Genetic melting pot and importance of long-distance dispersal indicated in the Gladiolus imbricatus L. populations in the Polish Carpathians
1.Zarzycki, K. Paprotniki i rośliny kwiatowe (rośliny naczyniowe). In: Flora i Fauna Pienin. (ed. Razowski J). Monogr. Pienińskie 1, 75–79 (2000).
Google Scholar
2.Środoń, W. Pieniny w historii szaty roślinnej Podhala [Pieniny in the history of plant cover in Podhale region]. In : K. Zarzycki (ed.). Przyroda Pienin w obliczu zmian [The nature of the Pieniny Mts (West Carpathians) in face of the coming changes]. Stud. Nat. 30B, 115–126 (1982).
Google Scholar
3.Deptuła, C. Nad rekonstrukcją dziejów regionu czartoryskiego w XIII I XIV wieku [On the reconstruction of the history of the Czorsztyn region from the 13th to 16th centuries]. Pieniny—Człowiek Przyroda 5, 21–35 (1997) (in Polish with English summary).
Google Scholar
4.Kierś, M. (ed.) Wołosi: Nomadzi Bałkanów (Uniwersytet Jagielloński, 2013).
Google Scholar
5.Oravcová, M. & Krupa, E. Pedigree analysis of the former Valachian sheep. Slovak. J. Anim. Sci. 44, 6–12 (2011).
Google Scholar
6.Wace, A.J.B. & Thompson, M.S. The Nomads of the Balkans. Vol. 6 (Methuen & Co., 1914). https://archive.org/stream/nomadsofbalkansa00wace#page/n9/mode/2up. Accessed 28 June 2021.7.Stachurska-Swakoń, A. Phytogeographical aspects of grasses occuring in tall-herb vegetation in the Carpathians. in Grasses in Poland and Elsewhere (ed. Frey, L.). 39–47. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2009).8.Stachurska-Swakoń, A. Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39, 217–234. https://doi.org/10.1127/0340-269X/2009/0039-0217 (2009).Article
Google Scholar
9.Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article
Google Scholar
10.Pawłowski, B., Pawłowska, S. & Zarzycki, K. Zespoły roślinne kośnych łąk północnej części Tatr i Podtatrza. Fragm. Flor. Geobot. Pol. 6(2), 95–222 (1960).
Google Scholar
11.Korzeniak, J. 6520* Mountain Yellow Trisetum and Bent-Grass Hay Meadows 55–67 (Methodological guide. GIOŚ, 2013).
Google Scholar
12.Wróbel, I. Pasterstwo w regionie pienińskim [Sheep farming in the Pieniny region]. Pieniny Człowiek Przyroda 5, 43–52 (1997) (in Polish with English summary).
Google Scholar
13.Kostrakiewicz-Gierałt, K., Palic, C. C., Stachurska-Swakoń, A., Nedeff, V. & Sandu, I. The causes of disappearance of sward lily Gladiolus imbricatus L from natural stands—Synthesis of current state of knowledge. Int. J. Conserv. Sci. 9, 821–834 (2018).
Google Scholar
14.Wróbel, I. Szata roślinna Pienińskiego Parku Narodowego – podsumowanie Planu Ochrony na lata 2001–2020 [Plant cover of the Pieniny National Park – summing up the Protection Plan for the years 2001–2020]. Pieniny Człowiek Przyroda 8, 63–69 (2003).
Google Scholar
15.Kubíková, P. & Zeidler, M. Habitat demands and population characteristics of the rare plant species Gladiolus imbricatus L. in the Frenštát region (NE Moravia, the Czech Republic). Čas. Slez. Muz. Opava 60(A), 154–164 (2011).
Google Scholar
16.Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Flowering Plants and Pteridophytes of Poland, a Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2002).
Google Scholar
17.Hamilton, A. P. The European Gladioli. Quart. Bull. Alp. Gard. Soc. 44, 140–146 (1976).
Google Scholar
18.Kornaś, J. M. & Medwecka-Kornaś, A. Zespoły roślinne Gorców. I. Naturalne i na wpół naturalne zespoły nieleśne. Fragm. Flor. Geobot. Polon. 13(2), 167–316 (1967).
Google Scholar
19.Ascherson, P. & Engler, A. Beiträge zur Flora Westgaliziens und der Central-Karpaten. Osterr. Bot. Z. 15, 273–285. https://doi.org/10.1007/BF01623075 (1865).Article
Google Scholar
20.Wołoszczak, E. Zapiski botaniczne z Karpat Sądeckich. Spraw. Komis. Fizjogr. AU 30, 174–206 (1895).
Google Scholar
21.Zapałowicz, H. Conspectus Florae Galiciae Criticus Vol. 1 (Nakł. Akad. Umiej., 1906).
