More stories

  • in

    Predicting cascading extinctions and efficient restoration strategies in plant–pollinator networks via generalized positive feedback loops

    The Campbell et al. model provides an excellent framework to identify species whose extinction leads to community collapse and species whose reintroduction can restore the community (see Fig. 2 for an illustration of these processes). Our first objective, finding the effect of species extinction on the rest of the species in an established community, is achievable using the concept of Logical Domain of Influence (LDOI)41; the LDOI represents the influence of a (set of) fixed node state(s) on the rest of the components in a system. In this section we first present our proposed method to calculate the LDOI for the Boolean threshold functions governing the Campbell et al. model of plant–pollinator community assembly. Then we verify that the simplified logical functions preserve the LDOI and hence can be implemented to further analyze the effect of extinction in plant–pollinator networks. Next, we address one of the main questions that motivated this study: Can stable motif driver set analysis facilitate the identification of keystone species? We discuss the identification of the driver sets of inactive stable motifs and motif groups and present the results of stabilizing these sets to measure the magnitude of the effect of species extinction on the communities. Lastly we discuss possible prevention and mitigation measures based on the knowledge acquired from driver sets of stable motifs and motif groups.Figure 2Illustration of species extinction and restoration in a hypothetical 6-species community. (a) The interaction network (on the left), and the maximal richness community possible for this network (the community with the most established species). Nodes highlighted with green represent established species. (b) The initial extinction of two species, po_1 and po_2 (left) and the community that results after cascading extinctions (right). Nodes highlighted with grey represent extinct species. (c) An intervention to restore pl_2 (left), which induces the restoration of further species, finally leading to a restored community with all the species present (right). The nodes highlighted with teal represent the restored species.Full size imageLDOI in the Boolean threshold modelThe LDOI concept was originally defined on Boolean functions expressed in a disjunctive prime form. Here we extend it to Boolean threshold functions. We implemented it as a breadth first search on the interaction network, as exemplified in Fig. 3. Assume that we want to find the LDOI of a (set of) node(s) (S_0={n_1,dots ,n_N}) and their specific fixed state (Q(S_0)={sigma _{n_1},dots ,sigma _{n_N}}). Starting from the set (S_0), the next set of nodes (S_1) that can acquire a fixed state due to the influence of (Q(S_0)) consists of the nodes that have an incoming edge from the nodes in the set (S_0) in the interaction network. The nodes in set (S_1) are the subject of the first search level. For each node (n_i in S_0) and (n^prime _i in S_1) we assume a “worst case scenario” (i.e., maximal opposition of the effect of (n_i) on (n^prime _i) from other regulators) to find the possible sufficiency relationships between the two. There are five cases:

    1.

    If (n_i) is a positive regulator of (n^prime _i), then (sigma _{n_i}=1) is a candidate for being sufficient for (sigma _{n^prime _i}=1). We assume that all other positive regulators of (n^prime _i) that have an unknown state (i.e., are not in (Q(S_0))) are inactive and all negative regulators of (n^prime _i) that have an unknown state are active. If (sum _j W_{ij} > 0) under this assumption, then the active state of (n_i) is sufficient to activate (n^prime _i). The virtual node (n^prime _i) that corresponds to (sigma _{n^prime _i}=1) is added to LDOI((Q(S_0))).

    2.

    If (n_i) is a positive regulator of (n^prime _i), then (sigma _{n_i}=0) is a candidate for being sufficient for (sigma _{n^prime _i}=0). We assume all other positive regulators of (n^prime _i) that have an unknown state are active and all negative regulators of (n^prime _i) that have an unknown state are inactive. If (sum _j W_{ij}le 0) under this assumption, then the inactive state of (n_i) is sufficient to deactivate (n^prime _i). The virtual node (sim n^prime _i) that corresponds to (sigma _{n^prime _i}=0) is added to LDOI((Q(S_0))).

    3.

    If (n_i) is a negative regulator of (n^prime _i), then (sigma _{n_i}=1) is a candidate for being sufficient for (sigma _{n^prime _i}=0). We assume all positive regulators of (n^prime _i) that have an unknown state are active and all other negative regulators of (n^prime _i) that that have an unknown state are inactive. If (sum _j W_{ij}le 0) under this assumption, then the active state of (n_i) is sufficient to deactivate (n^prime _i). The virtual node (sim n^prime _i) that corresponds to (sigma _{n^prime _i}=0) is added to LDOI((Q(S_0))).

    4.

    If (n_i) is a negative regulator of (n^prime _i), then (sigma _{n_i}=0) is a candidate for being sufficient for (sigma _{n^prime _i}=1). We assume all positive regulators of (n^prime _i) that have an unknown state are inactive and all other negative regulators of (n^prime _i) that that have an unknown state are active. If (sum _j W_{ij} > 0) under this assumption, then the inactive state of (n_i) is sufficient to activate (n^prime _i). The virtual node (n^prime _i) that corresponds to (sigma _{n^prime _i}=1) is added to the LDOI((Q(S_0))).

    5.

    If none of the past four sufficiency checks are satisfied, the node (n^prime _i) will be visited again in the next search levels.

    The second set of nodes that can be influenced, (S_2), are the nodes that have an incoming edge from the nodes in the set (S_1). The algorithm goes over these nodes in the second search level as described above. This search continues to all the levels of the search algorithm until all nodes are visited (possibly multiple times) and either acquire a fixed state and are added to the LDOI or their state will be left undetermined at the end of the algorithm. In Fig. 3, we illustrate this search to find the LDOI((sim )pl_1). The first search level is (S_1={)po_1, po_3(}); (sim )pl_1 is sufficient to deactivate po_3, but not po_1. As a result, (sim )po_3(in ) LDOI((sim )pl_1). This process continues until all levels are visited and at the end of the algorithm LDOI((sim )pl_1()={sim )po_3, (sim )pl_2, (sim )pl_3, (sim )pl_4, (sim )pl_5, (sim )po_1, (sim )po_2 (}).Figure 3Breadth first search of the interaction network to find the LDOI of a (set of) fixed note state(s) in Boolean threshold functions governing the dynamics of plant–pollinator networks. (a) An interaction network with five plants and 3 pollinators. (b) The breadth first search in the case of starting from the node state (sim )pl_1. The nodes with incoming edges from pl_1 make up (S_1={)po_1, po_3(}). The second sufficiency check is satisfied for node state (sim )po_3, as a result (sim )po_3(in ) LDOI((sim )pl_1). The same process is applied for node po_1, but none of the sufficiency checks are satisfied, so this node will be visited again later. The next level of the search consists of the nodes that have incident edges from (S_1), i.e., (S_2={)pl_2, pl_3, pl_4, pl_5(}). The second sufficiency check is satisfied for all of these nodes and they are all fixed to their inactive state in the LDOI((sim )pl_1). Lastly, we reach (S_3={)po_1, po_2(}). Node po_1 is reached again, and with both its positive regulators fixed to their inactive states the second sufficiency check is satisfied and node po_1 is fixed to its inactive state as well. The same holds for po_2 and hence LDOI((sim )pl_1()={sim )po_3, (sim )pl_2, (sim )pl_3, (sim )pl_4, (sim )pl_5, (sim )po_1, (sim )po_2 (}).Full size imageTo measure the accuracy of the simplification method originally introduced in28, we analyzed logical domains of influence in 6000 networks with 50–70 nodes. These networks are among the largest in our ensembles and have the most complex structures. We randomly selected (sets of) inactive node states, found their LDOIs using the Boolean threshold functions and the simplified Boolean functions, and compared the two resulting LDOIs. We used 8 single node states and 8 combinations of size 2 to 4 for each network. We found that in all cases the LDOI calculated using the simplified Boolean functions matches the LDOI calculated using the Boolean threshold functions.Next, we analyzed (sets of) active node states and their LDOIs in the same ensembles of networks. Similar to the previous analysis, we used 8 single node states and 8 combinations of size 2 to 4 for each network. Our analysis shows that in 77.1% of the cases the LDOI calculated using the simplified Boolean functions matches the LDOI calculated using the Boolean threshold functions. In 22% of the cases the LDOI calculated from the simplified Boolean functions contains the LDOI calculated from the threshold functions, and it also contains extra active node states, overestimating the LDOI by 57.5% on average. These additional members of the LDOI result from the fact that the simplified Boolean functions contain fewer negative regulators than the threshold functions. The guiding principle of the simplification method is that the probability of (H(x)=1) conserves the probability of each node having an active state across all the states it can have. In contrast, the probability of the propagation of the active state is not necessarily preserved and tends to be higher in the simplified Boolean model; thus the LDOI of the active node states is overestimated in some cases.In the rest of the cases (about 1%), the LDOI calculated from the simplified Boolean functions does not fully capture the LDOI calculated from the threshold functions. This again is caused by the sparsification of the negative edges in the simplified Boolean functions. In the threshold functions, the activation of 4 or more negative regulators of a target node combined with one active positive regulator is sufficient to deactivate the target node, i.e., there might be inactive node states in the LDOI of a set of active node states. However, some of these negative regulators drop in the simplified Boolean model and the inactive state of the target node is not necessarily in the LDOI of the set of active node states in the simplified case. This is the rare mechanism by which the simplified model might underestimate the influence of active node states on the rest of the network.In the following section we are interested in analyzing the effect of species extinction on the established community, i.e., we look at the LDOI of (sets of) inactive node states. Observing that the influence of extinction of species is measured correctly in the simplified Boolean models, we conclude that these models can be utilized to further analyze the process of extinction and its ecological implications.Stable motif based identification of species whose loss leads to cascading extinctionsEach stable motif or motif group can have multiple driver sets; stabilization of each driver set leads to the stabilization of the whole motif or motif group. In plant–pollinator interaction networks, the stable motifs either represent a sub-community (when the constituent nodes stabilize in their active states) or the simultaneous extinction of all species in the group (when the constituent nodes stabilize to their inactive states). Stabilization of the nodes in the driver set of an inactive stable motif results in stabilization of all the nodes in the stable motif to their inactive state, i.e., cascading extinction of the constituent species.The knowledge gained from stable motif analysis and the network of functional relationships offers insight into the cascading effect of an extinction that constitutes a driver set of an inactive stable motif. The magnitude of this effect depends on (i) the number of nodes that the inactive stable motif contains and (ii) the number of virtual nodes (including motifs and motif groups) corresponding to inactive species that are logically determined by the stabilization of the inactive stable motif.To investigate the role of stable motifs in the study of species extinction in plant–pollinator networks, we simulated extinctions that drive inactive stable motifs in 6000 networks with the sizes of 50–70 nodes. We considered driver sets of size 1, 2, or 3, and implemented them by fixing the corresponding node(s) to its (their) inactive state. As a point of comparison, we also performed a “control” analysis using the same networks with the same size of initial extinction; however, the candidates of initial extinction are inactive node states that do not drive stable motifs or motif groups. Based on the properties of the drivers of stable motifs, one expects that following the extinction of driver species, cascading extinctions of other species follow, while the same does not necessarily hold for non-driver species. As a result, we expect to observe greater damage to the original community when driver species become extinct.We assume that the “maximal richness community”—the community (attractor) in which the largest number of species managed to establish—is the subject of species extinction. This maximal richness community results from the stabilization of all active stable motifs. All other attractors that have some established species contain a subset of all active stable motifs and thus will contain a subset of the species of the maximal richness community. While for a generic Boolean model with multiple attractors one expects that a perturbed version of the model also has multiple attractors, this specific perturbation of a plant–pollinator model (namely, extinction of species in the maximal richness community) has a single attractor. We prove this by contradiction. Assume there are two separate attractors in the perturbed model, which means that there is at least one node that has opposite states in these two attractors. Note that this bi-stability is the result of the perturbation and not a property of the original system as the maximal richness community (an attractor) is the starting point for the introduced extinction. Specifically, the inactive state of the extinct node has to lead to the stabilization of another node to its active versus inactive states in the two separate attractors. The only case in which the stabilization of an inactive node state can result in the stabilization of an active node state is if there is a negative edge from the former to the latter in the interaction network after simplification. Since the Boolean function in 2 is inhibitor dominant, the negative regulators that remain in the Boolean model must be in their inactive states in the maximal richness attractor. As they are already inactive (extinct), they are not candidates for extinction. The only nodes that are candidates for extinction are the ones that positively regulate other nodes; perturbing the system by fixing these candidates to their inactive states cannot lead to the active state of a target node. In conclusion, bi-stability is not possible.We found the new attractor of the system given the (combination of) inactive node state(s) using the the functions percolate_and_remove_constants() and trap_spaces() from the pyboolnet Python package. We quantify the effects of the initial extinction(s) on the maximal richness attractor by the percentage change in the number of active species, which we call damage percentage. Note that this choice of maximal richness community as the reference and starting point allows us to detect the cascading extinctions following the initial damage.In Fig. 4 the left column plots show the average damage percentage caused by the extinction of 1 (top panel), 2 (middle panel), or 3 (bottom panel) species that represent driver sets of stable motifs and motif groups, while the right column plots illustrate the average damage percentage as a result of the extinction of 1, 2 or 3 species that represent non-driver nodes. Comparing the two columns, one can notice that stabilization of the driver sets of stable motifs and motif groups leads to considerably larger damage to the communities. This is due to the fact that stabilization of driver sets ensures the stabilization of entire inactive stable motifs and motif groups and hence ensures cascading extinctions. Comparing the plots in the left column, we see that the larger the driver sets are, the larger the damage to the community becomes. This is because larger driver sets are more likely to stabilize larger stable motifs and motif groups. This figure illustrates the significance of stable motifs and their driver sets in the study of species extinction in plant–pollinator communities.Figure 4Histogram plots illustrating the average percentage of the damage caused in an established community after the extinction of species. This analysis is performed over 6000 networks with the size of 50–70 nodes. To study the extinction of species we started from the maximal richness community, then we fixed the nodes that correspond to the focal species to the their inactive states. The original extinctions are excluded from the damage percentages. The left column plots show the average damage percentage caused to the maximal richness community by the extinction of a driver set of size 1 (top), 2 (middle), or 3 (bottom) of an inactive stable motif or motif group. For each network, we determined all the relevant driver sets of one stable motif or motif group, we performed the extinction and calculated the resulting damage, then we calculated the average damage percentage over all data points collected for the same network. The right column plots show the average damage percentage caused to the maximal richness community by the extinction of 1 (top), 2 (middle), and 3 (bottom) non-driver, randomly chosen nodes. Each time a randomly selected combination of non-driver nodes were the subject of simultaneous extinction until all combinations are explored and then we calculated the average damage percentage over all data points collected for each network. The number of networks that qualify for each of these 6 categories differ (e.g., some networks have a stable motif with a driver set of size 2 but no stable motif with a driver set of size 3). In the left column 5529, 3212, and 1980 networks and in the right column 5779, 5626, and 5423 networks qualified respectively. The red lines represent the mean value of all the presented data points in each plot.Full size imageIn Fig. 4 left column, the full driver set of one inactive stable motif or motif group was stabilized. However, the species that become extinct might only contain a subset of a driver set of a stable motif or motif group, i.e., they only stabilize a subset of the inactive node states in the stable motif or motif group. We compare the extinction effect caused by the stabilization of a full driver set of four nodes with the effect of the extinction of four nodes that contain a partial driver set in Fig. 5 using the batch of the largest networks in this study, i.e, the batch that contains networks with 30 nodes representing plant species and 40 nodes representing pollinator species. This choice is due to the fact that the existence of stable motifs and motif groups having a driver set of four node states is highly probable in larger networks. As expected, the stabilization of the complete driver set leads to greater damage. Stabilization of the same number of nodes that contain a partial driver set leads to significantly less damage and species loss in the community; the median damage percentage in the case of stabilization of partial driver sets is 22.6% while it is 69.2% in the case of stabilization of the full driver sets. We also note that damage of more than 90% occurs rarely and is only possible when a full driver set is stabilized (see Fig. 5 right plot). This suggests that the motif groups that lead to total extinction tend to have a driver set with more than four nodes; in other words, only the simultaneous extinction of five or more species would lead to total community collapse.Figure 5Histogram plots illustrating the average percentage of the damage caused in an established community after the extinction of species. This analysis is performed over 1000 networks with the size of 70 nodes (30 nodes representing plant species and 40 nodes representing pollinator species). The original extinctions are excluded from the damage percentages. The left plot shows the average damage percentage caused to the maximal richness community by the extinction of 2 species that are a subset of the 4-node driver set of an inactive stable motif or motif group plus 2 randomly selected non-driver species. The right plot shows the damage percentage caused to the maximal richness community by the extinction of 4-node driver sets of the same inactive stable motifs and motif groups. Each time the driver set of one stable motif or motif group was the subject of extinction and we calculated the average damage percentage over all data points collected for each network. 295 networks qualified for this analysis.Full size imageMotif driver set analysis outperforms structural measures in identifying keystone speciesThe literature on ecological networks offers multiple measures that reflect the importance of each species for community stability. One family of such measures is centrality (quantified by the network measures degree centrality and betweenness centrality). Previous studies45,46 have shown that species (nodes) with higher centrality scores are keystone species in ecological communities (i.e., species whose loss would dramatically change or even destroy the community). The nodes with highest in-degree centrality (such as pl_2 in Fig. 6a) represent generalist species that can receive beneficial interactions from multiple sources and survive. The nodes with highest betweenness centrality (such as pl_2 and po_2 in Fig. 6a) represent species that act as connectors and help the community survive. We find that high centrality corresponds to specific patterns in the expanded network: the inactive state of generalist or connector species is often the driver of a cascading extinction. Indeed, stable motif analysis of the expanded network in Fig. 6b confirms that there is an inactive stable motif (highlighted with grey) driven by the minimal set {(sim )pl_2}. The fact that node pl_2 is a stable motif driver means that in the case of the extinction of pl_2 the whole community collapses.To compare the effectiveness of stable motif analysis to the effectiveness of the more studied structural measures to identify keystone species, we performed an analysis similar to the previous section. We compared the magnitude of cascading extinctions in the case of extinction of stable motif driver nodes and of nodes with high values of previously introduced structural importance measures. Specifically, we used node betweenness centrality, node contribution to nestedness47, and mutualistic species rank (MusRank)22 to find crucial species based on their structural properties. For more details on definition and adaptation of these two measures see “Methods”. In this analysis, we used each measure to target species in the simplified Boolean models as follows:

