More stories

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More

  • in

    Variable effects of vegetation characteristics on a recreation service depending on natural and social environment

    Study areaWe focused on hiking activity in the four main islands of Japan (Honshu, Hokkaido, Kyushu, and Shikoku) and nearby small islands connected to the main islands by a bridge (Fig. 1a). These islands lie between latitudes 31.0° and 45.5°N, and the total area is 361,000 km2. The islands are generally mountainous and tallest mountains in central Honshu exceed 3000 m a.s.l. (Fig. 1c). In Tokyo, mean monthly temperatures range between 5.2 °C in January and 26.4 °C in August, while they range between − 18.4 °C in January and 6.2 °C in August at the summit of the highest mountain, Mt. Fuji (3776 m a.s.l., Japan Meteorological Agency). In northern Honshu and Hokkaido, snow depth can exceed 1 m even at low elevations and high mountains are covered with snow even in southern Japan.Vegetation excluding farmland and pasture covers 70.9% of the study area and the 93.9% is forest. Plantations of mostly evergreen conifers such as Japanese cedar (Cryptomeria japonica) occupy 37.6% of the vegetation area (National Surveys on the Natural Environment by the Biodiversity Center of Japan 2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html). Secondary vegetation after past human disturbances occupies 39.4% of the total vegetation and the remaining 23.0% is primary vegetation. The typical primary vegetation types are, from north to south, boreal mixed forest, deciduous broad leaved forest, and evergreen broad leaved forest.Grid squaresRecords of hiking activity were summarized for 4244 secondary grid squares based on Standard Grid Square System, which was defined by the Minister’s Order of Administrative Management Agency in 1973. In the system, the secondary grid was defined as a grid of 5′ in latitude and 7′ 30″ in longitude, which roughly corresponds to a 10 km grid in the study area. This is the standard grid system of the government and we adopted the system for convenience in future application uses and communication with practitioners. The grids, which are defined by latitude and longitude, are different in the area up to 22% between the north and south ends. Therefore, area of each grid was included in a model as an offset term.Hiking activityAccording to a government survey in 2016, (the Survey on Time Use and Leisure Activities by the Statistics Bureau of Japan, http://www.stat.go.jp/english/data/shakai/index.htm), 10.0% (about 10.7 million people) of Japan’s population age 15 or over enjoyed hiking/mountaineering in the last year. The census showed also that hiking is more popular among urban residents in the metropolitan areas. Both multi-day expedition to high mountains and day trek to low mountains in suburban areas are popular. Because of the severe winter climate, unskilled hikers use the high mountains in summer and early autumn only. During a summer vacation, whose peak time in Japan is August, many hikers enjoy multi-day trips to distant mountains. Spring and autumn are also popular seasons because of the mild weather and the scenic beauty of the fresh green or autumn colors.Data collectionIn this study, we used number of hiking records accumulated on the most popular social networking service for hikers in Japan (Yamareco; https://www.yamareco.com) as a surrogate for flow of recreation service. For all the registered destinations in the study area, the number of hiking records for each month and the latitude and longitude of the destination were collected from the service in September 2016 with the rvest28 package in R software29. This service launched in October 2005 hosts records of the hiking route, photos, participants, and impressions of a hiking trip and facilitates communication among users. Although monthly number of records for each destination is always available on the site, the exact date of each hiking record is not always public information for privacy reasons; therefore, all of the records from the almost 11 years since the start of the service were lumped together in our analysis. Hikers may record multiple places in a single trip, so the total number of records must be larger than the number of unique trips. Users of the service sometime record a place that is not a destination, e.g. start points and stations of trails, parking areas, stations of transports, and bus stops. Such records were excluded before analyses as far as it can be judged from the name of the place. As a result, the total number of hiking records was 4,708,229 records for 16,179 destinations. Finally, these records were assigned to the 4244 grids based on the latitude and longitude of each destination and then total number of records for each grid was used as a surrogate of the recreation service flow in our analysis. Not only total number but also monthly number was used in our analysis to examine seasonal changes in associations between the service and vegetation. Total record number of the grids was strongly right-skewed; no record (handled as 0 in our analysis) was found in 2036 grids while mean and maximum record number were 1109 and 350,384, respectively.Explanation variablesFifty ecological, environmental, and social/infrastructural variables (Table S1) were prepared for each grid by using ArcGIS version 10.5 (ESRI, Redlands, CA, USA). For vegetation and land-use attributes, National Surveys on the Natural Environment by the Biodiversity Center of Japan (2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html) and National Land Numerical Information (http://nlftp.mlit.go.jp/ksj-e/index.html) were used. The proportion of sea, that of total vegetation cover (excluding agricultural land and pasture) to land area, that of agricultural land (including pasture) to land area, that of natural vegetation (vegetation excluding plantations) to total vegetated area, and that of primary vegetation (vegetation with no record or evidence of a disturbance) to natural vegetation were summarized at four spatial scales: a radius of 10 km, 20 km, 50 km, and 100 km from the center of each grid. Spatial patterns of the three vegetation variables in 10 km radius were summarized in Fig. 1d–f.Maximum elevation, minimum elevation, and ruggedness (index of topographic heterogeneity30) were summarized at the four spatial scales based on a digital elevation model (10-m resolution) provided by the Geospatial Information Authority of Japan (https://fgd.gsi.go.jp/download/menu.php). For climatic variables (annual and monthly mean temperature, annual and monthly precipitation, annual and monthly hours of sunshine, and annual maximum snow depth), the National Land Numeric Information provided by the Ministry of Land, Infrastructure, Transport and Tourism of Japan (http://nlftp.mlit.go.jp/ksj-e/index.html) was referenced. Densities of population and roads at the four spatial scales were prepared from population census data from the Statistics Bureau of Japan (http://e-stat.go.jp/SG2/eStatGIS/page/download.html) and the National Land Numeric Information. For calculation of these densities, the sea surface was excluded. In addition, latitude and longitude of center of each grid were also used as explanatory variables to average effects of spatial coordinates.Statistical analysisIn this study, we employed BRT, a machine-learning method based on regression trees31 for modeling the complex relationship between a CES flow and landscape attributes12. BRT is an ensemble learning method where multiple regression trees are sequentially combined to minimize the loss function by means of gradient descent. This technique has advantage in the development of a model with a high predictive performance, in which high-dimensional interactions among explanatory variables and nonlinear responses are fully accounted for. In ecology, BRT has been frequently used for modeling of a species distribution32.Total and monthly numbers of hiking records were modeled as a function of the 50 variables described above under the assumption of a Poisson response. For temperature, precipitation, and hours of sunshine, annual and monthly average were used for the analysis of total and monthly records, respectively. In modeling by BRT, parameters for building of each learner and assembly of the learners must be carefully chosen to maximize generalization ability of a model31. In our case, candidate parameters were 2, 5, and 10 for the maximum depth of variable interactions for each learner; 2, 5, 10, and 20 for the minimum number of observations in the terminal nodes for each learner; 0.5 and 0.75 for the proportion of training data used for building each learner; and 1000, 2000, 4000, 6000, 8000 and 10,000 for the total number of learners (Table S2). In the model assembling process, the value of 0.01 was used as a shrinkage parameter. Ten-fold cross validation was used to obtain the best suites of parameters. R2 based on sum of squares:$${R}^{2}=1-frac{{sum ({y}_{i}-widehat{{y}_{i}})}^{2}}{{sum ({y}_{i}-overline{{y }_{i}})}^{2}}$$
    was used for evaluation of the model’s prediction performance. The importance of explanatory variables was evaluated as an increase of mean absolute error after 100-times permutation of a variable33.Effects of each explanatory variable (a landscape attribute) on the response variable (record number) and the context dependence were visually inspected by individual conditional expectation (ICE) plot34. ICE plot visualizes the effect of a given explanatory variable for each observation by connecting outcome of a model for shifting values of the focal explanatory variable throughout the range while keeping other explanatory variables as the original value. Predictions were performed in log-scale and each line was centered to be zero at the left end of the x-axis to show relative effects of explanatory variables (c-ICE plot sensu Goltstein et al.34). Each line in ICE plot can be colored based on value of the second explanatory variable to assist assessment of the interactive effects of the two predictors. Friedman’s H statistic35 was used to detect explanatory variables whose interaction with the vegetation variables are important and therefore should be used for color-coding of an ICE plot. Friedman’s H is defined as a proportion of variance of partial dependence estimates explained by interactive effects for arbitrary suites of explanatory variables.Then, expected impacts of 0.1 decrease in the three local vegetation variables were assessed by the trained model and mapped. Although vegetation variables were sometimes more important at larger spatial scales (see “Results”), we focused on vegetation at a local (10 km radius) scale because most changes in vegetation occur at the scale in Japan (National Surveys on the Natural Environment by the Biodiversity Center of Japan, https://www.biodic.go.jp/kiso/fnd_list_h.html).All statistical analyses were performed using the R software packag29. The gbm36 package was used for BRT, the iml37 package was used for calculation of Friedman’s H statistic, and the cv.models (Oguro, https://github.com/Marchen/cv.models) packages was used for cross validation and parameter tuning. More

