More stories

  • in

    Beneficial insects are associated with botanically rich margins with trees on small farms

    1.Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).Article 
    PubMed 

    Google Scholar 
    2.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).Article 

    Google Scholar 
    3.Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).Article 

    Google Scholar 
    4.Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).Article 

    Google Scholar 
    5.Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).CAS 
    Article 

    Google Scholar 
    6.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).Article 

    Google Scholar 
    8.Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).Article 

    Google Scholar 
    9.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).Article 

    Google Scholar 
    11.Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).Article 

    Google Scholar 
    12.Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).Article 

    Google Scholar 
    13.Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).Article 

    Google Scholar 
    14.Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).Article 

    Google Scholar 
    15.Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).Article 

    Google Scholar 
    17.Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).Article 

    Google Scholar 
    18.Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).Article 
    PubMed 

    Google Scholar 
    19.Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).Article 

    Google Scholar 
    21.Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).Article 

    Google Scholar 
    23.Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).Article 

    Google Scholar 
    24.Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).25.Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).Article 

    Google Scholar 
    26.Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).Article 

    Google Scholar 
    27.Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).Article 

    Google Scholar 
    28.Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).30.ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).31.Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).Article 

    Google Scholar 
    32.Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).Article 

    Google Scholar 
    33.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).Article 

    Google Scholar 
    34.Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).Article 

    Google Scholar 
    35.Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).Article 

    Google Scholar 
    36.Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).Article 

    Google Scholar 
    37.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).Article 

    Google Scholar 
    38.Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).39.Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).Article 

    Google Scholar 
    41.Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).
    Google Scholar 
    42.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).Article 

    Google Scholar 
    43.Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).CAS 
    Article 

    Google Scholar 
    44.Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).Article 

    Google Scholar 
    45.Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).Article 

    Google Scholar 
    46.Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).Article 

    Google Scholar 
    47.Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).Article 

    Google Scholar 
    48.Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    49.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    50.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    51.Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).
    Google Scholar 
    52.Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).Article 

    Google Scholar 
    53.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    54.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).
    Google Scholar  More

  • in

    The isotopic niche of Atlantic, biting marine mammals and its relationship to skull morphology and body size

    1.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    2.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world. Sea mammals (Lynx Edicions 2014).3.Plagányi, E. E. & Butterworth, E. S. Competition with fisheries in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsing, & J. G. M. Thewsissen) 269–275 (Academic Press, 2009).4.Read, A. J. The looming crisis: interactions between marine mammals and fisheries. J. Mammal. 89, 541–548 (2008).Article 

    Google Scholar 
    5.Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries? PLoS One 7, e43966 (2012).6.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield?. Science 323, 880–881 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.DeMaster, D. P., Fowler, C. W., Perry, S. L. & Richlen, M. F. Predation and competition: the impact of fisheries on marine-mammals populations over the next one hundred years. J. Mammal. 82, 641–651 (2001).Article 

    Google Scholar 
    8.Smith, T. D. Interactions between marine mammals and fisheries: an unresolved problem for fisheries research in Whales, seals, fish and man (eds A.S. Blix, L. Walløe, & t Ø. Ultan) 527–536 (Elsevier Science, 1995).9.Hall, A. J., Watkins, J. & Hammond, P. S. Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar. Ecol. Prog. Ser. 170, 269–281 (1998).ADS 
    Article 

    Google Scholar 
    10.Santos, M. B., Martin, V., Fernández, A. & Pierce, G. J. Insights into the diet of beaked whales from the atypical mass stranding in the Canary Islands in September 2002. J. Mar. Biol. Assoc. U. K. 87, 243–251 (2007).Article 

    Google Scholar 
    11.Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J. & Aguilar, A. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean sea. PLoS One 6, e24554 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Adam, P. J. & Berta, A. Evolution of prey capture strategies and diet in the pinnipedimorpha (Mammalia, Carnivora). Oryctos 4, 83–107 (2002).
    Google Scholar 
    13.Kienle, S. S. & Berta, A. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J. Anat. 228, 396–413 (2016).PubMed 
    Article 

    Google Scholar 
    14.McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W. & McHenry, C. R. Skull shape reflects prey size niche in toothed whales. Biol. J. Linn. Soc. 121, 936–946 (2017).Article 

    Google Scholar 
    15.McCurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B 284, 20162348 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Davis, R. W. Marine Mammals: adaptations for an aquatic life (Springer, 2019).Book 

    Google Scholar 
    17.Marshall, C. D. & Pyenson, N. D. Feeding in aquatic mammals: an evolutionary and functional approach in Feeding in vertebrates: evolution, morphology, behaviour, biomechanics. Fascinating Life Sciences (eds V. Bels & I. Whishaw) 743–785 (Springer, Cham, 2019).18.Werth, A. J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579–588 (2006).Article 

    Google Scholar 
    19.Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 20140709 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Kienle, S. S., Law, C. J., Costa, D. P., Berta, A. & Mehta, R. S. Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B 284, 20171035 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. & Arim, M. Gape and energy limitation determining a humped relationship between trophic position and body size. Can. J. Fish. Aquat. Sci. 72, 198–205 (2015).CAS 
    Article 

    Google Scholar 
    22.Taylor, M. A. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91, 171–195 (1987).Article 

    Google Scholar 
    23.Werth, A. Feeding in marine mammals in Feeding: form, function, and evolution in tetrapod vertebrates (ed K. Schwenk) 487–526 (Academic Press, 2010).24.Hocking, D. P., Salverson, M., Fitzgerald, E. M. G. & Evans, A. R. Australian fur seals (Arctocephalus pusillus doriferus) use raptorial biting and suction feeding when targeting prey in different foraging scenarios. PLoS One 9, e112521 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bearhop, S., Adams, C. E., Waldrons, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    27.Layman, C. A., Arrington, D. A., Montanä, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Michener, R. H. & Lajtha, K. Stable isotopes in ecology and environmental science. Second edn, (Blackwell publishing, 2007).30.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    31.Das, K. et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by d13C and d15N measurements and their trace metal concentration. Mar. Environ. Res. 56, 349–365 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from d13C and d15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).ADS 
    Article 

    Google Scholar 
    33.Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Biol. Ecol. 413, 150–158 (2012).Article 
    CAS 

    Google Scholar 
    34.Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Costa, A. F., Botta, S., Siciliano, S. & Giarrizzo, T. Resource partitioning among stranded aquatic mammals from Amazon and northeastern coast of Brazil revealed through carbon and nitrogen stable isotopes. Sci. Rep. 10, 12897 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bisi, T. L. et al. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 8, e82205 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).ADS 
    Article 