    1.

    Betweenness centrality: The 10% of species with the highest betweenness centrality are chosen to be candidates for extinction.

    2.

    Node contribution to nestedness: The species with the most interactions tend to contribute the least to the community nestedness. Targeting them most likely leads to a faster community collapse48. As a result, 10% of species with the lowest contribution to network nestedness are chosen to be candidates for extinction. For more details on this measure, please see “Methods”.

    3.

    Pollinator MusRank: The pollinator species with the highest MusRank importance are more likely to interact with multiple plants, so the 10% of pollinator species with the highest importance are chosen to be candidates for extinction. For more details on this measure, please see “Methods”.

    4.

    Plant MusRank: The plant species with the highest MusRank importance are more likely to interact with multiple pollinators, so the 10% of plant species with the highest importance are chosen to be candidates for extinction.

    Figure 7 illustrates the results of this analysis in 6000 networks with 50–70 nodes. In each network the 1-node, 2-node, and 3-node driver sets of inactive stable motifs are identified and made extinct. In the same networks 10% of nodes based on betweenness centrality, node contribution to nestedness, and node MusRank score were chosen to be candidates for extinction. To match the “driver set” data, all choices of 1, 2, or 3 nodes in these sets were explored and the damage was averaged over each extinction size for each network. We observe the cascading extinction and calculate the damage percentage relative to the maximal richness attractor. The plot represents the collective data over all initial simultaneous extinction sizes of 1, 2, and 3 species.Comparing the four methods, one notices that the histograms acquired using stable motif driver sets, node betweenness centrality, and node contribution to nestedness are very similar, showing a peak for the 10–20% bin of the damage, and a long tail that reaches a damage percentage of 80–100%. The MusRank score performs less well in identifying the crucial species. Also, the frequency of the higher damage percentages shows that node contribution to nestedness is the closest to the “driver set” method in identifying nodes whose extinction causes the collapse of the whole community, making it the best structural measure out of the three. Nevertheless, the driver set method finds keystone species that cannot be identified via structural measures, as the corresponding damage percentage histogram has the most prominent tail at the right edge of the panel. Indeed, stable motif driver sets identified 82%, 80%, and 546% more species whose extinction leads to 60% or higher damage to the community when compared to betweenness centrality, node nestedness, and node MusRank score based methods respectively.The reason for the higher effectiveness of driver set analysis is illustrated in Fig. 8 in which the MusRank score and node contribution to nestedness are calculated for two example networks. One can see how these two measures might incorrectly identify less vital species. In the left column of Fig. 8, MusRank identifies the node po_2, highlighted with green, as the most important species. However, this node does not have any outgoing edges; its extinction does not lead to any cascading extinction. The inability of the MusRank score to consider the direction of edges causes such misidentification. In the right column, the three nodes highlighted with yellow have the lowest contributions to network nestedness. The expanded network shows that these three nodes together are not able to cause full community collapse, while the three-node driver set of the inactive stable motif can. Since the nestedness definition depends on the number of mutual interactions, it might fail to identify some of the keystone nodes that are necessary to the stability of the community (for more details on node nestedness see “Methods”).Previously it was shown that identifying the stable motifs and their driver sets can successfully steer the system toward a desired attractor or away from unwanted ones37,38,43. Stable motif analysis of the Boolean model offers insight into the dynamical trajectories of the system; hence control strategies can be developed accordingly. In the next section we use stable motif driver sets to suggest control methods and analyze their efficiency.Figure 6Generalist species in the interaction network and the expanded network. (a) A simplified network consisting of 3 plant and 3 pollinator species. pl_2 is a generalist species, i.e., it has two incoming edges indicating that it can survive on either of its sources of pollination, po_1 or po_2. The expanded network in (b) illustrates that the stabilization of the grey stable motif stabilizes all the nodes to their inactive states, and hence causes full community collapse. (sim )pl_2 is the minimal driver set of the grey stable motif, consistent with the strong damage induced by the loss of a generalist species.Full size imageFigure 7Histogram plots illustrating the performance of driver set analysis versus structural measures in identifying keystone species. The analysis was done on 6000 networks with sizes of 50–70 nodes. The starting point is the maximal richness community, i.e., the attractor in which the most species establish. For each network 1, 2, and 3 node(s) were selected and simultaneously fixed to their inactive states. After the cascading damage the new attractor is compared to the maximal richness attractor to calculate the damage percentage. The structural measures—betweenness centrality, node nestedness contribution, and node MusRank score—were calculated for all nodes in each network; the top 10% according to the relevant ordering were candidates to being fixed to their inactive states. The network IDs were matched, i.e., only the networks that had candidate nodes according to all four measures for each extinction size are included in this plot. The total number of data points is 6360. The red solid lines represent the mean and the black dashed lines represent the median over all data points in each plot.Full size imageFigure 8Networks illustrating examples of when structural measures fail to identify keystone species. In both columns simplified networks consisting of 3 plant and 3 pollinator species are presented. The MusRank is calculated for all the nodes in the network in the left column and denoted in the node labels. The expanded network corresponding to this network is shown below. Node contribution to network nestedness is calculated for all the nodes in the network in the right column and denoted in the node labels. Similarly the expanded network that correspond to it is shown below. Note that these two networks have different edges. In the left column MusRank score identifies node po_2, highlighted with green, as the most important, while the expanded network shows that the extinction of po_2 does not cause any further damage to the community, as this node has no outgoing edges. This is due to the fact that MusRank calculation process fails to consider the directed network and replaces all the directed edges with undirected ones. The MusRank score does not identify po_3 as a crucial species; however, virtual node (sim )po_3, outlined with black in the expanded network is a driver of a stable motif that has all other nodes in its LDOI; the extinction of po_3 leads to full community collapse. In the right column, the nodes highlighted with yellow (pl_2, pl_3, and po_2) have the lowest node contribution to nestedness, which predicts that these nodes are likely crucial to the stability of the community. Analyzing the expanded network, one can see that these three nodes together are not able to drive the inactive stable motif highlighted with teal. The minimal driver set for this stable motif, outlined with black, consists of {(sim )po_1, (sim )po_2, (sim )po_3}; together these nodes drive the inactive stable motif and cause full community collapse. The nestedness-based measure was not able to capture the significance of nodes po2 and po_3.Full size imageDamage mitigation measures and strategies for endangered communitiesThere are two substantial questions related to managing the damage induced by species extinction: (1) How can one prevent the damage as much as possible? (2) Once the damage happens, the reintroduction of which species can restore the community and to what extent? In this section we aim to answer these questions in the context of the Campbell et al. model, implementing stable motif based network control. This analysis can inform agricultural and ecological strategies employed to prevent and mitigate damage.Damage preventionOne of the most important questions in ecology is what strategies to use so that we can prevent and avert extinction damage to the community. In this section we analyze how the knowledge from stable motif analysis and driver sets can be implemented to minimize the effect of extinction of keystone species in case of limited resources. Each attractor of the original system can have multiple control sets; stabilizing the node states in each control set ensures that the system reaches that specific attractor. The same information from the attractor control sets can be implemented to prevent the system from converging into unwanted attractors. Zañudo et al. illustrated that by blocking (not allowing to stabilize) the stable motifs that lead to the unwanted attractors, one can decrease the probability (sometimes to zero) that the system arrives in those attractors38. In order to block an attractor, the control sets of that attractor are identified and the negations of the node states in the control sets are externally imposed. This approach eliminates the undesired attractor; however, new attractors might form that are similar to the eliminated attractor. Campbell et al. showed that in order to avoid such new attractors one needs to block the parent motif, which in this case is the largest strongly connected subgraph of the expanded network that contains the inactive virtual nodes44. Here, we investigate how stable motif blocking based attractor control can identify the species whose preservation would offer the highest benefit in avoiding catastrophic damage to the community. This information would aid the development of management strategies in plant–pollinator communities.To avoid all attractors that lead to some degree of species extinction, one needs to block all the driver sets of all inactive stable motifs and motif groups in a given network. Implementing this in 100 randomly selected networks with 25 plant and 25 pollinator nodes, we found that 45.6% of the species in the maximal richness community need to be kept (prevented from extinction) to ensure the lack of cascading extinctions. Given that management resources are usually limited, active monitoring and conservation of almost half of the species in a community seems costly and impractical. Hence, we set a more feasible goal of identifying and blocking the driver set(s) of the largest inactive stable motif or motif group in each network. The same 100 networks containing 50 nodes are the subject of analysis in this section. The reason for performing the analysis in a relatively limited ensemble is that it involves the identification of all driver sets of the largest inactive stable motif or motif group, which is computationally expensive. For each network, the driver set of the largest inactive stable motif or motif group (which corresponds to the extinction of all the species in that group) is identified and blocked (that is, the corresponding species are not allowed to go extinct). Then the same number of species as in the driver set of that stable motif or motif group are selected and stabilized to their inactive state. We considered all combinations of node extinctions outside the blocked subset, calculated the damage percentage relative to the maximal richness community, and then averaged over all data points for each network. As a control, we repeated the analysis without blocking; the size of the initial extinction is the same as in the previous analysis for consistency.Figure 9 shows the result of the analysis described above for 100 networks. The left box and whiskers plot illustrates the damage percentage relative to the maximal richness community when the blocking feature is activated, while the right box and whiskers plot shows the damage percentage relative to the maximal richness community when the blocking is disabled. The average and median damage percentages are 14.96% and 13.04% respectively when the largest inactive stable motif or motif group was blocked and 24.73% and 20.38% when it was not. This (sim )10% difference in the average between the two sets of results, as well as the fewer cases of high-damage outliers in the left plot, demonstrates that by preventing the extinction of species identified by stable motif analysis, one can prevent catastrophic community damage considerably.To estimate the fraction of species that would need to be monitored to prevent their extinction, we compared the size of the maximal richness attractor and the size of the driver set of the largest stable motif. The maximal richness community represents an average of 32% of the original species pool, approximately 15 out of 50 species. The driver sets of the largest stable motifs had an average size of 2.5 node states over all 100 networks, i.e., about 16.6% of the maximal richness community. In ecological terms, given limited resources, the information gained from stable motif driver sets can help direct the conservation efforts toward the keystone species that play a key role in maintaining the rest of the community in a cost-effective manner.Figure 9Box plots comparing the damage communities face if the largest inactive stable motif or motif group is completely