Beneficial insects are associated with botanically rich margins with trees on small farms
1.Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).Article
PubMed
Google Scholar
2.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).Article
Google Scholar
3.Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).Article
Google Scholar
4.Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).Article
Google Scholar
5.Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).CAS
Article
Google Scholar
6.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).CAS
Article
PubMed
Google Scholar
7.Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).Article
Google Scholar
8.Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).Article
Google Scholar
9.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).Article
Google Scholar
11.Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).Article
Google Scholar
12.Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).Article
Google Scholar
13.Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).Article
Google Scholar
14.Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).Article
Google Scholar
15.Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).Article
PubMed
PubMed Central
Google Scholar
16.Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).Article
Google Scholar
17.Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).Article
Google Scholar
18.Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).Article
PubMed
Google Scholar
19.Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
20.Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).Article
Google Scholar
21.Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).Article
PubMed
PubMed Central
Google Scholar
22.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).Article
Google Scholar
23.Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).Article
Google Scholar
24.Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).25.Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).Article
Google Scholar
26.Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).Article
Google Scholar
27.Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).Article
Google Scholar
28.Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).
Google Scholar
29.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).30.ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).31.Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).Article
Google Scholar
32.Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).Article
Google Scholar
33.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).Article
Google Scholar
34.Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).Article
Google Scholar
35.Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).Article
Google Scholar
36.Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).Article
Google Scholar
37.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).Article
Google Scholar
38.Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).39.Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
40.Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).Article
Google Scholar
41.Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).
Google Scholar
42.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).Article
Google Scholar
43.Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).CAS
Article
Google Scholar
44.Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).Article
Google Scholar
45.Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).Article
Google Scholar
46.Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).Article
Google Scholar
47.Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).Article
Google Scholar
48.Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).MathSciNet
Article
MATH
Google Scholar
49.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article
Google Scholar
50.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet
Article
Google Scholar
51.Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).
Google Scholar
52.Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).Article
Google Scholar
53.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).MathSciNet
Article
Google Scholar
54.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).
Google Scholar More