Scholar
85.Weiser, E. L. et al. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. https://doi.org/10.1111/jav.01531 (2017).Article
Google Scholar
86.Villarreal, S. et al. Tundra vegetation change near Barrow, Alaska (1972–2010). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015508 (2012).Article
Google Scholar
87.Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109, 32–47 (2007).Article
Google Scholar
88.Priklonsky, S. G. Application of small automatic bows for catching birds. Zool. Zh. 39, 623–624 (1960).
Google Scholar
89.Gates, H. R. et al. Differentiation of subspecies and sexes of Beringian Dunlin using morphometric measures. J. Field Ornithol. 84, 389–402 (2013).Article
Google Scholar
90.Warnock, N. & Warnock, S. Attachment of radio-transmitters to sandpipers: Review and methods. Wader Study Gr. Bull. 70, 28–30 (1993).
Google Scholar
91.Bart, J., Battaglia, D. & Senner, N. Effects of color bands on Semipalmated Sandpipers banded at hatch. J. Field Ornithol. 72, 521–526 (2001).Article
Google Scholar
92.Whittier, J. B. & Leslie, D. M. Jr. Efficacy of using radio transmitters to monitor Least Tern chicks. Wilson Bull. 117, 85–91 (2005).Article
Google Scholar
93.Lees, D. et al. An assessment of radio telemetry for monitoring shorebird chick survival and causes of mortality. Wildl. Res. 46, 622–627 (2019).Article
Google Scholar
94.Schekkerman, H., Teunissen, W. & Oosterveld, E. Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: Influence of predation and agriculture. J. Ornithol. 150, 133–145 (2009).Article
Google Scholar
95.Johnson, M., Aref, S. & Walters, J. R. Parent-offspring communication in the Western Sandpiper. Behav. Ecol. 19, 489–501 (2008).Article
Google Scholar
96.Brown, R. G. B. The aggressive and distraction behavior of the Western Sandpiper Ereunetes mauri. Ibis 104, 1–12 (1962).Article
Google Scholar
97.Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Am. 70, 51–53 (1977).Article
Google Scholar
98.Cooch, E. G. & White, G. C. (eds.) Program MARK: A Gentle Introduction, 19th ed. http://www.phidot.org/software/mark/docs/book/ (2019).99.Rotella, J. J., Dinsmore, S. J. & Shaffer, T. L. Modeling nest-survival data: A comparison of recently developed methods that can be implemented in MARK and SAS. Anim. Biodivers. Conserv. 27, 187–205 (2004).
Google Scholar
100.Dinsmore, S. J., White, G. C. & Knopf, F. L. Advanced techniques for modeling avian nest survival. Ecology 83, 3476–3488 (2002).Article
Google Scholar
101.Hill, B. L. Factors Affecting Survival of Arctic-Breeding Dunlin (Calidris alpina arcticola) Adults and Chicks (University of Alaska Fairbanks, 2012).
Google Scholar
102.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach 2nd edn. (Springer, 2002).MATH
Google Scholar
103.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article
Google Scholar More