1.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS
Article
Google Scholar
2.Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).Article
Google Scholar
3.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS
Article
Google Scholar
4.Houghton, R. A. The contemporary carbon cycle. Treatise Geochem. 8, 473–513 (2003).Article
Google Scholar
5.Paterson, E., Midwood, A. J. & Millard, P. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol. 184, 19–33 (2009).CAS
Article
Google Scholar
6.Bader, M. K. F. & Körner, C. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob. Change Biol. 16, 2830–2843 (2010).Article
Google Scholar
7.Reynolds, L. L., Lajtha, K., Bowden, R. D., Johnson, B. R. & Bridgham, S. D. The carbon quality–temperature hypothesis does not consistently predict temperature sensitivity of soil organic matter mineralization in soils from two manipulative ecosystem experiments. Biogeochemistry 136, 249–260 (2017).CAS
Article
Google Scholar
8.Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).CAS
Article
Google Scholar
9.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil–carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS
Article
Google Scholar
10.Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).CAS
Article
Google Scholar
11.Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).CAS
Article
Google Scholar
12.Pries, C. E. H., Castanha, C., Porras, R. & Torn, M. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).Article
CAS
Google Scholar
13.Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2019).Article
Google Scholar
14.Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).CAS
Article
Google Scholar
15.Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).CAS
Article
Google Scholar
16.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS
Article
Google Scholar
17.Koven, C. D. et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).CAS
Article
Google Scholar
18.Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).CAS
Article
Google Scholar
19.Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS
Article
Google Scholar
20.Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).CAS
Article
Google Scholar
21.Gonzalez-Dominguez, B. et al. Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics. Sci. Rep. 9, 6422 (2019).CAS
Article
Google Scholar
22.Blankinship, J. C. et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140 (2018).23.Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).CAS
Article
Google Scholar
24.Angst, G. et al. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 122, 19–30 (2018).CAS
Article
Google Scholar
25.Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71 (2017).Article
Google Scholar
26.Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).CAS
Article
Google Scholar
27.Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).CAS
Article
Google Scholar
28.Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).Article
Google Scholar
29.Varney, R. M. et al. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 11, 5544 (2020).CAS
Article
Google Scholar
30.Wu, D., Piao, S., Liu, Y., Ciais, P. & Yao, Y. Evaluation of CMIP5 Earth System Models for the spatial patterns of biomass and soil carbon turnover times and their linkage with climate. J. Clim. 31, 5947–5960 (2018).Article
Google Scholar
31.Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).Article
Google Scholar
32.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).CAS
Article
Google Scholar
33.Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).CAS
Article
Google Scholar
34.Foereid, B., Ward, D., Mahowald, N., Paterson, E. & Lehmann, J. The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth Syst. Dynam. 5, 211–221 (2014).Article
Google Scholar
35.Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).Article
Google Scholar
36.Post, H., Vrugt, J. A., Fox, A., Vereecken, H. & Hendricks Franssen, H. J. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites. J. Geophys. Res. Biogeosci. 122, 661–689 (2017).CAS
Article
Google Scholar
37.Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).CAS
Article
Google Scholar
38.Bailey, V. L. et al. Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks. Glob. Change Biol. 24, 895–905 (2018).Article
Google Scholar
39.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).Article
Google Scholar
40.Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32, 306–323 (2018).CAS
Article
Google Scholar
41.Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).CAS
Article
Google Scholar
42.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).CAS
Article
Google Scholar
43.Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).CAS
Article
Google Scholar
44.Cusack, D. F. et al. Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon. Soil Biol. Biochem. 124, 199–209 (2018).CAS
Article
Google Scholar
45.Wang, X. et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem. 42, 1728–1734 (2010).CAS
Article
Google Scholar
46.Warner, D. L., Bond‐Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).CAS
Article
Google Scholar
47.Todd-Brown, K., Zheng, B. & Crowther, T. W. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty. Biogeosciences 15, 3659–3671 (2018).CAS
Article
Google Scholar
48.He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).CAS
Article
Google Scholar
49.Haddix, M. L. et al. The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci. Soc. Am. J. 75, 56–68 (2011).CAS
Article
Google Scholar
50.Lara, M. J., Lin, D. H., Andresen, C., Lougheed, V. L. & Tweedie, C. E. Nutrient release from permafrost thaw enhances CH4 emissions from Arctic tundra wetlands. J. Geophys. Res. Biogeosci. 124, 1560–1573 (2019).CAS
Article
Google Scholar
51.Prater, I. et al. From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences 17, 3367–3383 (2020).CAS
Article
Google Scholar
52.Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).Article
Google Scholar
53.Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).CAS
Article
Google Scholar
54.Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).Article
Google Scholar
55.Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2019).Article
Google Scholar
56.Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).Article
Google Scholar
57.Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).58.Crowther, T. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).59.R Core Team. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).60.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).CAS
Article
Google Scholar
61.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).Article
Google Scholar
62.Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).Article
Google Scholar
63.Chen, X., Zhao, P. L. & Zhang, J. A note on ANOVA assumptions and robust analysis for a cross‐over study. Stat. Med. 21, 1377–1386 (2002).Article
Google Scholar
64.McGuinness, K. A. Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption. Austral. Ecol. 27, 681–688 (2002).Article
Google Scholar
65.Zimmerman, D. W. & Zumbo, B. D. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J. Exp. Educ. 62, 75–86 (1993).Article
Google Scholar
66.Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).
Google Scholar
67.Thornley, J. & Cannell, M. Soil carbon storage response to temperature: an hypothesis. Ann. Bot. 87, 591–598 (2001).CAS
Article
Google Scholar
68.Lloyd, J. & Taylor, J. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).69.Libohova, Z. et al. The anatomy of uncertainty for soil pH measurements and predictions: implications for modellers and practitioners. Eur. J. Soil Sci. 70, 185–199 (2019).Article
Google Scholar
70.Kirkby, C. A. et al. Carbon–nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 60, 77–86 (2013).CAS
Article
Google Scholar
71.Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).CAS
Article
Google Scholar
72.Beer, C. et al. Temporal and among‐site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23, GB2018 (2009).Article
CAS
Google Scholar
73.Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543 (2014).CAS
Article
Google Scholar
74.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).Article
Google Scholar
75.Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning Vol. 1 (Springer, 2001).76.Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle regression. Ann. Stat. 32, 407–499 (2004).Article
Google Scholar
77.Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).Article
Google Scholar
78.Kuhn, M. & Johnson, K. Applied Predictive Modeling Vol. 26 (Springer, 2013).79.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article
Google Scholar
80.Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).81.Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
Google Scholar
82.Quinlan, J. R. Learning with Continuous Classes in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (eds Adams, A. & Sterling, L.) 343–348 (World Scientific, 1992).83.Boulesteix, A. L., Janitza, S., Kruppa, J. & König, I. R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIRES Data Mining Knowl. Discov. 2, 493–507 (2012).Article
Google Scholar
84.Xu, Q.-S. & Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 56, 1–11 (2001).CAS
Article
Google Scholar
85.Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).
Google Scholar
86.James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).87.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28 (2008).88.Grömping, U. Variable importance assessment in regression: linear regression versus random forest. Am. Statistician 63, 308–319 (2009).Article
Google Scholar
89.Wei, P., Lu, Z. & Song, J. Variable importance analysis: a comprehensive review. Reliab. Eng. Syst. Saf. 142, 399–432 (2015).Article
Google Scholar
90.Yang, R.-M. et al. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 60, 870–878 (2016).CAS
Article
Google Scholar
91.Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R J. 9, 421–436 (2017).Article
Google Scholar
92.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS
Article
Google Scholar
93.Land Cover CCI Product User Guide Version 2 (ESA, 2017); maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf94.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article
CAS
Google Scholar
95.Moran, P. A. A test for the serial independence of residuals. Biometrika 37, 178–181 (1950).CAS
Article
Google Scholar
96.Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).Article
Google Scholar More