Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa
1.
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
ADS CAS PubMed PubMed Central Google Scholar
2.
Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, 1–8 (2011).
Google Scholar
3.
Atherstone, C., Roesel, K. & Grace, D. Ebola Risk Assessment in the Pig Value Chain in Uganda. ILRI Research Report 34. Nairobi, Kenya: International Livestock Research Institute (2014).
4.
CDC. Centers for Disease Control and Prevention (CDC). Ebola Virus Disease Distribution Map: cases of Ebola Virus Disease in Africa Since 1976 (2019). https://www.cdc.gov/vhf/ebola/history/distribution-map.html. Accessed August 3rd 2019.
5.
WHO. World Health Organization (WHO) Ebola virus disease – fact-sheet. (2019). https://www.who.int/health-topics/ebola/#tab=overview. Accessed September 20th 2018.
6.
Swanepoel, R. et al. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 2, 321–325 (1996).
CAS PubMed PubMed Central Google Scholar
7.
Cantoni, D., Hamlet, A., Michaelis, M., Wass, M. N. & Rossmann, J. S. Risks posed by Reston, the forgotten Ebolavirus. mSphere 1, 1–10 (2016).
Google Scholar
8.
GIDEON. GIDEON: Stephan Berger. Ebola: Global Status (GIDEON Informatics, Inc., Los Angeles, 2019).
Google Scholar
9.
Pourrut, X. et al. Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 196, S176–S183 (2007).
PubMed Google Scholar
10.
Gire, S. et al. Genomic surveillance elucidates Ebola virus orgin and transmission during the 2014 outbreak. Science 12, 1–13 (2014).
Google Scholar
11.
Taniguchi, S. et al. Reston ebolavirus antibodies in bats, the Philippines. Emerg. Infect. Dis. 17, 1559–1560 (2011).
PubMed PubMed Central Google Scholar
12.
Schar, D. & Daszak, P. Ebola economics: the case for an upstream approach to disease emergence. EcoHealth 11, 451–452 (2014).
PubMed Google Scholar
13.
Voigt, C. C. Bats in the anthropocene: conservation of bats in a changing world. Springer, Berlin. https://doi.org/10.1007/978-3-319-25220-9 (2015).
Article Google Scholar
14.
Leendertz, S. A. J., Gogarten, J. F., Düx, A., Calvignac-Spencer, S. & Leendertz, F. H. Assessing the evidence supporting fruit bats as the primary reservoirs for ebola viruses. EcoHealth 13, 18–25 (2016).
PubMed Google Scholar
15.
Pourrut, X. et al. The natural history of Ebola virus in Africa. Microbes Infect. 7, 1005–1014 (2005).
PubMed Google Scholar
16.
Pourrut, X. et al. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 9, 159 (2009).
PubMed PubMed Central Google Scholar
17.
Peterson, T. T., Carroll, D. S., Mills, J. N. & Johnson, K. M. Potential mammalian filovirus reservoirs. Emerg. Infect. Dis. 10, 2073–2081 (2004).
PubMed PubMed Central Google Scholar
18.
Allen, T., Murray, K., Olival, K. J. & Daszak, P. The Influcence of global environmental change on infectious disease dynamics: workshop summary. Global change and infectious disease dynamics. Eight critical questions for pandemic prediction (2012).
19.
Olival, K. J., Weekley, C. & Daszak, P. Are bats really ‘special’ as viral reservoirs? What do we know and need to know? In Bats and Viruses: a new frontier of emerging infectious diseases (eds Wang, L.-F. & Cowled, C.) 281–294 (Wiley, Hoboken, 2015).
Google Scholar
20.
Olival, K. & Hayman, D. Filoviruses in bats: current knowledge and future directions. Viruses 6, 1759–1788 (2014).
PubMed PubMed Central Google Scholar
21.
Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).
ADS CAS PubMed Google Scholar
22.
Hayman, D. T. S. et al. Long-term survival of an urban fruit bat seropositive for ebola and lagos bat viruses. PLoS ONE 5, 2008–2010 (2010).
Google Scholar
23.
Hayman, D. T. S. et al. Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg. Infect. Dis. 18, 1207–1209 (2012).
PubMed PubMed Central Google Scholar
24.
De Nys, H. M. et al. Survey of Ebola viruses in frugivorous and insectivorous bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerg. Infect. Dis. 24, 2228–2240 (2018).
PubMed PubMed Central Google Scholar
25.
Sylla, M. et al. Chiropteran and Filoviruses in Africa: unveiling an ancient history. African J. Microbiol. Res. 9, 1446–1472 (2015).
Google Scholar
26.
Gay, N. et al. Parasite and viral species richness of Southeast Asian bats: fragmentation of area distribution matters. Int. J. Parasitol. Parasites Wildl. 3, 161–170 (2014).
PubMed PubMed Central Google Scholar
27.
CDC. Bushmeat. Centers for Disease Control and Prevention (CDC). (2018). https://www.cdc.gov/importation/bushmeat.html. Accessed January 21st 2020.
28.
Bonwitt, J. et al. Unintended consequences of the ‘bushmeat ban’ in West Africa during the 2013–2016 Ebola virus disease epidemic. Soc. Sci. Med. 200, 166–173 (2018).
PubMed Google Scholar
29.
Pigott, D. M. et al. Mapping the zoonotic niche of Ebola virus disease in Africa. Elife 3, e04395 (2014).