    Google Scholar 
    38.Saporiti, F. et al. Resource partitioning among air-breathing marine predators: are body size and mouth diameter the major determinants?. Mar. Ecol. 37, 957–969 (2016).ADS 
    Article 

    Google Scholar 
    39.Ford, J. K. B. Killer whale Orcinus orca in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 531–537 (Academic Press, 2018).40.Durban, J. W. & Pitman, R. L. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. Biol. Lett. 8, 274–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Drago, M. et al. Mouth gape determines the response of marine top predators to long-term fishery-induced changes in food web structure. Sci. Rep. 8, 15759 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Drago, M. et al. Isotopic niche partitioning between two apex predators over time. J. Anim. Ecol. 86, 766–780 (2017).PubMed 
    Article 

    Google Scholar 
    43.Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).Article 

    Google Scholar 
    44.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    46.Keeling, C. D. The Suess effect: 13Carbon-14Carbon interactions. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    47.Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 
    Article 

    Google Scholar 
    48.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing, http://www.R-project.org. (2018).53.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes analysis. I: Turnover of 13C in tissues. The Condor 94, 181–188 (1992).Article 

    Google Scholar 
    54.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94, 189–197 (1992).Article 

    Google Scholar 
    55.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Barnes, C., Seeting, C. J., Jennings, S., Barry, J. T. & Polunin, N. V. C. Effect of temperature and ration size on carbon and nitrogen isotope trophic fractionation. Funct. Ecol. 21, 356–362 (2007).Article 

    Google Scholar 
    57.Bloomfield, A. L., Elsdon, T. S., Walther, B. D. & Gier, E. J. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects?. J. Exp. Mar. Biol. Ecol. 399, 48–59 (2011).CAS 
    Article 

    Google Scholar 
    58.Saporiti, F. et al. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 538, 23–34 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Wells, R. S. & Scott, M. D. Bottlenose dolphin, Tursiops truncatus, common bottlenose dolphin in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 118–125 (Academic Press, 2018).60.Natoli, A., Peddemors, V. M. & Hoelzel, A. R. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Costa, A. P. B., Rosel, P. E., Daura-Jorge, F. G. & Simões-Lopes, P. C. Offshore and coastal common bottlenose dolphins of the western South Atlantic face-to-face: what the skull and the spine can tell us. Mar. Mamm. Sci. 32, 1433–1457 (2016).Article 

    Google Scholar 
    62.Drago, M. et al. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean. Estuar. Coast. Shelf Sci. 238, 106708 (2020).63.Koen, A. M., Pedraza, S. N., Sciavini, A. C. M., Goodall, R. N. & Crespo, E. A. Stomach contents of false killer whales (Pseudorca crassidens) stranded on the coasts of the strait of Magellan, Tierra del Fuego. Mar. Mamm. Sci. 15, 712–724 (1999).64.Page, C. E. & Cooper, N. Morphological convergence in ‘river dolphin’ skulls. PeerJ 5, e4090 (2017).65.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldañas, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).Article 

    Google Scholar 
    66.Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U.S.A. 100, 1781–1786 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Warren, P. H. & Lawton, J. H. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure?. Oecologia 74, 231–235 (1987).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Kerr, S. R. & Dickie, L. M. The biomass spectrum: a predator-prey theory of aquatic production. (Columbia University Press, 2001).69.Leaper, R. & Huxham, M. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99, 443–456 (2002).Article 

    Google Scholar 
    70.Memmott, J., Martinez, N. D. & J.E., C. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).71.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Jennings, S. Size-based analyses of aquatic food webs in Aquatic food webs: an ecosystem approach (eds A. Belgrano, U.M. Scharler, J. Dunne, & R.E. Ulanowicz) 86–97 (Oxford University Press, 2005).73.Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535 (2005).Article 

    Google Scholar 
    74.Jeglinski, J., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size – same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).PubMed 
    Article 

    Google Scholar 
    75.Akin, S. & Winemiller, K. O. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33, 144–153 (2008).ADS 
    Article 

    Google Scholar 
    76.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    77.Madigan, D. J. et al. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2, 654 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks

    1.Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997;61:262–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7:235–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–48.CAS 
    Article 

    Google Scholar 
    8.Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol. 2016;18:1970–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology. 2013;11:340–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Schubotz F, Hays LE, Meyer-Dombard D, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol. 2015;6:42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fortunato CS, Huber JA. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 2016;10:1925–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, et al. Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci USA. 2018;115:6756–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Coskun ÖK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations with benthic carbon turnover using quantitative stable isotope probing. Appl Environ Microbiol 2018;84:e01083–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Häggblom MM, et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014;8:139–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci. 2016;9:619–23.CAS 
    Article 

    Google Scholar 
    17.Klein F, Tarnas JD, Bach W. Abiotic sources of molecular hydrogen on Earth. Elements. 2020;16:19–24.CAS 
    Article 

    Google Scholar 
    18.Seewald JS, Doherty KW, Hammar TR, Liberatore SP. A new gas-tight isobaric sampler for hydrothermal fluids. Deep Sea Res Part I. 2002;49:189–96.CAS 
    Article 

    Google Scholar 
    19.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun OK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv. 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Oremland RS, Miller LG, Whiticar MJ. Sources and flux of natural gases from Mono Lake, California. Geochim Cosmochim Acta. 1987;51:2915–29.CAS 
    Article 

    Google Scholar 
    22.Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.CAS 
    Article 

    Google Scholar 
    23.Butler IB, Schoonen MA, Rickard DT. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta. 1994;41:211–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol. 2019;21:374–88.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18:1403–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coskun ÖK, Özen V, SD Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.27.Pichler M, Coskun ÖK, Ortega-Arbulú A-S, Conci N, Wörheide G, Vargas S, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen 2018:7;e00611.28.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 

    Google Scholar 
    29.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    Article 