  • in

    A comparative study of fifteen cover crop species for orchard soil management: water uptake, root density traits and soil aggregate stability

    Evapotranspiration measurements and above-ground biomassFigure 1 shows daily evapotranspiration (ET, mm day−1) of each CC tested before mowing (DOY, day of the year, 184) and at 2, 8, 17 and 25 days after mowing (DOY 190, 196, 205 and 213); bare soil was also included as a reference. Before mowing, ET rates showed significant differences between and within the three groups. CR plants had a mean ET of 8.1 mm day−1, which was lower, compared to the other two groups (10.6 and 18.6 mm day−1 for GR and LE, respectively) and the bare soil control (8.5 mm day−1). On DOY 184, values as high as 9.4 (Glechoma hederacea L., GH) and 9.8 mm day−1 (Trifolium subterraneum L. cv. Denmark, TS) were found (Fig. 1), while ranging around 7 mm day-1, Dichondra repens J.R.Forst. & G.Forst. (DR), Hieracium pilosella L. (HP), and Sagina subulata (Swartz) C. Presl (SS) ET were lower than soil evaporation itself.Figure 1Vertical bars represent the daily water use as referred to unit of soil (ET, mm day−1) for the bare soil (yellow) and all the cover crop species as divided into creeping plants (shades of blue), legumes (shades of green) and grasses (shades of orange). Evapotranspiration was measured though a gravimetric method before (i.e. − 4) and at 2, 8, 17 and 25 days after mowing. ET data are mean values ± SE (n = 4).Full size imageOn the same day, a large ET variation was recorded within the GR group as Festuca arundinacea Schreb. cv. Thor (FA) scored the highest daily ET values (13.4 mm day−1), whereas in Festuca ovina L. cv. Ridu (FO), water loss was reduced by 45% (7.5 mm day−1). Within the 15 CCs, LE registered the highest pre-mowing ET with Trifolium michelianum Savi cv. Bolta (TM) peaking at 22.6 mm day−1. However, within LE, Medicago polymorpha L. cv. Scimitar (MP) showed ET values as low as 12.1 mm day−1 (Fig. 1).Two days after mowing, all tested CCs recorded ET values lower than 9 mm day−1 (Fig. 1). Moreover, water use reduction among LE ranged between 56% (M. polymorpha, MP) and 73% (T. michelianum, TM), such that T. michelianum (TM, 6.1 mm day−1), Medicago truncatula Gaertn. cv. Paraggio (MT, 5.6 mm day−1) and M. polymorpha (MP, 5.2 mm day−1) registered ET values lower than the bare soil (7.0 mm day−1). Even though registering a consistent ET reduction after mowing, GR retained ET rates slightly higher than bare soil, except for F. ovina (FO), which recorded the lowest at 6.3 mm day−1. Subsequent samplings showed that most of the CCs had a progressive recovery in water use (Fig. 1) and data taken 17 days after mowing confirmed that Lotus corniculatus L. cv. Leo (LC) and all GR fetched pre-mowing ET rates. Medicago lupulina L. cv. Virgo (ML) registered a partial recovery with similar rates (about 13 mm day−1) at 17 and 25 days after the mowing event. F. ovina and all remaining LE stayed below 10 mm day−1 with ET values close to the control until the end of the trial. At 17 days from grass cutting, under a quite high exceeding-the-pot biomass, both G. hederacea (GH) and T. subterraneum (TS) reached ET values as high as 12.0 and 11.4 mm day−1, respectively. On the other hand, D. repens (DR), H. pilosella (HP), and S. subulata (SS) even though with slightly higher ET values than those registered at the beginning of the trial (DOY 184), remained close to the soil evaporation rates until DOY 213.Aboveground dry clipped biomass at the first mowing date (ADW_MW1, DOY 188) showed large differences among groups, as represented in Table 1. ADW_MW1 within LE was quite variable, as values ranged between 274.3 g m−2 (M. polymorpha, MP) and 750.0 g m−2 (T. michelianum, TM). With a mean value of 565.9 g m−2, LE aboveground biomass was 80% higher than the mean GR ADW_MW1 (110.2 g m-2). F. ovina (FO) scored the lowest value at 48.4 g m−2 among grasses, while within the creeping group, G. hederacea (GH) and T. subterraneum (TS) had biomass development outside the pot edges totalling 89.6 g m−2 and 23.2 g m−2, respectively.Table 1 Aboveground dry biomass clipped at the first mowing event (ADW _MW1), the corresponding leaf area surface index (LAI) and water use per leaf area unit (ETLEAF) of all cover crops tested.Full size tableLeaf area index (LAI, m2 m−2) at mowing showed the highest values in LE with LAI peaking at 12.4 (Table 1). Among GR, LAI did not show significant differences, being around 1.2. Concerning CR, LAI was assessed at 0.2 and 0.8 for T. subterraneum (TS) and G. hederacea (GH) respectively, while LAI estimated through photo analysis ranged between 1.3 (D. repens, DR) and 3.6 (T. subterraneum TS).Evapotranspiration per leaf area unit (ETLEAF) was notably higher in GR, ranging between 7.75 (F. ovina, FO) and 9.22 (Lolium perenne L. cv. Playfast, LP) mm m−2 day−1 (Table 1). In descending order, ETLEAF was the highest in D. repens (DR, 5.46 mm m−2 day−1). Similar ETLEAF was found when comparing some LE and CR species such as M. truncatula (MT, 3.40 mm m−2 day−1), M. lupulina (ML, 4.05 mm m−2 day−1), G. hederacea (GH, 3.68 mm m−2 day−1), H. pilosella (HP, 3.86 mm m-2 day-1) and T. subterraneum (TS, 2.74 mm m−2 day−1). T. michelianum (TM), with 1.81 mm m-2 day-1 scored the lowest ETLEAF of all species (Table 1).Plotting LAI versus the before-mowing ET yielded a significant quadratic relationship (R2  > 0.76) (Fig. 2a) which helped to distinguish two different data clouds. Till LAI values of about 6, the model was linear, having at its lower end all GR and CR species with the inclusion of M. polymorpha (MP) as a legume, while, at the other end, M. truncatula (MT), L. corniculatus (LC) and M. lupulina (ML) were grouped together. T. michelianum (TM) was isolated from all CCs at 22.56 mm day−1.Figure 2Panel (a): quadratic regression of leaf area index (LAI, m2 m−2) vs cover crop evapotranspiration per unit of soil (ET, mm day−1). Each data point is mean value ± SE (n = 4). The quadratic model equation is y = − 0.128×2 + 2.9968x + 5.4716, R2 = 0.76. Panel (b): the quadratic regression between LAI corresponding to the clipped biomass (m2 m−2) and cover crop ET reduction (%). Each data point is mean value ± SE (n = 4). Quadratic model equation is y = − 0.8985×2 + 16.503x + 5.1491, R2 = 0.94.Full size imageWhen regressing the fraction of ET reduction, compared to pre-mowing values vs LAI (Fig. 2b), the same quadratic model achieved a very close fit (R2 = 0.94, p  1 mm) root diameters as affected by soil cover.Full size tableThe highest values of diameter class length (DCL, mm cm−3) for very fine roots (DCL_VF,  1.0 mm) roots although, most notably, L. corniculatus roots showed the highest abundance for both DCL_M (23.08 cm cm−3) and DCL_C (0.54 cm cm−3).At the 10–20 cm soil depth, GR confirmed the highest values for both very fine and fine roots, with F. arundinacea reaching maximum DCL of 2.269 and 5.215 cm cm-3, respectively (Table 2). L. corniculatus largely outscored any other species for both medium and coarse root diameter (6.173 and 0.037 cm cm−3, respectively), with F. arundinacea ranking second (3.157 and 0.016 cm cm−3, respectively).The highest root dry weight (RDW, mg cm-3) within the topsoil layer was reached by L. corniculatus (8.7 mg cm−3) and F. arundinacea (7.6 mg cm-3). Notably, such values were significantly higher than those recorded on the remaining species, except for the F. arundinacea vs F. rubra commutata comparison (Table 2). At 10–20 depth, scant variation was recorded in RDW measured in grasses, whereas L. corniculatus held its supremacy within legumes (4.5 mg cm−3). Within the creeping type, D. repens (DR) and G. hederacea (GH) scored RDW values as high as those determined for grass species (namely F. arundinacea , P. pratensis and F. rubra commutata), whereas S. subulata (SS) essentially had no root development.Soil aggregates and mean weight diameter (MWD)Table 3 reports the proportional aggregate weight (g kg−1) for both 0–10 and 10–20 cm soil depths. Compared to bare soil, the largest increase in large macroaggregates (LM,  > 2000 µm) in the top 10 cm of soil was achieved by L. corniculatus with 461 g kg−1. L. corniculatus differed from the rest of the LE group, whose grand mean (90 g kg−1) was the lowest of the three tested groups. As a legume, T. subterraneum (TS, 122 g kg−1) recorded the lowest values compared to fellow CR species, ranging between 211 (D. repens, DR) and 316 g kg−1 (G. hederacea, GH). GR recorded LM values slightly lower than those of CR, with a mean value of 217 vs 224 g kg-1.Table 3 Proportional aggregate weight (g kg−1) of sand-free aggregate-size fractions acquired from wet sieving as affected by soil cover and mean weight diameter (MWD). Aggregate-size fraction divided as macroaggregates with large size ( > 2 mm, LM) and small size (2 mm—250 μm, sM), microaggregates (250 μm—53 μm, m), and silt and clay ( More