PubMed PubMed Central Google Scholar
30.
ACR. African Chiroptera Report 2018. AfricanBats NPC. (2018). https://doi.org/10.13140/RG.2.2.18794.82881
31.
ACR. African Chiroptera Report 2019. AfricanBats NPC. (2019). https://doi.org/10.13140/RG.2.2.27442.76482.1990-6471
32.
Haensler, A., Saeed, F. & Jacob, D. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections. in Climate Change Scenarios for the Congo Basin (eds. Haensler, A., Jacob, D., Kabat, P. & Ludwig, F.) 11–42 (2013).
33.
Voigt, C. C., Schneeberger, K., Voigt-Heucke, S. L., Lewanzik, D. & Supplement, D. Rain increases the energy cost of bat flight Subject collections Email alerting service rain increases the energy cost of bat flight. Society https://doi.org/10.1098/rsbl.2011.0313 (2011).
Article Google Scholar
34.
PREDICT. Distribution and seasonality of potential Ebola bat reservoirs. Emerg. Dis. Insights (2016).
35.
Erickson, J. L. & West, S. D. The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica 4, 17–24 (2002).
Google Scholar
36.
Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Ecological Niches and Geographic Distributions (MPB-49) (2011). https://doi.org/10.23943/princeton/9780691136868.001.0001
37.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
38.
Peel, A. J. et al. Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nat. Commun. 4, 1–14 (2013).
MathSciNet Google Scholar
39.
Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. B Biol. Sci. 265, 1283–1289 (1998).
Google Scholar
40.
Altizer, S. et al. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 34, 517–547 (2003).
Google Scholar
41.
Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 531–545 (2006).
PubMed PubMed Central Google Scholar
42.
Loehle, C. Social barriers to pathogen transmission in wild animal populations. Ecology 76, 326–335 (1995).
Google Scholar
43.
Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).
44.
Alexander, K. A. et al. What factors might have led to the emergence of ebola in West Africa?. PLoS Negl. Trop. Dis. 9, 1–26 (2015).
Google Scholar
45.
Leroy, E. M. et al. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector-Borne Zoonotic Dis. 9, 723–728 (2009).
PubMed Google Scholar
46.
Ng, M. et al. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. Elife 4, 1–22 (2015).
Google Scholar
47.
MacNeil, A., Reed, Z. & Rollin, P. E. Serologic cross-reactivity of human IgM and IgG antibodies to five species of Ebola virus. PLoS Negl. Trop. Dis. 5, e1175 (2011).
CAS PubMed PubMed Central Google Scholar
48.
Schuh, A. J. et al. Comparative analysis of serologic cross-reactivity using convalescent sera from filovirus-experimentally infected fruit bats. Sci. Rep. 9, 1–12 (2019).
ADS CAS Google Scholar
49.
Olival, K. J., Epstein, J. H., Wang, L. F., Field, H. E. & Daszak, P. Are bats unique viral reservoirs? In New Directions in Conservation Medicine Applied Cases of Ecological Health Aguirre (eds Aguirre, A. A. et al.) 195–212 (Oxford University Press, Oxford, 2012).
Google Scholar
50.
GBIF. Global Biodiversity Information Facility. GBIF Home Page (2018).
51.
Chamberlain, S., Boettiger, C., Ram, K., Brave, V. & McGlinn, D. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 0.9.3. https://github.com/ropensci/rgbif (2016).
52.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2017).
53.
Geluso, K. N. & Geluso, K. Effects of environmental factors on capture rates of insectivorous bats, 1971–2005. J. Mammal. 93, 161–169 (2012).
Google Scholar
54.
Wolbert, S. J., Zellner, A. S. & Whidden, H. P. Bat activity, insect biomass, and temperature along an elevational gradient. Northeast. Nat. 21, 72–85 (2014).
Google Scholar
55.
Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). © European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA. https://doi.org/10.1594/PANGAEA.787668 (2012)
56.
Bicheron, P. et al. GLOBCOVER – Products Description and Validation Report (2008).
57.
Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). https://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 2019 (2017).
58.
Elith, J. et al. Novel methods improve prediction of species ’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
Google Scholar
59.
Cunze, S. & Tackenberg, O. Decomposition of the maximum entropy niche function: a step beyond modelling species distribution. Environ. Model. Softw. 72, 250–260 (2015).
Google Scholar
60.
Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of the species presence to either-or- presence–absence. Acta Oecologica 31, 361–369 (2007).
ADS Google Scholar
61.
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
Google Scholar
62.
Schröder, B. & Richter, O. Are habitat models transferable in space and time?. Zeitschrift für Ökologie und Naturschutz 8, 195–205 (2000).
Google Scholar
63.
Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
Google Scholar
64.
IUCN. IUCN (International Union for Conservation of Nature and Natural Resources). The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2020). https://www.iucnredlist.org/search.
65.
CDC. Ebola Virus Disease Distribution Map: Cases of Ebola Virus Disease in Africa Since 1976. (2019). https://www.cdc.gov/vhf/ebola/history/distribution-map.html. Accessed July 28th 2020.
66.
Judson, S. D., Fischer, R., Judson, A. & Munster, V. J. Ecological contexts of index cases and spillover events of different Ebolaviruses. PLoS Pathog. 12, 1–17 (2016).
Google Scholar
67.
ESRI. Environmental Systems Research Institute (ESRI). ArcGIS Release 10.6. Redlands, CA (2018). More
