More stories

  • in

    Genome-wide identification and expression profile of Elovl genes in threadfin fish Eleutheronema

    Identification of Elovl genes from E. tetradactylum and E. rhadinumTotally, we successfully identified 9 Elovl genes, including elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b, both from E. tetradactylum and E. rhadinum genome (Table 2). In E. rhadinum, the shortest and the longest putative CDS length among all Elovl genes was 810 bp and 2019 bp, respectively. Their encoded protein size ranged from 269 amino acids to 672 amino acids. The theoretical molecular weight of Elovl proteins varied from 31061.48 to 75051.42 Da, with the theoretical isoelectric points (pI) ranging from 7.86 to 9.59. Most of the Elovl proteins were characterized as stable and hydrophilic proteins. Signal peptide prediction analysis showed that the elovl1b, elovl5, and elovl6 contained signal peptide sequences. In addition to elovl8b, all Elovl proteins contained transmembrane domains ranging from 5 to 7. Almost all Elovl proteins were predicted to be endoplasmic reticulum-located except elovl8b, predominantly localized in the nucleus.Table 2 Basic information for the Elovl gene family members.Full size tableIn E. tetradactylum, the putative CDS length of Elovl genes ranged from 810 to 1824 bp, and their encoded protein size ranged from 269 amino acids to 409 amino acids. The molecular weight of Elovl proteins varied from 31049.42 to 68750.14 Da, with the pI ranging from 8.72 to 9.64. Like Elovl proteins in E. rhadinum, most elovl proteins were predicted to be stable and hydrophilic. Signal peptide prediction analysis revealed that elovl1a, elovl5, and elovl6 had signal peptide sequence, which was different from E. rhadinum that elovl1b contained signal peptide sequence, but elovl1a did not. In addition, seven members showed the same number of transmembrane structures with E. rhadinum, while the elovl8b contained three and elovl4b contained seven transmembrane structures in contrast to E. rhadinum. The elovl8b was predicted to be localized in nuclear, while other members were localized in the endoplasmic reticulum, similar to E. rhadinum.Evolution of divergence and conservation of Elovl genesDivergence and conservation accompany the process of species evolution. To elucidate the phylogenetic relationship of Elovl genes among different species, a maximum like-hood tree was constructed on the basis of 18 Elovl genes in E. tetradactylum and E. rhadinum and 106 publicly available Elovl protein sequences. As shown in Fig. 1, these Elovl genes can be divided into eight subfamilies, including elovl1a/1b, elovl2, elovl3, elovl4a, elovl5, elovl6/6 l, elovl7a/7b, elovl8a/8b. However, 6 subfamilies were presented in the Eleutheronema genus, and there was only one subtype for elovl7 (elovl7a) and elovl8 (elovl8b) in E. tetradactylum and E. rhadinum. The elovl3 was mainly identified in mammalians such as Homo sapiens and Mus musculus, while a recent study reported a full repertoire of Elovl genes in the Colossoma macropomum genome, including elovl330. The loss of elovl2 occurred in the vast majority of marine fish lineages, which was only presented in a few fish species, such as C. carpio, D. rerio, S. salar, and S. grahami.Figure 1Phylogenetic tree for 18 Elovl proteins from E. tetradactylum and E. rhadinum, and 106 publicly available Elovl proteins from other species. All these proteins were aligned using ClustalW and then subjected to MEGAX for phylogenetic tree construction using the maximum like-hood method with 1000 replicates.Full size imageWe further performed the gene structure analysis to visualize the exon–intron structure of each gene, and the results revealed that the elovl8b had the largest intron number, while the elovl6/6 l subfamily genes contained three introns (Fig. 2a). Except for elovl8, Elovl genes belonging to the same subfamily shared a similar gene structure. Additionally, we identified ten motifs in Elovl genes, and the conversed motif types, numbers, and distributions in Elovl proteins were much more similar except for the elovl8b (Fig. 2b, TableS1). Two conserved motifs were found in the Elovl gene family except for elovl8b in E. rhadinum, which were related to the ELO domain via SMART evaluation analysis (Fig. 2c and d). Gene structural variation is important for gene evolution. In E. tetradactylum and E. rhadinum, Elovl genes showed similar gene structure, and the proteins shared similar motif compositions, indicating that the Elovl genes were highly conserved in the Eleutheronema genus.Figure 2Gene structure and conserved motifs diagram of Elovl genes. (a) Gene structure of Elovl genes. Exons were represented by pink boxes and introns by black lines; (b) Conserved motifs of Elovl proteins; (c and d) Logo representations of the ELO domains, motifs 1 and 2, respectively.Full size imageIn the process of evolution via natural selection, adaptation to certain environmental conditions likely drove the changes in endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes31. The Elovl gene family has been functionally studied and characterized in a variety of fish species, and the member of the Elovl gene family of each species varied greatly. In the present study, for a comprehensive analysis of Elovl genes in the Eleutheronema genus, the Elovl gene ortholog clusters of mammals and various teleosts with different ecological niches and habitats were collected. The results showed that only seven Elovl genes (one gene for each subtype) were observed in mammals; however, more members were variably presented in teleosts, which might be related to the teleost-specific duplication. A previous study revealed that Sinocyclocheilus graham and C. carpio possessed the highest number of Elovl genes, containing 21 members of subtypes, resulting from an extra independent 4th whole-genome duplication event32, 33. Interestingly, only 9 Elovl genes were observed in Eleutheronema genus, the same as T. rubripes, possibly due to gene loss and the asymmetric acceleration of the evolutionary rate in one of the paralogs following the whole-genome duplication in some teleost fishes34. Additionally, the elovl2 and elovl3 were absent, but a novel subtype, elovl8, was present in most marine fishes. The elovl8, the most recently identified and novel active member of the Elovl protein family member, has been proposed to be a fish-specific elongase with two gene paralogs (elovl8a and elovl8b) described in teleost35. In Eleutheronema, we also found that the elovl8b was presented in E. tetradactylum and E. rhadinum, indicating the important roles in the LC-PUFAs biosynthesis of Eleutheronema fish. Similar results were also observed in rabbitfish and zebrafish20. The Elovl gene family member number in Eleutheronema genus is the same as T. rubripes, but less than I. punctatus (10), Gadus morhua (10), D. rerio (14), S. salar (18), and C. carpio (21), which might be due to the differential expansion events during the evolutions of fish species.Predicting the protein structure is a fundamental prerequisite for understanding the function and possible interactions of a protein. In the present study, the secondary structures as well as three-dimensional structures of Elovl proteins in both E. tetradactylum and E. rhadinum were predicted using the SOPMA and Phyre2 programs, respectively. The protein structures of all the candidate Elovl proteins were modeled at  > 90% confidence. The secondary structures of these proteins in E. tetradactylum revealed 40.86–50.30% alpha helixes, 28.10–28.10% random coil, 13.75–20.67% extended strand and 2.38–4.47% beta turn, while these ratios were predicted to be 47.55–53.27, 30.00–36.01, 6.99–18.12 and 2.38–4.75%, respectively, in E. rhadinum (Table 3). High ratio of alpha helixes and random coil in the Elovl protein structure might play important roles in fatty acids biosynthesis in fish, in accordance with