Google Scholar
22.Piękoś-Mirkowa, H. & Mirek, Z. Flora Polski. Rośliny Chronione (Oficyna Wydawnicza Multico, 2006).
Google Scholar
23.Dembicz, I. et al. New locality of Trollius europaeus L. and Gladiolus imbricatus L. near Sochocin by Płońsk (Central Poland). Opole Sci. Soc. Nat. J. 44, 36–46 (2011).
Google Scholar
24.Kropač, Z. & Mochnacký, S. Contribution to the segetal communities of Slovakia, Thaiszia. J. Bot. 19, 145–211 (2009).
Google Scholar
25.Mirek, Z., Nikel, A. & Wilk, Ł. Ozdoba łąk reglowych. Tatry 4(50), 50–51 (2014).
Google Scholar
26.Kołos, A. A new locality of Gladiolus imbricatus (Iridaceae) in the North Podlasie Lowland. Fragm. Florist. Geobot. Polon. 22(2), 390–395 (2015).
Google Scholar
27.Falkowski, M. Nowe stanowisko Gladiolus imbricatus (Iridaceae) w dolinie środkowej Wisły. Fragm. Florist. Geobot. Polon. 9, 369–370 (2002).
Google Scholar
28.Nowak, A. & Antonin, A. Interesujące stanowiska Gladiolus imbricatus (Iridaceae) w Bramie Morawskiej. Fragm. Florist. Geobot. Polon. 13(1), 17–22 (2006).
Google Scholar
29.Stepansky, A., Kovalski, I. & Perl-Treves, R. Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 271, 313–332. https://doi.org/10.1007/BF00984373 (1999).Article
Google Scholar
30.Gupta, M., Chyi, Y.-S., Romero-Sverson, J. & Owen. J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006. https://doi.org/10.1007/BF00224530 (1994).31.Sutkowska, A., Pasierbiński, A., Warzecha, T., Mandal, A. & Mitka, J. Refugial pattern of Bromus erectus in Central Europe based on ISSR fingerprinting. Acta Biol. Cracov. Ser. Bot. 55(2), 107–119. https://doi.org/10.2478/abcsb-2013-0026 (2013).Article
Google Scholar
32.Bonin, A. et al. How to track and assess genotyping errors in population genetic studies. Mol. Ecol. 3, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).CAS
Article
Google Scholar
33.Vekemans, X. AFLP-surv 1.0: A Program for Genetic Diversity Analysis with AFLP (and RAPD) Population Data. https://ebe.ulb.ac.be/ebe/AFLP-SURV.html (Laboratoire de Génétique et d’Ecologie Végétales, Université Libre de Bruxelles, 2002).34.Yeh, F., Yang, R. & Boyle, T. POPGENE Version 1.32. Microsoft-Based Freeware for Population Genetic Analysis. https://www.softpedia.com/get/Science-CAD/Popgene-Population-Genetic-Analysis.shtml (Molecular Biology and Biotechnology Center, University of Alberta, 1999).35.Schönswetter, P. & Tribsch, A. Vicariance and dispersal in the Alpine perennial Bupleurum stellatum L (Apiaceae). Taxon 54, 725–732. https://doi.org/10.2307/25065429 (2005).Article
Google Scholar
36.Ehrich, D. AFLPdat: A collection of r functions for convenient handling of AFLP data. Mol. Ecol. Notes 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x. https://mybiosoftware.com/tag/aflpdat (2006).37.Paun, O., Schönswetter, P. & Winkler, M., Intrabiodiv Consortium & Tribsch, A. Historical divergence versus contemporary gene flow: Evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275. https://doi.org/10.1111/j.1365-294x.2008.03908.x (2008).38.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1093/genetics/131.2.479 (1992).CAS
Article
PubMed
PubMed Central
Google Scholar
39.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Biol. 1, 47–50. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1177/117693430500100003 (2005).40.Lynch, M. & Milligan, B. Analysis of population-genetic structure using RAPD markers. Mol. Ecol. 3, 91–99. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1111/j.1365-294x.1994.tb00109.x (1994).41.Saitou, N. & Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS
Article
PubMed
Google Scholar
42.Makarenkov, V. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668. http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex. https://doi.org/10.1093/bioinformatics/17.7.664 (2001).43.Makarenkov, V. & Legendre, P. The fitting of a tree metric to a given dissimilarity with the weighted least squares criterion. J. Classif. 16, 3–26. https://doi.org/10.1007/s003579900040 (1999).Article
Google Scholar
44.Felsenstein, J. Phylip (Phylogeny Inference Package) Version 3.6. https://evolution.genetics.washington.edu/phylip.html (University of Washington, 2005).45.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).ADS
CAS
Article
PubMed
PubMed Central
MATH
Google Scholar
46.Kruskal, J. B. Nonmetric multidimensional scaling: A new numerical method. Psychometrika 29, 115–129 (1964).MathSciNet
Article
Google Scholar
47.Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis, Version 2.1. https://ntsyspc.software.informer.com/ (Exeter Software, 2002).48.Pritchard, J. K, Stephens, M. & Donelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. http://web.stanford.edu/group/pritchardlab/structure.html (2000).49.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
50.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS
Article
PubMed
Google Scholar
51.Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J. & Toomajian, C. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3(7), e196. https://doi.org/10.1371/journal.pbio.0030196 (2005).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Dybova-Jachowicz, S. & Sadowska, A. (eds) Palinologia (Inst. Botaniki im. W. Szafera, Polska Akademia Nauk, 2003).