blocked, i.e., all the drivers of this inactive stable motif or motif group are prevented from stabilizing versus if the same stable motif or motif group is allowed to stabilize. This analysis was performed over 100 randomly selected networks that contain 25 plant and 25 pollinator nodes. All the driver sets of an inactive stable motif or motif group are identified. From left to right the box and whiskers plots show the average damage percentage relative to the maximal richness community if the largest inactive stable motif is blocked and the same quantity if the largest stable motif or motif group is not blocked respectively. For the left box and whiskers plot, all combinations of inactive node states except the driver sets are considered, and for the right box and whiskers plot all combinations are explored. Due to the computational complexity caused by combinatorial explosion, this analysis was performed over 100 randomly selected 50-node networks.Full size imageRestoration of a group of speciesAlthough human preservation efforts have been directed toward community conservation, there are many industrial activities that lead to ecosystem degradation. Ecologists are interested in developing restoration strategies to be deployed after a stable community is hit by catastrophic damage to recover biodiversity and the ecosystem functions it provides49. Here we propose that stable motif analysis and the driver sets identified from the expanded network can give insight into restoration measures. While we examined the inactive stable motifs in the study of species extinction, here we focus on the active stable motifs as our goal is to restore as much biodiversity as possible.Several network measures have been proposed to identify the species that if re-introduced would restore the community considerably. Two of the most studied algorithms include maximising functional complementarity (or diversity) and maximising functional redundancy50. The first strategy targets the restoration of the species that provide as many functions to the ecosystem as possible; this approach results in a community that has a maximal number of functions provided by different groups of species. Alternatively, maximising the functional redundancy yields a community in which several species perform the same function. While this resultant community might have a limited number of functions, it is robust. Both of these community restoration approaches have been studied extensively (e.g. see21).We hypothesize that restoring the species that constitute driver sets of active stable motifs can help maximise the number of species post-restoration. Since there is evidence that functional diversity correlates with the number of species in the community51, we compare the post-restoration communities identified by stable motif driving with the functional diversity maximisation approach. As discussed in section LDOI in the Boolean threshold model, the Boolean simplification of the threshold functions leads to an overestimation of the LDOI of active node states (compared to the original threshold functions) in some networks. We evaluate the negative effects of this overestimation by checking the effectiveness of the restored species in the original threshold model.The same 6000 networks we examined in the last section were the subject of this analysis. To create an unbiased initial community, we create the damaged communities by eliminating the same number of species from the maximal richness community as the number that will be restored. We identify the inactive stable motif or motif group with the driver set size of 1, 2, or 3 node states that causes the most damage to the maximal richness community. We then eliminate the species corresponding to this driver set to reach the most damaged community for the given size of the initial extinction. This community is the starting point for two analyses. In the stable motif driving approach we stabilized an active stable motif that has a driver set of the same size as the initial extinction to reach a post-restoration community and calculated the percentage of the extinct species that were restored. In the functional diversity maximization based approach we re-introduced the same number of species selected from the to 10% of species in terms of their contribution to functional diversity.To calculate the functional diversity of a community one needs to (1) define and construct a trait matrix, (2) determine the distance (trait dissimilarity) of pairs of species, (3) perform hierarchical clustering based on the distances to create a dendrogram, and (4) calculate the total branch length of the dendrogram, i.e., the sum of the length of all paths51,52. Petchey et al. argued that resource-use traits among plant and pollinator species can be used to classify the organisms into separate functional groups53 and Devoto et al. proposed the use of the adjacency matrix based on the interaction network as the trait matrix21. In this study we do the same and implement the bipartite adjacency matrix to construct the distance matrix.Since the networks of the Campbell et al. model are directed, we modify the algorithm in that we have two separate adjacency matrices, one denoting the edges incoming to plant species and the other denoting the edges incoming to pollinator species. The hierarchical clustering algorithm is then run on each of these matrices separately, resulting in a dendrogram for each adjacency matrix. If extinction occurs in a community, the functional diversity of the survived community can be determined by calculating the total branch length of the subset of the dendrogram that includes only the survived species. The restoration strategy using this method is to re-introduce the nodes whose branches add the most to the total branch length of this subset, i.e., maximise the functional diversity of the survived community54. For more details see “Methods”.In each network, the percentage of the extinct species that were restored was calculated and averaged over all data points for each restoration size and each network. Figure 10 illustrates the results of this investigation. Applied to the simplified Boolean model, the median restoration percentage in the case of active stable motif driver set method (blue plot) is 80%. The functional diversity maximization strategy to restoration (yellow plot) yields a lower median restoration percentage, 73%, as well as a large number of low-restoration outliers. Although one might argue that identifying beneficial species using the functional diversity maximization strategy works well, the higher percentage of the cases of 80–100% restoration in case of the active stable motif driver set analysis indicates that the latter identifies some of the most effective restorative species that are not identified via the former method. As in a minority of cases the simplified Boolean model overestimates the positive impact of the sustained presence of a species (see section LDOI in the Boolean threshold model), we sought to verify the effectiveness of the predicted restoration candidates in the original threshold model. The blue (respectively, yellow) box and whiskers plot on the right represents the restoration percentages of the same species as in the left blue (respectively, yellow) plot when these species are restored in the threshold model. The median of the right blue plot is 70%, while the median of the right yellow is 63%, preserving the advantage of the stable motif driver sets. We conclude that although the simplified Boolean model overestimates the restoration effectiveness of certain driver sets (visible in the fact that the lower whisker of the blue plot on the right goes well below the lower whisker of the blue plot on the left), stable motif driver sets are more effective in both comparisons.Figure 10Box and whiskers plots illustrating the average percentage of the extinct species that are restored following the stable motif driver set restoration strategy (blue) versus the functional diversity based approach (yellow). This analysis is performed over 6000 networks with sizes of 50–70 nodes. Starting from the maximal richness community, for each network one inactive stable motif with a driver set of 1, 2 or 3 nodes was stabilized to reach a new damaged community. This task was performed until the community with the most extinct species was identified. This is the community we set as the starting point for the restoration process using both methods. The pair on the left represents the two methods applied to the simplified Boolean model. For both methods we identified 1, 2, or 3 influential nodes for community restoration and we calculated the percentage of the extinct species that could be restored. The pair on the right represents restoring the same species identified by each method in the previous analysis in the original threshold model. In all analyses the community restoration percentage was averaged over all combinations of the same size, for each network and each method. The IDs of all networks are matched.Full size imageCommunity restoration via attractor controlAs illustrated in section “Restoration of a group of species”, stable motif analysis identifies promising and cost-effective group restoration strategies. In this section we aim to go further and identify interventions that can maximally restore a community. Previous stable motif based network control methods37,38,55 require a search for the smallest set of node states to control the system once the stable motif stabilization trajectories are identified. This smallest set may not contain a node from each stable motif in the sequence. In this work, however, we know that each stable motif or motif group needs to be controlled individually28 because the stabilization of none of the motifs results in the stabilization of another. As a result, the control set of each attractor is the same as the union of the driver sets of all members in the consistent combination corresponding to that attractor.In this section we examined this attractor control method by setting the communities with 70% or more of the species in the maximal richness community as the target, i.e., the attractors that have 70% of the species in the maximal richness community are assumed to be the desired attractors. We then recorded the size of the minimal control set needed to achieve each of these attractors. Note that stabilizing each of these control sets guarantees that the system reaches the corresponding attractor38.For this section, we analyzed 6000 networks that have 50–70 nodes. Figure 11 represents box-and-whiskers plots of the size of the minimal set of species that need to be restored, where the target community sizes are classified into three groups based on the percentage of the species relative to the maximal richness attractor. One can see that in half of the cases, the restoration of either 1 or 2 species manages to restore more than 70% of the maximal richness community. The largest set has 8 species that need to be restored; however, this data point is an outlier. As illustrated, driver set analysis and stable motif based attractor control can efficiently identify the species that play an influential restorative role and suggest management strategies that are effective at the scale of the whole community. To assess the impact of the LDOI inflation on this result, we used the restoration candidates identified by control sets of the attractors of the Boolean model in the threshold functions of a subset of networks. The results of comparing the restoration percentage is shown in Fig. 14. The first quartile, median and third quartile values are 78.26%, 86.6%, and 100% for the simplified Boolean models and 43.78%, 72.41%, and 85.71% for the threshold model.To further compare the results of restoration obtained from the two models we sorted the species in the order of their contribution to community restoration following a catastrophic damage. We randomly selected 100 of the largest (70-node) networks, which have the highest probability of a discrepancy between the threshold functions and the simplified Boolean model. In 72% of the cases the two rankings matched completely, and in the majority of the remaining cases only one species was misplaced in the simplified Boolean model-based ranking. To conclude, there is a significant advantage to the implementation of the simplified Boolean model and the drawback can be addressed by a follow-up checking on the original threshold functions.Figure 11The number of species that need to be restored to save 70% of more of the species in the maximal richness community. In this analysis 6000 networks with 50–70 nodes were the subject. For each networks all the attractors that have 70% or more of the species in the maximal richness attractor are identified and set to be the target attractors. The control set of these attractors are then classified into three groups based on the percentage as illustrated in the figure. From left to right, the box and whiskers represent the size of the control set of attractors that have 70–80%, 80–90%, and 90–100% of the species in the maximal richness attractor respectively.Full size image More

  • in

    Genetic and ecological drivers of molt in a migratory bird

    Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds Finn, R. N. & Kapoor, B. G.) 639–681 (CRC Press, 2020).Chapter 

    Google Scholar 
    Kaleka, A. S., Kaur, N. & Bali, G. K. Larval development and molting. In Edible Insects (ed. Mikkola, H.) 17 (IntechOpen, 2019).
    Google Scholar 
    Butler, L. K. & Rohwer, V. G. Feathers and molt. in Ornithology: Foundation, Analysis, and Application (eds Morrison, M. L. et al.) 242–270 (JHU Press, 2018).
    Google Scholar 
    Swaddle, J. P., Witter, M. S., Cuthill, I. C., Budden, A. & McCowen, P. Plumage condition affects flight performance in common starlings: Implications for developmental homeostasis, abrasion and moult. J. Avian Biol. 27, 103–111 (1996).Article 

