Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef
1.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 6371 (2018).Article
CAS
Google Scholar
2.Laffoley, D. & Baxter, J. M. Ocean deoxygenation: everyone’s problem—causes, impacts, consequences and solutions (IUCN, 2019).3.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS
CAS
PubMed
Article
Google Scholar
4.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Pandolfi, J. M. et al. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS
CAS
PubMed
Article
Google Scholar
6.Hoegh-Guldberg, O. et al. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).7.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS
CAS
PubMed
Article
Google Scholar
8.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).Article
Google Scholar
9.Wild, C. et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 62, 205–215 (2011).CAS
Article
Google Scholar
10.Muscatine, L. & Porter, J. W. Reef corals-mutualistics symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).Article
Google Scholar
11.Ainsworth, T. D., Turber, R. V. & Gates, R. D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25, 233–240 (2010).PubMed
Article
PubMed Central
Google Scholar
12.Garren, M. et al. Resilience of coral-associated bacterial communities exposed to fish farm effluent. PLoS ONE 4, 10 (2009).Article
CAS
Google Scholar
13.Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA 111, 10227–10232 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
14.Altieri, A. H., Johnson, M. D., Swaminathan, S. D., Nelson, H. & Gedan, K. Resilience of tropical ecosystems to ocean deoxygenation. Trends Ecol. Evol. 36, 227–238 (2021).PubMed
Article
PubMed Central
Google Scholar
15.Lucey, N. M., Collins, M. & Collin, R. Oxygen-mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2020).PubMed
PubMed Central
Article
Google Scholar
16.Kealoha, A. K. et al. Localized hypoxia may have caused coral reef mortality at the Flower Garden Banks. Coral Reefs 39, 119–132 (2020).Article
Google Scholar
17.Nelson, H. R. & Altieri, A. H. Oxygen: the universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS
Article
Google Scholar
18.Glynn, P. W. Coral-reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).ADS
Article
Google Scholar
19.Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
20.Alderice, R. et al. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. Glob. Change Biol. 27, 312–326 (2020).21.Cramer, K. L. et al. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15, 561–567 (2012).PubMed
Article
PubMed Central
Google Scholar
22.Warner, M. E., Fit, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
23.Guzmán, H. M. & Guevara, C. A. Coral reefs of Bocas del Toro, Panama: distribution, structure and state of conservation of the continental reefs of Laguna de Chiriquí and Bahía Almirante. Rev. Biol. Trop. 46, 601–623 (1998).
Google Scholar
24.Prada, C. et al. Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33, 1019–1030 (2014).ADS
Article
Google Scholar
25.Wegley Kelly, L. et al. Diel population and functional synchrony of microbial communities on coral reefs. Nat. Comm. 10, 1691 (2019).26.Wegley Kelly, L., Haas, A. F. & Nelson, C. E. Ecosystem microbiology of coral reefs: Linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes. mSystems 3, e00162-17 (2018).PubMed
PubMed Central
Article
Google Scholar
27.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS
Article
Google Scholar
28.On, S. L. W. et al. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst. Appl. Microbiol. 43, 126108 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed
PubMed Central
Article
Google Scholar
30.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS
PubMed
Article
Google Scholar
31.Wang, Y. et al. Aliiroseovarius marinus sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 70, 334–339 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Park, S. et al. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int. J. Syst. Evol. Microbiol. 65, 2646–2652 (2015).33.Zhou, H. et al. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. Int. Biodeterio. Biodegrad. 150, 104961 (2020).CAS
Article
Google Scholar
34.Friedrich, C. G. et al. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Wirsen, C. O. et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp that produces filamentous sulfur. Appl. Environ. Microbiol. 68, 316–325 (2002).36.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).37.Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 747–1763 (2014).Article
CAS
Google Scholar
38.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article
Google Scholar
39.Sievert, S. M. et al. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271–276 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Berg, C. et al. Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Microbiol. Ecol. 85, 251–261 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Broman, E. et al. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front. Microbiol. 8, 2453 (2017).42.Bourlat, S. J. et al. Genomics in marine monitoring: new opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).ADS
Article
Google Scholar
44.Fitt, W. K. et al. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article
Google Scholar
45.Johnson, M. D. et al. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. PLoS ONE 15, e0228448 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
46.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74 (1991).Article
Google Scholar
47.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher-plants, algae, and natural phytolplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).48.Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).ADS
Article
Google Scholar
49.R Core Team. R: A language and environment for statistical computing (v3.6.2) (R Foundation for Statistical Computing, 2019).50.Kuznetsova, A., Brockhoff, P. B. & Christensen R. H. B. lmerTest package: tests in linear mixed effects models (2017).51.Oksanen, J. et al. The vegan package. Community ecology package. 631–637 (2007).52.Martinez Arbizu, P. Pairwiseadonis: pairwise multilevel comparison using adonis (2017).53.Nguyen, B. N. et al. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci. Rep. 10, 6729 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
54.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
55.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems 1, e00009-15 (2016).56.Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. Msystems 2, e00127–00116 (2017).57.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).58.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
61.McMurdie, P. J. & Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).62.Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Google Scholar
63.Roberts, D. W. labdsv: ordination and multivariate analysis for ecology. R package (2017).64.Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platformfor ‘omics data. PeerJ 3, e1319 (2015).65.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Koster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).PubMed
Article
CAS
PubMed Central
Google Scholar
67.Eren, A. M. et al. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).68.Li, D. H. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).70.Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).71.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U54 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Menzel, P., Ng, K. L., & Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Comm. 7, 11257 (2016).73.Roux, S. et al. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).74.Buchfink, B., Xie, C. & Huson, D. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS
PubMed
Article
Google Scholar
75.Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS
PubMed
Article
Google Scholar
76.Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2014).Article
CAS
Google Scholar
77.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Comm. 9, 1–8 (2018).ADS
Article
CAS
Google Scholar
80.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
84.Johnson, M.D. et al. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Zenodo. https://doi.org/10.5281/zenodo.4940132 (2021). More