Distribution of deadwood and other forest structural indicators relevant for bird conservation in Natura 2000 special protection areas in Poland
1.Sundseth, K. & Creed, P. Natura 2000: Protecting Europe’s Biodiversity (Office for Official Publications of the European Communities, 2008).
Google Scholar
2.Wilk, T., Jujka, M., Krogulec, J. & Chylarecki, P. Important Bird Areas of International Importance in Poland (OTOP, 2010).
Google Scholar
3.European Commission. Report on the Status of and Trends for Habitat Types and Species Covered by the Birds and Habitats Directives for the 2007–2012 Period as Required Under Article 17 of the Habitats Directive and Article 12 of the Birds Directive (European Commission DG Environment, 2015).
Google Scholar
4.Birds Directive. Council Directive 79/409/EEC on the Conservation of Wild Birds. http://www.jncc.gov.uk/page-1373 (1979).5.Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. & Norris, K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137, 348–357. https://doi.org/10.1016/j.agee.2010.03.005 (2010).Article
Google Scholar
6.Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687. https://doi.org/10.1016/j.ecolind.2019.04.064 (2019).Article
Google Scholar
7.European Commission. The Interpretation Manual of European Union Habitats (European Commission DG Environment, 2007).
Google Scholar
8.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article
Google Scholar
9.Bujoczek, M., Rybicka, J. & Bujoczek, L. Effects of disturbances in a subalpine forest on its structural indicators and bird diversity. Ecol. Indic. 112, 106126. https://doi.org/10.1016/j.ecolind.2020.106126 (2020).Article
Google Scholar
10.van Galen, L. G., Jordan, G. J. & Baker, S. C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 1, e55. https://doi.org/10.1111/csp2.55 (2019).Article
Google Scholar
11.Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159. https://doi.org/10.1111/1365-2664.13181 (2018).Article
Google Scholar
12.Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manag. 264, 110401. https://doi.org/10.1016/j.jenvman.2020.110401 (2020).Article
Google Scholar
13.Wesołowski, T. Lessons from long-term hole-nester studies in a primeval temperate forest. J. Ornithol. 148, 395–405. https://doi.org/10.1007/s10336-007-0198-1 (2007).Article
Google Scholar
14.Maziarz, M. & Broughton, R. K. Breeding microhabitat selection by Great Tits Parus major in a deciduous primeval forest (Białowieża National Park, Poland). Bird Study 62, 358–367. https://doi.org/10.1080/00063657.2015.1050994 (2015).Article
Google Scholar
15.Van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity nesting birds of the world. Divers. Distrib. 23, 1120–1131. https://doi.org/10.1111/ddi.12601 (2017).Article
Google Scholar
16.McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).Article
Google Scholar
17.Holmes, R. T., Bonney, R. E. & Pacala, S. W. Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology 60, 512–520. https://doi.org/10.2307/1936071 (1979).Article
Google Scholar
18.Lain, E. J., Haney, A., Burris, J. M. & Burton, J. Response of vegetation and birds to severe wind disturbance and salvage logging in a southern boreal forest. For. Ecol. Manag. 256, 863–871. https://doi.org/10.1016/j.foreco.2008.05.018 (2008).Article
Google Scholar
19.Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forest: A hierarchical typology for inventory standarization. Ecol. Indic. 83, 194–207. https://doi.org/10.1016/j.ecolind.2017.08.051 (2018).Article
Google Scholar
20.Zielewska-Büttner, K., Heurich, M., Müller, J. & Braunisch, V. Remotely sensed single tree data enable the determination of habitat thresholds for the three-toed woodpecker (Picoides tridactylus). Remote Sens. 10, 1972. https://doi.org/10.3390/rs10121972 (2018).ADS
Article
Google Scholar
21.Mikusiński, G., Gromadzki, M. & Chylarecki, P. Woodpeckers as indicators of forest bird diversity. Conserv. Biol. 15, 208–217 (2001).Article
Google Scholar
22.Wesołowski, T. & Rowiński, P. The breeding behaviour of the Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51, 143–155. https://doi.org/10.1080/00063650409461346 (2004).Article
Google Scholar
23.Barbaro, L. et al. Hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in oldgrowth forests of the southern French Prealps. J. Ornithol. 157, 333–342. https://doi.org/10.1007/s10336-015-1285-3 (2016).Article
Google Scholar
24.Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
Google Scholar
25.Harestad, A. S. & Keisker, D. G. Nest tree use by primary cavity-nesting birds in south central British Columbia. Can. J. Zool. 67, 1067–1073. https://doi.org/10.1139/z89-148 (1989).Article
Google Scholar
26.Walankiewicz, W., Czeszczewik, D., Mitrus, C. & Bida, E. Znaczenie martwych drzew dla zespołu dzięciołów w lasach liściastych Puszczy Białowieskiej. Notatki Ornitol. 43, 61–71 (2002).