  • in

    Global patterns of tree density are contingent upon local determinants in the world’s natural forests

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article 

    Google Scholar 
    Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cy. 29, 476–495 (2015).Article 
    CAS 

    Google Scholar 
    Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    Weiskittel, A. R., Maguire, D. A., Monserud, R. A. Development of a hybrid model for intensively managed Douglas-fir in the Pacific Northwest. In Forest Growth and Timber Quality, 49 (USDA, Portland, 2009).Paoli, G. D., Curran, L. M. & Slik, J. W. F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008).Article 

    Google Scholar 
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).Article 

    Google Scholar 
    Weiner, J. & Freckleton, R. P. Constant final yield. Annu. Rev. Ecol. Evol. S. 41, 173–192 (2010).Article 

    Google Scholar 
    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).Article 
    CAS 

    Google Scholar 
    Pacala, S.W. & Levin, S.A. Biologically generated spatial pattern and the coexistence of competing species. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. (Princeton University Press, Princeton, NJ, p. 204-232, 1997).Asefa, M., Cao, M., Zhang, G., Ci, X. & Li, J. Yang Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci. Rep. 7, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Pretzsch, H. & Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 46, 1179–1193 (2016).Article 

    Google Scholar 
    Escudero, A. et al. Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones. J. Veg. Sci. 32, e13059 (2021).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    M. Takyu, Y. Kubota, S.I. Aiba, T. Seino, T. Nishimura. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. In Forest Ecosystems and Environments (Springer, Tokyo, 2005), pp. 49–58.Rivoire, M. & Le, G. A. Moguedec, generalized self-thinning relationship for multi-species and mixed-size forests. Ann. Sci. 69, 207–219 (2012).Article 

    Google Scholar 
    Salas‐Eljatib, C. & Weiskittel, A. R. Evaluation of modelling strategies for assessing self‐thinning behaviour and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).Article 

    Google Scholar 
    Schietti, J. et al. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central‐southern Amazonia. J. Ecol. 104, 1335–1346 (2016).Article 

    Google Scholar 
    Vanclay, J. K. & Sands, P. J. Calibrating the self-thinning frontier. For. Ecol. Manag. 259, 81–85 (2009).Article 

    Google Scholar 
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).Article 

    Google Scholar 
    Lieth, H. Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker, eds. Primary Productivity of the Biosphere (Springer-Verlag, New York, New York, USA, 1975), pp. 237–264.Grieser, J., Gommes, R., Cofield, S., Bernardi, M. World Maps of Climatological net Primary Production of Biomass, NPP. Food and Agriculture Organization of the United Nations. (GEONETWORK. FAO, Rome, Italy, 2006).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    J.B. Grace. Structural Equation Modeling and Natural Systems. (Cambridge University Press, Cambridge, 2006).Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R. Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148 (2020).Latham J, Cumani R, Rosati I, Bloise M. FAO Global Land Cover (GLC-SHARE) Database Beta-Release 1.0, Land and Water Division. 2014. http://www.fao.org/uploads/media/glc-share-doc.pdf. More

  • in

    Investigating metropolitan change through mathematical morphology and a dynamic factor analysis of structural and functional land-use indicators

    Alphan, H. Land use change and urbanisation of Adana, Turkey. Land Degrad. Dev. 14, 575–586 (2003).Article 