    Google Scholar 
    30.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Youngblut ND, Barnett SE, Buckley DH. HTSSIP: an R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS ONE. 2018;13:e0189616.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.R. Team. Others, RStudio: integrated development for R. vol. 42. Boston, MA: RStudio, Inc; 2015. P. 14.
    Google Scholar 
    36.Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Orsi WD, Morard R, Vuillemin A, Eitel M, Worheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, et al. Measurement error and resolution in quantitative stable isotope probing: implications for experimental design. mSystems. 2020;5:e00151–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Youngblut ND, Barnett SE, Buckley DH. SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol 2018;9:570.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–235.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 2016;6:2774–80.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol. 2019;21:682–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Lecoeuvre A, Menez B, Cannat M, Chavagnac V, Gerard E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 2021;15:818–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 2009;3:231–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, et al. Abundance and diversity of microbial life in ocean crust. Nature. 2008;453:653–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Schrenk MO, Brazelton WJ, Lang SQ. Serpentinization, carbon, and deep life. Rev Mineral Geochem 2013;75:575–606.CAS 
    Article 

    Google Scholar 
    57.Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, et al. Magnetite in seafloor serpentinite—some like it hot. Geology. 2014;42:135–8.CAS 
    Article 

    Google Scholar 
    58.Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 2005;307:1428–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    60.McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA. 2014;111:E3948–3956.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, et al. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J. 2021;15:1121–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015;6:872.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Vuillemin A, Vargas S, Coskun OK, Pockalny R, Murray RW, Smith DC, et al. Atribacteria reproducing over millions of years in the Atlantic Abyssal subseafloor. mBio. 2020;11:e01937–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bryant FO, Adams MW. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 1989;264:5070–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Berney M, Greening C, Conrad R, Jacobs WR Jr, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA 2014;111:11479–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu C-H, et al. The [NiFe]-hydrogenase of Pyrococcus furiosus exhibits a new type of oxygen tolerance. J Am Chem Soc. 2015;137:13556–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing Thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.W Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.Article 
    CAS 

    Google Scholar 
    72.Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiol Ecol 2018;94:fiy014.73.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Diaz R, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural response of benthic macrofauna. Oceanogr Mar Biol. 1995;33:245–303.
    Google Scholar 
    75.Jenkins MC, Kemp WM. The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr. 1984;29:609–19.CAS 
    Article 

    Google Scholar 
    76.Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol. 2017;8:56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 2004;39:165–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, Rempfert KR, et al. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 2019;13:1750–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Morrill PL, Brazelton WJ, Kohl L, Rietze A, Miles SM, Kavanagh H, et al. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front Microbiol. 2014;5:613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry. 2011;50:1910–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Seewald JS, Zolotov MY, McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta. 2006;70:446–60.CAS 
    Article 

    Google Scholar 
    83.Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev. 2014;114:4149–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 2010;466:478–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat Commun. 2020;11:6381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Brisbarre N, Fardeau M-L, Cueff V, Cayol J-L, Barbier G, Cilia V, et al. Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol. 2003;53:1043–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, et al. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020;96:fiaa080.89.Jansen K, Thauer RK, Widdel F, Fuchs G. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol. 1984;138:257–62.CAS 
    Article 

    Google Scholar 
    90.Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, et al. Reviews and syntheses: heterotrophic fixation of inorganic carbon—significant but invisible flux in global carbon cycling. Biogeosciences 2020;18:3689–3700.91.Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71. https://doi.org/10.1111/j.1472-4669.2010.00249.x92.Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14. 10.1038/nrmicro1991. More

  • in

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    1.Tang, X. et al. Scheme design and main result analysis of the fourth national survey on giant pandas. For. Resour. Manag. 1, 11–16 (2015).
    Google Scholar 
    2.Swaisgood, R. R., Wang, D. & Wei, F. Panda downlisted but not out of the woods. Conserv. Lett. 11, 1 (2018).Article 

    Google Scholar 
    3.Xu, W. et al. Reassessing the conservation status of the giant panda using remote sensing. Nat. Ecol. Evol. 1, 1635–1638 (2017).PubMed 
    Article 

    Google Scholar 
    4.Shen, G. et al. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 190, 43–50 (2015).Article 

    Google Scholar 
    5.Tian, Z. et al. The next widespread bamboo flowering poses a massive risk to the giant panda. Biol. Conserv. 234, 180–187 (2019).Article 

    Google Scholar 
    6.Lu, Z. et al. Patterns of genetic diversity in remaining giant panda populations. Conserv. Biol. 15, 1596–1607 (2001).Article 

    Google Scholar 
    7.Pimm, S. L. The Balance of Nature (Univ. Chicago Press, 1991).8.Pimm, S. L., Dollar, L. & Bass, O. L. Jr The genetic rescue of the Florida panther. Anim. Conserv. 9, 115–122 (2006).Article 

    Google Scholar 
    9.Qing, J. et al. The minimum area requirements (MAR) for giant panda: an empirical study. Sci. Rep. 6, 37715 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fahrig, L. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61, 603–610 (1997).Article 

    Google Scholar 
    12.Simberloff, D. Habitat fragmentation and population extinction of birds. IBIS 137, S105–S111 (1995).Article 

    Google Scholar 
    13.Viña, A. et al. Range-wide analysis of wildlife habitat: implications for conservation. Biol. Conserv. 143, 1960–1969 (2010).Article 

    Google Scholar 
    14.Wang, T., Ye, X., Skidmore, A. K. & Toxopeus, A. G. Characterising the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. J. Biogeogr. 37, 865–878 (2010).CAS 
    Article 

    Google Scholar 
    15.Xu, W. et al. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Front. Ecol. Environ. 7, 353–358 (2009).Article 

    Google Scholar 
    16.Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 7, 596–605 (2017).PubMed 
    Article 

    Google Scholar 
    17.Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 108752 (2012).Article 

    Google Scholar 
    18.Tuanmu, M. N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nat. Clim. Change 3, 249–253 (2013).Article 

    Google Scholar 
    19.He, K. et al. Effects of roads on giant panda distribution: a mountain range scale evaluation. Sci. Rep. 9, 1110 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Li, H. et al. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—case study of Wolong Nature Reserve in China. Ecol. Model. 221, 944–952 (2010).Article 

    Google Scholar 
    21.Qi, D. et al. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integr. Zool. 7, 165–174 (2012).PubMed 
    Article 

    Google Scholar 
    22.Shen, G. et al. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conserv. Biol. 22, 1144–1153 (2008).PubMed 
    Article 

    Google Scholar 
    23.Kong, L. et al. Habitat conservation redlines for the giant pandas in China. Biol. Conserv. 210, 83–88 (2017).Article 