the literature for the order Perciformes in Perca fluviatilis36. Additionally, the secondary structure pattern of Elovl proteins in the candidate E. tetradactylum and E. rhadinum species were highly similar (Fig. 3), indicating the probable similar biological functions as well as highly evolutionarily conserved Elovl genes in Eleutheronema species.Table 3 Properties of the secondary structures of Elovl proteins.Full size tableFigure 3The secondary structure pattern, including alpha helix (blue color), random coil (purple color), extended strand (red color), and beta turn (green color), of Elovl proteins in E. tetradactylum and E. rhadinum.Full size imageThe 3D model results showed that all predicted Elovl proteins had complex 3D structures, composing of multiple secondary structures including alpha-helices, random coils, and others (Fig. 4). The Elovl proteins of different subfamilies showed different 3D configurations. The 3D structures of Elovl proteins also revealed the presence of the conserved domain in each Elovl protein, which showed a typical three-dimensional frame comprising of various parallel alpha-helixes. To assay the quality and accuracy of the predicted 3D model for the candidate Elovl proteins, the Ramachandran plot analysis was employed (Figure S1). In model validation, the qualities of the Elovl proteins model varied from 90 to 98% based on the Ramachandran plot analysis, suggesting the reasonably good quality and reliability of the predicted 3D models. These results indicated that the predicted 3D model of Elovl proteins could provide valuable information for the further comprehensive studies of molecular function in the fatty acids biosynthesis in Eleutheronema species. Additionally, the comparisons between these structures in E. tetradactylum and E. rhadinum suggested that the Elovl proteins encompassed the conserved structures. In addition, gene duplication resulted in obvious 3D structural variation in the duplicated genes, such as Elovl4 (elovl4a and elovl4b), Elovl6 (elovl6 and elovl6l). The ascertained variations were revealed in duplicated Elovl proteins, and the diversities in these proteins structure may reflect their different obligations in the fatty acid biosynthesis and other biological processes.Figure 4Three-dimensional modeling of Elovl proteins in E. tetradactylum and E. rhadinum. All models have confidence levels above 90%.Full size imageTo explore the functional selection pressures acting on Elovl gene family, Ka, Ks, and Ka/Ks ratios were calculated for each gene. Generally, Ka/Ks  1 indicates positive selection. In this study, we found that all the Ka/Ks ratios for each gene were less than 0.5, suggesting that they were subjected to strong purifying selection during evolution, and their functions might be evolutionarily conserved (Fig. 5). Therefore, theoretically, the Elovl genes in the Eleutheronema genus had eliminated deleterious mutations in the population through purification selection. Similar results were also observed in Elovl gene family of Gymnocypris przewalskii that no positive selection trace was detected in most members except elovl211. Moreover, elovl6l and elovl8b showed a higher average Ka/Ks ratio than the other seven members, indicating that the evolution of elovl6l and elovl8b might be much less conservative and thereby could provide more variants for natural selection in Eleutheronema species.Figure 5The evolutionary rates of the Elovl genes in (a) E. tetradactylum and (b) E. rhadinum. The Ka, Ks, and Ka/Ks values were demonstrated in boxplots with error lines.Full size imageChromosomal location, collinearity, and protein–protein interaction network analysis of Elovl genesAs shown in Fig. 6a and b, Elovl genes were randomly and unevenly distributed on seven chromosomes in both E. tetradactylum and E. rhadinum, including Chr5, Chr6, Chr8, Chr10, Chr11, Chr13, and Chr25. The Chr5 and Chr6 harbored two Elovl genes (elovl1b and elovl8b in Chr5, elovl5 and elovl6l in Chr6), while other chromosomes each carried a single Elovl gene. Collinearity relationship analysis was performed to further investigate the gene duplication events within the Elovl gene family. The results revealed that a pair of segmental duplication genes (elovl4a/4b) showed collinear relationships. A chromosome-wide collinearity analysis also showed that the chromosomes were highly homologous between E. tetradactylum and E. rhadinum, including the Elovl gene family (Figure S2). To infer the protein interaction within Elovl gene family, we constructed the protein–protein interaction (PPI) network of the Elovl proteins based on the interaction relationship of the homologous Elovl proteins in zebrafish. The results showed that Elovl genes had close interaction with other members except for the elovl4a/4b and elovl8b (Fig. 6c), which suggested that they might participate in diverse functions by interacting with other proteins. Thus far, elovl4a and elovl4b were widely identified in most fish, which could effectively elongate PUFA substrates37. In addition, the elovl4a/4b were identified to be homologous proteins of zebrafish, indicating that the elovl4 subtype was highly conserved during evolution and played important roles in the biosynthesis of LC-PUFA in Eleutheronema.Figure 6Chromosomal location and collinearity analysis of Elovl gene family in (a) E. tetradactylum and (b) E. rhadinum. Colored boxes represented chromosomes. Segmental duplication genes are connected with grey lines; (c) a protein–protein interaction network for Elovl genes based on their orthologs in zebrafish.Full size imageExpression patterns of ELOVL genes in different tissuesIn the present study, we aimed to determine the expression patterns and gained insights into the potential functions of Elovl genes in the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine. The expression patterns of Elovl genes in different tissues and species were distinct, suggesting the diverse roles during fish development (Fig. 7a and b). In our present study, the elovl1a and elvovl1b were expressed in a relatively narrow range of tissues, including the liver, stomach, and intestine. Some Elovl genes had much higher relative expression rates, e.g., elovl1a and elovl7a. The elovl4a was primarily distributed in the brain and eye, slightly expressed in gills while hardly detectable in other tissues, consistent with previous studies37, 38, which might play an important role in endogenous biosynthesis of LC-PUFA in the neural system of fish. In contrast to elovl4a, elovl4b was ubiquitously, instead of tissue-specific, expressed in most tissues while hardly examined in the heart and kidney. The elovl4a and elovl4b were two commonly paralogues in evolutionarily diverged fish species, and the striking difference in expression patterns between elovl4a and elovl4b might be due to the potential functional divergence of these two paralogues. In addition, elovl8b, the novel active member of the Elovl protein family, was expressed in several tissues, suggesting the essential roles in LC-PUFAs biosynthesis of teleost as indicated by a previous study20. Moreover, the differences in expression patterns among different Elovl genes indicated that these genes might possibly undergo functional divergence during evolution in the Eleutheronema genus. Overall, our present study firstly provided the preliminary organ-specific expression data of the Elovl gene family in E. tetradactylum and E. rhadinum, which could provide the foundation for further clarifying the function of these genes in the evolutionary development of the Eleutheronema genus.Figure 7qPCR assessment of tissue distribution of elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl6, elovl6l, elovl7a, and elovl8b gene expression in (a) E. tetradactylum and (b) E. rhadinum for various tissues including the brain, eye, gill, heart, kidney, liver, muscle, stomach, and intestine.Full size image More