Google Scholar
27.Czeszczewik, D. & Walankiewicz, W. Natural nest sites of the Pied Flycatcher Ficedula hypoleuca in a primeval forest. Ardea 91, 221–230 (2003).
Google Scholar
28.Kosiński, Z. & Kempa, M. Density distribution and nest−sites selection of woodpeckers Picidae in managed forest of western Poland. Pol. J. Ecol. 55, 519–533 (2007).
Google Scholar
29.Zawadzka, D. & Zawadzki, G. Charakterystyka drzew gniazdowych dzięcioła czarnego w Puszczy Augustowskiej. Sylwan 161, 1002–1009 (2017).
Google Scholar
30.Urban, D. L. & Smith, T. M. Microhabitat pattern and the structure of forest bird communities. Am. Nat. 133, 811–829. https://doi.org/10.1086/284954 (1989).Article
Google Scholar
31.Piechnik, Ł, Kurek, P., Ledwoń, M. & Holeksa, J. Both natural and anthropogenic microhabitats and fine-scale habitat features of managed forest can affect the abundance of the Eurasian Wren. For. Ecol. Manag. 456, 117695. https://doi.org/10.1016/j.foreco.2019.117695 (2020).Article
Google Scholar
32.Sefidi, K., EsfandiaryDarabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest 9, 658. https://doi.org/10.3832/ifor1080-008 (2016).Article
Google Scholar
33.Oettel, J. et al. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. For. Ecol. Manag. 463, 118016. https://doi.org/10.1016/j.foreco.2020.118016 (2020).Article
Google Scholar
34.Bashta, A. T. V. Biotope distribution and habitat preference of breeding bird communities in alpine and subalpine belts in the Tatra and Babia Gora Mts. (Southern Poland). Berkut 14, 145–161 (2005).
Google Scholar
35.Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160. https://doi.org/10.1017/S0376892915000363 (2016).Article
Google Scholar
36.Dellinger, R. L., Wood, P. B., Keyser, P. D. & Seidel, G. Habitat partitioning of four sympatric thrush species at three spatial scales on a managed forest in West Virginia. Auk 124, 1425–1438. https://doi.org/10.1093/auk/124.4.1425 (2007).Article
Google Scholar
37.Leidinger, J. et al. Formerly managed forest reserves complement integrative management for biodiversity conservation in temperate European forests. Biol. Conserv. 242, 108437. https://doi.org/10.1016/j.biocon.2020.108437 (2020).Article
Google Scholar
38.Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615. https://doi.org/10.1016/j.gecco.2019.e00615 (2019).Article
Google Scholar
39.Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 129, 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article
Google Scholar
40.Kajtoch, Ł, Figarski, T. & Pełka, J. The role of forest structural elements in determining the occurrence of two specialist woodpecker species in the Carpathians, Poland. Ornis Fenn. 90, 23–40 (2013).
Google Scholar
41.Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article
Google Scholar
42.Hunter, M. Jr. et al. Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecol. Indic. 63, 121–125. https://doi.org/10.1016/j.ecolind.2015.11.049 (2016).Article
Google Scholar
43.NFI. Wielkoobszarowa inwentaryzacja stanu lasu. Wyniki za okres 2009–2013 (Biuro Urządzania Lasu i Geodezji Leśnej, 2014).