    Google Scholar 
    Norris, D. R., Marra, P. P., Montgomerie, R., Kyser, T. K. & Ratcliffe, L. M. Reproductive effort, molting latitude, and feather color in a migratory songbird. Science 306, 2249–2250 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Delhey, K., Peters, A. & Kempenaers, B. Cosmetic coloration in birds: Occurrence, function, and evolution. Am. Nat. 169, S145–S158 (2007).Article 

    Google Scholar 
    Tomotani, B. M. & Muijres, F. T. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. J. Exp. Biol. 222, 195396 (2019).Article 

    Google Scholar 
    Galván, I., Negro, J. J., Rodriguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: Body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
    Google Scholar 
    Wolf, B. O. & Walsberg, G. E. The role of the plumage in heat transfer processes of birds. Am. Zool. 40, 575–584 (2000).
    Google Scholar 
    Berthold, P. & Querner, U. Genetic basis of moult, wing length, and body weight in a migratory bird species, Sylvia atricapilla. Experientia 38, 801–802 (1982).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefied. Welt 111, 118–120 (1987).
    Google Scholar 
    Berthold, P. & Querner, U. Microevolutionary aspects of bird migration based on experimental results. Isr. J. Ecol. Evol. 41, 377–385 (1995).
    Google Scholar 
    Helm, B. & Gwinner, E. Timing of postjuvenal molt in African (Saxicola torquata axillaris) and European (Saxicola torquata rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of molt as a buffer in the avian annual cycle. Acta Zool. Sin. 52, 703–706 (2006).
    Google Scholar 
    Rohwer, S., Ricklefs, R. E., Rohwer, V. G. & Copple, M. M. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, e1000132 (2009).Article 

    Google Scholar 
    Jenni, L. & Winkler, R. The Biology of Moult in Birds (Bloomsbury Publishing, 2020).
    Google Scholar 
    Tonra, C. M. & Reudink, M. W. Expanding the traditional definition of molt-migration. Auk Ornithol. Adv. 135, 1123–1132 (2018).
    Google Scholar 
    Rohwer, S., Butler, L. K., Froehlich, D. R., Greenberg, R. & Marra, P. P. Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. Birds Two Worlds Ecol. Evol. Migr. (R. Greenb. PP Marra, Eds.). Johns Hopkins Univ. Press. Balt. Maryl., 87–105 (2005).Bensch, S., Åkesson, S. & Irwin, D. E. The use of AFLP to find an informative SNP: Genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11, 2359–2366 (2002).Article 
    CAS 

    Google Scholar 
    Ruegg, K. Genetic, morphological, and ecological characterization of a hybrid zone that spans a migratory divide. Evol. Int. J. Org. Evol. 62, 452–466 (2008).Article 

    Google Scholar 
    Delmore, K. E., Fox, J. W. & Irwin, D. E. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc. R. Soc. B Biol. Sci. 279, 4582–4589 (2012).Article 

    Google Scholar 
    Delmore, K. E. et al. Individual variability and versatility in an eco-evolutionary model of avian migration. Proc. R. Soc. B 287, 20201339 (2020).Article 

    Google Scholar 
    Procházka, P. et al. Across a migratory divide: divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. J. Avian Biol. 49, 012516 (2018).Article 

    Google Scholar 
    Bensch, S., Grahn, M., Müller, N., Gay, L. & Åkesson, S. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).Article 

    Google Scholar 
    Rohwer, S. & Irwin, D. E. Molt, orientation, and avian speciation. Auk 128, 419–425 (2011).Article 

    Google Scholar 
    Pageau, C., Sonnleitner, J., Tonra, C. M., Shaikh, M. & Reudink, M. W. Evolution of winter molting strategies in European and North American migratory passerines. Ecol. Evol. 11, 13247–13258 (2021).Article 

    Google Scholar 
    Butler, L. K., Rohwer, S. & Rogers, M. Prebasic molt and molt-related movements in Ash-throated Flycatchers. Condor 108, 647–660 (2006).Article 

    Google Scholar 
    Barry, J. H., Butler, L. K., Rohwer, S. & Rohwer, V. G. Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126, 260–267 (2009).Article 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109, 142–148 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
    Google Scholar 
    Rubenstein, D. R. & Hobson, K. A. From birds to butterflies: Animal movement patterns and stable isotopes. Trends Ecol. Evol. 19, 256–263 (2004).Article 

    Google Scholar 
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Eppig, J. T. et al. The mouse genome database (MGD): Comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).Article 
    CAS 

    Google Scholar 
    Contina, A., Bridge, E. S. & Kelly, J. F. Exploring novel candidate genes from the mouse genome informatics database: Potential implications for avian migration research. Integr. Zool. 11, 240 (2016).Article 

    Google Scholar 
    Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).Article 
    CAS 

    Google Scholar 
    Thompson, C. W. Is the Painted Bunting actually two species? Problems determining species limits between allopatric populations. Condor 93, 987–1000 (1991).Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Seavy, N. E., Duckles, J. M. & Kelly, J. F. Using geologgers to investigate bimodal isotope patterns in Painted Buntings (Passerina ciris). Auk 130, 265 (2013).Article 

    Google Scholar 
    Besozzi, E., Chew, B., Allen, D. C. & Contina, A. Stable isotope analysis of an aberrant Painted Bunting (Passerina ciris) feather suggests post-molt movements. Wilson J. Ornithol. 133, 151 (2021).Article 

    Google Scholar 
    Sharp, A. et al. Spatial and Temporal Scale-Dependence of the Strength of Migratory Connectivity in a North American Passerine. https://assets.researchsquare.com/files/rs-1483049/v1/72236b63-952d-4870-89e7-461056b8625b.pdf?c=1648893558 (2022).Pyle, P. et al. Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. Condor 111, 583–590 (2009).Article 

    Google Scholar 
    Bridge, E. S., Fudickar, A. M., Kelly, J. F., Contina, A. & Rohwer, S. Causes of bimodal stable isotope signatures in the feathers of a molt-migrant songbird. Can. J. Zool. 89, 951 (2011).Article 
    CAS 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. 69, 82–90 (1991).Article 
    CAS 

    Google Scholar 
    Ali, O. A. et al. RAD capture rapture: Flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Characterization of SNP markers for the Painted Bunting (Passerina ciris) and their relevance in population differentiation and genome evolution studies. Conserv. Genet. Resour. 11, 5–10 (2019).Article 
    ADS 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article 

    Google Scholar 
    Parker, P., Li, B., Li, H. & Wang, J. The genome of Darwin’s Finch (Geospiza fortis). Gigascience 10, 100040 (2012).
    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 1–33 (2013).
    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Anderson, E. genoscapeRtools: Tools for Building Migratory Bird Genoscapes (2019).Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 
    CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).Article 

    Google Scholar 
    Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).Article 
    CAS 

    Google Scholar 
    Chew, B., Kelly, J. & Contina, A. Stable isotopes in avian research: a step by step protocol to feather sample preparation for stable isotope analysis of carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H). Version 1.1. https://doi.org/10.17504/protocols.io.z2uf8ew (2019).Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39(3), 211–217 (2003).Article 
    CAS 

    Google Scholar 
    Bowen, G. J., Wassenaar, L. I. & Hobson, K. A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143, 337–348 (2005).Article 
    ADS 

    Google Scholar 
    R Core Team: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).Article 
    CAS 

    Google Scholar 
    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 455 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nat. Genet. 36, 512–517 (2004).Article 
    CAS 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 

    Google Scholar 
    Chaves, J. A. et al. Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol. Ecol. 25, 5282–5295 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Y.-W. et al. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genom. Proteom. Bioinform. 18, 481–487 (2020).Article 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151 (2010).Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Anderson, E. C. snps2assays: Prepare SNP Assay Orders from ddRAD or RAD Loci (2015).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hedenström, A. Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 363, 287–299 (2008).Article 

    Google Scholar 
    Buehler, D. M. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B Biol. Sci. 363, 247–266 (2008).Article 

    Google Scholar 
    Schieltz, P. C. & Murphy, M. E. The contribution of insulation changes to the energy cost of avian molt. Can. J. Zool. 75, 396–400 (1997).Article 

    Google Scholar 
    Carling, M. D. & Thomassen, H. A. The role of environmental heterogeneity in maintaining reproductive isolation between hybridizing Passerina (Aves: Cardinalidae) buntings. Int. J. Ecol. 2012, 1–11 (2012).Article 

    Google Scholar 
    Irwin, D. E. Incipient ring speciation revealed by a migratory divide. Mol. Ecol. 18, 2923–2925 (2009).Article 

    Google Scholar 
    Thomas, D. W., Blondel, J., Perret, P., Lambrechts, M. M. & Speakman, J. R. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291, 2598–2600 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rohwer, V. G., Rohwer, S. & Ortiz-Ramirez, M. F. Molt biology of resident and migrant birds of the monsoon region of west Mexico. Ornitol. Neotrop. 20, 565–584 (2009).
    Google Scholar 
    Bensch, S., Andersson, T. & Åkesson, S. Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53, 1925–1935 (1999).Article 

    Google Scholar 
    Turbek, S. P., Scordato, E. S. C. & Safran, R. J. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33, 164–175 (2018).Article 

    Google Scholar 
    Scordato, E. S. C. et al. Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecol. Lett. 23, 231–241 (2020).Article 

    Google Scholar 
    Battey, C. J. et al. A migratory divide in the Painted Bunting (Passerina ciris). Am. Nat. 191, 259–268 (2018).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Genetic structure of the Painted Bunting and its implications for conservation of migratory populations. Ibis 161, 372 (2019).Article 

    Google Scholar 
    Butler, L. K. The grass is always greener: Do monsoon rains matter for molt of the Vermilion Flycatcher (Pyrocephalus rubinus)? Auk 130, 297–307 (2013).Article 

    Google Scholar 
    Turbek, S. P. et al. A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution 76, 722 (2022).Article 

    Google Scholar 
    Dietz, M. W., Daan, S. & Masman, D. Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. Zool. 65, 1217–1235 (1992).Article 

    Google Scholar 
    Vézina, F., Gustowska, A., Jalvingh, K. M., Chastel, O. & Piersma, T. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol. Biochem. Zool. 82, 129–142 (2009).Article 

    Google Scholar 
    Bazzi, G. et al. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird. Curr. Zool. 63, 479–486 (2017).CAS 

    Google Scholar 
    Busby, L. et al. Sonic hedgehog specifies flight feather positional information in avian wings. Development 147, 188821 (2020).Article 

    Google Scholar 
    Eichberger, T. et al. GLI2-specific transcriptional activation of the bone morphogenetic protein/Activin antagonist Follistatin in human epidermal cells. J. Biol. Chem. 283, 12426–12437 (2008).Article 
    CAS 

    Google Scholar 
    Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Patel, K., Makarenkova, H. & Jung, H.-S. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev. 86, 51–62 (1999).Article 
    CAS 

    Google Scholar 
    Nakamura, M. et al. Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin. FASEB J. 17, 1–22 (2003).Article 
    MathSciNet 

    Google Scholar 
    Pays, L., Charvet, I., Hemming, F. J. & Saxod, R. Close link between cutaneous nerve pattern development and feather morphogenesis demonstrated by experimental production of neo-apteria and ectopic feathers: Implication of chondroitin sulphate proteoglycans and other matrix molecules. Anat. Embryol. 195, 457–466 (1997).Article 
    CAS 

    Google Scholar 
    Pyle, P., Saracco, J. F. & DeSante, D. F. Evidence of widespread movements from breeding to molting grounds by North American landbirds. Auk Ornithol. Adv. 135, 506–520 (2018).
    Google Scholar 
    De Mita, S. et al. Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22, 1383–1399 (2013).Article 

    Google Scholar 
    Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).Article 

    Google Scholar 
    Frichot, E., Schoville, S. D., de Villemereuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: Orientation matters!. Heredity (Edinb.) 115, 22–28 (2015).Article 
    CAS 

    Google Scholar 
    Trivedi, A. K. et al. Temperature alters the hypothalamic transcription of photoperiod responsive genes in induction of seasonal response in migratory redheaded buntings. Mol. Cell. Endocrinol. 493, 110454 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Forest disturbance decreased in China from 1986 to 2020 despite regional variations