  • in

    Future heatwaves threaten thousands of land vertebrate species

    Fischer, E. M. & Knutti, R. Nature Clim. Change 5, 560–564 (2015).Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    PubMed 

    Google Scholar 
    Ma, G., Hoffmann, A. A. & Ma, C.-S. J. Exp. Biol. 218, 2289–2296 (2015).PubMed 

    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Nature 467, 704–706 (2010).Article 
    PubMed 

    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Science 344, 1247579 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA

    Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015).Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).Article 
    CAS 

    Google Scholar 
    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).Article 

    Google Scholar 
    Chorus, I. & Bartram, J. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring, and Management. In: World Health Organization (eds. Chorus I. & Bertram J.) (CRC Press, 1999).Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).Article 
    CAS 

    Google Scholar 
    Carmichael, W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 7, 1393–1407 (2001).Article 

    Google Scholar 
    Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).Smol, J. P., Birks, H. J. B. & Last, W. M. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators, Developments in Paleoenvironmental Research. (Springer, 2002).Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 52, 1–21 (2017).Article 

    Google Scholar 
    Livingstone, D. & Jaworski, G. H. M. The viability of akinetes of blue-green algae recovered from the sediments of rostherne mere. Br. Phycol. J. 15, 357–364 (1980).Article 

    Google Scholar 
    van Geel, B., Mur, L. R., Ralska-Jasiewiczowa, M. & Goslar, T. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev. Palaeobot. Palynol. 83, 97–105 (1994).Article 

    Google Scholar 
    Hillbrand, M., van Geel, B., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 bc). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Gosling, W. D. et al. Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. J. Biogeogr. 47, 600–614 (2020).Article 

    Google Scholar 
    Hertzberg, S., Liaaen-Jensen, S. & Siegelman, H. W. The carotenoids of blue-green algae. Phytochemistry 10, 3121–3127 (1971).Article 
    CAS 

    Google Scholar 
    Leavitt, P. R. & Findlay, D. L. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. Aquat. Sci. 51, 2286–2299 (1994).Article 
    CAS 

    Google Scholar 
    Kaiser, J., Ön, B., Arz, H. & Akçer-Ön, S. Sedimentary lipid biomarkers in the magnesium-rich and highly alkaline Lake Salda (south-western Anatolia). J. Limnol. 75, 581–596 (2016).
    Google Scholar 
    Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K. & Schwark, L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE 12, e0186360 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosci. Discuss. 10, 2515–2564 (2013).
    Google Scholar 
    Britton, G., Liaaen-Jensen, S. & Pfander, H. in Carotenoids (eds. Britton, G., Liaaen-Jensen, S., Pfander, H.). Vol. 4, 1–6 (Birkhäuser Press, 2008).Capo, E. et al. Lake sedimentary dna research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Monchamp, M. E., Walser, J. C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany. J. Paleolimnol. 66, 279–296 (2021).Article 

    Google Scholar 
    Zhang, J. et al. Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA. Quat. Sci. Rev. 261, 106966 (2021).Article 

    Google Scholar 
    Brauer, A., Schwab, M. J., Brademann, B., Pinkerneil, S. & Theuerkauf, M. Tiefer See–a key site for lake sediment research in NE Germany. DEUQUA Spec. Publ. 2, 89–93 (2019).Article 

    Google Scholar 
    Dräger, N. et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). Holocene 27, 450–464 (2017).Article 

    Google Scholar 
    Dräger, N. et al. Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. J. Paleolimnol. 62, 181–194 (2019).Article 

    Google Scholar 
    Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. & Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25, 733–744 (2015).Article 

    Google Scholar 
    Heinrich, I. et al. Interdisciplinary geo-ecological research across time scales in the Northeast German Lowland Observatory (TERENO-NE). Vadose Zone J. 17, 1–25 (2018).Article 

    Google Scholar 
    Roeser, P. et al. Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas 50, 419–440 (2021).Article 

    Google Scholar 
    Nwosu, E. C. et al. From water into sediment—tracing freshwater Cyanobacteria via DNA analyses. Microorganisms 9, 1778 (2021).Article 
    CAS 

    Google Scholar 
    Schmidt, J. -P. Ein Fremdling im Nordischen Kreis Jungbronzezeitliche Funde aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. In: D. Brandherm/B. Nessel (Hrsg.), Phasenübergänge und Umbrüche im bronzezeitlichen Europa. Beiträge zur Sitzung der Arbeitsgemeinschaft Bronzezeit auf der 80. Jahrestagung des Nordwestdeutschen Verbandes für Altertumskunde. Vol. 297, 271–281. (Universitätsforschungen zur Prähistorischen Archäologie, 2017).Raese, H. & Schmidt, J. -P. Zur Besiedlung Mecklenburg-Vorpommernswährend des Spätneolithikums und der frühenBronzezeit (2500–1500 v. Chr.). In: Siedlungsarchäologie des Endneolithikums und der frühen Bronzezeit. 11. Mitteldeutscher Archäologentag (eds. Meller, H., Friedderich, S., Küßner, M., Stäuble, H. & Risch, R.) 621–634 (2019).Kienel, U., Dulski, P., Ott, F., Lorenz, S. & Brauer, A. Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. J. Paleolimnol. 50, 535–544 (2013).Article 

    Google Scholar 
    Callieri, C. & Stockner, J. Picocyanobacteria success in oligotrophic lakes: fact or fiction? J. Limnol. 59, 72–76 (2000).Article 

    Google Scholar 
    Sollai, M. et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation. Biogeosciences 14, 5789–5804 (2017).Article 

    Google Scholar 
    Mur, L. R., Skulberg, O. M. & Utkilen, H. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (eds. Chorus, I. and Bartram, J.) 15–40 (St Edmundsbury Press, 1999).Schmidt, J.-P. Ein bronzenes Hallstattschwert der Periode VI aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 26, 26–34 (2019).
    Google Scholar 
    Schmidt, J.-P. “Aller guten Dinge sind drei!”–Ein weiteres bronzezeitliches Schwert aus dem Flachen See bei Lütgendorf, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 27, 49–55 (2020).
    Google Scholar 
    Küster, M., Stöckmann, M., Fülling, A. & Weber, R. Kulturlandschaftselemente, Kolluvien und Flugsande als Archive der spätholozänen Landschaftsentwicklung im Bereich des Messtischblattes Thurow (Müritz-Nationalpark, Mecklenburg). In: Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet. (Geozon Science Media, 2015).Feeser, I., Dörfler, W., Kneisel, J., Hinz, M. & Dreibrodt, S. Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe. Holocene 29, 1596–1606 (2019).Article 

    Google Scholar 
    Alsleben, A. In How’s Life? Living Conditions in the 2nd and 1st Millennia BCE. Scales of Transformation in Prehistoric and Archaic Societies (eds. Dal Corso, M. et al.) 85–102 (Sidestone Press, 2019).Kneisel, J., Bork, H.-R. & Czebreszuk, J. In Defensive Structures from Central Europe to the Aegean in the 3rd and 2nd Millennia bc (eds. Czebreszuk, J., Kadrow, S. & Müller, J.) 155–170 (Habelt, 2008).Haas, J. N. & Wahlmüller, N. Floren-, Vegetations- und Milieuveränderungen im Zuge der bronzezeitlichen Besiedlung von Bruszczewo (Polen) und der landwirtschaftlichen Nutzung der umliegenden Gebiete. In: Ausgrabungen und Forschungen in einer prähistorischen Siedlungskammer Großpolens. (eds. Müller, J., Czebreszuk, J. & Kneisel, J.) Studien zur Archäologie in Ostmitteleuropa Vol. 6.1, 50–81 (Bonn, 2010).Theuerkauf, M. et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 51, 299–316 (2021).Article 

    Google Scholar 
    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).Article 

    Google Scholar 
    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).Article 

    Google Scholar 
    Kienel, U. et al. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J. Paleolimnol. 57, 37–49 (2017).Article 

    Google Scholar 
    Monchamp, M. E., Spaak, P. & Pomati, F. High dispersal levels and lake warming are emergent drivers of cyanobacterial community assembly in peri-Alpine lakes. Sci. Rep. 9, 7366 (2019).Article 

    Google Scholar 
    Erratt, K. et al. Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can. J. Fish. Aquat. Sci. 79, 558–565 (2021).Article 