    Google Scholar 
    Catalàn, B., Sauri, D. & Serra, P. Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 85(3–4), 174–184 (2008).
    Google Scholar 
    Chen, K., Long, H., Liao, L., Tu, S. & Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 92, 104465 (2020).Article 

    Google Scholar 
    Bianchini, L. et al. Forest transition and metropolitan transformations in developed countries: Interpreting apparent and latent dynamics with local regression models. Land 11(1), 12 (2021).Article 

    Google Scholar 
    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75(2), 53–107 (2011).Article 

    Google Scholar 
    Fischer, A. P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 177, 138–147 (2018).Article 

    Google Scholar 
    Darvishi, A., Yousefi, M. & Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 99, 105098 (2020).Article 

    Google Scholar 
    Cheng, L. L., Tian, C. & Yin, T. T. Identifying driving factors of urban land expansion using Google earth engine and machine-learning approaches in Mentougou District, China. Sci. Rep. 12(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Kasanko, M. et al. Are European Cities becoming dispersed? A comparative analysis of fifteen European urban areas. Landsc. Urban Plan. 77(1–2), 111–130 (2006).Article 

    Google Scholar 
    Terzi, F. & Bolen, F. Urban sprawl measurement of Istanbul. Eur. Plan. Stud. 17(10), 1559–1570 (2009).Article 

    Google Scholar 
    Angel, S., Parent, J. & Civco, D. L. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54, 441–461 (2010).Article 

    Google Scholar 
    Salvati, L., Gemmiti, R. & Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning?. Area 44(3), 317–325 (2012).Article 

    Google Scholar 
    Attorre, F., Bruno, M., Francesconi, F., Valenti, R. & Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 49, 115–128 (2000).Article 

    Google Scholar 
    Turok, I. & Mykhnenko, V. The trajectories of European cities, 1960–2005. Cities 24(3), 165–182 (2007).Article 

    Google Scholar 
    Ioannidis, C., Psaltis, C. & Potsiou, C. Towards a strategy for control of suburban informal buildings through automatic change detection. Comput. Environ. Urban Syst. 33, 64–74 (2009).Article 

    Google Scholar 
    Grekousis, G., Manetos, P. & Photis, Y. N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the athens metropolitan area. Cities 30, 193–203 (2013).Article 

    Google Scholar 
    Salvati, L. Towards a polycentric region? The socioeconomic trajectory of Rome, an ‘Eternally Mediterranean’ city. Tijdschr. Econ. Soc. Geogr. 105(3), 268–284 (2014).Article 

    Google Scholar 
    Chorianopoulos, I., Pagonis, T., Koukoulas, S. & Drymoniti, S. Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens. Cities 27, 249–259 (2010).Article 

    Google Scholar 
    Munafò, M., Salvati, L. & Zitti, M. Estimating soil sealing rate at national level—Italy as a case study. Ecol. Ind. 26, 137–140 (2013).Article 

    Google Scholar 
    Morelli, V. G., Rontos, K. & Salvati, L. Between suburbanisation and re-urbanisation: Revisiting the urban life cycle in a Mediterranean compact city. Urban Res. Pract. 7(1), 74–88 (2014).Article 

    Google Scholar 
    Basem Ajjur, S. & Al-Ghamdi, S. G. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Sci. Rep. 12, 12265 (2022).Article 
    ADS 

    Google Scholar 
    Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).Article 

    Google Scholar 
    Salvati, L. Agro-forest landscape and the ‘fringe’city: A multivariate assessment of land-use changes in a sprawling region and implications for planning. Sci. Total Environ. 490, 715–723 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep. 9(1), 1–12 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettehadi Osgouei, P., Sertel, E. & Kabadayı, M. E. Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020. Sci. Rep. 12(1), 1–17 (2022).Article 

    Google Scholar 
    He, S., Yu, S., Li, G. & Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 95, 104576 (2020).Article 

    Google Scholar 
    Bockarjova, M., Wouter Botzen, W. J., Bulkeley, H. A. & Toxopeus, H. Estimating the social value of nature-based solutions in European cities. Sci. Rep. 12, 19833 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. & Niyogi, D. Meta-analysis of urbanisation impact on rainfall modification. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex. 19(1), 1–8 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Salvati, L. & Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 48(2), 132–156 (2016).Article 

    Google Scholar 
    Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D. & Sanders, L. Multi-agents systems and the dynamics of a settlement system. Geogr. Anal. 28(2), 161–178 (1996).Article 

    Google Scholar 
    Hasse, J. E. & Lathrop, R. G. Land resource impact indicators of urban sprawl. Appl. Geogr. 23, 159–175 (2003).Article 

    Google Scholar 
    Grafius, D. R., Corstanje, R. & Harris, J. A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33(4), 557–573 (2018).Article 

    Google Scholar 
    Pumain, D. Hierarchy in Natural and Social Sciences (Kluwer-Springer, 2005).
    Google Scholar 
    Cabral, P., Augusto, G., Tewolde, M. & Araya, Y. Entropy in urban systems. Entropy 15(12), 5223–5236 (2013).Article 
    ADS 

    Google Scholar 
    Salvati, L. & Carlucci, M. In-between stability and subtle changes: Urban growth, population structure, and the city life cycle in Rome. Popul. Space Place 22(3), 216–227 (2016).Article 

    Google Scholar 
    Batty, M. & Longley, P. Fractal Cities (Academic Press, 1994).MATH 

    Google Scholar 
    Berry, B. J. L. Cities as systems within systems of cities. Pap. Reg. Sci. 13, 147–163 (2005).Article 

    Google Scholar 
    Petrosillo, I. et al. The resilient recurrent behavior of mediterranean semi-arid complex adaptive landscapes. Land 10(3), 296 (2021).Article 

    Google Scholar 
    Portugali, J. Complexity, Cognition and the City, Understanding Complex Systems (Springer, 2011).Book 

    Google Scholar 
    Wu, J., Jenerette, G. D., Buyantuyev, A. & Redman, C. L. Quantifying spatiotemporal patterns of urbanisation: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 8(1), 1–8 (2011).Article 

    Google Scholar 
    Sun, Y., Gao, C., Li, J., Li, W. & Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socioeconomic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 40, 284–295 (2018).Article 

    Google Scholar 
    Phillips, M. A. & Ritala, P. A complex adaptive systems agenda for ecosystem research methodology. Technol. Forecast. Soc. Change 148, 119739 (2019).Article 

    Google Scholar 
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9(2), 5 (2004).Article 

    Google Scholar 
    Kelly, C. et al. Community resilience and land degradation in forest and shrublandsocio-ecological systems: A case study in Gorgoglione, Basilicata regionn, Italy. Land Use Policy 46, 11–20 (2015).Article 

    Google Scholar 
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23(4), 46 (2018).Article 

    Google Scholar 
    Ferrara, A. et al. Shaping the role of ‘fast’ and ‘slow’ drivers of change in forest-shrubland socio-ecological systems. J. Environ. Manag. 169, 155–166 (2016).Article 

    Google Scholar 
    Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11(12), 124017 (2016).Article 
    ADS 

    Google Scholar 
    Riitters, K. H., Vogt, P., Soille, P., Kozak, J. & Estreguil, C. Neutral model analysis of landscape patterns from mathematical morphology. Landsc. Ecol. 22(7), 1033–1043 (2007).Article 