    Google Scholar 
    24.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. Ecol. Manag. 319, 1–9 (2014).Article 

    Google Scholar 
    25.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    26.Possingham, H. in Conservation of Australia’s Forest Fauna (ed. Lunney, D.) Ch. 3, 35–40 (Royal Zoological Society of New South Wales, 1991).27.Lacy, R. C. VORTEX: a computer simulation model for population viability analysis. Wildl. Res. 20, 45–65 (1993).Article 

    Google Scholar 
    28.Wei, F., Fgeng, Z. & Hu, J. Population viability analysis computer model of giant panda population in Wuyipeng, Wolong Natural Reserve, China. Int. Conf. Bear. Res. Manag. 9, 19–23 (1997).
    Google Scholar 
    29.Guo, J., Chen, Y. & Hu, J. Population viability analysis of giant pandas in the Yele Nature Reserve. J. Nat. Conserv. 10, 35–40 (2002).Article 

    Google Scholar 
    30.Jiang, H. & Hu, J. Population viability analysis for the Giant Panda in Baoxing County, Sichuan. Sichuan J. Zool. 29, 161–165 (2010).
    Google Scholar 
    31.Li, X., Li, D., Yong, Y. & Zhang, J. A preliminary analysis on population viability analysis for Giant Panda in Foping. Acta Zool. Sin. 43, 285–293 (1997).
    Google Scholar 
    32.Yang, Z., Hu, J. & Liu, N. The influence of dispersal on the metapopulation viability of Giant Panda (Aliuropoda melanoleuca) in the Minshan Mountains. Acta Zool. Acad. Sci. Hung. 53, 169–184 (2007).
    Google Scholar 
    33.Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol. Model. 123, 207–223 (1999).Article 

    Google Scholar 
    35.Xia, W. & Hu, J. On the trend of population dynamics in giant panda based on age structure. Acta Theriologica Sin. 9, 87–93 (1989).
    Google Scholar 
    36.Zhu, L. et al. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas. Conserv. Biol. 24, 1299–1306 (2010).PubMed 
    Article 

    Google Scholar 
    37.State Forestry Administration P. R. C. Report of the Third National Giant Panda Census (Science Publishing House, 2006).38.Zhu, L., Hu, Y., Zhang, Z. & Wei, F. Effect of China’s rapid development on its iconic giant panda. Chin. Sci. Bull. 58, 2134–2139 (2013).Article 

    Google Scholar 
    39.Hu, J. Research on the Giant Panda (Shanghai Science and Technology Education Press, 2001).40.Li, R. et al. Climate change threatens giant panda protection in the 21st century. Biol. Conserv. 182, 93–101 (2015).Article 

    Google Scholar 
    41.Yang, B. et al. China’s collective forest tenure reform and the future of the giant panda. Conserv. Lett. 8, 251–261 (2015).Article 

    Google Scholar 
    42.Linderman, M. et al. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biol. Conserv. 121, 383–390 (2005).Article 

    Google Scholar 
    43.Yang, Z. et al. Reintroduction of the giant panda into the wild: a good start suggests a bright future. Biol. Conserv. 217, 181–186 (2018).CAS 
    Article 

    Google Scholar 
    44.Kaiser, H. The dynamics of populations as result of the properties of individual animals. Fortschr. D. Zool. 25, 109–136 (1979).
    Google Scholar 
    45.Huston, M., DeAngelis, D. & Post, W. New computer models unify ecological theory. BioScience 38, 682–691 (1988).Article 

    Google Scholar 
    46.DeAngelis, D. L. Individual-Based Models and Approaches In Ecology: Populations, Communities and Ecosystems (CRC Press, 2017)47.Uchmański, J. & Grimm, V. Individual-based modelling in ecology: what makes the difference? Trends Ecol. Evol. 11, 437–441 (1996).PubMed 
    Article 

    Google Scholar 
    48.Wei, F. et al. A study on the life table of wild giant pandas. Acta Theriologica Sin. 9, 81–86 (1989).
    Google Scholar 
    49.Hou, W. Revision of the giant panda life table and related data indicators. Zool. Res. 21, 361–366 (2000).
    Google Scholar  More

  • in

    Cascading effects of moth outbreaks on subarctic soil food webs

    1.Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985).
    Google Scholar 
    2.IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
    Google Scholar 
    3.Brun, P. et al. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob. Change Biol. 00, 1–15 (2020).CAS 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U.S.A. 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).
    Google Scholar 
    7.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests: Disturbance impacts on biodiversity and services. Biol. Rev. 91, 760–781 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.van der Putten, W. H. et al. Trophic interactions in a changing world. Basic Appl. Ecol. 5, 487–494 (2004).Article 

    Google Scholar 
    11.Lafferty, K. D. & Suchanek, T. H. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist. Am. Nat. 188, 365–378 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mancinelli, G. & Mulder, C. Chapter three—detrital dynamics and cascading effects on supporting ecosystem services. In Advances in ecological research Vol. 53 (eds Woodward, G. & Bohan, D. A.) 97–160 (Academic Press, 2015).
    Google Scholar 
    16.Mulder, C., Vonk, J. A., Hollander, H. A. D., Hendriks, A. J. & Breure, A. M. How allometric scaling relates to soil abiotics. Oikos 120, 529–536 (2011).Article 

    Google Scholar 
    17.Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).Book 

    Google Scholar 
    21.Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150268 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elton, C. S. Animal Ecology 1–256 (Macmillan Co., 1927). https://doi.org/10.5962/bhl.title.7435.Book 

    Google Scholar 
    24.Bohan, D. A. et al. Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks. Trends Ecol. Evol. 32, 477–487 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!. Genome 59, 603–628 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).Article 

    Google Scholar 
    27.Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 4, 393–405 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Martinez, N. D. Effects of resolution on food web structure. Oikos 66, 403 (1993).Article 

    Google Scholar 
    29.Thompson, R. M. et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kardol, P., Throop, H. L., Adkins, J. & de Graaff, M.-A. A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biol. Biochem. 102, 33–36 (2016).CAS 
    Article 

    Google Scholar 
    31.Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jepsen, J. U. et al. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16, 561–575 (2013).Article 

    Google Scholar 
    34.Karlsen, S. R., Jepsen, J. U., Odland, A., Ims, R. A. & Elvebakk, A. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173, 859–870 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
    Article 