    Google Scholar 
    Schmidt, J.-P. ders., Kein Ende in Sicht? Neue Untersuchungen auf dem Feuerstellenplatz von Naschendorf, Lkr. Nordwestmecklenburg. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 19, 26–46 (2012).
    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).Article 
    CAS 

    Google Scholar 
    Wanner, H. et al. Holocene climate variability and change; a data-based review. J. Geol. Soc. Lond. 172, 254–263 (2015).Article 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).Article 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43 (2013).Article 
    CAS 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).Article 
    CAS 

    Google Scholar 
    Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6, 831–841 (2004).Article 
    CAS 

    Google Scholar 
    Liu, A., Zhu, T., Lu, X. & Song, L. Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl. Energy 11, 383–393 (2013).Article 

    Google Scholar 
    Coates, R. C. et al. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140 (2014).Article 

    Google Scholar 
    Marciniak, S. et al. Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J. Hum. Evol. 79, 21–34 (2015).Article 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. in. Bioinformatics 29, 1682–1684 (2013).Article 

    Google Scholar 
    Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).Article 

    Google Scholar 
    Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. (U. S.) 99, 305–328 (2021).Article 
    CAS 

    Google Scholar 
    Armbrecht, L., Hallegraeff, G., Bolch, C. J. S., Woodward, C. & Cooper, A. Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes. Sci. Rep. 11, 3220 (2021).Article 
    CAS 

    Google Scholar 
    Wulf, S. et al. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quat. Sci. Rev. 132, 1–14 (2016).Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 17, 2 (2007).Article 

    Google Scholar 
    Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. In: Ancient DNA. Methods in Molecular Biology (eds. Shapiro B., Barlow A., Heintzman P., Hofreiter M., Paijmans J., Soares A.) Vol. 1963, 31–44 (Humana Press, 2019).Janse, I., Meima, M., Kardinaal, W. E. A. & Zwart, G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 6634–6643 (2003).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics. Front. Microbiol. 12, https://doi.org/10.3389/fmicb.2021.761259 (2021).Savichtcheva, O. et al. Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl. Environ. Microbiol. 77, 8744–8753 (2011).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005 (2006).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina 7 amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformat. 21, 257 (2020).Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformat. 11, 119–119 (2010).Article 

    Google Scholar 
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
    CAS 

    Google Scholar 
    Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab293 (2021).Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics. 48, 844–850 (2021).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 29, 471–482 (2001).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-2. Cran R (2019).Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 