    Google Scholar 
    Riitters, K., Vogt, P., Soille, P. & Estreguil, C. Landscape patterns from mathematical morphology on maps with contagion. Landsc. Ecol. 24(5), 699–709 (2009).Article 

    Google Scholar 
    Anas, A., Arnott, R. & Small, K. Urban spatial structure. J. Econ. Lit. 36(3), 1426–1464 (1998).
    Google Scholar 
    Arroyo-Mora, J. P., Sánchez-Azofeifa, G. A., Rivard, B., Calvo, J. C. & Janzen, D. H. Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000. Agr. Ecosyst. Environ. 106(1), 27–39 (2005).Article 

    Google Scholar 
    Siles, G., Charland, A., Voirin, Y. & Bénié, G. B. Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Eco. Inform. 52, 166–176 (2019).Article 

    Google Scholar 
    Soille, P. Morphological Image Analysis: Principles and Applications (Springer, 2003).MATH 

    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recogn. Lett. 30, 456–459 (2009).Article 
    ADS 

    Google Scholar 
    Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22(2), 171–177 (2007).Article 

    Google Scholar 
    Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L. & Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Ind. 60, 231–236 (2016).Article 

    Google Scholar 
    Yin, Y., Zhou, K. & Chen, Y. Deconstructing the driving factors of land development intensity from multi-scale in differentiated functional zones. Sci. Rep. 12(1), 1–13 (2022).Article 

    Google Scholar 
    Duvernoy, I., Zambon, I., Sateriano, A. & Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 57, 25–35 (2018).Article 

    Google Scholar 
    Smiraglia, D., Ceccarelli, T., Bajocco, S., Salvati, L. & Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 147, 590–600 (2016).Article 
    CAS 

    Google Scholar 
    Shaker, R. R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 72, 77–91 (2018).Article 
    ADS 

    Google Scholar 
    Zheng, H. & Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 12(1), 1–12 (2022).Article 

    Google Scholar 
    Tombolini, I., Munafò, M. & Salvati, L. Soil sealing footprint as an indicator of dispersed urban growth: A multivariate statistics approach. Urban Res. Pract. 9(1), 1–15 (2016).Article 

    Google Scholar 
    Salvati, L., Sateriano, A., Grigoriadis, E. & Carlucci, M. New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation. Ecol. Econ. 131, 361–372 (2017).Article 

    Google Scholar 
    Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 146, 173–183 (2018).Article 

    Google Scholar 
    Paul, V. & Tonts, M. Containing urban sprawl: Trends in land use and spatial planning in the Metropolitan Region of Barcelona. J. Environ. Plann. Manag. 48(1), 7–35 (2005).Article 

    Google Scholar 
    Serra, P., Vera, A., Tulla, A. F. & Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 55, 71–81 (2014).Article 

    Google Scholar 
    Seifollahi-Aghmiuni, S., Kalantari, Z., Egidi, G., Gaburova, L. & Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio 51(6), 1446–1458 (2022).Article 

    Google Scholar 
    Pili, S., Grigoriadis, E., Carlucci, M., Clemente, M. & Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Ind. 76, 71–80 (2017).Article 

    Google Scholar 
    Salvati, L., Sateriano, A. & Grigoriadis, E. Crisis and the city: Profiling urban growth under economic expansion and stagnation. Lett. Spat. Resour. Sci. 9(3), 329–342 (2016).Article 

    Google Scholar 
    Champion, T. & Hugo, G. New Forms of Urbanisation: Beyond the Urban-Rural Dichotomy (Ashgate, 2004).
    Google Scholar 
    Frondoni, R., Mollo, B. & Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 100(1–2), 117–128 (2011).Article 

    Google Scholar 
    Perrin, C., Nougarèdes, B., Sini, L., Branduini, P. & Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 70, 535–546 (2018).Article 

    Google Scholar 
    Salvati, L. Monitoring high-quality soil consumption driven by urban pressure in a growing city (Rome, Italy). Cities 31, 349–356 (2013).Article 

    Google Scholar 
    Salvati, L., Ciommi, M. T., Serra, P. & Chelli, F. M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 81, 143–152 (2019).Article 

    Google Scholar 
    Ferrara, C., Salvati, L. & Tombolini, I. An integrated evaluation of soil resource depletion from diachronic settlement maps and soil cartography in peri-urban Rome, Italy. Geoderma 232, 394–405 (2014).Article 
    ADS 

    Google Scholar 
    Egidi, G. & Salvati, L. Beyond the suburban-urban divide: Convergence in age structures in metropolitan Rome, Italy. J. Popul. Soc. Stud. 28(2), 130–142 (2020).Article 

    Google Scholar 
    Pili, S., Serra, P. & Salvati, L. Landscape and the city: Agro-forest systems, land fragmentation and the ecological network in Rome, Italy. Urban For. Urban Green. 41, 230–237 (2019).Article 

    Google Scholar 
    European Environment Agency. Urban Sprawl in Europe – The Ignored Challenge. Copenhagen: EEA Report no. 10 (2006).Park, S., Hepcan, Ç. C., Hepcan, Ş & Cook, E. A. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186(10), 6301–6318 (2014).Article 

    Google Scholar 
    Luo, F., Liu, Y., Peng, J. & Wu, J. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 180, 125–134 (2018).Article 

    Google Scholar 
    Ortega, M., Pascual, S., Elena-Rosselló, R. & Rescia, A. J. Land-use and spatial resilience changes in the Spanish olive socio-ecological landscape. Appl. Geogr. 117, 102171 (2020).Article 

    Google Scholar 
    Parcerisas, L. et al. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 23, 120–132 (2012).Article 

    Google Scholar 
    Masini, E. et al. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 63(3), 322–337 (2019).Article 
    ADS 

    Google Scholar 
    Luck, M. & Wu, J. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 17(4), 327–339 (2002).Article 

    Google Scholar 
    Pesaresi, M. & Bianchin, A. Recognising settlement structure using mathematical morphology and image texture. Remote Sensing Urban Anal. GISDATA 9, 46–60 (2003).
    Google Scholar 
    Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45(3), 659–692 (2008).Article 

    Google Scholar 
    Mubareka, S., Koomen, E., Estreguil, C. & Lavalle, C. Development of a composite index of urban compactness for land use modelling applications. Landsc. Urban Plan. 103(3–4), 303–317 (2011).Article 

    Google Scholar 
    Vogt, P. et al. Mapping landscape corridors. Ecol. Ind. 7(2), 481–488 (2007).Article 

    Google Scholar 
    Daya Sagar, B. S. & Murthy, K. S. R. Generation of a fractal landscape using nonlinear mathematical morphological transformations. Fractals 8(03), 267–272 (2000).Article 

    Google Scholar 
    Scott, A. J., Carter, C., Reed, M. R., Stonyer, B. & Coles, R. Disintegrated development at the rural-urban fringe: Re-connecting spatial planning theory and practice. Prog. Plan. 83, 1–52 (2013).Article 

    Google Scholar 
    Zhao, Q., Wen, Z., Chen, S., Ding, S. & Zhang, M. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 17(1), 126 (2020).Article 

    Google Scholar 
    Parr, J. The regional economy, spatial structure and regional urban systems. Reg. Stud. 48(12), 1926–1938 (2014).Article 