    Google Scholar 
    36.Vindstad, O. P. L., Jepsen, J. U., Ek, M., Pepi, A. & Ims, R. A. Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?. J. Ecol. 107, 1141–1153 (2019).Article 

    Google Scholar 
    37.Sandén, H. et al. Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems 23, 151–163 (2019).Article 
    CAS 

    Google Scholar 
    38.Vindstad, O. P. L. et al. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest. PLoS ONE 9, e99624 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Nilsson, M.-C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).Article 

    Google Scholar 
    40.Bråthen, K. A. & Ravolainen, V. T. Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J. Ecol. 103, 701–713 (2015).Article 

    Google Scholar 
    41.Bråthen, K. A., Gonzalez, V. T. & Yoccoz, N. G. Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspect. Plant Ecol. Evol. Syst. 30, 71–81 (2018).Article 

    Google Scholar 
    42.Vindstad, O. P. L., Jepsen, J. U. & Ims, R. A. Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks. Eur. J. For. Res. 134, 725–736 (2015).Article 

    Google Scholar 
    43.Parker, T. C. et al. Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20, 316–330 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol. 69, 788–797 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).
    Google Scholar 
    46.Rodriguez-Ramos, J. C. et al. Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytol. 00, 1–13 (2020).
    Google Scholar 
    47.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    48.Bardgett, R. D., Yeates, G. W. & Anderson, J. M. Patterns and determinants of soil biological diversity. In Biological Diversity and Function in Soils (eds Hopkins, D. et al.) 100–118 (Cambridge University Press, 2005).Chapter 

    Google Scholar 
    49.Worm, B. & Duffy, J. E. Biodiversity, productivity and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).Article 

    Google Scholar 
    50.Ponsard, S., Arditi, R. & Jost, C. Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. Oikos 89, 524–540 (2000).Article 

    Google Scholar 
    51.Kristensen, J. Å., Rousk, J. & Metcalfe, D. B. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. J. Ecol. 108, 917–930 (2020).Article 

    Google Scholar 
    52.González, V. T. et al. Batatasin-III and the allelopathic capacity of Empetrum nigrum. Nord. J. Bot. 33, 225–231 (2015).ADS 
    Article 

    Google Scholar 
    53.Veen, G. F. et al. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 7, 168 (2019).Article 

    Google Scholar 
    54.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Antiqueira, P. A. P., Petchey, O. L., dos Santos, V. P., de Oliveira, V. M. & Romero, G. Q. Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Glob. Change Biol. 24, 3715–3728 (2018).ADS 
    Article 

    Google Scholar 
    56.Hedlund, K. et al. Trophic interactions in changing landscapes: Responses of soil food webs. Basic Appl. Ecol. 5, 495–503 (2004).Article 

    Google Scholar 
    57.Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183 (2002).Article 

    Google Scholar 
    58.O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jiménez, J. J., Decaëns, T., Lavelle, P. & Rossi, J.-P. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol. 14, 26 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).CAS 
    Article 

    Google Scholar 
    62.Binladen, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 9, 51–60 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).66.Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zinger, L. et al. metabaR : an R package for the evaluation and improvement of DNA metabarcoding data quality. https://doi.org/10.1101/2020.08.28.271817 (2020).68.R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).69.Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Fiore-Donno, A. M. et al. Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in a temperate grassland. Front. Microbiol. 10, 1332 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, 6 (2017).
    Google Scholar 
    74.Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).Article 

    Google Scholar 
    75.Antunes, P. M. & Koyama, A. Chapter 9 – Mycorrhizas as Nutrient and Energy Pumps of Soil Food Webs: Multitrophic Interactions and Feedbacks. in Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage (eds. Johnson, N. C., Gehring, C. & Jansa, J.) 149–173 (Elsevier, 2017).76.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (R package version 2.21.1, 2020).77.McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077 (2017).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Kinship networks of seed exchange shape spatial patterns of plant virus diversity

    1.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).Article 

    Google Scholar 
    2.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Secur. 8, 179–195 (2016).Article 

    Google Scholar 
    4.Almekinders, C. J., Louwaars, N. P. & De Bruijn, G. H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78, 207–216 (1994).Article 

    Google Scholar 
    5.McGuire, S. & Sperling, L. Making seed systems more resilient to stress. Global Environ. Chang. 23, 644–653 (2013).Article 

    Google Scholar 
    6.Legg, J. et al. Community phytosanitation to manage Cassava Brown Streak Disease. Virus Res. 241, 236–253 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13, e1005654 (2017a).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Chernela, J. M. Os cultivares de mandioca na área do Uaupés (Tukâno). In Suma Etnológica Brasileira (ed Ribeiro, D.) 151–158 (Finep, Petrópolis, 1986).9.Emperaire, L., Pinton, F. & Second, G. Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nat. Sci. Soc. 6, 27–42 (1998).Article 

    Google Scholar 
    10.Sirbanchongkran, A., Yimyam, N., Boonma, W. & Rerkasem, K. Varietal turnover and seed exchange: implications for conservation of rice genetic diversity on farm. Int. Rice Res. Notes 29, 12–14 (2004).
    Google Scholar 
    11.Delêtre, M., McKey, D. B. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Labeyrie, V., Thomas, M., Muthamia, Z. K. & Leclerc, C. Seed exchange networks, ethnicity, and sorghum diversity. Proc. Natl Acad. Sci. USA 113, 98–103 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res. 159, 161–170 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Harrison, B. D., Zhou, X., Otim‐Nape, G. W., Liu, Y. & Robinson, D. J. Role of a novel type of double infection in the geminivirus‐induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol. 131, 437–448 (1997).Article 

    Google Scholar 
    17.Consultative Group for International Agricultural Research. CGIAR Research Program 3.4: Roots, tubers, and bananas for food security and income. Final revised proposal. September 2011. https://hdl.handle.net/10947/5314.18.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fauquet, C. & Fargette, D. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis. 74, 404–411 (1990).Article 

    Google Scholar 
    22.Zhou, X. et al. Evidence that DNA A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Pita, J. S. et al. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lefeuvre, P. & Moriones, E. Recombination as a motor of host switches and virus emergences: geminiviruses as case studies. Curr. Opin. Virol. 10, 14–19 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tiendrébéogo, F. et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 9, 67 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Syrjala, S. E. A statistical test for a difference between the spatial distributions of two populations. Ecology 77, 75–80 (1996).Article 