    Google Scholar  More

  • in

    The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River Economic Belt

    Research areaThe YREB covers Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, and Yunnan. It includes the Yangtze River Delta urban agglomerations (YRDUA), Yangtze River midstream urban agglomeration (YRMUA), and Chengdu-Chongqing urban agglomeration (CCUA). With a regional area of 2.05 million km2, the YREB runs through the eastern, central and western regions in China32. In 2019, the total GDP of YREB is 45.8 trillion yuan, accounting for 46.2% of the national GDP. The YREB plays a pivotal strategic support and leading role in the overall situation of stable economic growth in China33. At the same time, the contradiction between the shortage of land resources and economic growth in the YREB is very prominent. Therefore, this paper selects 107 cities in YREB as the research sample. The specific geographic locations are shown in Fig. 2. This article uses ARCGIS 10.2 version to draw the map. The URL link is http://demo.domain.com:6080/arcgis/services.Figure 2The geographic location of the YREB in China.Full size imageResearch methodsGlobal Malmquist–Luenberger indexUGLUE refers to the effective utilization degree of land elements under certain input of other elements. The green utilization of urban land mainly comes from three aspects: first, improve the utilization intensity of the existing actual input land, that is, increase the input intensity of other elements of the unit land area. Second, reduce the input of land in the production process to avoid excessive waste of land. Third, promote the optimal allocation of land elements among production units. Technical efficiency refers to the maximum degree that all factor inputs need to expand or shrink in equal proportion when all production units reach the production frontier. However, for production units with high technical efficiency, the factor allocation structure may not be reasonable. The land factors may still have the problem of under-input or over-input, resulting in the reduction of UGLUE.Pastor and Lovell34 proposed a global index, which uses all the inspection periods of each decision-making unit as a benchmark to construct the production frontier. According to the current benchmark construction period t, the production possibility set reference set is defined as follows:$$P_{C}^{t} (x^{t} ) = left{ {left. {(y^{t} ,b^{t} )} right|x^{t} {kern 1pt} can{kern 1pt} , produce{kern 1pt} , b^{t} ,y^{t} } right}$$
    (1)
    The global benchmark is defined as: (P_{G} = P_{C}^{1} , cup ,P_{C}^{2} , cup , cdots ,P_{C}^{t}), The subscripts C and G represent the current benchmark and the global benchmark respectively. The ML index of decision-making unit i is calculated based on the current reference benchmark:$$ML^{S} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{C}^{S} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{C}^{S} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$
    (2)
    Among them, the superscript S indicates two adjacent periods, t period and t + 1 period. The subscript C indicates the current benchmark, which is a simplified directional distance function. (ML^{s} > 1), indicates that the productivity increases. (ML^{s} < 1), indicates that the productivity decreases.According to Hofmann et al.35, the GMLI is defined as follows:$$GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$ (3) Among them, (D_{G}^{T} (x,y,b) = max left{ {alpha |(y - alpha y,b - alpha b) in P_{G} (x)} right}). (GMLI^{t,t + 1} > 1) indicates that the productivity has increased. (GMLI^{t,t + 1} < 1) indicates that the productivity decreases. The GMLI is further broken down as follows:$$begin{aligned} & GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} \ & quad = frac{{1 + D_{G}^{t} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{t + 1} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} times left[ {frac{{(1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} ))/(1 + D_{C}^{T} (x^{t} ,y^{t} ,b^{t} ))}}{{(1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))/(1 + D_{C}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))}}} right] \ & quad = frac{{TE^{t + 1} }}{{TE^{t} }} times left( {frac{{BPG_{t + 1}^{t + 1} }}{{BPG_{t}^{t + 1} }}} right) = EC_{t}^{t + 1} times BPC_{t}^{t + 1} \ end{aligned}$$ (4) Among them, TE is the change of technological progress. EC is the change of technological efficiency. The change of technological progress reflects the change of the highest technical level. The improvement of the highest technical level often requires the introduction and innovation of advanced technology, which often requires a large amount of investment. The change of technical efficiency reflects the gap with the highest technical level. Narrowing the gap with the highest technical level often requires improvements in internal management and governance structures. (BPG_{t}^{t + 1}) is the “best practitioner gap” between the current period and overall technological frontier. (BPC_{t}^{t + 1}) measures the changes in the “best practitioner gap” between two periods (technological changes). (BPC_{t}^{t + 1} , > , 1 ,) indicates technological progress. (BPC_{t}^{t + 1} < 1) indicates technology regress.Econometric techniques of industrial agglomeration on UGLUEIn recent years, many scholars used the traditional SPM for empirical analysis, which is a basic measurement model suitable for panel data. Therefore, this article firstly uses the traditional SPM to analyze the impact of industrial agglomeration on UGLUE. The formula is:$$begin{aligned} ln UGLUE_{it} & = alpha_{0} + alpha_{1} ln RZI_{it} + alpha_{2} ln RZI_{it} *ln RZI_{it} + alpha_{3} ln RDI_{it} + alpha_{4} ln EC_{it} \ & quad + alpha_{5} ln GDP_{it} + alpha_{6} ln TEC_{it} + alpha_{7} ln ROAD_{it} + alpha_{8} ln GOV_{it} + varepsilon_{it} \ end{aligned}$$ (5) Among them, ε is the disturbance term. i represents the city, i in this paper involves 107 cities in YREB. t represents the time, and the range of t in this paper is from 2007 to 2016. UGLUE is the explained variable, which represents the UGLUE. RZI and RDI are explanatory variables, representing industrial specialization agglomeration and industrial diversification agglomeration. EC is the industrial structure. GDP is the level of economic development. TEC is the level of technology. ROAD is the level of infrastructure. GOV is the degree of government intervention. (alpha_{1}) to (alpha_{8}) is the coefficient of each variable.Formula (5) assumes that the UGLUE changes with the changes of various influencing factors in the current period. That is, there is no time lag effect. But in reality, land use often has a time lag effect. The previous level has a non-negligible impact on the current results. Therefore, this paper selects the dynamic panel model for empirical analysis. However, there is often a two-way causal relationship between industrial agglomeration and UGLUE, which may cause endogenous bias. For example, cities with higher UGLUE levels tend to have higher levels of economic development, which promotes industrial agglomeration in this city. Therefore, this paper adopts the method of system GMM for regression analysis of dynamic panel model. Compared with mixed OLS, system GMM can make full use of sample information, select appropriate lag terms as instrumental variables36. It can effectively solve the endogeneity problem between industrial agglomeration and UGLUE. Based on the above analysis, this paper introduces the first-order lag term of UGLUE on the basis of formula (5). The DPM is as follows:$$begin{aligned} ln UGLUE_{it} & = beta_{0} + tau ln UGLUE_{i(t - 1)} + beta_{1} ln RZI_{it} + beta_{2} ln RZI_{it} times ln RZI_{it} + beta_{3} ln RDI_{it} \ & quad + beta_{4} ln EC_{it} + beta_{5} ln GDP_{it} + beta_{6} ln TEC_{it} + beta_{7} ln ROAD_{it} + beta_{8} ln GOV_{it} + varepsilon_{{{text{it}}}} \ end{aligned}$$ (6) Among them, (tau) is the first-order lag coefficient of UGLUE, reflecting the time lag effect of UGLUE.Variable descriptionExplained variableThe GMLI is used to measure the UGLUE of 107 cities in YREB. According to existing research37, the following core evaluation index of UGLUE are selected (see Table 1). Regarding input indicators, we mainly choose land element input M, labor element input L, and capital element input K as input indicators. Regarding output indicators, we choose the added value of the secondary and tertiary industries in the municipal area as the expected output, and use the GDP deflator to convert it into a comparable value. At the same time, pollution indicators such as industrial wastewater emissions, industrial sulfur dioxide emissions, and industrial smoke (dust) emissions are selected as undesired output. Since the GMLI reflects the growth rate of UGLUE, this paper assumes that the GMLI in 2006 is 1, and then multiplies the calculated GMLI year by year to obtain the development level of UGLUE in each city from 2007 to 2016.Table 1 Input and output index.Full size tableExplanatory variablesIndustrial specialization index ZI is usually used to measure the specialization level of urban industries. The specialization index is represented by the share of the employment of the industry in the total employment of the city:$$ZI_{i} = Max_{j} (S_{ij} )$$ (7) Nextly, we use the relative specialization index to make a horizontal comparison of the specialization level between different cities:$$RZI_{i} = Max(S_{ij} /S_{j} )$$ (8) The most common measure of the level of industrial diversification is the Herfindahl–Hirschman Index (HHI). For city i, the HHI is the sum of the square sum of employment shares of all industries in the city. The diversification index is the reciprocal of the HHI:$$DZ_{i} = frac{1}{{sumlimits_{j} {S_{ij}^{2} } }}$$ (9) The expression of relative diversification index is as follows:$$RDI_{i} = {1 mathord{left/ {vphantom {1 {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}} right. kern-0pt} {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}$$ (10) Among them, Sij is the employment proportion of j industry in city i, and Sj is the proportion of the total employment of the national j industry. The greater value of RZI and RDI, the higher level of industrial specialization and diversification.Control variablesRegarding control variables, we choose the following variables as control variables.Industrial structure (EC): The continuous optimization of industrial structure promotes the improvement of UGLUE through three aspects: saving land, increasing land income and promoting the optimal allocation of land resources. This paper selects the added value of the tertiary industry as a percentage of GDP (take the logarithm) to express.Technological level (TEC): The higher the technological innovation level of a city is, the more it promotes the use of input elements and the transformation of innovation results, thereby improving the UGLUE. This paper selects the proportion of science and technology expenditure to fiscal expenditure (take the logarithm) to represent.Economic development level (GDP): The continuous economic development promote the rational allocation of various production factors and increase the level of urban land output, thereby improving the UGLUE. This paper selects GDP per capita (take the logarithm) to express.Road infrastructure level (ROAD): The continuous improvement of infrastructure reduces transportation costs and transaction costs, and promotes communication externalities between producers, consumers, and between producers and consumers. This paper selects the average road area per capita (take the logarithm) to express.Government behavior (GOV): Fiscal expenditure is an important means for the government to carry out macro-control. Appropriate fiscal expenditure makes up for market shortages, improves factor flow and resource allocation efficiency, and realizes positive economic externalities. This paper selects the proportion of fiscal expenditure to GDP (take the logarithm) to express. We can see the meaning of specific variables from Table 2.Table 2 The descriptive statistics of variables.Full size tableData sourceThe object of this thesis is the 107 cities in YREB from 2007 to 2016. The urban construction land area data comes from the "China Urban Construction Statistical Yearbook", and the rest of the index data all come from the "China City Statistical Yearbook". The URL link is https://www.cnki.net/. In order to maintain the integrity of the data, this article uses the average method to fill in the missing values. In addition, because Chaohu City began to be under the jurisdiction of Hefei City in 2011, Bijie City and Tongren City in Guizhou Province only became prefecture-level cities in 2011. The three cities and Pu'er City are taken from the sample to maintain the continuity of data. More

  • in

    Water masses shape pico-nano eukaryotic communities of the Weddell Sea

    Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365 (2008).Article 
    CAS 

    Google Scholar 
    Massana, R. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65, 91–110 (2011).Article 
    CAS 

    Google Scholar 
    Rocke, E., Pachiadaki, M. G., Cobban, A., Kujawinski, E. B. & Edgcomb, V. P. Protist community grazing on prokaryotic prey in deep ocean water masses. PLoS ONE 10, e0124505 (2015).Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 
    CAS 

    Google Scholar 
    Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abj9309 (2022).Giner, C. R. et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14, 437–449 (2020).Article 

    Google Scholar 
    Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).Article 
    CAS 

    Google Scholar 
    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).Article 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high‐throughput metabarcoding. J. Eukaryot. Microbiol. 67, 612–622 (2020).Article 

    Google Scholar 
    Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Sommeria-Klein, G. et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374, 594–599 (2021).Article 
    CAS 

    Google Scholar 
    Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).Article 

    Google Scholar 
    Zoccarato, L., Pallavicini, A., Cerino, F., Umani, S. F. & Celussi, M. Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog. Oceanogr. 149, 16–26 (2016).Article 

    Google Scholar 
    Biggs, T. E. G., Huisman, J. & Brussaard, C. P. D. Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. ISME J. 15, 3615–3622 (2021).Article 
    CAS 

    Google Scholar 
    Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).Article 
    CAS 