    Disturbance detectionWe used a well-established spectral-temporal segmentation method, Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr), to detect disturbances within the Google Earth Engine (GEE) cloud-computing platform57,58. The core of the LandTrendr is to extract a set of disturbance-related metrics by breaking pixel-level annual time-series spectral trajectories into linear features using Landsat observations. The LandTrendr has been widely used for change detection in various forest settings, and details about the algorithms can be found in previous publications57. Here we briefly described the key steps in generating the year and type of disturbances in China’s forests using the LandTrendr within the GEE platform. The overall analytic flow can be found in Supplementary Fig. 10.First, we generated annual spectrally consistent time-series data by using all available, good quality (cloud cover ≤ 20) Tier 1 Landsat 5 (Thematic Mapper), Landsat 7 (Enhanced Thematic Mapper Plus), and Landsat 8 (Operational Land Imager) images acquired during the peak growing seasons (June 1—September 30) from 1986 to 2020. The peak growing seasons were selected to exclude compounding influences from ice, snow, and soil, and to maximize the spectral changes after forest disturbances. To tackle the spectral inconsistency among Landsat sensors, we harmonized spectral values via linear transformations according to band-respective coefficients presented in59. Clouds, cloud shadows, snow, and water were masked out using the Fmask algorithm60. The annual band composites at 30-meter spatial resolution during 1986–2020 were computed using the Medoid method61.Secondly, we ran the LandTrendr using five spectral indices, including two spectral bands (shortwave infrared I and II that were B5 and B7), tasseled cap wetness (TCW), normalized burn ratio (NBR), and normalized difference vegetation index. These five indices were effective indictors to represent vegetation greenness and structures, and were commonly used for detecting changes in forest disturbance and recovery62. For each spectral index, the LandTrendr produced a set of parameters to describe a possible disturbance event at the pixel level, including spectral values at pre-disturbance level (preval), magnitude of change (mag), duration (dur) and rate of change (rate), and the signal-to-noise ratio (dsnr) (n = 5). Using these five spectral indices, we generated a stack of disturbance-related parameter layers (n = 25, 5 spectral indices × 5 parameters), which were later used to detect and classify disturbances using machine learning models derived from reference data (described below).Disturbance classificationReference dataHigh-quality consistent reference data is key to train and classify disturbance types. To do so, we generated a total of 31225 reference points using a hierarchical approach. We first generated a large number of potential disturbance points using forest loss data from 2001 to 20203. Then we separated fire disturbances from non-fire disturbances by overlaying MODIS burned area (BA) with potential disturbance points following the procedure used by63. Specifically, fire disturbances were determined if the MODIS BA data coincided with the Landsat-derived forest loss for the fire year and 2 years postfire (i.e., t + 0, t + 1, t + 2) to account for delayed post-fire tree mortality. Following this step, we derived points as potential disturbances that consisted of fires and non-fire disturbances (including forest conversion to other land use types and silvicultural practices at various intensities). We also generated roughly the same number of points that experienced no disturbances (e.g., persistent forests), which were determined by selecting pixels with very few changes in spectral indices. These reference points, including fire, non-fire disturbances, and persistent forests, were then used to sample the time-series spectral data from 1986 to 2020. Finally, time-series spectral data from each reference point were visually checked to make sure they accurately represented disturbance events. This process resulted into a total of 31225 reference data points, including 2356 fire disturbance points, 13,242 non-fire disturbance points, and 15,627 no disturbance points (persistent forests) (Supplementary Fig. 2).Random forest classificationWe used machine learning modeling to classify each pixel into fire disturbance, non-fire disturbance, or no disturbance. The reference data points were used to sample the LandTrendr-derived disturbance-related parameter layers described above, which resulted into a dataset consisting of disturbance types. We divided the dataset into 70% of training data, and 30% as validation data. Using the training data, a Random Forest (RF) model was trained to classify each reference point into fire, non-fire disturbance, or no disturbance. Our RF approach showed that short-wave infrared (SWIR)-based moisture indices (e.g., B7, TCW) were strong predictors for detecting forest disturbances (Supplementary Fig. 11) likely because of their sensitivity to vegetation water content and canopy structure64. Finally, we applied the trained RF model to the full classification stack to consistently map the disturbance types from 1986 to 2020 across China’s forests, assuming that the spectral trajectories derived from reference data period 2001–2020 can be extrapolated to the whole mapping period 1986–2020. However, note that our approach was meant to detect relatively acuate and discrete disturbances that caused canopy opening, rather than subtle changes of forest structure or composition resulted from low intensive silvicultural practices and chronic disturbances.Year of disturbanceWe used the LandTrendr to determine the year of disturbance as the onset of magnitude of spectral change. Since we ran LandTrendr on five spectral indices, there were five possible years of disturbance for each pixel. Thus, we determined the year of disturbance using the median value from at least three different indices (i.e., NDVI, NBR, TCW, B5, B7). In this way, we only kept pixels that were detected as disturbances using at least three indices, thus reducing commission errors. The year with the greatest spectral changes generated by the LandTrendr often had an accuracy within 3 years11. A confidence level was also assigned to each disturbed pixel based on numbers of indices which showed possible disturbance events. Specially, low, medium, and high confidence were assigned if the disturbance was detected by three, four, or five spectral indices, respectively.ValidationsWe validated the disturbance map at the pixel and national levels. At the pixel level, we validated the final map using the validation sub-sample described in the previous section. We derived a confusion matrix to report user’s and producer’s accuracy (Supplementary Table 1) as the main accuracy assessment metrics. At the national level, we compared forest disturbance detected in this study to available existing dataset. Specifically, we compared the area of forest fire disturbance between our study and the national fire records during 2003–2009 (Supplementary Fig. 5). We compared the disturbance rates between our study and Landsat-derived global forest cover changes from 2001 to 20193 (Supplementary Fig. 4).Post-processingWe applied a series of spatial filters to minimize the unrealistic outliers from two potential sources of uncertainty, including speckle in time-series spectral trajectories or misregistration among images. This may lead to individual pixel or small patches including only a few pixels, which were (a) detected as disturbances, thus increasing the commission errors, or (b) not detected as disturbances, while their surrounding pixels were mostly disturbed, thereby increasing the omission errors. To address the issue (a), we removed all single-pixel disturbance patches through setting the minimum mapping unit as two 30 × 30 m2 pixels (0.18 ha). To address the issue (b), we applied a 3 by 3 moving window to fill holes through assigning the year of disturbance based on the years in the surrounding pixels. Finally, we smoothed the year of disturbance by assigning the center pixel using majority rules from surrounding pixels within the 3 by 3 windows, thus accounting for artefacts associated with uncertainties in the correct identification of the disturbance year.Characterizing disturbance regimes and their trendsWe characterized the disturbance regime using five indicators within each 0.5° grid cell (n = 1946) across China’s forests based on annual forest disturbance maps generated from the previous step. Within each grid cell, we calculated (1) total annually disturbed forest area (km2 yr−1), (2) percentage of forest disturbed annually (% yr−1), as annual disturbed forest area divided by the total forested area, (3) disturbance size (ha), as the number of disturbed pixels for each individual patch using an eight-neighbor rule, (4) disturbance frequency (# of patches per 1000 km2 forested area each year), as the number of disturbance patches per year divided by the total forested area, (5) disturbance severity (ΔNDVI = NDVIt−1 − NDVIt+1), as magnitude of NDVI change 1 year before and 1 year after disturbance, obtained from the LandTrendr analysis. We used (1) and (2) to characterize the disturbance rate, and (3)–(5) to describe the patch characteristics. The (2) and (4) were normalized by forest area within each grid cell, thus making them comparable among grid cells. For (3)–(5), we only calculated the patch size >0.45 ha (five 30 × 30-m2 pixels), because patches  TC2000), and the expansion of forested area from 1986 to 2000 (e.g., TC1986  20% following Liu et al., (2019). We should note that our study area did not include the newly afforested area after 2000. All analyses were performed within the forest mask, thus excluding the potential confounding factors from other land cover types. The description of TC1986 and TC2000 can be found in3,32. More