Google Scholar
53.Cieślak, E., Szczepaniak, M., Kamiński, R. & Heine, W. Stan zachowania krytycznie zagrożonego gatunku Gladiolus paluster (Iridaceae) w Polsce – Analiza zmienności genetycznej osobników w uprawie Ogrodu Botanicznego Uniwersytetu Wrocławskiego w kontekście prowadzonych działań ochronnych. Fragm. Florist. Geobot. Polon. 21(1), 49–66 (2014).
Google Scholar
54.Kutlunina, N., Permyakova, M. & Belyaev, A. Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Syst. Evol. 303, 1–10. https://doi.org/10.1007/s00606-016-1347-x (2017).Article
Google Scholar
55.Sutkowska, A., Pasierbiński, A., Warzecha, T. & Mitka, J. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst. Evol. 300, 1437–1452. https://doi.org/10.2478/abcsb-2013-0026 (2014).Article
Google Scholar
56.Gajewski, Z, Boroń, P, Lenart-Boroń, A, Nowak, B., Sitek, E. & Mitka, J. Conservation of Primula farinosa in Poland with respect to the genetic structure of populations. Acta Soc. Bot. Pol. 87(2), 3577 (2018). https://doi.org/10.5586/asbp.3577.Article
Google Scholar
57.Stojak, J., McDevitt, A. D., Herman, J. S., Searle, J. B. & Wójcik, J. M. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol. J. Linn. Soc. 115, 927–939. https://doi.org/10.1111/bij.1253541 (2015).Article
Google Scholar
58.Szczepaniak, M. & Cieślak, E. Low level of genetic variation within Melica transsilvanica populations from the Kraków-Częstochowa Upland and the Pieniny Mts revealed by AFLPs analysis. Acta Soc. Bot. Pol. 76(4), 321–331. https://doi.org/10.5586/asbp.2007.036 (2007).Article
Google Scholar
59.Bennett, K. D. & Provan, J. What do we mean by ‘refugia’?. Quatern. Sci. Rev. 27, 27–28. https://doi.org/10.1016/j.quascirev.2008.08.019 (2008).Article
Google Scholar
60.Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300(5625), 1563–1565. https://doi.org/10.1126/science.1083264 (2003).ADS
CAS
Article
Google Scholar
61.Brus, R. Growing evidence for the existence of glacial refugia of European beech (Fagus sylvatica L.) in the south-eastern Alps and north-western Dinaric Alps. Periodicum Biol. 112, 239–246 (2010).
Google Scholar
62.Jŏgar, Ü. & Moora, M. Reintroduction of a rare plant (Gladiolus imbricatus) population to a river floodplain—How important is meadow management?. Restor. Ecol. 16, 382–385. https://doi.org/10.1111/j.1526-100X.2008.00435.x (2008).Article
Google Scholar
63.Mitka, J., Boroń, P., Wróblewska, A. & Bąba, W. AFLP analysis reveals intraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe. Acta Soc. Bot. Pol. 84(2), 267–276. https://doi.org/10.5586/asbp.2015.012 (2015).CAS
Article
Google Scholar
64.Biernacka, M. Dawne oraz współczesne formy organizacji pasterstwa w Bieszczadach. Etnogr. Polska 6, 41–61. http://webcache.googleusercontent.com/search?q=cache:JDjzqMdApxIJ:cyfrowaetnografia.pl/Content/454+&cd=1&hl=pl&ct=clnk&gl=pl (1962).65.Stachurska-Swakoń, A., Cieślak, E. & Ronikier, M. Phylogeography of subalpine tall-herb species in Central Europe: the case of Cicerbita alpina. Preslia 84, 121–140. https://doi.org/10.1111/j.1095-8339.2012.01323.x (2012).Article
Google Scholar More