    Google Scholar 
    27.Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for virus phylotypes. Bioinformatics 29, 561–570 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    29.Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user‐defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Legg, J. P., Ndjelassili, F. & Okao-Okuja, G. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathol. 53, 232 (2004).Article 

    Google Scholar 
    33.Legg, J. P. Bemisia tabaci: the whitefly vector of cassava mosaic geminiviruses in Africa: an ecological perspective. Afr. Crop Sci. J. 2, 437–448 (1994).
    Google Scholar 
    34.Fargette, D. & Thresh, J. M. The ecology of African cassava mosaic geminivirus. In Ecology of Plant Pathogens (eds Blakeman, J. P. & Williamson, B.) 269–282 (CAB International, Oxford, 1994).35.Anderson, P. K. & Morales, F. Whitefly and whitefly borne viruses in the tropics: building a knowledge base for global action (International Center for Tropical Agriculture, Cali, 2005).36.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 44, 6–12 (2013).Article 

    Google Scholar 
    37.Delêtre, M. The ins and outs of manioc diversity in Gabon, Central Africa: a pluridisciplinary approach to the dynamics of genetic diversity of Manihot esculenta Crantz (Euphorbiaceae) (Trinity College Dublin, 2010).38.Messe Mbega, C. Y. Les régions transfrontalières: un exemple d’intégration sociospatiale de la population en Afrique centrale? Éthique publique 17, http://ethiquepublique.revues.org/1724 (2015).39.Akinbade, S. A. et al. First report of the East African cassava mosaic virus-Uganda (EACMV-UG) infecting cassava (Manihot esculenta) in Cameroon. N. Dis. Rep. 22, 2044–0588 (2010).
    Google Scholar 
    40.Valam-Zango, A. et al. First report of cassava mosaic geminiviruses and the Uganda strain of East African cassava mosaic virus (EACMV-UG) associated with cassava mosaic disease in Equatorial Guinea. N. Dis. Rep. 32, 29 (2015).Article 

    Google Scholar 
    41.Trovão, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. 1, vev016 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sallinen, S. et al. Intraspecific host variation plays a key role in virus community assembly. Nat. Commun. 11, 5610 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Patil, B. L., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956–968 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U. & Legg, J. P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717 (2017).CAS 
    Article 

    Google Scholar 
    45.McQuaid, C. F., Gilligan, C. A. & van den Bosch, F. Considering behaviour to ensure the success of a disease control strategy. R. Soc. Open Sci. 4, 170721 (2017b).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Almekinders, C. J. et al. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. Outlook Agric. 48, 16–21 (2019a).Article 

    Google Scholar 
    47.Almekinders, C. J. et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 11, 23–42 (2019b).Article 

    Google Scholar 
    48.R Foundation for Statistical Computing. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).49.Zeileis, A. ineq: Measuring inequality, concentration, and poverty. R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).50.Alabi, O. J., Kumar, P. L. & Naidu, R. A. Multiplex PCR method for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. J. Virol. Methods 154, 111–120 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed 
    Article 

    Google Scholar 
    55.Rambaut, A., Lam, T. T., de Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evol. 2, vew007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinforma. 14, 317 (2013).Article 

    Google Scholar 
    57.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    58.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    59.Scherer, R. & Pallmann, P. Simboot: simultaneous inference for diversity indices. R package version 0.2-6. https://CRAN.R-project.org/package=simboot (2017).60.Oksanen J. et al. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan (2016).61.Prost, S. & Anderson, C. N. K. TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    62.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma. 9, 539 (2008).Article 
    CAS 

    Google Scholar 
    64.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.De la Cruz, M. Métodos para analizar datos puntuales. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones (eds Maestre, F. T., Escudero, A. & Bonet, A.) 76–127. (Asociación Española de Ecología Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterráneo, Madrid, 2008).66.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    67.Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land‐cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    68.Guthrie, M. The Classification of the Bantu Languages (Oxford Univ. Press for the International African Institute, London, 1948).69.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19, 153–170 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Rogers, J. S. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Biol. 35, 297–310 (1986).Article 

    Google Scholar  More

  • in

    Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China

    1.Feng, Q., Zhao, W. W., Zhao, M. Y. & Zhong, L. N. Spatial heterogeneity of soil moisture and the scale variability of its influencing factors: A case study in the Loess Plateau of China. Water 5, 1228 (2013).ADS 
    Article 

    Google Scholar 
    2.Hu, W., Shao, M. A., Wang, Q. J. & Reichardt, K. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. CATENA 79(1), 72–82 (2009).CAS 
    Article 

    Google Scholar 
    3.Legates, D. R. et al. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 35(1), 65–86 (2010).Article 

    Google Scholar 
    4.Hou, G. R. et al. Response of soil moisture to single-rainfall events under three vegetation types in the gully region of the Loess Plateau. Sustainability 10, 3793 (2018).CAS 
    Article 

    Google Scholar 
    5.Chen, L. D., Huang, Z. L., Gong, J., Fu, B. J. & Huang, Y. L. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. CATENA 70(2), 200–208 (2007).Article 

    Google Scholar 
    6.Li, Y. S. The properties of water cycle in soil and their effect on water cycle for land in the Loess Region. Acta Ecol Sin 3(2), 91–101 (1983) (in Chinese).7.Li, Y. Y. & Shao, M. A. Climatic change, vegetation evolution and low moisture layer of soil on the Loess Plateau. J. Arid Land Resour. Environ. 15(1), 72–77 (2001) (in Chinese).8.Mu, X. M., Xu, X. X., Wang, W. L., Wen, Z. M. & Du, F. Impact of artificial forest on soil moisture of the deep soil layer on Loess Platea. Acta Pedo. Sin. 2, 210–217 (2003) ((in Chinese)).
    Google Scholar 
    9.Yang, L., Wei, W., Chen, L. D. & Mo, B. R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475, 111–122 (2012).ADS 
    Article 

    Google Scholar 
    10.Zhao, X. K., Li, Z. Y., Zhu, D. H., Zhu, Q. K. & Robeson, M. Revegetation using the deep planting of container seedings to overcome the limitations associated with topsoil desiccation on exposed steep earthy road slopes in the semiarid loess region of China. Land Degrad. Dev. 2018(29), 2797–2807 (2018).Article 

    Google Scholar 
    11.Jia, Y. H. & Shao, M. A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 519, 523–531 (2014).ADS 
    Article 