    Google Scholar 
    Gast, R. J., Fay, S. A. & Sanders, R. W. Mixotrophic activity and diversity of Antarctic marine protists in austral summer. Front. Mar. Sci. 5, 13 (2018).Article 

    Google Scholar 
    Grattepanche, J. D., Jeffrey, W. H., Gast, R. J. & Sanders, R. W. Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring. Front. Microbiol. 13, 844856 (2022).Article 

    Google Scholar 
    Hamilton, M. et al. Spatiotemporal variations in Antarctic protistan communities highlight phytoplankton diversity and seasonal dominance by a novel cryptophyte lineage. mBio 12, e0297321 (2021).Article 

    Google Scholar 
    Lin, Y. et al. Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nat. Commun. 12, 4948 (2021).Article 
    CAS 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).Article 
    CAS 

    Google Scholar 
    Vernet, M. et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Rev. Geophysics 57, 623–708 (2019).Article 

    Google Scholar 
    Callahan, J. E. The structure and circulation of deep water in the Antarctic. Deep‐Sea Res. 19, 563–575 (1972).
    Google Scholar 
    Janout, M. A. et al. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. J. Geophys. Res.: Oceans 126, e2021JC017269 (2021).Article 

    Google Scholar 
    Orsi, A. H., Smethie, W. M. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 3122 (2002).Article 

    Google Scholar 
    Hoppema, M., Fahrbach, E. & Schröder, M. On the total carbon dioxide and oxygen signature of the circumpolar deep water in the Weddell Gyre. Oceanol. Acta 20, 783–798 (1997).CAS 

    Google Scholar 
    Karstensen, J. & Tomczak, M. Age determination of mixed water masses using CFC and oxygen data. J. Geophys. Res. 103, 18599–18609 (1998).Article 
    CAS 

    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).Article 

    Google Scholar 
    Celussi, M., Bergamasco, A., Cataletto, B., Umani, S. F. & Del Negro, P. Water masses bacterial community structure and microbial activities in the Ross Sea, Antarctica. Antarct. Sci. 22, 361–370 (2010).Article 

    Google Scholar 
    Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).Article 

    Google Scholar 
    Hamdan, L. J. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 7, 685–696 (2013).Article 
    CAS 

    Google Scholar 
    Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 2457 (2013).Article 

    Google Scholar 
    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).Article 
    CAS 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).Article 
    CAS 

    Google Scholar 
    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. 45, 65–91 (2010).Article 
    CAS 

    Google Scholar 
    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine Plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2016).Article 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).Article 
    CAS 

    Google Scholar 
    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).Article 
    CAS 

    Google Scholar 
    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, GB1010 (2009).Article 

    Google Scholar 
    Suzuki, N. & Not, F. In Marine Protists: Diversity and Dynamics 179–222 (Springer Japan, 2015).Decelle, J. et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS ONE 8, e53598 (2013).Article 
    CAS 

    Google Scholar 
    Tashyreva, D. et al. Diplonemids—a review on “new“ flagellates on the oceanic block. Protist 173, 125868 (2022).Article 
    CAS 

    Google Scholar 
    Flegontova, O. et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol 22, 4014–4031 (2020).Article 
    CAS 

    Google Scholar 
    Xu, D. et al. Microbial eukaryote diversity and activity in the water column of the South China sea based on DNA and RNA high throughput sequencing. Front. Microbiol. 8, 1121 (2017).Article 

    Google Scholar 
    Bråte, J. et al. Radiolaria associated with large diversity of marine alveolates. Protist 163, 767–777 (2012).Article 

    Google Scholar 
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2017).Article 

    Google Scholar 
    Yabuki, A. & Tame, A. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J. Eukaryot. Microbiol. 62, 426–429 (2015).Article 

    Google Scholar 
    Larsen, J. & Patterson, J. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937 (1990).Article 

    Google Scholar 
    Prokopchuk, G. et al. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419 (2022).Article 
    CAS 

    Google Scholar 
    Arístegui, J. & Gasol, J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).Article 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).Article 

    Google Scholar 
    Kolisko, M. et al. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080 (2020).
    Google Scholar 
    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).Article 

    Google Scholar 
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent

    Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 50, 1784–1787 (2021).Article 

    Google Scholar 
    Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120080 (2013).Article 

    Google Scholar 
    Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).Article 
    CAS 

    Google Scholar 
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).Article 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).Article 

    Google Scholar 
    Hill, T. S. & Hoogenboom, M. O. The indirect effects of ocean acidification on corals and coral communities. Coral Reefs https://doi.org/10.1007/s00338-022-02286-z (2022).Biagi, E. et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci. Total Environ. 724, 138048 (2020).Article 
    CAS 

    Google Scholar 
    Chen, B. et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci. Total Environ. 765, 142690 (2021).Article 
    CAS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article 
    CAS 

    Google Scholar 
    Wood, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 29, 179–206 (1998).Article 

    Google Scholar 
    Drake, J. L. et al. How corals made rocks through the ages. Glob. Chang. Biol. 26, 31–53 (2020).Article 

    Google Scholar 
    Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs. Science 312, 857–858 (2006).Article 
    CAS 

    Google Scholar 
    Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A comprehensive phylogenetic analysis of the scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One. 5, e11490 (2010).Article 

    Google Scholar 
    Dubinsky, Z. & Jokiel, P. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).Article 
    CAS 

    Google Scholar 
    Frankowiak, K., Roniewicz, E. & Stolarski, J. Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ 9, e11062 (2021).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    CAS 

    Google Scholar 
    Kremer, P. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Assoc. UK. 85, 613–625 (2005).Article 

    Google Scholar 
    Welsh, D. T., Dunn, R. J. K. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351–362 (2009).Article 
    CAS 

    Google Scholar 
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).Article 
    CAS 

    Google Scholar 
    Ferrier‐Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).Article 

    Google Scholar 
    Teixidó, N. et al. Ocean acidification causes variable trait shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830 (2020).Article 

    Google Scholar 
    Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci. Rep. 11, 19927 (2021).Article 
    CAS 

    Google Scholar 
    Kerrison, P., Hall-Spencer, J. M., Suggett, D. J., Hepburn, L. J. & Steinke, M. Assessment of pH variability at a coastal CO2 vent for ocean acidification studies. Estuar. Coast. Shelf Sci. 94, 129–137 (2011).Article 
    CAS 

    Google Scholar 
    Johnson, V. R., Russell, B. D., Fabricius, K. E., Brownlee, C. & Hall-Spencer, J. M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob. Chang. Biol. 18, 2792–2803 (2012).Article 

    Google Scholar 
    Caroselli, E. et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent. Limnol. Oceanogr. 64, 1059–1069 (2019).Article 
    CAS 

    Google Scholar 
    González-Delgado, S. & Hernández, J. C. The importance of natural acidified systems in the study of ocean acidification: what have we learned? Adv. Mar. Biol. 80, 57–99 (2018).Article 

    Google Scholar 
    Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D. & Poreda, R. Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J. Geophys. Res. 112, B05201 (2007).
    Google Scholar 
    Reggi, M. et al. Biomineralization in mediterranean corals: The role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).Article 
    CAS 

    Google Scholar 
    Wall, M. et al. Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Front. Mar. Sci. 6, 699 (2019).Article 

    Google Scholar 
    Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).Article 
    CAS 

    Google Scholar 
    Xu, S. et al. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions. Sci. China Earth Sci. 64, 839–852 (2021).Article 

    Google Scholar 
    Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Fine, M. Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci. Rep. 5, 1–9 (2015).Article 