    Google Scholar 
    Salvati, L., Zambon, I., Chelli, F. M. & Serra, P. Do spatial patterns of urbanisation and land consumption reflect different socioeconomic contexts in Europe?. Sci. Total Environ. 625, 722–730 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Coppi, R. & Bolasco, S. Multiway Data Analysis (Elsevier, 1988).MATH 

    Google Scholar 
    Kroonenberg, P. M. Applied Multiway Data Analysis (Wiley, 2008).Book 
    MATH 

    Google Scholar 
    Escofier, B. & Pages, J. Multiple factor analysis (AFMULT Package). Comput. Stat. Data Anal. 18, 121–140 (1994).Article 
    MATH 

    Google Scholar 
    De Rosa, S. & Salvati, L. Beyond a ‘side street story’? Naples from spontaneous centrality to entropic polycentricism, towards a ‘crisis city’. Cities 51, 74–83 (2016).Article 

    Google Scholar 
    Favaro, J.-M. & Pumain, D. Gibrat revisited: An urban growth model incorporating spatial interaction and innovation cycles. Geogr. Anal. 43(3), 261–286 (2011).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crepin, A.-S. & Peterson, G. D. “Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17(3), 30 (2012).Article 

    Google Scholar 
    Zhang, Z., Su, S., Xiao, R., Jiang, D. & Wu, J. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 45, 193–202 (2013).Article 

    Google Scholar 
    Fratarcangeli, C., Fanelli, G., Franceschini, S., De Sanctis, M. & Travaglini, A. Beyond the urban-rural gradient: Self-organising map detects the nine landscape types of the city of Rome. Urban For. Urban Green. 38, 354–370 (2019).Article 

    Google Scholar 
    Crisci, M., Benassi, F., Rabiei-Dastjerdi, H., McArdle, G. Spatio-temporal variations and contextual factors of the supply of Airbnb in Rome. An initial investigation. Lett. Spat. Resour. Sci. 1–17 (2022).Lelo, K., Monni, S. & Tomassi, F. Socio-spatial inequalities and urban transformation. The case of Rome districts. Socio-Econ. Plann. Sci. 68, 100696 (2019).Article 

    Google Scholar 
    Crisci, M. The impact of the real estate crisis on a south european metropolis: From urban diffusion to Reurbanisation. Appl. Spat. Anal. Policy 15(3), 797–820 (2022).Article 

    Google Scholar 
    Wang, Y. & Zhang, X. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecol. Model. 140(1–2), 141–162 (2001).Article 

    Google Scholar 
    Voghera, A. The River agreement in Italy. Resilient planning for the co-evolution of communities and landscapes. Land Use Policy 91, 104377 (2020).Article 

    Google Scholar 
    Chen, A. & Partridge, M. D. When are cities engines of growth in China? Spread and backwash effects across the urban hierarchy. Reg. Stud. 47(8), 1313–1331 (2013).Article 

    Google Scholar 
    Ciommi, M., Chelli, F. M., Carlucci, M. & Salvati, L. Urban growth and demographic dynamics in southern Europe: Toward a new statistical approach to regional science. Sustainability 10(8), 2765 (2018).Article 

    Google Scholar 
    Jacobs-Crisioni, C., Rietveld, P. & Koomen, E. The impact of spatial aggregation on urban development analyses. Appl. Geogr. 47, 46–56 (2014).Article 

    Google Scholar 
    Kourtit, K., Nijkamp, P. & Reid, N. The new urban world: Challenges and policy. Appl. Geogr. 49, 1–3 (2014).Article 

    Google Scholar 
    Bruegmann, R. Sprawl: A Compact History (University of Chicago Press, 2005).Book 

    Google Scholar 
    Neuman, M. & Hull, A. The Futures of the City Region. Reg. Stud. 43(6), 777–787 (2009).Article 

    Google Scholar 
    Couch, C., Petschel-held, G. & Leontidou, L. Urban Sprawl In Europe: Landscapes, Land-use Change and Policy (Blackwell, 2007).Book 

    Google Scholar 
    Longhi, C. & Musolesi, A. European cities in the process of economic integration: towards structural convergence. Ann. Reg. Sci. 41, 333–351 (2007).Article 

    Google Scholar 
    Tian, G., Ouyang, Y., Quan, Q. & Wu, J. Simulating spatiotemporal dynamics of urbanisation with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 222(5), 1129–1138 (2011).Article 

    Google Scholar 
    Tian, L., Chen, J. & Yu, S. X. Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc. Ecol. 29(4), 715–727 (2014).Article 

    Google Scholar 
    Fielding, A. J. Counterurbanization in Western Europe. Prog. Plan. 17, 1–52 (1982).Article 

    Google Scholar 
    Oueslati, W., Alvanides, S. & Garrod, G. Determinants of urban sprawl in European cities. Urban Stud. 52(9), 1594–1614 (2015).Article 

    Google Scholar 
    Tress, B., Tress, G., Décamps, H. & d’Hauteserre, A. M. Bridging human and natural sciences in landscape research. Landsc. Urban Plan. 57(3–4), 137–141 (2001).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J., Sun, H. & Sheng, Z. A Novel perspective on travel demand prediction considering natural environmental and socioeconomic factors. IEEE Intell. Transp. Syst. Mag. https://doi.org/10.1109/MITS.2022.3162901 (2022).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J. & Shi, A. A novel approach for predicting water demand with complex patterns based on ensemble learning. Water Resour. Manag. 36(11), 4293–4312 (2022).Article 

    Google Scholar 
    Lv, Z., Li, J., Dong, C., Li, H. & Xu, Z. Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalisation index. Data Knowl. Eng. 135, 101912 (2021).Article 

    Google Scholar  More

  • in

    Global patterns of climate change impacts on desert bird communities

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).Article 
    ADS 

    Google Scholar 
    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).Article 
    ADS 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).Article 
    ADS 

    Google Scholar 
    Ward, D. The Biology of Deserts (OUP Oxford, 2016).Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).Article 

    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).Article 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).Article 

    Google Scholar 
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).Article 

    Google Scholar 
    Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).Article 

    Google Scholar 
    Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).Article 
    ADS 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).Article 
    CAS 

    Google Scholar 
    C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).Article 

    Google Scholar 
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    Google Scholar 
    Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).Article 

    Google Scholar 
    Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).Article 

    Google Scholar 
    Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).Article 

    Google Scholar 
    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).Article 
    ADS 

    Google Scholar 
    UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Conservation setbacks? The secrets to lifting morale

