More stories

  • in

    Ecosystem decay exacerbates biodiversity loss with habitat loss

    1.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  PubMed  Google Scholar 
    2.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    PubMed  Google Scholar 

    3.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
    Google Scholar 

    5.
    Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).
    Google Scholar 

    6.
    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).
    Google Scholar 

    7.
    Connor, E. F. & McCoy, E. D. The statistics and biology of the species–area relationship. Am. Nat. 113, 791–833 (1979).
    MathSciNet  Google Scholar 

    8.
    Yaacobi, G., Ziv, Y. & Rosenzweig, M. L. Habitat fragmentation may not matter to species diversity. Proc. R. Soc. Lond. B 274, 2409–2412 (2007).
    Google Scholar 

    9.
    Lovejoy, T. E. et al. in Extinctions (ed. Nitecki, M. H.) 295–325 (Univ. of Chicago Press, 1984).

    10.
    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Pimm, S. L. & Askins, R. A. Forest losses predict bird extinctions in eastern North America. Proc. Natl Acad. Sci. USA 92, 9343–9347 (1995).
    ADS  CAS  PubMed  Google Scholar 

    12.
    He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
    Google Scholar 

    15.
    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
    ADS  CAS  PubMed  Google Scholar 

    18.
    Halley, J. M., Sgardeli, V. & Monokrousos, N. Species–area relationships and extinction forecasts. Ann. NY Acad. Sci. 1286, 50–61 (2013).
    ADS  PubMed  Google Scholar 

    19.
    Bueno, A. S. & Peres, C. A. Patch-scale biodiversity retention in fragmented landscapes: reconciling the habitat amount hypothesis with the island biogeography theory. J. Biogeogr. 46, 621–632 (2019).
    Google Scholar 

    20.
    Chase, J. M. et al. A framework for disentangling ecological mechanisms underlying the island species–area relationship. Front. Biogeogr. 11, e40844 (2019).
    Google Scholar 

    21.
    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
    PubMed  Google Scholar 

    22.
    Chase, J. M. et al. FragSAD: a database of diversity and species abundance distributions from habitat fragments. Ecology 100, e02861 (2019).
    PubMed  Google Scholar 

    23.
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006).
    PubMed  Google Scholar 

    24.
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).
    ADS  Google Scholar 

    25.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    PubMed  Google Scholar 

    26.
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).
    PubMed  PubMed Central  Google Scholar 

    28.
    Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers. Distrib. 20, 1136–1146 (2014).
    Google Scholar 

    29.
    Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. An overhaul of the species–area approach for predicting biodiversity loss: incorporating matrix and edge effects. J. Appl. Ecol. 47, 1063–1070 (2010).
    Google Scholar 

    30.
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32 (1991).
    Google Scholar 

    32.
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
    Google Scholar 

    33.
    Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).
    Google Scholar 

    34.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 

    35.
    Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).
    Google Scholar 

    36.
    Aguiar, W. M. D. & Gaglianone, M. C. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Rev. Bras. Entomol. 56, 210–219 (2012).
    Google Scholar 

    37.
    Aizen, M. A. & Feinsinger, P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine “Chaco Serrano”. Ecol. Appl. 4, 378–392 (1994).
    Google Scholar 

    38.
    Almeida-Gomes, M. & Rocha, C. F. D. Diversity and distribution of lizards in fragmented Atlantic Forest landscape in southeastern Brazil. J. Herpetol. 48, 423–429 (2014).
    Google Scholar 

    39.
    Andresen, E. Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26, 87–97 (2003).
    Google Scholar 

    40.
    Báldi, A. & Kisbenedek, T. Orthopterans in small steppe patches: an investigation for the best-fit model of the species–area curve and evidences for their non-random distribution in the patches. Acta Oecol. 20, 125–132 (1999).
    ADS  Google Scholar 

    41.
    Baz, A. & Garcia-Boyero, A. The SLOSS dilemma: a butterfly case study. Biodivers. Conserv. 5, 493–502 (1996).
    Google Scholar 

    42.
    Bell, K. E. & Donnelly, M. A. Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica. Conserv. Biol. 20, 1750–1760 (2006).
    PubMed  Google Scholar 

    43.
    Benedick, S. et al. Impacts of rain forest fragmentation on butterflies in northern Borneo: species richness, turnover and the value of small fragments. J. Appl. Ecol. 43, 967–977 (2006).
    Google Scholar 

    44.
    Benítez-Malvido, J. et al. The multiple impacts of tropical forest fragmentation on arthropod biodiversity and on their patterns of interactions with host plants. PLoS ONE 11, e0146461 (2016).
    PubMed  PubMed Central  Google Scholar 

    45.
    Berg, Å. Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity. Bird Study 44, 355–366 (1997).
    Google Scholar 

    46.
    Bernard, E. & Fenton, M. B. Bats in a fragmented landscape: species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biol. Conserv. 134, 332–343 (2007).
    Google Scholar 

    47.
    Bolger, D. T. et al. Response of rodents to habitat fragmentation in coastal southern California. Ecol. Appl. 7, 552–563 (1997).
    Google Scholar 

    48.
    Bossart, J. L. et al. Richness, abundance, and complementarity of fruit-feeding butterfly species in relict sacred forests and forest reserves of Ghana. Biodivers. Conserv. 15, 333–359 (2006).
    Google Scholar 

    49.
    Bossart, J. L. & Antwi, J. B. Limited erosion of genetic and species diversity from small forest patches: sacred forest groves in an Afrotropical biodiversity hotspot have high conservation value for butterflies. Biol. Conserv. 198, 122–134 (2016).
    Google Scholar 

    50.
    Bragagnolo, C. et al. Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol. Conserv. 139, 389–400 (2007).
    Google Scholar 

    51.
    Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F. & Durán, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 45, 773–783 (2008).
    Google Scholar 

    52.
    Brosi, B. J. The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol. Conserv. 142, 414–423 (2009).
    Google Scholar 

    53.
    Cabrera-Guzmán, E. & Reynoso, V. H. Amphibian and reptile communities of rainforest fragments: minimum patch size to support high richness and abundance. Biodivers. Conserv. 21, 3243–3265 (2012).
    Google Scholar 

    54.
    Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).
    Google Scholar 

    55.
    Carneiro, M. S., Campos, C. C., Ramos, F. N. & Dos Santos, F. A. Spatial species turnover maintains high diversities in a tree assemblage of a fragmented tropical landscape. Ecography 7, e01500 (2016).
    Google Scholar 

    56.
    Cayuela, L., Golicher, D. J., Benayas, J. M. R., González-Espinosa, M. & Ramírez-Marcial, N. Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J. Appl. Ecol. 43, 1172–1181 (2006).
    Google Scholar 

    57.
    Chiarello, A. G. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol. Conserv. 89, 71–82 (1999).
    Google Scholar 

    58.
    Cosson, J. F. et al. Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol. Conserv. 91, 213–222 (1999).
    Google Scholar 

    59.
    Dami, F. D., Mwansat, G. S. & Manu, S. A. The effects of forest fragmentation on species richness on the Obudu Plateau, south-eastern Nigeria. Afr. J. Ecol. 51, 32–36 (2013).
    Google Scholar 

    60.
    Dauber, J., Bengtsson, J. & Lenoir, L. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants. Conserv. Biol. 20, 1150–1160 (2006).
    PubMed  Google Scholar 

    61.
    Davies, R. G. et al. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19, 509–524 (2003).
    Google Scholar 

    62.
    de La Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical interior Atlantic forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 

    63.
    de Souza, O. F. F. & Brown, V. K. Effects of habitat fragmentation on Amazonian termite communities. J. Trop. Ecol. 10, 197 (1994).
    Google Scholar 

    64.
    Dickman, C. R. Habitat fragmentation and vertebrate species richness in an urban environment. J. Appl. Ecol. 24, 337–351 (1987).
    Google Scholar 

    65.
    Didham, R. K., Hammond, P. M., Lawton, J. H., Eggleton, P. & Stork, N. E. Beetle species responses to tropical forest fragmentation. Ecol. Monogr. 68, 295–323 (1998).
    Google Scholar 

    66.
    Ding, Z., Feeley, K. J., Wang, Y., Pakeman, R. J. & Ding, P. Patterns of bird functional diversity on land-bridge island fragments. J. Anim. Ecol. 82, 781–790 (2013).
    PubMed  Google Scholar 

    67.
    Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape? Oryx 43, 435 (2009).
    Google Scholar 

    68.
    Dominguez-Haydar, Y. & Armbrecht, I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restor. Ecol. 19, 178–184 (2011).
    Google Scholar 

    69.
    Echeverría, C. et al. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob. Ecol. Biogeogr. 16, 426–439 (2007).
    Google Scholar 

    70.
    Edwards, D. P. et al. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 3, 236–242 (2010).
    Google Scholar 

    71.
    Estrada, A. & Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103, 237–245 (2002).
    Google Scholar 

    72.
    Estrada, A. & Coates-Estrada, R. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodivers. Conserv. 11, 1903–1918 (2002).
    Google Scholar 

    73.
    Filgueiras, B. K. C., Iannuzzi, L. & Leal, I. R. Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biol. Conserv. 144, 362–369 (2011).
    Google Scholar 

    74.
    da Fonseca, G. A. B. & Robinson, J. G. Forest size and structure: competitive and predatory effects on small mammal communities. Biol. Conserv. 53, 265–294 (1990).
    Google Scholar 

    75.
    Fujita, A. et al. Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: Carabidae and Brachinidae) in urban landscapes. Entomol. Sci. 11, 39–48 (2008).
    Google Scholar 

    76.
    Gavish, Y., Ziv, Y. & Rosenzweig, M. L. Decoupling fragmentation from habitat loss for spiders in patchy agricultural landscapes. Conserv. Biol. 26, 150–159 (2012).
    PubMed  Google Scholar 

    77.
    Giladi, I. et al. Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem. J. Veg. Sci. 22, 983–996 (2011).
    Google Scholar 

    78.
    Giraudo, A. R. et al. Comparing bird assemblages in large and small fragments of the Atlantic forest hotspots. Biodivers. Conserv. 17, 1251–1265 (2008).
    Google Scholar 

    79.
    Gonçalves-Souza, T., Matallana, G. & Brescovit, A. D. Effects of habitat fragmentation on the spider community (Arachnida, Araneae) in three Atlantic forest remnants in southeastern Brazil. Rev. Iber. Aracnol. 16, 35–42 (2008).
    Google Scholar 

    80.
    Goodman, S. M. & Rakotondravony, D. The effects of forest fragmentation and isolation on insectivorous small mammals (Lipotyphla) on the Central High Plateau of Madagascar. J. Zool. 250, 193–200 (2000).
    Google Scholar 

    81.
    Guadagnin, D. L., Peter, Â. S., Perello, L. F. C. & Maltchik, L. Spatial and temporal patterns of waterbird assemblages in fragmented wetlands of southern Brazil. Waterbirds 28, 261–272 (2005).
    Google Scholar 

    82.
    Halme, E., Niemela, J. & Haime, E. Carabid beetles in fragments of coniferous forest. Ann. Zool. Fenn. 30, 17–30 (1993).
    Google Scholar 

    83.
    Henry, M., Pons, J.-M. & Cosson, J.-F. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. J. Anim. Ecol. 76, 801–813 (2007).
    PubMed  Google Scholar 

    84.
    Horváth, R. et al. Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric. Ecosyst. Environ. 130, 16–22 (2009).
    Google Scholar 

    85.
    Jauker, F., Jauker, B., Grass, I., Steffan-Dewenter, I. & Wolters, V. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100, e02569 (2019).
    PubMed  Google Scholar 

    86.
    Jung, J. K. et al. A comparison of diversity and species composition of ground beetles (Coleoptera: Carabidae) between conifer plantations and regenerating forests in Korea. Ecol. Res. 29, 877–887 (2014).
    Google Scholar 

    87.
    Jyothi, K. M. & Nameer, P. O. Birds of sacred groves of northern Kerala, India. J. Threat. Taxa 7, 8226–8236 (2015).
    Google Scholar 

    88.
    Kapoor, V. Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J. Insect Conserv. 12, 53–68 (2008).
    Google Scholar 

    89.
    Kappes, H. et al. Response of snails and slugs to fragmentation of lowland forests in NW Germany. Landsc. Ecol. 24, 685–697 (2009).
    Google Scholar 

    90.
    Klein, B. C. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70, 1715–1725 (1989).
    Google Scholar 

    91.
    Knapp, M. & Řezáč, M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10, e0123052 (2015).
    PubMed  PubMed Central  Google Scholar 

    92.
    Lambert, T. D. et al. Rodents on tropical land-bridge islands. J. Zool. 260, 179–187 (2003).
    Google Scholar 

    93.
    Lasky, J. R. & Keitt, T. H. Abundance of Panamanian dry-forest birds along gradients of forest cover at multiple scales. J. Trop. Ecol. 26, 67–78 (2010).
    Google Scholar 

    94.
    de Lima, M. G. & Gascon, C. The conservation of linear forest remnants in central Amazonia. Biol. Conserv. 91, 241–247 (1999).
    Google Scholar 

    95.
    Lima, J. et al. Amphibians on Amazonian land-bridge islands are affected more by area than isolation. Biotropica 47, 369–376 (2015).
    Google Scholar 

    96.
    Lion, M. B., Garda, A. A. & Fonseca, C. R. Split distance: a key landscape metric shaping amphibian populations and communities in forest fragments. Divers. Distrib. 20, 1245–1257 (2014).
    Google Scholar 

    97.
    Lion, M. B., Garda, A. A., Santana, D. J. & Fonseca, C. R. The conservation value of small fragments for Atlantic forest reptiles. Biotropica 48, 265–275 (2016).
    Google Scholar 

    98.
    Lövei, G. L. & Cartellieri, M. Ground beetles (Coleoptera, Carabidae) in forest fragments of the Manuwatu, New Zealand: collapsed assemblages? J. Insect Conserv. 4, 239–244 (2000).
    Google Scholar 

    99.
    Mac Nally, R. & Brown, G. W. Reptiles and habitat fragmentation in the box-ironbark forests of central Victoria, Australia: predictions, compositional change and faunal nestedness. Oecologia 128, 116–125 (2001).
    ADS  Google Scholar 

    100.
    Manu, S., Peach, W. & Cresswell, W. The effects of edge, fragment size and degree of isolation on avian species richness in highly fragmented forest in West Africa. Ibis 149, 287–297 (2007).
    Google Scholar 

    101.
    Martensen, A. C., Ribeiro, M. C., Banks-Leite, C., Prado, P. I. & Metzger, J. P. Associations of forest cover, fragment area, and connectivity with Neotropical understory bird species richness and abundance. Conserv. Biol. 26, 1100–1111 (2012).
    PubMed  Google Scholar 

    102.
    McCollin, D. Avian distribution patterns in a fragmented wooded landscape (North Humberside, U.K.): the role of between-patch and within-patch structure. Glob. Ecol. Biogeogr. Lett. 3, 48–62 (1993).
    Google Scholar 

    103.
    McIntyre, N. E. Effects of forest patch size on avian diversity. Landsc. Ecol. 10, 85–99 (1995).
    Google Scholar 

    104.
    Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711–1726 (2008).
    Google Scholar 

    105.
    Nemésio, A. & Silveira, F. A. Orchid bee fauna (Hymenoptera: Apidae: Euglossina) of Atlantic Forest fragments inside an urban area in southeastern Brazil. Neotrop. Entomol. 36, 186–191 (2007).
    PubMed  Google Scholar 

    106.
    Nemésio, A. & Silveira, F. A. Forest fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apidae: Euglossina). Neotrop. Entomol. 39, 555–561 (2010).
    PubMed  Google Scholar 

    107.
    Neuschulz, E. L., Botzat, A. & Farwig, N. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos 120, 1371–1379 (2011).
    Google Scholar 

    108.
    Nogueira, A. & Pinto-da-Rocha, R. The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic forest fragmented landscape. J. Arachnol. 44, 36–45 (2016).
    Google Scholar 

    109.
    Nufio, R. C., McClenahan, L. J. & Thurston, G. E. Determining the effects of habitat fragment area on grasshopper species density and richness: a comparison of proportional and uniform sampling methods. Insect Conserv. Divers. 2, 295–304 (2009).
    Google Scholar 

    110.
    Nyeko, P. Dung beetle assemblages and seasonality in primary forest and forest fragments on agricultural landscapes in Budongo, Uganda. Biotropica 41, 476–484 (2009).
    Google Scholar 

    111.
    Nyelele, C. et al. Woodland fragmentation explains tree species diversity in an agricultural landscape of Southern Africa. Trop. Ecol. 55, 365–374 (2014).
    Google Scholar 

    112.
    Owen, C. L. Mapping Biodiversity in a Modified Landscape. MSc thesis, Imperial College London (2008).

    113.
    Paciencia, M. L. B. & Prado, J. Effects of forest fragmentation on pteridophyte diversity in a tropical rain forest in Brazil. Plant Ecol. 180, 87–104 (2005).
    Google Scholar 

    114.
    Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).
    Google Scholar 

    115.
    Pineda, E. & Halffter, G. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol. Conserv. 117, 499–508 (2004).
    Google Scholar 

    116.
    Raheem, D. C. et al. Fragmentation and pre-existing species turnover determine land-snail assemblages of tropical rain forest. J. Biogeogr. 36, 1923–1938 (2009).
    Google Scholar 

    117.
    Rocha, R. et al. Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landsc. Ecol. 32, 31–45 (2017).
    Google Scholar 

    118.
    Sam, K., Koane, B., Jeppy, S. & Novotny, V. Effect of forest fragmentation on bird species richness in Papua New Guinea. J. Field Ornithol. 85, 152–167 (2014).
    Google Scholar 

    119.
    Savilaakso, S., Koivisto, J., Veteli, T. O. & Roininen, H. Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers. Distrib. 15, 356–365 (2009).
    Google Scholar 

    120.
    Schnitzler, F. R. Hymenopteran Parasitoid Diversity and Tri-Trophic Interactions: The Effects of Habitat Fragmentation in Wellington, New Zealand. PhD thesis, Victoria Univ. of Wellington (2008).

    121.
    Senior, M. J. M. Assessing Biodiversity and Ecosystem Functioning in Fragmented Tropical Landscapes. PhD Thesis, Univ. of York (2014).

    122.
    Silva, M. P. P. & Porto, K. C. Effect of fragmentation on the community structure of epixylic bryophytes in Atlantic forest remnants in the northeast of Brazil. Biodivers. Conserv. 18, 317–337 (2009).
    Google Scholar 

    123.
    Silva, R. J., Storck-Tonon, D. & Vaz-de-Mello, F. Z. Dung beetle (Coleoptera: Scarabaeinae) persistence in Amazonian forest fragments and adjacent pastures: biogeographic implications for alpha and beta diversity. J. Insect Conserv. 20, 549–564 (2016).
    Google Scholar 

    124.
    Silveira, G. C. et al. The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity? Apidologie 46, 197–208 (2015).
    CAS  Google Scholar 

    125.
    Slade, E. M. et al. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94, 1519–1530 (2013).
    PubMed  Google Scholar 

    126.
    Sridhar, H., Raman, T. S. & Mudappa, D. Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Curr. Sci. 94, 748–757 (2008).
    Google Scholar 

    127.
    Stireman, J. O. III, Devlin, H. & Doyle, A. L. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities. Oecologia 176, 207–224 (2014).
    ADS  PubMed  Google Scholar 

    128.
    Storck-Tonon, D. & Peres, C. A. Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol. Conserv. 214, 270–277 (2017).
    Google Scholar 

    129.
    Struebig, M. J. et al. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biol. Conserv. 142, 2089–2096 (2009).
    Google Scholar 

    130.
    Tellería, J. L. & Santos, T. Effects of forest fragmentation on a guild of wintering passerines: the role of habitat selection. Biol. Conserv. 71, 61–67 (1995).
    Google Scholar 

    131.
    Tonhasca, A., Blackmer, J. L. & Albuquerque, G. S. Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 34, 416–422 (2002).
    Google Scholar 

    132.
    Uehara-Prado, M., Brown, K. S. & Freitas, A. V. L. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic forest: comparison between a fragmented and a continuous landscape. Glob. Ecol. Biogeogr. 16, 43–54 (2007).
    Google Scholar 

    133.
    Ulrich, W., Lens, L., Tobias, J. A. & Habel, J. C. Contrasting patterns of species richness and functional diversity in bird communities of east African cloud forest fragments. PLoS ONE 11, e0163338 (2016).
    PubMed  PubMed Central  Google Scholar 

    134.
    Usher, M. B. & Keiller, S. W. J. The Macrolepidoptera of farm woodlands: determinants of diversity and community structure. Biodivers. Conserv. 7, 725–748 (1998).
    Google Scholar 

    135.
    Vallan, D. Influence of forest fragmentation on amphibian diversity in the nature reserve of Ambohitantely, highland Madagascar. Biol. Conserv. 96, 31–43 (2000).
    Google Scholar 

    136.
    Vasconcelos, H. L., Vilhena, J. M., Magnusson, W. E. & Albernaz, A. L. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
    Google Scholar 

    137.
    Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic forest remnants. Biol. Conserv. 142, 1191–1200 (2009).
    Google Scholar 

    138.
    Vulinec, K. et al. Dung beetles and long-term habitat fragmentation in Alter do Chão, Amazônia, Brazil. Trop. Conserv. Sci. 1, 111–121 (2008).
    Google Scholar 

    139.
    Wang, Y., Wang, X. & Ding, P. Nestedness of snake assemblages on islands of an inundated lake. Curr. Zool. 58, 828–836 (2012).
    Google Scholar 

    140.
    Williams, M. R. Habitat resources, remnant vegetation condition and area determine distribution patterns and abundance of butterflies and day-flying moths in a fragmented urban landscape, south-west Western Australia. J. Insect Conserv. 15, 37–54 (2011).
    Google Scholar 

    141.
    Zartman, C. E. Habitat fragmentation impacts on epiphyllous bryophyte communities in Central Amazonia. Ecology 84, 948–954 (2003).
    Google Scholar 

    142.
    Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 85 (2013).
    Google Scholar 

    143.
    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
    PubMed  Google Scholar 

    144.
    Cáceres, N. C., Nápoli, R. P., Casella, J. & Hannibal, W. Mammals in a fragmented savannah landscape in south-western Brazil. J. Nat. Hist. 44, 491–512 (2010).
    Google Scholar 

    145.
    Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).
    PubMed  Google Scholar 

    146.
    Fernández, I. C. & Simonetti, J. A. Small mammal assemblages in fragmented shrublands of urban areas of Central Chile. Urban Ecosyst. 16, 377–387 (2013).
    Google Scholar 

    147.
    Garmendia, A., Arroyo-Rodríguez, V., Estrada, A., Naranjo, E. J. & Stoner, K. E. Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J. Trop. Ecol. 29, 331–344 (2013).
    Google Scholar 

    148.
    Stouffer, P. C., Johnson, E. I., Bierregaard, R. O. Jr & Lovejoy, T. E. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6, e20543 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    149.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Google Scholar 

    150.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 

    151.
    Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).
    PubMed  Google Scholar 

    152.
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
    Google Scholar 

    153.
    Olszewski, T. D. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104, 377–387 (2004).
    Google Scholar 

    154.
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
    PubMed  Google Scholar 

    155.
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    MathSciNet  Google Scholar 

    156.
    McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 10, 258–269 (2019).
    Google Scholar 

    157.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 

    158.
    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).
    PubMed  Google Scholar 

    159.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 

    160.
    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).
    Google Scholar 

    161.
    Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-4 https://CRAN.R-project.org/package=adespatial (2019).

    162.
    May, F., Gerstner, K., McGlinn, D. J., Xiao, X. & Chase, J. M. mobsim: an R package for the simulation and measurement of biodiversity across spatial scales. Methods Ecol. Evol. 9, 1401–1408 (2018).
    Google Scholar 

    163.
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
    ADS  CAS  PubMed  Google Scholar 

    164.
    Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).
    Google Scholar 

    165.
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Google Scholar 

    166.
    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar  More

  • in

    Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere

    1.
    Dickens, G. R. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate 7, 831–846 (2011).
    Google Scholar 
    2.
    Pinero, E., Marquardt, M., Hensen, C., Haeckel, M. & Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10, 959–975 (2013).
    ADS  Google Scholar 

    3.
    Dickens, G. R. The blast in the past. Nature 401, 752–755 (1999).
    ADS  CAS  Google Scholar 

    4.
    Dickens, G. R. On the fate of past gas: what happens to methane released from a bacterially mediated gas hydrate capacitor. Geochem., Geophys., Geosyst. 2, 1–5 (2001).
    Google Scholar 

    5.
    Ruppel, C. Methane hydrates and contemporary climate change. Nat. Educ. Knowl. 3, 1–12 (2011).
    Google Scholar 

    6.
    Ruppel, C. & Kessler, J. D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–168 (2017).
    ADS  Google Scholar 

    7.
    Ferré, B., Mienert, J. & Feseker, T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. J. Geophys. Res. https://doi.org/10.1029/2012JC008300 (2012).

    8.
    Phrampus, B. J. & Hornbach, M. J. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490, 527–530 (2012).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Thatcher, K. E., Westbrook, G. K., Sarkar, S. & Minshull, T. A. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: timing, rates, and geological controls. J. Geophys. Res. 118, 22–38 (2013).
    ADS  CAS  Google Scholar 

    10.
    Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7, 657–661 (2014).
    ADS  CAS  Google Scholar 

    11.
    Johnson, H. P., Miller, U. K., Salmi, M. S. & Solomon, E. A. Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochem., Geophys., Geosyst. 16, 3825–3839 (2015).
    ADS  CAS  Google Scholar 

    12.
    Ketzer, J. M. et al. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Mar. Lett. 38, 429–438 (2018).
    ADS  CAS  Google Scholar 

    13.
    Majorowicz, J., Kirk, O. & Jan, Safanda Methane gas hydrate stability models on continental shelves in response to Glacio-Eustatic Sea level variations: examples from Canadian Oceanic margins. Energies 6, 5775–5806 (2013).
    Google Scholar 

    14.
    Kretschmer, K., Biastoch, A., Rüpke, L. & Burwicz, E. Modeling the fate of methane hydrates under global warming. Glob. Biogeochem. Cycles 29, 610–625 (2015).
    ADS  CAS  Google Scholar 

    15.
    Stranne, C. et al. Dynamic simulations of potential methane release from East Siberian continental slope sediments. Geochem., Geophys., Geosyst. 17, 872–886 (2016).
    ADS  CAS  Google Scholar 

    16.
    Braga, R. et al. Modelling methane hydrate stability changes and gas release due to seasonal oscillations in bottom water temperatures on the Rio Grande cone, offshore southern Brazil. Marine and Petroleum Geology 112, https://doi.org/10.1016/j.marpetgeo.2019.104071 (2020).

    17.
    Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, 521–544 (2007).
    ADS  CAS  Google Scholar 

    18.
    Marín-Moreno, H., Minshull, T. A., Westbrook, G. K. & Sinha, B. Estimates of future warming-induced ethane emissions from hydrate offshore west Svalbard for a range of climate models. Geochem. Geophys. Geosyst. 16, 1307–1323 (2016).
    ADS  Google Scholar 

    19.
    Boetius, A. R. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Gentz, T. D. et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Res. 72, 107–118 (2014).
    ADS  Google Scholar 

    21.
    Kessler, J. D. V. et al. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331, 312–315 (2011).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Martins, L. R., Melo, U., França, A. M. C., Santana, C. I. & Martins, I. R. Distribuicao Faciologica da Margem Continental Sul Riograndense. Congr. Brasileiro de. Geologia. Belem. Bras. 26, 115–132 (1972).
    Google Scholar 

    23.
    Contreras, J., Zühlke, R., Bowman, S. & Bechstädt, T. Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Mar. Pet. Geol. 27, 1952–1980 (2010).
    Google Scholar 

    24.
    Sad, A. R. E., Silveira, D. P., & Machado, M. A. P. Marine gas hydrates evidence along the Brazilian coast. In Proc. AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, Nov. 8−11 Abstract Volume (1998).

    25.
    Oliveira, S., Vilhena, O. & da Costa, E. Time–frequency spectral signature of Pelotas Basin deep water gas hydrates system. Mar. Geophys. Res. 31, 89–97 (2010).
    Google Scholar 

    26.
    Miller, D. J. et al. Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar. Pet. Geol. 67, 187–196 (2015).
    CAS  Google Scholar 

    27.
    Giongo, A. et al. Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Sea Res. Part I: Oceanogr. Res. Pap. 112, 45–56 (2016).
    ADS  CAS  Google Scholar 

    28.
    Rodrigues, L. F. et al. The influence of methane fluxes on the sulfate/methane interface in sediments from the Rio Grande Cone Gas Hydrate Province, southern Brazil. Braz. J. Geol. 47, 369–381 (2017).
    Google Scholar 

    29.
    Ketzer, M. et al. Gas seeps at the edge of the gas hydrate stability zone on Brazil’s continental margin. Geosciences https://doi.org/10.3390/geosciences9050193 (2019).

    30.
    Abegg, F. A. A.L. The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic- methane concentration, saturation and bubble characteristics. Mar. Geol. 137, 137–147 (1997).
    ADS  CAS  Google Scholar 

    31.
    Mathys, M., Thießen, O., Theilen, F. & Schmidt, M. Seismic characterisation of gas-rich near surface sediments in the Arkona Basin, Baltic Sea. Mar. Geophys. Res. 26, 207–224 (2005).
    Google Scholar 

    32.
    Hilligsøe, K. M. et al. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea). Geochim. Cosmochim. Acta 239, 255–274 (2018).
    ADS  Google Scholar 

    33.
    Hovland, M., Heggland, R., De Vries, M. H. & Tjelta, T. I. Unit-pockmarks and their potential significance for predicting fluid flow. Mar. Pet. Geol. 27, 1190–1199 (2010).
    CAS  Google Scholar 

    34.
    Tishchenko, P., Hensen, C., Wallmann, K. & Wong, C. S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 219, 37–52 (2005).
    ADS  CAS  Google Scholar 

    35.
    Römer, M., Sahiling, H., Pape, T., Bohrmann, G. & Spiess, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. 117, 1–19 (2012).
    Google Scholar 

    36.
    Veloso, M., Greinert, J., Mienert, J. & De Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: examples from the Arctic offshore NW‐Svalbard: quantifying bubble flow rates in deep water. Limnol. