Spatial validation reveals poor predictive performance of large-scale ecological mapping models
1.
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).
ADS CAS PubMed Google Scholar
2.
Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
ADS CAS PubMed Google Scholar
3.
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).
ADS CAS Google Scholar
4.
Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
ADS Google Scholar
5.
Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).
ADS CAS PubMed Google Scholar
6.
Marco, M. D., Watson, J. E. M., Currie, D. J., Possingham, H. P. & Venter, O. The extent and predictability of the biodiversity–carbon correlation. Ecol. Lett. 21, 365–375 (2018).
PubMed Google Scholar
7.
Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).
ADS CAS Google Scholar
8.
Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
ADS CAS PubMed Google Scholar
9.
Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).
ADS Google Scholar
10.
Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).
ADS CAS PubMed PubMed Central Google Scholar
11.
Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827 (2018).
PubMed Google Scholar
12.
Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).
CAS PubMed Google Scholar
13.
Mitchard, E. T. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).
PubMed PubMed Central Google Scholar
14.
Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).
PubMed PubMed Central Google Scholar
15.
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).
ADS Google Scholar
16.
Réjou-Méchain, M. et al. Upscaling forest biomass from field to satellite measurements: Sources of errors and ways to reduce them. Surv. Geophys. 40, 881–911 (2019).
ADS Google Scholar
17.
Saatchi, S. Mapping tropical forest biomass: synthesis of ground and remote sensing inventory. Consult. Rep. 2 High Carbon Stock Sci. Study (2015).
18.
Ploton, P. et al. A map of African humid tropical forest aboveground biomass derived from management inventories. Sci. Data 7, 221 (2020).
PubMed PubMed Central Google Scholar
19.
Philippon, N. et al. The light-deficient climates of Western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2018).
20.
Saatchi, S. et al. Seeing the forest beyond the trees. Glob. Ecol. Biogeogr. 24, 606–610 (2015).
Google Scholar
21.
Mermoz, S., Le Toan, T., Villard, L., Réjou-Méchain, M. & Seifert-Granzin, J. Biomass assessment in the Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 155, 109–119 (2014).
ADS Google Scholar
22.
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120295 (2013).
Google Scholar
23.
Hansen, M. C., Potapov, P. & Tyukavina, A. Comment on “Tropical forests are a net carbon source based on aboveground measurements of gain and loss”. Science 363, eaar3629 (2019).
CAS PubMed Google Scholar
24.
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
ADS MathSciNet CAS PubMed PubMed Central MATH Google Scholar
25.
Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).
MATH Google Scholar
26.
Lyapustin, A., Wang, Y., Korkin, S. & Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765 (2018).
27.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
28.
Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 13, 66–69 (2007).
Google Scholar
29.
Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).
Google Scholar
30.
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Google Scholar
31.
Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).
Google Scholar
32.
Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).
Google Scholar
33.
Baccini, A., Walker, W., Carvalho, L., Farina, M. & Houghton, R. A. Response to Comment on “Tropical forests are a net carbon source based on aboveground measurements of gain and loss”. Science 363, eaat1205 (2019).
CAS PubMed MATH Google Scholar
34.
Xu, L., Saatchi, S. S., Yang, Y., Yu, Y. & White, L. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manag. 11, 18 (2016).
PubMed PubMed Central Google Scholar
35.
Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
Google Scholar
36.
Irwin, A. The ecologist who wants to map everything. Nature 573, 478–481 (2019).
ADS PubMed Google Scholar
37.
Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).
Google Scholar
38.
Meyer, H., Reudenbach, C., Wöllauer, S. & Nauss, T. Importance of spatial predictor variable selection in machine learning applications–Moving from data reproduction to spatial prediction. Ecol. Model. 411, 108815 (2019).
Google Scholar
39.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).
PubMed PubMed Central Google Scholar
40.
Lefsky, M. A. et al. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 32, L22S02 (2005).
41.
Réjou-Méchain, M. et al. Upscaling Forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surv. Geophys. 40, 881–911 (2019).
42.
Mitchard, E. T. A. et al. Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’. Environ. Res. Lett. 6, 049001 (2011).
ADS Google Scholar
43.
Asner, G. P. et al. High-resolution carbon mapping on the million-hectare Island of Hawaii. Front. Ecol. Environ. 9, 434–439 (2011).
Google Scholar
44.
Asner, G. P. et al. Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance Manag. 7, 2 (2012).
PubMed PubMed Central Google Scholar
45.
Asner, G. P. et al. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9, 2683 (2012).
ADS CAS Google Scholar
46.
Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).
Google Scholar
47.
Xu, L. et al. Spatial distribution of carbon stored in forests of the Democratic Republic of Congo. Sci. Rep. 7, 15030 (2017).
ADS PubMed PubMed Central Google Scholar
48.
Schepaschenko, D. et al. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci. Data 6, 1–11 (2019).
Google Scholar
49.
Chave, J. et al. Ground data are essential for biomass remote sensing missions. Surv. Geophys. 40, 863–880 (2019).
ADS Google Scholar
50.
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
ADS CAS PubMed Google Scholar
51.
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).
ADS CAS PubMed Google Scholar
52.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
ADS CAS PubMed Google Scholar
53.
Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort Spat Information (2009).
54.
Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).
PubMed PubMed Central Google Scholar
55.
Bowman, D. M., Williamson, G. J., Keenan, R. J. & Prior, L. D. A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from A ustralian temperate and subtropical eucalypt forests. Glob. Ecol. Biogeogr. 23, 925–934 (2014).
Google Scholar
56.
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
ADS CAS PubMed Google Scholar
57.
Rennó, C. D. et al. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112, 3469–3481 (2008).
ADS Google Scholar
58.
Nachtergaele, F., Velthuizen, H. V., Verelst, L. & Wiberg, D. Harmonized World Soil Database (HWSD) (Food and Agriculture Organization, U. N. Rome, 2009).
59.
Defourny, P. et al. Algorithm Theoretical Basis Document for Land Cover Climate Change Initiative. Technical report (European Space Agency, 2014).
60.
Segal, M. & Xiao, Y. Multivariate random forests. WIREs Data Min. Knowl. Discov. 1, 80–87 (2011).
Google Scholar
61.
CCI, ESA. New Release of 300 m Global Land Cover and 150 m Water Products (v.1.6.1) and new version of the User Tool (3.10) for Download (ESA CCI Land cover website, 2016). More