    Conservationist Jim Groombridge in Hawaii (standing) performing a ‘heli-hook-up’, in which a net full of equipment is hooked up to the hovering helicopter, to save it needing to land.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    Since his undergraduate degree, Jim Groombridge has been part of several teams that work with critically endangered animals, including the Mauritius kestrel (Falco punctatus), which was brought back from the brink of extinction. But he has also experienced the devastation of some species being lost forever, despite all possible interventions. After receiving his PhD from Queen Mary University of London in 2000, he worked as a project coordinator at the Maui Forest Bird Recovery Project in Makawao, Hawaii. Conservation science spans many topics including climate change, working with local communities, epidemiology, genomics and designing protected areas. Projects can range from single-species conservation to ecosystem-level or landscape conservation, such as restoring whole islands. Now a professor in biodiversity conservation at the University of Kent’s Durrell Institute of Conservation and Ecology in Canterbury, UK, Groombridge teaches bachelor’s and master’s students about leadership of conservation teams and how to motivate them in the face of setbacks.What is special about leading conservation teams?Conservation field teams are slightly quirky, and those quirks can define what makes a team work well or not. One is that team leaders are rarely trained in management tasks, such as overseeing a budget, interacting with project partners and local governments, dealing with team members who feel passionate about what they do and facing the high stakes involved. Team members are enthusiastic, passionate and seldom motivated by money.Another quirk is that, in a small conservation team of four to six people, there is often a mix of skill sets and experience. You can have highly experienced specialists in a particular area, such as screening parrots for diseases, or reintroduction biology, and you might also have volunteers with only passion and enthusiasm to offer.How do you lead a team with such variable experience?Even with those different levels of expertise, you still need to meet high standards for specimen and data collection. At the moment, for example, I’m sequencing the genome of the pink pigeon (Nesoenas mayeri), using samples collected in the 1990s. There’s a sense of responsibility, especially if you’re working with species that are rare, because if you mess it up, they could go extinct. It’s not unusual to have volunteers with only two or three weeks’ worth of experience handling extremely rare samples or working with valuable data sets. Their learning curve is pretty steep. As a leader, you need to make sure that you understand the details — ranging from tasks such as collecting data and monitoring and recording invasive species to, for example, knowing how to trap a mongoose — so that you can make sure that everyone is collecting the data in the same way.

    Jim Groombridge (far left), who studies biodiversity conservation at the University of Kent, UK, with one of the field crews involved in an operation to translocate a bird called the po‘ouli in Hawaii.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    What do team members tend to have in common?They often share a passion for nature. They want to save the environment, they want to save a species from going extinct, they want to make a difference. That level of emotion is important. It creates an energy, which needs to be channelled proactively and positively into the project to make it a success.In 2002, for example, I was leading a team working to save a bird called the po‘ouli (Melamprosops phaeosoma) on the island of Maui, part of the Hawaiian archipelago. We were trying to translocate one of the last known birds into the range of another one to give them the opportunity to breed. There was huge excitement, but after four weeks of failing to catch the bird, there was also a lot of frustration.How do you manage a team with such strong emotions?Morale is really important. So is being able to deal with difficulties when they arise. That’s what gets small teams through tough times. With the po‘ouli, I had to make sure that the team had fun, and that people genuinely enjoyed themselves. That meant taking time out with the team in the evenings and ensuring that everyone had a bit of a laugh, so it wasn’t deadly serious all the time. Also, I made sure that team members got to perform the aspects of the job that they were good at, to increase their confidence and well-being. We eventually trapped the po‘ouli and moved it, but even though the birds were in the same territory, they didn’t breed.How do you manage expectations amid failure?I had to remind the team about the broader picture of what we had achieved. This was the first time anyone had followed the po‘ouli in the forest for ten days. I think we learnt more about the ecology of that species in that time than anyone had learnt in 30 years. We held the translocated bird for about two hours before we released it, and it took food items from us, which showed that the birds could be kept in captivity if necessary. We learnt a huge amount that could be applied to another project.
    Treading carefully: saving frankincense trees in Yemen
    You have to manage people’s expectations and have goals that are achievable. If you are starting a project on a species with fewer than ten individuals left in the wild, and your goal is to have thousands, that’s a difficult leap of imagination. Instead, perhaps start with finding a food that a species would eat in captivity. People need to remain connected with what’s achievable. There’s a delicate balance between being aspirational and being pragmatic.As a team member, what do you wish more conservation leaders knew?Often, there is too much emphasis placed on the command structure. Innovation in a conservation team is undersold, and easily quashed by a type of line-manager approach. The hierarchy in a team is important because people know what to do and who to report to, but you also have to encourage team members to use their initiative and ask questions. I remember when my team and I were in the cloud forests, tropical mountain regions covered by clouds for most of the year in Hawaii, we were struggling with baiting rats, which prey on eggs and fledglings of native birds. It’s one of the wettest places on Earth, and the rat poison basically turns to cottage cheese. However, one of my colleagues designed a bait box, which kept the bait dry for many weeks. When you’re working with critically endangered species and in field conditions, ingenuity is crucial.
    This interview has been edited for length and clarity. More

  • in

    Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis

    Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ. Marine chemosynthetic symbioses. Prokaryotes. 2006;1:475–507.Article 

    Google Scholar 
    Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR. The bacterial symbionts of closely related hydrothermal vent snails with distinct geochemical habitats show broad similarity in chemoautotrophic gene content. Front Microbiol. 2019;10:1818.Article 

    Google Scholar 
    Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol. 2008;10:727–37.Article 
    CAS 

    Google Scholar 
    Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom Sci. 2017;12:50.Article 

    Google Scholar 
    Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol. 2006;8:1441–7.Article 
    CAS 

    Google Scholar 
    Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.Article 
    CAS 

    Google Scholar 
    Sogin EM, Leisch N, Dubilier N. Chemosynthetic symbioses. Curr Biol. 2020;30:R1137–R1142.Article 
    CAS 

    Google Scholar 
    Roeselers G, Newton ILG. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol. 2012;94:1–10.Article 
    CAS 

    Google Scholar 
    Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104 Suppl 1:8627–33.Article 
    CAS 

    Google Scholar 
    McMullen JG, Peterson BF, Forst S, Blair HG, Patricia Stock S. Fitness costs of symbiont switching using entomopathogenic nematodes as a model. BMC Evol Biol. 2017;17. https://doi.org/10.1186/s12862-017-0939-6.Taylor JD, Glover E. Biology, evolution and generic review of the chemosymbiotic bivalve family Lucinidae. London, UK: Ray Society; 2021.Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2104378118.Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:16195.Article 
    CAS 

    Google Scholar 
    Lim SJ, Davis B, Gill D, Swetenburg J, Anderson LC, Engel AS, et al. Gill microbiome structure and function in the chemosymbiotic coastal lucinid Stewartia floridana. FEMS Microbiol Ecol. 2021;97. https://doi.org/10.1093/femsec/fiab042.Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.Article 
    CAS 

    Google Scholar 
    Gros O, Liberge M, Felbeck H. Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol. 2003;142:57–66.Article 

    Google Scholar 
    Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol. 2012;14:1584–95.Article 
    CAS 

    Google Scholar 
    Gros O, Frenkiel L, Mouëza M. Embryonic, larval, and post-larval development in the symbiotic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol. 1997;116:86–101.Article 

    Google Scholar 
    König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.Article 

    Google Scholar 
    Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.Article 
    CAS 

    Google Scholar 
    Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol. 2014;4:1706–27.Article 

    Google Scholar 
    Glover EA, Taylor JD. Lucinidae of the Philippines: highest known diversity and ubiquity of chemosymbiotic bivalves from intertidal to bathyal depths (Mollusca: Bivalvia). mém Mus Natl Hist Nat. 2016;208:65–234.
    Google Scholar 
    Taylor JD, Glover EA, Williams ST. Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc Lond. 2014;111:401–20.Article 

    Google Scholar 
    von Cosel R. Taxonomy of tropical West African bivalves. VI. Remarks on Lucinidae (Mollusca, Bivalvia), with description of six new genera and eight new species. Zoosystema. 2006;28:805.
    Google Scholar 
    Glover EA, Taylor JD, Rowden AA. Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow-water taxa (Bivalvia: Lucinidae). J Mollusca Stud. 2004;70:283–95.Article 