    Google Scholar 
    Chen, B., Zou, D., Zhu, M. & Yang, Y. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis. Aquac. Res. 48, 2683–2690 (2017).Article 
    CAS 

    Google Scholar 
    Winters, G., Beer, S., Zvi, B., Brickner, I. & Loya, Y. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar. Ecol. Prog. Ser. 384, 107–119 (2009).Article 

    Google Scholar 
    Fitt, W. K., McFarland, F. K., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).Article 
    CAS 

    Google Scholar 
    Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Light gradients and optical microniches in coral tissues. Front. Microbiol. 3, 1–9 (2012).Article 

    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta. 74, 4988–5001 (2010).Article 
    CAS 

    Google Scholar 
    Scucchia, F., Malik, A., Zaslansky, P., Putnam, H. M. & Mass, T. Combined responses of primary coral polyps and their algal endosymbionts to decreasing seawater pH. Proc. R. Soc. B Biol. Sci. 288, 20210328 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).Article 
    CAS 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 

    Google Scholar 
    Brading, P. et al. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56, 927–938 (2011).Article 
    CAS 

    Google Scholar 
    Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907 (1985).Article 
    CAS 

    Google Scholar 
    Xu, Z. et al. Changes of carbon to nitrogen ratio in particulate organic matter in the marine mesopelagic zone: A case from the South China Sea. Mar. Chem. 231, 103930 (2021).Article 
    CAS 

    Google Scholar 
    Crawford, D. W. et al. Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic. Glob. Biogeochem. Cycles. 29, 2021–2033 (2015).Article 
    CAS 

    Google Scholar 
    Kikumoto, R. et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res. 25, 1057–1069 (2014).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).Article 
    CAS 

    Google Scholar 
    Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: Overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Mar. Sci. 4, 10 (2017).Article 

    Google Scholar 
    Wannicke, N., Frey, C., Law, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 24, 5031–5043 (2018).Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).Article 
    CAS 

    Google Scholar 
    Palladino, G. et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient. ISME Commun. 2, 65 (2022).Article 

    Google Scholar 
    Muscatine, L. et al. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proc. Natl Acad. Sci. 102, 1525–1530 (2005).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    CAS 

    Google Scholar 
    Alamaru, A., Loya, Y., Brokovich, E., Yam, R. & Shemesh, A. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim. Cosmochim. Acta. 73, 5333–5342 (2009).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Morrow, K. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 12, 813–824 (2018).Article 
    CAS 

    Google Scholar 
    Marcelino, V. R., Morrow, K. M., Oppen, M. J. H., Bourne, D. G. & Verbruggen, H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol. Ecol. 26, 5344–5357 (2017).Article 
    CAS 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146 (2009).Article 
    CAS 

    Google Scholar 
    Zheng, X. et al. Effects of ocean acidification on carbon and nitrogen fixation in the hermatypic coral Galaxea fascicularis. Front. Mar. Sci. 8, 644965 (2021).Article 

    Google Scholar 
    Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac-105 1–21 (1998).Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).Article 
    CAS 

    Google Scholar 
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride solutions from 273.15 to 318.15 K. J. Chem. Eng. Data. 35, 253–257 (1990).Article 
    CAS 

    Google Scholar 
    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).Article 
    CAS 

    Google Scholar 
    Ivancic, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143–1147 (1984).Article 
    CAS 

    Google Scholar 
    Parson, T. R., Maita, Y. & Llli, C. M. A manual of chemical & biological methods for seawater analysis. (Elsevier, 1984). https://doi.org/10.1016/C2009-0-07774-5Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a Fluorescence 1367, 279–319 (Springer Netherlands, 2004).Grover, R., Maguer, J. F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).Article 

    Google Scholar 
    Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs. 33, 1–13 (2014).Article 

    Google Scholar 
    Pupier, C. A. et al. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci. Rep. 9, 17819 (2019).Article 

    Google Scholar 
    Ritchie, R. J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126 (2008).Article 
    CAS 

    Google Scholar 
    Goffredo, S., Arnone, S. & Zaccanti, F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar. Ecol. Prog. Ser. 229, 83–94 (2002).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).Article 
    CAS 

    Google Scholar 
    Moore, R. B. Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int. J. Syst. Evol. Microbiol. 53, 1725–1734 (2003).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 6, e29013 (2011).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 57, 166–180 (2022).Article 

    Google Scholar 
    Anderson, M. J. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Wiley StatsRef: Statistics Reference Online (2005). More

  • in

    Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna

    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).Article 

    Google Scholar 
    Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).Article 
    ADS 

    Google Scholar 
    Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).Article 

    Google Scholar 
    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).Article 
    ADS 

    Google Scholar 
    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).Article 

    Google Scholar 
    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
    Google Scholar 
    FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).Article 

    Google Scholar 
    Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).Article 

    Google Scholar 
    Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).Article 

    Google Scholar 
    Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).Article 

    Google Scholar 
    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).Article 
    ADS 

    Google Scholar 
    Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).Article 
    ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    ADS 

    Google Scholar 
    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).Article 

    Google Scholar 
    St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
    Google Scholar 
    Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).Article 
    ADS 

    Google Scholar 
    Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).Article 
    ADS 

    Google Scholar 
    Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
    Google Scholar 
    Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).Article 
    ADS 

    Google Scholar 
    Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).Article 
    ADS 

    Google Scholar 
    Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).Article 
    ADS 

    Google Scholar 
    Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).Article 

    Google Scholar 
    Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
    Google Scholar 
    Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).Article 
    ADS 

    Google Scholar 
    Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).Article 
    ADS 

    Google Scholar 
    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).Article 
    CAS 

    Google Scholar 
    Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).Article 

    Google Scholar 
    Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).Article 
    ADS 

    Google Scholar 
    Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).Article 
    ADS 

    Google Scholar 
    Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).Article 

    Google Scholar 
    Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).Article 

    Google Scholar 
    Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).Article 

    Google Scholar 
    Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).Article 
    CAS 

    Google Scholar 
    Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).Article 

    Google Scholar 
    Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).Article 
    ADS 

    Google Scholar 
    Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).Article 

    Google Scholar 
    Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).Article 

    Google Scholar 
    Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).Article 

    Google Scholar 
    Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).Article 

    Google Scholar 
    Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).Article 

    Google Scholar 
    Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).Article 

    Google Scholar 
    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).Article 
    ADS 

    Google Scholar 
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 
    ADS 

    Google Scholar 
    Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).Article 
    ADS 

    Google Scholar 
    Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).Article 
    ADS 

    Google Scholar 
    Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).Article 
    ADS 

    Google Scholar 
    Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).Article 

    Google Scholar 
    Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).Article 
    ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).Article 
    ADS 

    Google Scholar 
    Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).Article 

    Google Scholar 
    Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).Article 
    ADS 

    Google Scholar 
    Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
    Google Scholar 
    Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).Article 

    Google Scholar 
    Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).Article 
    ADS 

    Google Scholar 
    Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).Article 

    Google Scholar 
    Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).Article 
    ADS 

    Google Scholar 
    Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).Article 

    Google Scholar  More

  • in

    The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects

    Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. Protected areas. Goals, limitations, and design. In Principles of Conservation Biology (eds Groom, M. J. et al.) 507–549 (Sinauer Associates Inc, 2006).
    Google Scholar 
    Marquet, P. A., Lessmann, J. & Shaw, M. R. Protected-area management and climate change. In Biodiversity and Climate Change: Transforming the Biosphere (eds Lovejoy, T. E. & Hannah, L.) 283–293 (Yale University Press, 2019).Chapter 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. PNAS https://doi.org/10.1073/pnas.1908221116 (2019).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 
    ADS 