Google Scholar
44.CRFOP. Centralny Rejestr Form Ochrony Przyrody. http://crfop.gdos.gov.pl/CRFOP/ (2020).45.GDOS. Generalna Dyrekcja Ochrony Środowiska. https://www.gdos.gov.pl/dane-i-metadane (2020).46.BDL. Bank Danych o Lasach. https://www.bdl.lasy.gov.pl/portal (2020).47.Qgis 3.10. QGIS Geographic Information System. http://www.qgis.org (QGIS Association, 2020).48.ME. Instrukcja wykonywania wielkoobszarowej inwentaryzacji stanu lasu (Typescript of the Ministry of the Environment, 2010).
Google Scholar
49.Talarczyk, A. National forest inventory in Poland. Balt. For. 20, 333–341 (2014).
Google Scholar
50.Standard Data Form. Instrukcja wypełniania Standardowych Formularzy Danych. http://natura2000.gdos.gov.pl (2012).51.Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manag. 356, 216–223. https://doi.org/10.1016/j.foreco.2015.07.011 (2015).Article
Google Scholar
52.Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manag. 407, 95–105. https://doi.org/10.1016/j.foreco.2017.09.002 (2017).Article
Google Scholar
53.Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest Biogeosci. For. 8, 377–385. https://doi.org/10.3832/ifor1212-007 (2015).Article
Google Scholar
54.Czuraj, M. Tablice miąższości kłód odziomkowych i drzew stojących (PWRiL, 1990).
Google Scholar
55.Oramus, M. Breeding habitat of wren (Troglodytes troglodytes) in lower mountain zone forests in Gorce National Park. Master thesis (University of Agriculture in Krakow, Faculty of Forestry, Department of Forest Biodiversity 2017).56.Statistica 13 software. Dell Statistica (data analysis software system), version 13. software.dell.com (2016).57.Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343. https://doi.org/10.3390/f11030343 (2020).Article
Google Scholar
58.Morán-López, R., Cortés Gañán, E., Uceda Tolosa, O. & Sánchez Guzmán, J. M. The umbrella effect of Natura 2000 annex species spreads over multiple taxonomic groups, conservation attributes and organizational levels. Anim. Conserv. https://doi.org/10.1111/acv.12551 (2019).Article
Google Scholar
59.Lindenmayer, D. B., Franklin, J. F. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445. https://doi.org/10.1016/j.biocon.2006.02.019 (2006).Article
Google Scholar
60.Gruber, B. et al. “Mind the gap!”—How well does Natura 2000 cover species of European interest?. Nat. Conserv. 3, 45–62. https://doi.org/10.3897/natureconservation.3.3732 (2012).Article
Google Scholar
61.Kukkala, A. S. et al. Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol. Conserv. 198, 193–201. https://doi.org/10.1016/j.biocon.2016.04.016 (2016).Article
Google Scholar
62.Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813. https://doi.org/10.1126/science.1146002 (2007).ADS
CAS
Article
PubMed
Google Scholar
63.Nilsson, L., Bunnefeldb, N., Perssonc, J., Žydelisd, R. & Månssona, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7. https://doi.org/10.1016/j.biocon.2019.05.006 (2019).Article
Google Scholar
64.Winter, S. et al. The impact of Natura 2000 on forest management: A socio-ecological analysis in the continental region of the European Union. Biodivers. Conserv. 23, 3451–3482. https://doi.org/10.1007/s10531-014-0822-3 (2014).Article
Google Scholar
65.Zisenis, M. Is the Natura 2000 network of the European Union the key land use policy tool for preserving Europe’s biodiversity heritage?. Land Use Policy 69, 408–416. https://doi.org/10.1016/j.landusepol.2017.09.045 (2017).Article
Google Scholar
66.Bashta, A. T. V. Breeding bird community of monocultural spruce plantation in the Skolivski Beskids (the Ukrainian Carpathians). Berkut 8, 9–14 (1999).
Google Scholar
67.Baláž, M. & Balážová, M. Diversity and abundance of bird communities in three mountain forest stands: Effect of the habitat heterogeneity. Pol. J. Ecol. 60, 629–634 (2012).