  • in

    Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia

    Here, we examine infection dynamics in the four regions of focus to learn more about how various control interventions performed in each region. Since the first documented cases emerged in these regions, the virus was able to spread freely across much of the first and second phases with a gradual increase in the control interventions. In the four regions of Makkah, Madinah, Eastern, and Riyadh, cases peaked on 12th May (6397 cases; 95% CI 5960–9697), 15th May (1967 cases; 95% CI 1625–2308), 23rd June (10367; 95% CI 8948–11785) and 11th June (11273 cases; 95% CI 11068–12491) respectively according to the fitted model shown in Fig. 2. As the epidemic progressed, more measures were adopted to contain the disease, and the disease’s infectiousness sharply decreased after the third period. There are a few factors responsible for the sudden declining trend: first our model is dependent on official data on cases that have been documented, and these data will only ever reflect a portion of the overall number of cases. Second, different regions developed different testing strategies, and some locations altered their approach to testing during the course of the time period that was investigated. It is possible that the beginning of the Hajj term (period 4) was a contributing factor in the decrease in the number of documented cases. Additionally, previous to this time period, the government indicated that it would be increasing the size of its local testing in order to detect new cases. It is possible that the efficacy of interventions would be reduced if increases are found to be occurring during the falling phase of an epidemic. This may result in measures being kept in place for a longer period of time than they would have been had more accurate data been provided.Figure 2With the use of the Delay Rejection Adaptive Metropolis method, the relevant parameters were estimated for each of the four areas of interest by fitting the data from 13th March until 25th September.Full size imageWe estimate the effective reproduction number (R_t) as an indicator of SARS-CoV-2 transmission before and after the interventions. Figure 3 depicts the dramatic shift in the rate of SARS-CoV-2 transmission as a result of decreased social contact and other control measures. At the beginning of the pandemic, (R_t) for SARS-CoV-2 in Saudi regions was between 4 and 6 as illustrated in Tables 6 and 7. In other words, on average each case spread to between four and six others. Considering that each new generation of SARS-CoV-2 cases occurs every five days, it is evident that this pandemic was rapidly expanding out of control. Moreover, we assumed that the transmission rate and the documented infection rate did not change during the first two periods since interventions were carried out gradually until a complete lockdown took place. As more measures were introduced, the spread of the disease began to decrease. Therefore, our data were based on the weekly reported number of documented SARS-CoV-2 cases broken down by region. As a result, it became clear that the reliability of the (R_t) value was relatively high for transmission.Figure 3Distribution of Rt estimates derived from 10000 MCMC samples for Makkah, Madinah, Eastern, and Riyadh, respectively. The black dot in the centre of each violin plot denotes the median, the thick bar in the plot denotes the interquartile range, and the thin bar in the plot denotes the lowest and maximum values. The mean and the credible interval for 95%, which is shown in parentheses, are labelled below or above, respectively.Full size imageThe effects of the events and interventions on the dynamics of SARS-CoV-2 in the regions of interest are considered. First, if the controls remained in phase four in Makkah, our model projects that the total number of documented cases would increase to 81047 (95% CI 79421–82672). In Al-Madinah, the cumulative number of documented cases would have increased to 22997 (95% CI 19578–26415). The number of cumulative documented cases may have reached 80520 (95% CI 78335–82704) if controls stayed steady in the Eastern region at the level they were at in phase four. If the pattern shown during the fourth period is taken into account, we estimate that there would have been 67150 (95% CI 63731–70568) documented infections in the Riyadh region. Figure 4 illustrates these findings.Figure 4The relevant parameters were estimated for each of the four regions of interest by first fitting the data of each region, and then predicting using the parameters from period 4. This was done with each of the four regions of interest separately.Full size imageWe now explore the impact of controls remaining in place at the same level as that implemented in phase three. In that case, the number of documented cases in Makkah would have increased to 116641 (95% CI 105015–128266). Similarly, the total number of documented cases in Al-Madinah would have increased to 53877 (95% CI 50458-57295) if the outbreak had been allowed to continue at the same level. If the controls had remained unchanged from how they were in phase three in the Eastern region, the total number of documented cases would have been 310459 (95% CI 298362–334981). Finally, in Riyadh this would have resulted in 665241 documented cases (95% CI 651822 to 678659). Figure 5 highlights these findings.Figure 5For each of the four areas of interest, the relevant parameters were estimated by first fitting the data of each region and then predicting using the parameters from period 3. This was carried out for each of the four areas of interest independently.Full size imageWe now investigate the impact of second-period controls remaining in place. In that case, the number of documented cases would increase to 1236642 (95% 1218314–1251626), 442865 (95% CI 439446–456283), 454031 (95% CI 441846–466215), and 2322624 (95% CI 1919206-3026042) in the regions of Makkah, Madinah, Eastern, and Riyadh, respectively (see Fig. 6).Figure 6For each of the four regions of interest, the relevant variables were identified by first fitting the data from each area and then making predictions using the parameters from period 2. Each of the four regions of interest was done separately.Full size imageThe efficacy of NPIs is dependent on when they are adopted, with earlier adoption resulting in greater success in lowering transmission rates of infectious diseases. In the early stages of COVID-19, Saudi regions made the decision to gradually implement measures in order to understand the severity of the disease and reduce the economic and social costs of lockdowns, as well as the political costs. In Fig. 6, if the government were to rely on the interventions of the second phase, then the number of cases of infection would considerably rise owing to the ineffectiveness of the measures. In the third period as in Fig. 5, the government made it possible to relax some of the control measures, but it is ultimately up to each area to decide whether they will maintain the same level of control or whether they will increase or decrease it. In comparison to the control measures carried out during the third and fourth periods, this led to significantly improved outcomes. The reason that these time periods were chosen is that there was no stiffening of the NPI response in most Saudi regions during the first two periods and control interventions were improved later on.Significant undetected infections resulted in the fast spread of new coronaviruses (SARS-CoV-2) which is illustrated in Fig. 7. The proportion of undocumented infections, including asymptomatic cases and undocumented symptomatic individuals who did not seek medical treatment or be tested for mild symptoms, was greater than that of Wuhan at the onset of the pandemic26, which may be a result of the following factors: first, the medical configuration was not optimal and public awareness was limited during the onset of the pandemic while the undocumented rate progressively increased; Second, contact tracing procedures employed in Saudi regions may have become overwhelmed if the number of early-stage cases in Saudi regions rises substantially. The discrepancy between the predicted proportions of asymptomatic (undocumented) cases may be attributable to the difficulty in the un-identifiability of parameters in epidemiological models. There were a substantial number of asymptomatic infected individuals with high infectivity in Saudi regions, where the epidemic situation escalated rapidly. Our research emphasises the frequency of asymptomatic SARS-CoV-2 cases and their role in transmission in order to increase people’s knowledge of asymptomatic cases and to serve as a guide for the prevention and control of SARS-CoV-2.Table 3 Estimated transmission rate in Saudi Regions.Full size tableTable 4 Estimated ascertainable infection rate.Full size tableIn this model, we fitted dynamic transmission rates because of varied preventable measures by the Saudi government at the level of the country or region. After a series of actions taken by the government, regions and cities went into lockdown, resulting in a decrease in the transmission rate as in Table 3. Before the interventions were introduced, in the first two periods of our study, we assumed the transmission rate did not change since individual and community responses had not effectively taken place. After severe interventions were implemented, the transmission rates were allowed to vary in later periods and reduced gradually due to the control measures that reduced the spread of disease27. Estimates of documented infection rates are presented in Table 4. Our model estimates show the documented infection rate has continued to decrease in the last two periods. Thus, the parameters we fit across periods are a measure of how effective the lockdown was in bringing down the documented infection rate28.Risk of resurgenceThe risk of resurgence in Saudi Arabia’s four regions has been examined in this section after the relaxation of intervention measures. There will be a rise in disease activity if control measures are relaxed without taking into account increases in the number of cases being detected, isolated, and/or traced. We predict the first week of no new cases of infection and the week when all current infections in Saudi Arabia will be eradicated.In the Makkah region, had the trend continued into the fourth period, the number of documented infections would have dropped to zero on average by the 6th September (23rd August to 27th September), and all infections would have been eradicated by the 26th of October (7th October to 14th November). On the 28th June, the number of weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) reached its highest point of 230,230 (95% CI 226811–234364), and on 8th September, that number dropped to 44023 (95% CI 40604–47441).Therefore, the number of documented infections would have reached zero in Al-Madinah region on average on 6th November (23rd October to 22nd November), and all infections would have been eliminated by 1st December (27th November to 14th December). On 23rd June, weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) peaked at 130,134 (95% CI 126715–133552) and then declined to 60023 (95% CI 58604–63441) on 25th September.If the trend had continued as it did in the fourth period in the Eastern region, the average number of documented infections would have reached zero on 2nd November (from 23rd October to 18th November), and the total eradication of infections would have happened on 1st December (26th November to 22nd December). The number of weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) peaked at 65000 (95% CI 61581–68418) during the week of July 23rd and subsequently decreased to 800 (95% CI 765–834) on 8th of September.Lastly, the model predicted that the number of weekly active infections in the Riyadh region (including presymptomatic, symptomatic, and asymptomatic infections) peaked on 28th June at 562332 (95% CI 513379–619542) and then decreased to 188215 (95% CI 174796–191633) on 18th September. On average, we expected that the number of documented infections would have decreased to zero on 18th October (7th October to 14th November) and that the total number of infections would have been eliminated on 1st December if the trend continued as it did in the fourth period (20th November to 23rd December). Figure 7 illustrates these findings. We found that if control measures were lifted 30 days following the first day of zero documented cases.Figure 7The estimated number of infected cases that were active (presymptomatic, symptomatic, and asymptomatic) during the research period in the areas of Makkah, Madinah, Eastern, and Riyadh respectively.Full size imageThe probability of resurgence, which we define as the number of active documented cases greater than 100 could be as high as 0.96 in Eastern, 0.95 in Madinah, 0.97 in Makkah, and 0.96 in Riyadh. If we adopt more stringent conditions of lifting controls after observing no confirmed cases for a continuous period of 30 days, the probability of resurgence decreases to 0.31, 0.28, 0.30, and 0.30, with probable resurgence occurring on 13th February, 7th February, 2nd January, and 8th January for Eastern, Makkah, Madinah and Riyadh, respectively (Fig. 8). Despite the use of a simplified model, these results emphasize the hazards of ignoring undetermined occurrences when modifying intervention techniques.Figure 8Figure demonstrating the effect of relaxing all control measures in all four regions 30 days following the first day without confirmed cases.Full size imageSensitivity analysisFor the purpose of testing the robustness of our research results, we conducted a series of sensitivity analyses by varying the durations of the latent and infectious periods, the ratio of transmissibility in asymptomatic (undocumented) cases to symptomatic (documented) cases, and the initial documented infection rate. We conduct eight sensitivity analyses (S1 to S8) within each model for each region of Saudi Arabia to assess the robustness of our model results. For instance, the sensitivity analysis performed for S1 was based on the changes of the latent period and pre-symptomatic infectious period, respectively, and other parameters remain the same. These modifications were carried out with the help of reference15,29, and the same approaches were used for the other parts of the sensitivity analysis, which is summarised in Table 5.Table 5 Description of essential model parameters that were not fitted in the MCMC, where (D_e) refers to the latent period, (D_p) refers to the pre-symptomatic infectious period, (D_i) refers to the symptomatic infectious period, (gamma _0) refers to the initial ascertain rate and (alpha) refers to the ratio of the transmission rate for P and A to I.Full size tableIn particular, for (S1), we raised the incubation period to 7 days (upper 95% CI based on ref15) and the pre-symptomatic infectious period to 3 days (upper 95% CI based on ref29). Therefore we set (D_e = 4) and (D_p=3), and modified (E_0) and (P_0) as needed. The transmissibility of the undocumented cases was assumed to be 0.46 (lower 95 % CI according to ref.31) of the infection cases for (S2); for (S3), the transmissibility of the asymptomatic (undocumented) cases was assumed to be 0.62 (upper 95 % CI according to ref31). We assumed that in (S4), the initial documented infection rate was (gamma _0) = 0.14 (lower 95 % CI according to ref13) and adjusted (A_0), (P_0) and E(0) accordingly. Similarly for (S5) we assumed the initial documented infection rate was (gamma _0) = 0.42 (upper 95 % CI according to ref13) and adjusted (P_0), (A_0), and (E_0) accordingly. In (S6) we set the variables (D_ e=3) and (D_p=1.1), and altered the values of (P_0) and (E_ 0) as necessary in accordance with13. In (S7) we assumed that the transmission rate of asymptomatic (undocumented) cases was half that of documented cases by setting 0.5. Finally, in (S8) we assumed that the infectious period ((D_i)) was double that of symptomatic cases by setting 6 days. Both (S7) and (S8) were based on30. The results of our sensitivity analysis are summarised in Tables 6 and 7. We note that the variation in the model predictions of (R_t) varies from setting to setting. However, these variations appear to be fairly small, proposing the robustness of the results to the specification of associated values in fairly realistic ranges13,13. Our sensitivity analysis provides information about the importance of each parameter to the model representing the transmission of SARS-CoV-2. An increase (or decrease) in parameter values, while other parameters’ values remain the same, contributes to an increase (or decrease) in effective reproduction numbers. For example, an increase in infectious period would result in a higher effective reproduction number at the beginning of the epidemic and a longer time required to clear all infections in Saudi regions32. Our sensitivity analysis indicates that almost all model parameters may have an important role in spreading this virus among susceptible people. In particular, the contact rate from person-to-person and the transition rate of asymptomatic (undetected) individuals play a significant role in disease spread. Our important findings, of a significant decrease in (R_t) after interventions and the existence of a substantial number of presymptomatic and asymptomatic cases, were found to be robust. This highlights that Saudi authorities should pay attention to intervention strategies in the event of a resurgence of cases and quarantining those who were in contact with active cases can effectively reduce the disease33. In Tables 6 and 7 we show the estimated effective reproduction number (R_t) associated with 95% CIs obtained from those eight sensitivity analyses for all four regions and all five time periods.Table 6 Sensitivity analysis of the effective reproduction number (R_t) for Eastern and Madinah.Full size tableTable 7 Sensitivity analysis of estimated effective reproduction number (R_t) for Makkah and Riyadh.Full size table More

  • in

    Plastic plumage colouration in response to experimental humidity supports Gloger’s rule

    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    Piersma, T. & Van Gils, J. A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour (Oxford University Press, 2011).
    Google Scholar 
    Piersma, T. & Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).Article 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 1–10 (2020).
    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 

    Google Scholar 
    Rensch, B. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung (Gebrueder Borntraeger, 1929).
    Google Scholar 
    Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).
    Google Scholar 
    Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160345 (2017).Article 

    Google Scholar 
    Friedman, N. R. & Remês, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).Article 

    Google Scholar 
    Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).Article 

    Google Scholar 
    Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    Medina, I. et al. Reflection of near-infrared light confers thermal protection in birds. Nat. Commun 9, 3610 (2018).Article 
    ADS 

    Google Scholar 
    Aldrich, J. W. & James, F. C. Ecogeographic variation in the American Robin (Turdus migratorius). Auk 108, 230–249 (1991).
    Google Scholar 
    Morales, H. E. et al. Neutral and selective drivers of colour evolution in a widespread Australian passerine. J. Biogeogr. 44, 522–536 (2017).Article 

    Google Scholar 
    Griffith, S. C., Owens, I. P. & Burke, T. Environmental determination of a sexually selected trait. Nature 400, 358–360 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Fargallo, J. A., Laaksonen, T., Korpimäki, E. & Wakamatsu, K. A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol. Ecol. 21, 157–171 (2007).Article 

    Google Scholar 
    Fargallo, J. A., Martínez, F., Wakamatsu, K., Serrano, D. & Blanco, G. Sex-dependent expression and fitness consequences of sunlight derived color phenotypes. Am. Nat. 191, 726–743 (2018).Article 

    Google Scholar 
    Beebe, W. Geographic variation in birds, with especial reference to the effects of humidity. Zoologica 1, 3–41 (1907).
    Google Scholar 
    Bieber, H. Fellverdunklung beim hauskaninchen nach kälteeinwirkung. Zeitschrift für Säugetierkunde 38, 33–38 (1972).
    Google Scholar 
    Johnston, R. F. & Selander, R. K. House sparrows: Rapid evolution of races in North America. Science 144, 548–550 (1964).Article 
    ADS 
    CAS 

    Google Scholar 
    Galván, I., Wakamatsu, K. & Alonso-Álvarez, C. Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell Melanoma Res. 27, 1159–1161 (2014).Article 

    Google Scholar 
    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).Article 

    Google Scholar 
    Montgomerie, R. Analyzing colors. In Bird Colouration I. Mechanisms and Measurements (eds Hill, E. G. & McGraw, K. J.) (Harvard University Press, 2006).
    Google Scholar 
    McGraw, K. J., Dale, J. & Mackillop, E. A. Social environment during molt and the expression of melanin-based plumage pigmentation in male house sparrows (Passer domesticus). Behav. Ecol. Sociobiol. 53, 116–122 (2003).Article 

    Google Scholar 
    Lessells, C. M. & Boag, P. T. Unrepeatable repeatabilities a common mistake. Auk 104, 116–121 (1987).Article 

    Google Scholar 
    Anderson, T. R. Biology of the Ubiquitous House Sparrow (Oxford University Press, 2006).Book 

    Google Scholar 
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2006).Book 

    Google Scholar 
    Nakagawa, S., Ockendon, N., Gillespie, D. O., Hatchwell, B. J. & Burke, T. Assessing the function of house sparrows’ bib size using a flexible meta-analysis method. Behav. Ecol. 18, 831–840 (2007).Article 

    Google Scholar 
    Hill, G. E. & McGraw, K. J. Bird Coloration, Volume I: Mechanisms and Measurements (Harvard University Press, 2006).Book 

    Google Scholar 
    D’Alba, L. & Shawkey, M. D. Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).Article 

    Google Scholar 
    Delhey, K., Burger, C., Fiedler, W. & Peters, A. Seasonal changes in colour: A comparison of structural, melanin- and carotenoid-based plumage colours. PLoS ONE 5, e11582 (2010).Article 
    ADS 

    Google Scholar 
    Galván, I., Mousseau, T. A. & Møller, A. P. Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia 165, 827–835 (2011).Article 
    ADS 

    Google Scholar 
    Meunier, J., Pinto, S. F., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: A meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).Article 

    Google Scholar 
    Roulin, A., Almasi, B., Meichtry-Stier, K. S. & Jenni, L. Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways. J. Evol. Biol. 24, 2241–2247 (2011).Article 
    CAS 

    Google Scholar 
    Gasparini, J. et al. Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J. Anim. Ecol. 78, 608–616 (2009).Article 

    Google Scholar 
    Fargallo, J. A. et al. Sex-specific phenotypic integration: Endocrine profiles, coloration, and behavior in fledgling boobies. Behav. Ecol. 25, 76–87 (2013).Article 

    Google Scholar 
    Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).Article 
    CAS 

    Google Scholar 
    Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).Article 
    CAS 

    Google Scholar 
    McKinnon, J. S. & Pierotti, M. E. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).Article 

    Google Scholar 
    Poston, J. P., Hasselquist, D., Stewart, I. R. & Westneat, D. F. Dietary amino acids influence plumage traits and immune responses of male house sparrows, Passer domesticus, but not as expected. Anim. Behav. 70, 1171–1181 (2005).Article 

    Google Scholar 
    McGraw, K. J. Dietary mineral content influences the expression of melanin-based ornamental coloration. Behav. Ecol. 18, 137–142 (2007).Article 

    Google Scholar 
    Fargallo, J. A., Martínez-Padilla, J., Toledano-Díaz, A., Santiago-Moreno, J. & Dávila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol. 76, 201–209 (2007).Article 

    Google Scholar 
    Fitze, P. S. & Richner, H. Differential effects of a parasite on ornamental structures based on melanins and carotenoids. Behav. Ecol. 13, 401–407 (2002).Article 

    Google Scholar 
    Roulin, A., Altwegg, R., Jensen, H., Steinsland, I. & Schaub, M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol. Lett. 13, 616–626 (2010).Article 

    Google Scholar 
    Sharma, A. Effect of ambient humidity on UV/visible photodegradation of melanin thin films. Photochem. Photobiol. 86, 852–855 (2010).Article 
    CAS 

    Google Scholar 
    Burtt, E. H. The adaptiveness of animal colors. Bioscience 31, 723–729 (1981).Article 

    Google Scholar 
    Heppner, F. The metabolic significance of differential absorption of radiant energy by black and white birds. Condor 72, 50–59 (1970).Article 

    Google Scholar 
    Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: A macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).Article 

    Google Scholar 
    Zink, R. M. & Remsen, J. V. Evolutionary processes and patterns of geographic variation in birds. Curr. Ornithol. 4, 1–69 (1986).
    Google Scholar 
    Burtt, E. H. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106, 681–686 (2004).Article 

    Google Scholar 
    Ruiz-De-Castaneda, R., Burtt, E. H. Jr., Gonzalez-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: A role for feather-degrading bacteria in sexual selection?. Biol. J. Linn. Soc. 105, 409–419 (2012).Article 

    Google Scholar 
    Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).Article 

    Google Scholar 
    Ducrest, A. L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).Article 

    Google Scholar 
    Kim, S. Y., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity 111, 139–146 (2013).Article 
    CAS 

    Google Scholar 
    Horrocks, N. P. C. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).Article 
    ADS 

    Google Scholar 
    McLean, N., Van Der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401 (2018).Article 

    Google Scholar 
    Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Change Responses 3, 11 (2016).Article 

    Google Scholar 
    Gerson, A. R. et al. Flight at low ambient humidity increases protein catabolism in migratory birds. Science 333, 1434–1436 (2011).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Tracking microbes in extreme environments

    In 2008, I was investigating the methane bubbling up on the beaches and in shallow waters of Mocha Island, off the coast of central Chile. I became intrigued by how microorganisms could thrive in methane-rich areas and changed my research focus from marine biology to extreme environments. I wanted to understand how methane acts as a source of energy and carbon for microbes.Since then, I have explored a number of bizarre environments. In 2010, I went in a submarine down to 200 metres in the Black Sea, one of the world’s largest anoxic water bodies. There, I found mats of filamentous bacteria that survive on sulfur compounds.In 2017, I studied the microbes in Canada’s tailing ponds, artificial lakes of water, sand and clay waste that are left behind after petroleum extraction. And I sampled the microorganisms living in 100 °C Antarctic hot springs in 2022.I came home to Chile in 2018 and began collaborating with an international team researching the geomicrobiology of thermal features, including hot springs, geysers and volcanoes. After travelling with the group to Argentina’s active volcanic region, I got funding to explore the microbial communities that exist beneath hydrothermal vents in southern Chile, where the oceanic crust is subducting beneath the continental plate.In this image, I am in the Atacama Desert in South America, the driest non-polar desert on the planet. I am measuring 80–100 °C steam released from a fumarole containing yellow sulfur, which crystallizes at its opening as the vapour cools. I also sampled sub-surface microbes that are flushed out with the fluids. We’ll sequence their DNA to assess the microbial communities and their biological interactions.My goal is to learn more about subsurface microbes in extreme environments. I want to understand how microbial forces shaped the planet and how these communities might shift in the future with climate change. More

  • in

    Carcass traits and meat quality of goats fed with cactus pear (Opuntia ficus-indica Mill) silage subjected to an intermittent water supply

    Morphometric measurements are subjective and used to assess the carcass development and quantitatively measure the muscular distribution in the carcass with estimates of its conformation. In the present study there were not significative differences observed for these parameters or for carcass compactness index (CCI), inferring that the use of cactus pear silage as well as intermittent water supply combined or alone did not alter animal growth and/or carcass conformation, maintaining the muscle pattern achieved by the control diet (usual) and demonstrating body and carcass uniformity. Since animals used in this study were homogeneous and had similar age and body performance, as indicated by the carcass morphometric measurements and by the difference between the empty carcass and hot carcass weights, which resulted in the sum of head + limb with an average of 8.2 ± 0.13 kg between treatments, giving an idea that the animals were similar in chronological age, since the allometric growth of the body occurs from the extremities to the interior of the body.The significant difference between treatments with inclusion of cactus pear silage for hot carcass yield (HCY) and cold carcass yield (CCY) may be related to the weight of the full gastrointestinal tract, which showed higher values for animals fed with a higher proportion of Tifton 85 grass hay in the diet (0% CPS). Increasing the NDF content of the diet reduces the passage rate of digesta, and the emptying of the gastrointestinal tract (GT) that cause a distension of the rumen-reticulum and increase the weight of the gastrointestinal tract, resulting in lower HCY and consequently lower CCY. While the diets with inclusion of CPS increase NFC content, such as pectin, which have higher rates of rumen degradability and, higher rates of passage7,8,9.Measurements and evaluations carried out on the carcass, such as the carcass compactness index and loin eye area (LEA), are parameters that quantitatively measure the muscle distribution in the carcass, an edible part of greater financial return, which indicates the conformation of these animals3, while the body condition score (BCS) and the measure C, which are highly correlated, measure the distribution of fat on the carcass, giving an idea of the carcass finish, in which the higher these variables, the greater the proportion of fat that allows for less water loss due to carcass cooling10. These variables in the present study were also not influenced by the levels of cactus pear silage and water restrictions, presenting an overall mean of 0.17 kg/cm, 7.68 cm, 2.42 points and 0.7 mm respectively, and consequently did not influence the losses due to cooling, which presented an average loss of 1.48%.The main cuts of the goat carcass are the neck, leg, shoulder, loin, and rib. Their economic values differ, and their proportions become an important index to evaluate the carcass quality9. The cuts of greatest importance and commercial values are the leg and the loin, called noble cuts because they present greater yield and muscle tenderness, being interesting that they present a good proportion in the carcass, for providing greater edible tissue content, mainly muscle.Carcasses with similar weight tend to have equivalent proportions of cuts, as they exhibit isogonic growth. As the cold carcass weight (CCW) and the conformation of the animals were similar, with similar morphometric measurements, they had a direct relationship in the absence of an effect on commercial cuts.The commercial value of the carcass, whether through carcass yield and/or the proportions of the cuts, is also linked to tissue composition, thus the dissection of the leg represents an estimate of measuring the tissue composition of the carcass, in which is sought a greater proportion of muscle, intermediate proportion of fat and less bone in carcasses11. In this way, diets with cactus pear silage and the different levels of intermittent water supply resulted in the constancy in the amount of muscle, fat, and bone in legs of goats. The similarity in muscle proportion is related to the lack of effects on slaughter weight and CCW, as the weight of muscles is highly correlated to carcass weight. The average muscle yield was above 60% in all treatments, confirming that the animals showed good efficiency to the diets and adapted well to the water supply levels. Although the diets with cactus silage had high amounts of metabolizable energy (ME) and no difference in DM intake, the energy input was similar that not influencing carcass weights and carcass compactness index. That is, it did not influence muscle deposition in the carcass, probably due to synchronicity of energy and protein.As for the weight and proportion of bone tissue, it is believed that because this is a tissue with early development in relation to muscle and fat2, diets in the final stages of growth (average of 8 months) would hardly change their participation in the tissue composition, where the relationship of this tissue with the others is usually only increased when there are changes in the proportion of muscle and/or fat.Water restriction, as long as it is moderate and acute, mainly affects the loss of body water and not tissues, which does not cause deleterious effects on animal productivity and growth.The muscle:fat ratio indicates the state of leg fattening, while the muscle:bone ratio estimates the carcass muscularity, both being attributes of quality3. The similarity previously reported in the weight of fat, bone and muscle corroborates that these relationships also do not have differences. The same occurs for the leg muscularity index (LMI), due to the weight of the five muscles used to determine the index and the length of the femur which had been similar between the animals.Nevertheless, when considering fat as a percentage of participation in leg weight, it is possible to observe that the intermittency in water supply in both intervals (24 and 48 h) reduced the proportion of fat in the leg. Although in this research, the water supply levels did not affect the daily intake of dry matter from animals, with average intake of 650.67 g/kg DM, ranging from 599 to 682 g/kg DM between treatments7, during days of water deprivation, fat mobilization for energy availability may occur, possibly offsetting water stress and influencing not only feed intake, on these days of deprivation but also affecting energy metabolism, which results in the mobilization of energy reserves2.When the physicochemical composition of the meat was evaluated, it was observed that the diets and water supply levels probably did not affect the reserves of muscle glycogen during the pre-slaughter management as can be seen through pHinitial and pHfinal. The pHinitial right after slaughter should be close to neutrality, as well as in the live animal, indicating that the animal did not suffer from stress during the pre-slaughter period. The pHfinal, on the other hand, is expected to show a considerable variation, between 5.55 and 6.2 for goat meat; and due be inversely proportional to the concentration of muscle glycogen at the time of slaughter, that is, a more intense expenditure of glycogen stores results in less lactic acid production and higher pHfinal10,12,13. In this research, the pHfinal had an average of 5.74, a pH higher than the isoelectric point of muscle proteins (5.2–5.3). This result is favorable, since it is above the neutral charge and presenting an excessive negative charge that provides the repulsion of filaments, which allows water molecules to bind and improve the organoleptic characteristics of the meat, through succulence and texture of meat13 evaluated by cooking loss, moisture, and shear force, principally. The cooking loss (CL), moisture and shear force (SF) were within the values recommended (20–35% CL, moisture above 70% and SF up to 44.13 Newton (N) for goat meat) to classify the meat as soft and tender14. Statistically, interactions were found between the supply of silage and intermittent water supply, in which goats on a diet without cactus pear silage and without intermittent water supply showed higher values of cooking losses and shear force.Higher concentrations of collagen content and/or greater activities of calpastatin (which inhibit the action of calpains), as well as larger fascicles and greater number of fibers present in each muscle fascicle, as was visually observed in the meat of the animals in this research, can lead to reductions in meat tenderness15. Because goat carcasses are generally small, with low marbling degree and a thin layer of subcutaneous fat, there is rapid heat dissipation at the beginning of the post-mortem period, which can lead to cold shortening, muscle hardening, and less tender meats16.pHfinal of the meat has a high correlation with color parameters (L*—lightness, a*—redness, b*—yellowness and Chroma), as the pHfinal can affect the reaction of myoglobin to oxymyoglobin. The b* index in meat, on the other hand, may be related to the concentration of fat and/or the presence of carotenoids in the diet which can be affected by forage preservation processes, such as silage and hay, which significantly reduces by up to 80% carotenoids levels13. It is believed that the carotenoid concentrations in the diet of this study were similar between treatments and consequently in values of b* of meat. Values of a* and Chroma directly depend on the content and state of the heme pigments in the muscle, due to the chemical state of iron (Fe), playing an important role in meat color10. These parameters showed no significant difference between treatments, however, higher values of a* and Chroma in meat are desired, as a result of the increase in oxymyoglobin and decrease in metmyoglobin that provides the meat’s “bloom”. According to Dawson et al.17, the minimum critical value for meat luminosity (L*) is 34. Lower values of L are related to elevating pHfinal, which results in the high concentration of metmyoglobin, making the meat darker, which causes rejection by consumers for associating dark meat to as old meat.The meat’s presentation and more precisely its color is an important factor that can influence a consumer’s purchase decision, as it gives us the idea of freshness and meat’ quality. The L* and a* color parameters are the most representative for these characteristics18. Although in our research it did not have a significant effect on the color parameters, we can indicate that the meat obtained in this research would be well accepted by consumers, because Hopkins19 suggests that consumers will consider meat color acceptable when the L* value is equal to or exceeds 34, and a* value below 19 or equal to or exceeds 9.5 according to Khliji et al.18. In the present study, all values for L* remained above this aforementioned threshold and the values of a* remained within these values which suggests that meats from all diets and water supply levels had an acceptable color for consumers.When evaluating the chemical composition of meat, no significant differences were observed between treatments, except for the ash content, that remained above the average values found in the literature, which is 0.99–1.10%16. It is believed that because cactus pear is a rich source of Ca, Mg, K and with increasing level of cactus pear silage in the diet31, these minerals were consumed in larger amounts, which could have resulted in a higher proportion of minerals in the meat of animals that received 42% cactus pear silage.The lipid fatty acid profile in meat has a major impact on sensory properties and nutritional quality, influencing acceptance and health for consumers20,21. Intermittent water supply, cactus pear silage, and interaction between water supply and cactus pear silage did not influence most fatty acids present in the Longissimus lumborum muscle of the animals under study, except only a few saturated fatty acids e.g. docosanoic acid (C22:0), tricosanoic acid (C23:0), BCFA, anteiso-tridecanoic acid (C13:0 anteiso) and anteiso-pentadecanoic acid (C15:0 anteiso).Biohydrogenation of ruminal bacteria results in a circumstantial variety of fatty acids (FA), which will be absorbed in the intestine and later incorporated into the meat of goats. In addition to the diet and the biohydrogenation, the meat lipid profile can vary due to de novo synthesis, desaturation, duration of the feeding period and differences in pathways of various FA by the animal organism22.A high concentration of saturated fatty acids present in meat is not desirable, as there is evidence that saturated fatty acids, mainly C16:0, as well as myristic (C14:0) and lauric (C12:0) increase the blood cholesterol and low-density lipoproteins (LDL) concentration, due to interferences with hepatic LDL receptors23, however, in the studied treatments, there were no significant differences for these fatty acids. On the other hand, C18:0 has no impact on cholesterol levels, due to being poorly digested and easily desaturated to C18:1 by Δ9-desaturase24, present in the cell endoplasmic reticulum. This fatty acid is not harmful to health and is considered the only desirable SFA. As the levels of C18:0 in diets tend to be minimal, their main origin is the biohydrogenation of PUFA and de novo syntheses in diets with a high energy pattern25.In addition to carrying out the biohydrogenation process, ruminal bacteria synthesize a series of FA, mainly those of odd and branched chain, that comprise mainly the lipids of the bacterial membrane26,27, to maintain membrane fluidity. Linear odd-chains fatty acids are formed when propionyl-CoA, instead of acetyl-CoA, is used as a de novo synthesis initiator25. On the other hand, iso and anteiso FA are synthesized by the precursors branched-chain amino acids (valine, leucine, and isoleucine) and their corresponding branched- short-chain carboxylic acids (isobutyric, isovaleric and 2-methyl butyric acids)28.There is an increasing interest to study odd-and branched-chain fatty acids (OBCFAs) from animal products, mainly in milk due to its higher concentration compared to meat. Researchers reported that several OBCFAs have potential health benefits in humans29 as improved gut health30 and presenting anti-cancer activity31, as well as improve the sensory characteristics of the meat, providing a greater sensation of tenderness and juiciness, because BCFA content are associated with a less consistent fat in meat from lambs due to its lower melting point and its chain structure32.The FAs profile in the ruminal bacteria is largely composed by OBCFAs (C15:0; anteiso C15:0; iso C15:0; C17:0; iso C17:0; C17:1 and anteiso C17:0) in the bacteria membrane lipids24. Thus, the higher concentration of OBCFAs might be the result of the difference in the rumen bacterial populations induced by variation in the dietary carbohydrate, that is, a higher concentration of cellulolytic bacteria in relation to amylolytic bacteria, due to the high neutral detergent fiber (NDF) content in the diet with 0% cactus forage silage. It is also known that amylolytic bacteria produce more linear odd chain and anteiso FAs than iso FAs, whereas cellulolytic bacteria produce more iso FAs28,32. As the Tifton 85 grass hay-based diet had the highest neutral detergent fiber corrected for ash and protein (NDFap) and starch content (highest % of ground corn), the meat of those animals had higher concentrations of anteiso C15:0 and anteiso C13:0 compared to animals fed diets with the inclusion of cactus pear silage, also influencing the total sum of branched chain fatty acids.Although levels of intermittent water supply have generated punctual changes in tricosanoic acid (C23:0) SFA, the same was not observed for MUFA and PUFA, due to changes in the rumen environment, promoted by water restrictions, which were not sufficient to circumstantially modify biohydrogenation, resulting in similarities in concentrations of unsaturated fatty acids in goat meat.The animals subjected to 24 h of intermittent water supply (IWS) presented the highest concentration of C23:0 in relation to other treatments, which is interesting because it is involved in the synthesis of ceramide and reduces the risk of diabetes in humans33.The cactus pear has high non-fibrous carbohydrate (NFC) content (mainly pectin), having 59.5% high and medium rumen degradation carbohydrates which provide a higher production rate and removal of short-chain fatty acids and changes in rumen bacterial populations34. The inclusion of CPS resulted in a higher passage rate of digesta, affected biohydrogenation, and resulted in the escape of intermediate fatty acids isomers that are absorbed in the small intestine. Consequently, there was changing composition of fatty acids in the muscle of these animals, with a significant effect being observed only in the cis-13 C18:1. Furthermore, diets with high proportions of cactus pear silage (CPS), such as 42% CPS diet, can decrease ruminal pH and affect the final stages of biohydrogenation, resulting in the escape of intermediate fatty acids isomers, that are absorbed in the small intestine, which can explain the similarity of the C20:1 in 42% CPS diet from the Tifton hay-based diet, with differences between goat meat from 21% CPS diet and Tifton hay-based diet.Oleic acid (c9-C18:1) was the MUFA with the highest participation in the lipid profile of goat meat, which is interesting because it has a hypocholesterolemic effect, being a desirable fatty acid (DFA) for not reducing the serum high density lipoproteins (HDL) levels and thus prevent cardiovascular disease by reducing LDL levels35. The high concentrations of c9-C18:1 in ruminant meat come from the food intake, the effect of biohydrogenation, and mainly of the high activity of Δ9-desaturase, necessary for animal biosynthesis through desaturation of C18:0 to c9-C18:127. This fatty acid in the lipid profile of red meat varies between 30 and 43%36, confirming that the meat in the present study had a good concentration of this fatty acid.Much of unsaturated fatty acids, which have 18 carbons or 16 carbons, are largely converted to C18:0 and C16:0 through biohydrogenation, and when this process is not 100% completed, in addition to the PUFA that pass through this process intact, some product intermediates are formed, reaching the duodenum and are absorbed by the animal, in which significant amounts of cis and trans-monounsaturated, such as vaccenic fatty acid (t11-C18:1), reach the duodenum and are absorbed, later composing the muscle tissue22.The literature indicates that the precursor of conjugated linoleic acid (CLA) in the meat of animals is trans vaccenic acid (t11-C18:1), so the enzyme ∆9-desaturase, besides acting in the conversion of stearic into oleic fatty acid, also converts the trans-vaccenic acid to its corresponding CLA isomer, c9t11-C18:236. This pathway is more expressive in the mammary gland, and as the concentration of vaccenic acid (t11-C18:1) was not different, the concentration of CLA was not affected by the supply of silage and intermittent water supply, in the same way, that there are also no differences in the activity of ∆9-desaturase. Nevertheless, it is worth noting that in the human adipose tissue there is also the presence of ∆9-desaturase, and therefore, increased intake of vaccenic fatty acid could have the same beneficial effects associated with the intake of CLA, where the dietary vaccenic fatty acid shows 19–30% conversion rate37.Tifton hay is a natural source of n-3 fatty acids, mainly C18:3 n-3 with up to 20% participation in the lipid profile2, allowing a certain part of these PUFAs to be absorbed and increased in the tissue muscle, with 10 to 30% PUFAs in the diet generally escaping from biohydrogenation.Linoleic fatty acid (c9c12 C18:2) and α-linolenic acid (C18:3 n-3) are essential fatty acids for humans, that serve as precursors of the n-3 and n-6 pathways, distinct families, but synthesized by some of the same enzymes (∆4-desaturase, ∆5-desaturase, and ∆6-desaturase)25. Arachidonic fatty acid (C20:4 n-6) comes from elongation and desaturation of linoleic acid, where its concentrations, even close to that of its precursor, may indicate that there was a high activity of ∆6-desaturase (desaturation to γ-linolenic), elongase (elongation of γ-linolenic to dihomo-gamma-linolenic) and ∆5-desaturase. This fatty acid was influenced by the diets, presenting lower concentrations in the meat of animals fed the 42% cactus pear silage when compared to the Tifton hay diet (0% cactus pear silage).A higher concentration of long-chain PUFA n-3, docosahexaenoic (C22:6 n-3), was observed in the muscle of animals fed on Tifton hay. This was probably due to the high concentration of C18:3 n-3, precursor of C22:6 n-3, that the hay presents in relation to the cactus pear silage.The ratios and proportions of fatty acids are used to determine nutritional and nutraceutical values of the product or diet, and mainly, to indicate the cholesterolemic potential4. It is interesting that the n-6/n-3 ratio is low due to the pro-inflammatory properties of n-6; it is recommended to decrease its intake to assist in disease prevention38, while n-3 fatty acids are anti-inflammatory, antithrombotic, antiarrhythmic and reduce blood lipids, with vasodilating properties, being interesting that they present a higher proportion24. n-6 fatty acids tend to have a higher percentage in meat, and this directly influences the formation of n-3 isomers, since linoleic acid, when in excess, can reduce the synthesis of linolenic acid metabolites. The percentage of FA in one group can interfere with the metabolism of the other, reducing its incorporation into tissue lipids and altering its general biological effects38. Therefore, it is not recommended that the n-6/n-3 ratio be kept above 5 or 639, demonstrating that the averages of the current research remained acceptable.In relation to atherogenicity index (AI) and thrombogenicity index (TI), Ulbricht and Southgate39 proposed that sheep meat should have values of up to 1.0 and 1.58, respectively, and the lower the values for these indices in the lipid fraction, the greater the prevention of early stages of cardiovascular diseases. In the present study, the general averages observed were 0.29 for the AI, and 0.81 for the TI, although there were no significant differences, all treatments are within the recommended range, despite having been used as comparative standard to sheep, due to the absence of the proposed standard for goat meat.The h:H ratio did not differ for diets and water supply levels, but had an average of 1.90, below the reference value for meat products, which is 2.0. Values above 2.0 are recommended and favorable40, as it indicates a higher proportion of hypocholesterolemic fatty acids, that are beneficial to human health.The ∆9-desaturase enzyme that acts on both the mammary gland and adipose tissue, responsible for the transformation of SFA into unsaturated fatty acids (UFA), as well as in the endogenous conversion of CLA37 did not differ between treatments. On the other hand, the elongase showed less activity. Probably there was a greater “de novo” synthesis which resulted in a greater accumulation of palmitic fatty acid, and a reduction in the activity of the elongase enzyme.The crossbred goats demonstrated to present efficient mechanisms for adapting to water restrictions, especially when receiving feed with higher water content, such as cactus pear silage, being able to replace Tifton hay with 42% cactus pear silage in the diet for goats in confinement without negatively affecting the carcass traits and meat quality. Because, although these animals have shown some differences in the indices of tenderness and juiciness of their meats, however, all presented values of juiciness and tenderness compatible with meat extremely appreciated by the consumer market, and even goat meat showing some fatty acids with different concentrations induced by the supply of silage and water intermittence, the final lipid profile was appropriate to the health of consumers, observed by the absence of differences in the total concentrations of PUFA and in the main nutraceutical parameters (DFA, n-6/n-3; h:H; AI and TI).These results are relevant, indicating that goat feedlots in regions with low water availability may adopt strategies of lesser demand for drinking water and considerable concentrations of cactus pear silage in the diet, can reduce production costs without considerably affecting the product to be marketed, and therefore, provide higher profitability of the system. More