    Google Scholar 
    Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Dudley, N., Mansourian, S., Stolton, S. & Suksuwan, S. Do protected areas contribute to poverty reduction?. Biodiversity 11, 5–7 (2010).Article 

    Google Scholar 
    Dudley, N. & Stolton, S. Arguments for Protected Areas (Earthscan, 2010).Book 

    Google Scholar 
    CBD. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. http://www.cbd.int/sp/ and http://www.cbd.int/decision/cop/?id=12268 (2010).UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed October 2022 (2022).Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).Article 

    Google Scholar 
    Díaz, S. et al. Summary for Policymakers of the IPBES Global Assessment Report on Biodiversity and Ecosystem Services. (2019).Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and Far: Biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    ADS 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    CBD. CoP 7 Decision VII/30. Strategic Plan: Future Evaluation of progress. 12 https://www.cbd.int/doc/decisions/cop-07/cop-07-dec-30-en.pdf (2004).Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).Article 

    Google Scholar 
    Kuempel, C. D., Chauvenet, A. L. M. & Possingham, H. P. Equitable representation of ecoregions is slowly improving despite strategic planning shortfalls. Conserv. Lett. 9, 422–428 (2016).Article 

    Google Scholar 
    Barr, L. M., Watson, J. E. M., Possingham, H. P., Iwamura, T. & Fuller, R. A. Progress in improving the protection of species and habitats in Australia. Biol. Conserv. 200, 184–191 (2016).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).Article 

    Google Scholar 
    Hannah, L. Protected areas and climate change. Ann. N. Y. Acad. Sci. 1134, 201–212 (2008).Article 
    ADS 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Lin. Soc. 115, 718–730 (2015).Article 

    Google Scholar 
    Ramirez-Villegas, J. et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22, 391–404 (2014).Article 

    Google Scholar 
    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110, E2602–E2610 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).Article 

    Google Scholar 
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2015).Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MATH 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. (2017).Gotelli, N. J. & Graves, G. R. Null Models in Ecology. (1996).Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).Article 

    Google Scholar 
    Watson, J. E. M., Grantham, H. S., Wilson, K. A. & Possingham, H. P. Systematic conservation planning: Past, present and future. In Conservation Biogeography (eds Ladle, R. J. & Whittaker, R. J.) (Wiley, 2011).
    Google Scholar 
    Bevilacqua, M. Áreas protegidas y conservación de la diversidad biológica. Biodivers. Venezuela 2, 922–943 (2003).
    Google Scholar 
    Franco, P., Saavedra-Rodríguez, C. A. & Kattan, G. H. Bird species diversity captured by protected areas in the Andes of Colombia: A gap analysis. Oryx 41, 57–63 (2007).Article 

    Google Scholar 
    Barzetti, V. Parks and Progress: Protected Areas and Economic Development in Latin America and the Caribbean. (1993).Schulman, L. et al. Amazonian biodiversity and protected areas: Do they meet?. Biodivers. Conserv. 16, 3011–3051 (2007).Article 

    Google Scholar 
    Dourojeanni, M. J. Áreas naturales protegidas e investigación científica en el Perú. Rev. For. Perú 33, 91–101 (2018).
    Google Scholar 
    Rodriguez, L. & Young, K. Biological diversity of peru: Determining priority areas for conservation. Ambio 29, 329–337 (2000).Article 

    Google Scholar 
    Ministerio del Ambiente & SERNANP. Plan Director de las Áreas Naturales Protegidas (Estrategia Nacional) (2009).Cuesta-Camacho, F. et al. Identificación de Vacíos y Prioridades de Conservación Para la Biodiversidad Terrestre en el Ecuador Continental. http://protectedareas.info/upload/document/ecuador_terrestrial_gap_analysis.pdf (2006).Naveda, J. A. Evaluación del grado de representatividad ecológica y geográfica del sistema de parques nacionales de Venezuela al norte del Orinoco: Anteproyecto. Rev. Geog. Venez. 38, 193–208 (1997).
    Google Scholar 
    Araujo, N., Müller, R., Nowicki, C. & Ibisch, P. L. Prioridades de conservación de la biodiversidad de Bolivia (editorial FAN, 2010)Arango, N. et al. Vacíos de Conservación del Sistema de Parques Nacionales Naturales de Colombia desde una Perspectiva Ecorregional. https://wwflac.awsassets.panda.org/downloads/vacios_de_conservacion.pdf (2003).Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).Article 
    CAS 

    Google Scholar 
    Sarkar, S., Sánchez-Cordero, V., Londoño, M. C. & Fuller, T. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: A preliminary analysis. Biodivers. Conserv. 18, 1793–1828 (2009).Article 

    Google Scholar 
    Lessmann, J., Muñoz, J. & Bonaccorso, E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol. Evol. 4, 2410–2422 (2014).Article 

    Google Scholar 
    Young, B. E. et al. Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126, 554–565 (2009).Article 

    Google Scholar 
    Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, 1–23 (2014).Article 

    Google Scholar 
    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 6187 (2014).Article 

    Google Scholar 
    Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 12, 1 (2012).Article 

    Google Scholar 
    Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259 (2019).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).Article 

    Google Scholar 
    Reyes-Puig, C. Diversity, threat, and conservation of reptiles from continental Ecuador. Amphib. Reptile Conserv. 11, 8 (2017).
    Google Scholar 
    Shanee, S. et al. Protected area coverage of threatened vertebrates and ecoregions in Peru: Comparison of communal, private and state reserves. J. Environ. Manage. 202, 12–20 (2017).Article 

    Google Scholar 
    Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 1–11 (2020).Article 

    Google Scholar 
    Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).Article 

    Google Scholar 
    del Avalos, V. R. & Hernández, J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Glob. Ecol. Conserv. 4, 459–469 (2015).Article 

    Google Scholar 
    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).Article 
    ADS 

    Google Scholar 
    Golden Kroner, R. et al. COVID-era policies and economic recovery plans: Are governments building back better for protected and conserved areas?. PARKS 27, 135–148 (2021).Article 

    Google Scholar 
    IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).
    Google Scholar 
    Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.944116 (2022).Article 

    Google Scholar 
    Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).Article 

    Google Scholar 
    CBD. Kunming-Montreal Global Biodiversity Framework, Draft Decision Submitted by the PRESIDENT. (2022). CBD/COP/15/L.25. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdfCBD. Report of the Expert Workshop on the Monitoring Framework for the Post-2020 Global Biodiversity Framework (CBD, 2022).
    Google Scholar 
    Chaplin-Kramer, R. et al. Mapping the planet’s critical natural assets. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01934-5 (2022).Article 

    Google Scholar 
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 

    Google Scholar 
    Elbers, J. Las Áreas Protegidas de América Latina: Situación Actual y Perspectivas PARA el Futuro (2011).Miller, D. C. & Nakamura, K. S. Protected areas and the sustainable governance of forest resources. Curr. Opin. Environ. Sustain. 32, 96–103 (2018).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar 
    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol 15, 96 (2017).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).Article 

    Google Scholar 
    Kershaw, F. et al. Informing conservation units: Barriers to dispersal for the yellow anaconda. Divers. Distrib. 19, 1164–1174 (2013).Article 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).
    Google Scholar 
    Yin, L., Fu, R., Shevliakova, E. & Dickinson, R. E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America?. Clim. Dyn. 41, 3127–3143 (2013).Article 

    Google Scholar  More