Google Scholar
68.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68. https://doi.org/10.1007/s13595-019-0832-0 (2019).Article
Google Scholar
69.Nappi, A., Drapeau, P. & Leduc, A. How important is dead wood for woodpeckers foraging in eastern North American boreal forests?. For. Ecol. Manag. 346, 10–21. https://doi.org/10.1016/j.foreco.2015.02.028 (2015).Article
Google Scholar
70.Raphael, M. & White, M. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. 86, 3–66 (1984).
Google Scholar
71.Bujoczek, L., Bujoczek, M. & Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 121, 107027. https://doi.org/10.1016/j.ecolind.2020.107027 (2021).Article
Google Scholar
72.Lešo, P., Kropil, R. & Kajtoch, Ł. Effects of forest management on bird assemblages in oak-dominated stands of the Western Carpathians-Refuges for rare species. For. Ecol. Manag. 453, 117620. https://doi.org/10.1016/j.foreco.2019.117620 (2019).Article
Google Scholar
73.De Zan, L. R., de Gasperis, S. R., Fiore, L., Battisti, C. & Carpaneto, G. M. The importance of dead wood for hole-nesting birds: A two years study in three beech forests of central Italy. Isr. J. Ecol. Evol. 63(1), 19–27. https://doi.org/10.1080/15659801.2016.1191168 (2017).Article
Google Scholar
74.Wilk, T., Bobrek, R., Pępkowska-Krol, A., Neubauer, G. & Kosicki, J. Z. The Birds of the Polish Carpathians—Status, Threats, Conservation (OTOP, 2016).
Google Scholar
75.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests–Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182. https://doi.org/10.1016/j.foreco.2016.06.017 (2016).Article
Google Scholar
76.Lõhmus, A. Do Ural owls (Strix uralensis) suffer from the lack of nest sites in managed forests?. Biol. Conserv. 110, 1–9. https://doi.org/10.1016/S0006-3207(02)00167-2 (2003).Article
Google Scholar
77.Tanona, M. & Czarnota, P. Natural disturbances of the structure of Norway spruce forests in Europe and their impact on the preservation of epixylic lichen diversity: A review. Ecol. Quest. 30, 1–17. https://doi.org/10.12775/EQ.2019.024 (2019).Article
Google Scholar
78.Repel, M., Zámečník, M. & Jarčuška, B. Temporal changes in bird communities of wind-affected coniferous mountain forest in differently disturbed stands (High Tatra Mts., Slovakia). Biologia 75, 1931–1943. https://doi.org/10.2478/s11756-020-00455-5 (2020).Article
Google Scholar
79.Přívětivý, T. et al. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)?. For. Ecol. Manag. 381, 177–187. https://doi.org/10.1016/j.foreco.2016.09.033 (2016).Article
Google Scholar
80.Wichmann, G. Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J. Ornithol. 145, 69–73. https://doi.org/10.1007/s10336-003-0013-6 (2004).Article
Google Scholar
81.Müller, D., Schröder, B. & Müller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J. Ornithol. 150, 717–732. https://doi.org/10.1007/s10336-009-0390-6 (2009).Article
Google Scholar
82.Storch, I. Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biol. Conserv. 70, 237–243. https://doi.org/10.1016/0006-3207(94)90168-6 (1994).Article
Google Scholar
83.Swenson, J. E. The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10, 227–238 (1995).
Google Scholar
84.Drapeau, P., Nappi, A., Imbeau, L. & Saint-Germain, M. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. For. Chron. 85, 227–234. https://doi.org/10.5558/tfc85227-2 (2009).Article
Google Scholar
85.Mikusiński, G. et al. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biol. Conserv. 227, 266–274. https://doi.org/10.1016/j.biocon.2018.09.001 (2018).Article
Google Scholar
86.Dufour-Pelletier, S., Tremblay, J. A., Hébert, C., Lachat, T. & Ibarzabal, J. Testing the effect of snag and cavity supply on deadwood-associated species in a managed boreal forest. Forests 11, 424. https://doi.org/10.3390/f11040424 (2020).Article
Google Scholar
87.Pirovano, A. R. & Zecca, G. Black Woodpecker Dryocopus martius habitat selection in the Italian Alps: Implications for conservation in Natura 2000 network. Bird Conserv. Int. 24, 299–315. https://doi.org/10.1017/S0959270913000439 (2014).Article
Google Scholar More