    Google Scholar 
    Paulus E Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.667048.Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc. 2014;89:406–26.Article 

    Google Scholar 
    Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol. 2008;23:518–28.Article 

    Google Scholar 
    Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991.Iken K, Brey T, Wand U, Voigt J, Junghans P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr. 2001;50:383–405.Article 

    Google Scholar 
    von Cosel R, Bouchet P. Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. mém Mus Natl Hist Nat. 2008;196:115–213.
    Google Scholar 
    Stearns REC Scientific results of explorations by the US Fish Commission steamer Albatross. No. XVII. Descriptions of new West American land, fresh-water, and marine shells, with notes and comments. Proceedings of the United States National Museum. 1890. https://repository.si.edu/bitstream/handle/10088/13174/1/USNMP-13_813_1890.pdf.Taylor JD, Glover EA. The lucinid bivalve genus Cardiolucina (Mollusca, Bivalvia, Lucinidae): systematics, anatomy and relationships. Bull Br Mus Nat Hist Zoo. 1997;63:93–122.
    Google Scholar 
    Coan EV, Valentich-Scott P, Sadeghian PS. Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara, USA: Museum of Natural History; 2012.von Cosel R, Gofas S. Marine bivalves of tropical West Africa: from Rio de Oro to southern Angola. Marseille, France: Muséum national d’Histoire naturelle, Paris; 2019. p 1104.Atkinson L, Sink K. Field guide to the offshore marine invertebrates of South Africa. 2018. https://doi.org/10.15493/SAEON.PUB.10000001.Montagu G. Testacea Britannica, or natural history of British shells. London, UK: JS Hollis; 1803.Taylor J, Glover E. New lucinid bivalves from shallow and deeper water of the Indian and West Pacific Oceans (Mollusca, Bivalvia, Lucinidae). ZooKeys. 2013;326:69–90.Article 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.Article 
    CAS 

    Google Scholar 
    Pjevac P, Hausmann B, Schwarz J, Kohl G, Herbold CW, Loy A, et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front Microbiol. 2021;12:669776.Article 

    Google Scholar 
    McLaren MR, Callahan BJ. Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 

    Google Scholar 
    Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. 2018. https://www.biorxiv.org/content/10.1101/299537v1.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, USA: Lawrence Berkeley National Lab. (LBNL); 2014.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.Article 
    CAS 

    Google Scholar 
    Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Research in Computational Molecular Biology. Springer Berlin Heidelberg; 2013. p. 158–70.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.Article 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.Article 

    Google Scholar 
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.Article 
    CAS 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz848.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.Article 
    CAS 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.Article 
    CAS 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.Article 

    Google Scholar 
    Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.Article 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.Article 
    CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.Article 
    CAS 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.Article 
    CAS 

    Google Scholar 
    Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196:2210–5.Article 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.Article 

    Google Scholar 
    Mahram A, Herbordt MC. NCBI BLASTP on high-performance reconfigurable computing systems. ACM Trans Reconfigurable Technol Syst. 2015;7:1–20.Article 

    Google Scholar 
    Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.CAS 

    Google Scholar 
    Osvatic J, Wilkins L. Strength of selection scripts. FigShare. 2022;8. https://doi.org/10.6084/m9.figshare.20626746.v1.Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.Article 
    CAS 

    Google Scholar 
    Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, et al. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun. 2021;12:1165.Article 
    CAS 

    Google Scholar 
    Leray M, Wilkins LGE, Apprill A, Bik HM, Clever F, Connolly SR, et al. Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol. 2021;19:e3001322.Article 
    CAS 

    Google Scholar 
    Petersen Jillian M, Yuen B, Alexandre G. The symbiotic ‘all-rounders’: partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2020;87:e02129–20.Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res A. 1988;35:1723–44.Article 

    Google Scholar 
    Kennicutt ME II, Brooks JM, Burke RA Jr. Hydrocarbon seepage, gas hydrates, and authigenic carbonate in the northwestern Gulf of Mexico. Offshore Technology Conference; 1989. https://doi.org/10.4043/5952-ms.Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature. 1993;364:45–47.Article 
    CAS 

    Google Scholar 
    Von Damm KL, Edmond JM, Measures CI, Grant B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta. 1985;49:2221–37.Article 

    Google Scholar 
    Lee RW, Thuesen EV, Childress JJ. Ammonium and free amino acids as nitrogen sources for the chemoautotrophic symbiosis Solemya reidi Bernard (Bivalvia: Protobranchia). J Exp Mar Bio Ecol. 1992;158:75–91.Article 
    CAS 

    Google Scholar 
    Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 2013;7:1556–67.Article 
    CAS 

    Google Scholar 
    Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Bio Ecol. 2000;250:133–67.Article 
    CAS 

    Google Scholar 
    Fourqurean JW, Zieman JC, Powell GVN. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Mar Biol. 1992;114:57–65.Article 
    CAS 

    Google Scholar 
    Williams SL. Experimental studies of Caribbean seagrass bed development. Ecol Monogr. 1990;60:449–69.Article 

    Google Scholar 
    Herbert RA. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev. 1999;23:563–90.Article 
    CAS 

    Google Scholar 
    Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, et al. Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser. 1998;174:281–91.Article 
    CAS 

    Google Scholar 
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.Article 
    CAS 

    Google Scholar 
    Karthäuser C, Ahmerkamp S, Marchant HK, Bristow LA, Hauss H, Iversen MH, et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat Commun. 2021;12:3235.Article 

    Google Scholar 
    Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.Article 
    CAS 

    Google Scholar 
    Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.Article 
    CAS 

    Google Scholar 
    Childress JJ, Girguis PR. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol. 2011;214:312–25.Article 
    CAS 

    Google Scholar 
    Hentschel U, Hand S, Felbeck H. The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study. J Exp Biol. 1996;199:427–33.Article 
    CAS 

    Google Scholar 
    Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, et al. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME J. 2020;14:2568–79.Article 
    CAS 

    Google Scholar 
    Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, et al. Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf. Sci Rep. 2022;12:9731.Article 
    CAS 

    Google Scholar 
    Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol Biol Evol. 2020;37:3469–84.Article 
    CAS 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Brissac T, Gros O, Merçot H. Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol. 2009;67:261–7.Article 
    CAS 

    Google Scholar 
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci USA. 2018;115:5229–34.Article 
    CAS 

    Google Scholar 
    Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:375–90.Article 
    CAS 

    Google Scholar 
    Li Y, Liles MR, Halanych KM. Endosymbiont genomes yield clues of tubeworm success. ISME J. 2018;12:2785–95.Article 
    CAS 

    Google Scholar 
    Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci USA. 2015;112:2093–6.Article 
    CAS 

    Google Scholar 
    Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. Rapid compensatory evolution can rescue low fitness symbioses following partner switching. Curr Biol. 2021;31:3721–3728.e4.Article 

    Google Scholar 
    Taylor JD, Glover EA, Smith L, Ikebe C, Williams ST. New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia). Zootaxa. 2016;4196:zootaxa.4196.3.2.Article 

    Google Scholar 
    Osvatic J. Fig1 gtdb tree and alignment. figshare. 2021. https://doi.org/10.6084/m9.figshare.16837216.v1.Osvatic J. Figure 2: GTDB alignment and phylogeny. 2021. https://doi.org/10.6084/m9.figshare.16837237. More