    Google Scholar 
    12.Deng, L., Shangguan, Z. P. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment. Res. 27(1), 120–127 (2012).Article 

    Google Scholar 
    13.Zhou, P., Wen, A. B., Zhang, X. B. & He, X. B. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 2013(68), 633–639 (2013).
    Google Scholar 
    14.Chen, Y. P. et al. Balancing green and grain trade. Nat. Geosci. 10(8), 739–741 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Liu, Y. X., Lu, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, K. B. et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J. Arid Land 8(2), 207–220 (2016).Article 

    Google Scholar 
    17.Su, B. Q. & Shangguan, Z. P. Decline in soil moisture due to vegetation restoration on the Loess Plateau of China. Land Degrad. Dev. 30, 290–299 (2019).Article 

    Google Scholar 
    18.Wang, Y. Q., Shao, M. A., Zhu, Y. J. & Liu, Z. P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. Forest Meteorol. 151(4), 437–448 (2011).ADS 
    Article 

    Google Scholar 
    19.Wang, Y. Q., Shao, M. A., Liu, Z. P. & Warrington, D. N. Regional spatial pattern of deep soil water content and its influencing factors. Hydrol. Sci. J. 57(2), 265–281 (2012).Article 

    Google Scholar 
    20.Wang, Y. Q., Shao, M. A. & Liu, Z. P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 193, 300–310 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Nosetto, M. D., Jobbagy, E. G., Toth, T. & Di Bella, C. M. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152(4), 695–705 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Deng, X. Z., Shi, Q. L., Zhang, Q., Shi, C. C. & Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. 79–82, 2–10 (2015).ADS 

    Google Scholar 
    23.Sun, Z. X., Wu, F., Shi, C. C. & Zhan, J. Y. The impact of land use change on water balance in Zhangye city, China. Phys. Chem. Earth 96, 64–73 (2016).Article 

    Google Scholar 
    24.Porporato, A., D’Odorico, P., Laio, F. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25(8–12), 1335–1348 (2002).ADS 
    Article 

    Google Scholar 
    25.Chen, H. S., Shao, M. A. & Li, Y. S. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).ADS 
    Article 

    Google Scholar 
    26.Shen, M. S. et al. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. 17(9), 2148–2160 (2020).Article 

    Google Scholar 
    27.Wang, S., Fu, B. J., Gao, G. Y., Liu, Y. & Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA 101(2), 122–128 (2013).Article 

    Google Scholar 
    28.Fu, B. J., Wang, J., Chen, L. D. & Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA 54, 197–213 (2003).Article 

    Google Scholar 
    29.Gao, X. D. et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA 87(3), 357–367 (2011).Article 

    Google Scholar 
    30.Mei, X. M. et al. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes. CATENA 162, 333–344 (2018).Article 

    Google Scholar 
    31.Liu, B. X. & Shao, M. A. Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China. J. Arid Land 8(1), 47–59 (2016).Article 

    Google Scholar 
    32.Longobardi, A. Observing soil moisture temporal variability under fluctuating climatic conditions. Hydrol. Earth Syst. Sci. 5, 935–969 (2008).
    Google Scholar 
    33.Shao, M. A., Wang, Y. Q., Xia, Y. Q. & Jia, X. X. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: A review. Vadose Zone J. 17(1), 170017 (2018).34.Vörösmarty, C. J., Green, P. J., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289(5477), 284–288 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Wang, L., Wang, Q. J., Wei, S. P., Shao, M. A. & Yi, L. Soil desiccation for Loess soils on natural and regrown areas. Forest Ecol. Manag. 255(7), 2467–2477 (2008).Article 

    Google Scholar 
    36.Yang, L., Wei, W., Mo, B. R. & Chen, L. D. Soil water deficit under different artificial vegetation restoration in the semi-arid hilly region of the Loess Plateau. Acta Ecol. Sin. 31(11), 3060–3068 (2011) ((in Chinese)).
    Google Scholar 
    37.Cao, R. X. et al. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 8(1), 12346 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Fang, X. N. et al. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 20(8), 3309–3323 (2016).ADS 
    Article 

    Google Scholar 
    39.Yang, L., Chen, L. D., Wei, W., Yu, Yang. & Zhang, H. D. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 513, 314–321 (2014).40.Xiao, L., Xue, S., Liu, G. B. & Zhang, C. Soil moisture variability under different land uses in the Zhifanggou catchment of the Loess Plateau, China. Arid Land Res. Manag. 28(3), 274–290 (2014).Article 

    Google Scholar 
    41.Mei, X. M. et al. The variability in soil water storage on the loess hillslopes in China and its estimation. CATENA 172, 807–818 (2019).Article 

    Google Scholar 
    42.Guo, Z. S. Estimating method of maximum infiltration depth and soil water supply. Sci. Rep. 10(1), 9726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Guo, Z. S. & Shao, M. A. Dynamics of soil water supply and consumption inartificial caragana shrub land. J. Soil Water Conserv. 2007(02), 119–123 (2007) ((in Chinese)).
    Google Scholar 
    44.Wang, Z. Q., Liu, B. Y. & Zhang, Y. Soil moisture of different vegetation types on the Loess Plateau. J. Geogr. Sci. 19(6), 707–718 (2009).Article 

    Google Scholar 
    45.Cheng, L. P. & Liu, W. Z. Long term effects of farming system on soil water content and dry soil layer in deep loess profile of Loess Tableland in China. J. Integr. Agric. 13(6), 1382–1392 (2014).Article 

    Google Scholar 
    46.Sun, C. F. & Ma, Y. Y. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quatern. Int. 372, 175–179 (2015).Article 

    Google Scholar 
    47.Mei, X. M. et al. Responses of soil moisture to vegetation restoration type and slope length on the loess hillslope. J. Mt. Sci. 15(3), 548–562 (2018).Article 

    Google Scholar  More

  • in

    Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies

    Study sitesOur study sites are located on the Yatta Plateau in south-eastern Kenya. This region is characterized by dry savannahs. Annual rainfall (average: 810 mm) occurs during two periods, from March to May (average: 330 mm) and from October to January (average 480 mm) (c.f. Jaetzold et al.37). The commonest soil types are ferralsols and luvisols, which are of low fertility37. 97.1% of the human population in our study region depend on subsistence crop farming38, and the population has almost doubled in number from 1999 to 200938. Consequently, fallow periods for fields are omitted, which further decreases soil fertility, and increases pressure on pristine habitats.The dry savannah landscape is traversed by temporary (seasonal) rivers. These rivers are bordered by riparian vegetation, consisting of a diverse and unique plant community. However, this vegetation is frequently exploited for timber, charcoal and brick production39,40. The region is further affected by climate change, with an increase in rainfall variability and mean temperature37. These factors lower the reliability of agricultural production and food security, hence leading to severe destruction of pristine habitats.We selected two study sites, affected by different anthropogenic pressures, but which are subject to identical biotic and abiotic preconditions (including seasonality): Firstly, a highly degraded anthropogenic landscape along Nzeeu River, south of Kitui city. Secondly, a largely intact dryland environment along Kainaini River located near the university campus of the South Eastern Kenya University, north of Kitui city (Fig. 1). The landscape along Nzeeu River is densely populated by subsistence farmers. Thus, the original riparian and savannah vegetation has been mostly transformed into arable fields for the cultivation of maize, sorghum, peas, and mangos. Furthermore, the riparian vegetation, where it still exists, has largely been replaced by invasive exotic plant species (e.g. Lantana camara)12. The landscape of our second study site along Kainaini River represents a still largely intact riparian forest with adjoining dry savannahs. It remains mostly undisturbed, except for some moderate live-stock pasturing by nearby subsistence settlers.Butterfly assessmentsWe counted butterflies in both habitat types along line-transects, each 150 m long. We set 24 transects along each of the two rivers, with eight transects along the river bank, eight 250 m distant to the river, and another eight 500 m distant to the river (in total: 2 × 24 transects = 48 transects). The minimum distance between transects was at least 200 m, to minimize spatial autocorrelation. Exact GPS coordinates of each transect are given in Appendix S2.We recorded all butterflies encountered during transect counts (species, number of individuals of each species). Each transect was visited eight times during the dry season (August/September 2019) and eight times during the rainy season (January/February 2020). Data collection was performed between 9 a.m. and 4 p.m. Each butterfly individual within 5 m of the transect line (horizontally to vertically) was recorded by visual observation and, if needed, a butterfly net (see Pollard15, with modifications). While recording butterflies, the observers walked very slowly and spent about 15 min per transect. Species were identified either immediately while the butterfly was on the wing, or individuals were netted and then determined in the field. Individuals of species for which ad hoc identification was critical (e.g. many blues and skippers) were caught with the net, photographed (upper and under wing side) and released again. The photograph-based identification of these individuals was performed later using literature25. Apart from species and number of individuals per species, we recorded cloud cover during each transect walk (classified as: clear, slightly cloudy, mostly cloudy, overcast), exact time, and date. Field teams comprised two observers and one person making notes of all observations. Transects are displayed in Fig. 1. All butterfly data collected are compiled in Appendix S3.TraitsThe occurrence of a species in a specific environment strongly depends on its ecology, behaviour, and life-history41. Therefore, we considered these characteristics for each butterfly species recorded in the field. These trait data were compiled from Larsen25 and web-sites (e.g. www.gbif.org, www.lepiforum.de/non-eu.pl). We considered the following characteristics: wing span (mm), ratio length/width of the forewing (relative), ratio forewing length/thorax width (relative), geographic distribution (4 categories), savannah index (5 categories), forest index (5 categories), tree index (3 categories), wetness index (3 categories), habitat specialisation (3 categories), larval foodplant specialisation (3 categories), larval food plant type (dicotyledonous, monocotyledonous), and hemeroby index (4 categories). Detailed classifications are provided in Appendix S4.Habitat parametersHabitat structures impact species´ occurrence, abundances and community structures42. In our study, we considered habitat structures for each transect. Habitat parameters were recorded (counted and estimated) every 20 m along each transect. We estimated the following habitat parameters: Canopy cover (percentage of leaf cover vs. sky measured with the CanopeoApp); herb, shrub and tree cover (percentage coverage of each layer within a radius of 3 m); flowers on herbs, shrubs and trees (estimated within a radius of 3 m, and subsequently allocated to the classes 0, 1–10, 11–50, 51–100 and  > 100 flowers); occurrence of Lantana camara shrub, and exotic trees (estimated coverage within a radius of 3 m, and subsequently allocated to the classes 0 (no), 1 (rare), 2 (present) and 3 (dominant), respectively); and water availability (presence/absence) within a radius of 3 m. All raw data of habitat parameters are provided in Appendix S5.StatisticsWe first arranged the raw data in three matrices: a 71 × 14 species × trait matrix T, a 71 × 96 species × transect matrix M, and a 6 × 96 habitat characteristics × transect matrix H. Matrix multiplication of E = T−1MA−1, where A is the vector of total abundances in the transects, returned a matrix E of average trait expression in each transect.To answer the first research question, we compared species richness, abundances, and trait expression between the transects and used general linear modelling (glm) to detect differences in richness and trait expression with respect to the study sites (i.e. the two river systems with their different land-use patterns), season, distance from the rivers, as well as to environmental variables. Some of the habitat variables and trait expressions were highly positively correlated (Appendix S1). Consequently, the glm included only variables correlated by less than r = 0.7 (i.e. shrub cover, tree cover, habitat specialisation, savannah index, larval foodplant specialisation, and hemeroby).To infer differences in community structure between transects (second research question), we first calculated the two most dominant eigenvectors, which explained 91.5% and 3.5% of variance, of a principal components analysis of the M matrix. These eigenvectors cover differences in species composition between and within transects. We used glm and two-way Permanova to relate these differences to season, distance to river, and study sites (i.e. different land-use types in the two river systems). Additionally, we assessed the degree of β-diversity among sets of transects with the proportional turnover metric of Tuomisto43: (beta =1-frac{alpha }{gamma }); where α denotes the average species richness per transect and γ the corresponding total richness.To infer species spill-over effects from the riparian forests into the adjoining savannah (third research question), we calculated the Bray–Curtis similarities for three groups of transects within each season and study site. First, we compared average pairwise Bray–Curtis values between transects of intermediate and greater distance with the near-river transects within each study site. Second, we calculated the average Bray–Curtis similarities between all transects within each study site (2)—season (2)—distance class to river (3) combination. Third, we calculated the average within-transect Bray–Curtis similarity for the rainy season, to infer small scale compositional variability. The latter calculations were impossible for the dry season, due to the overall low number of recorded species. Calculations were done with Statistica 12. More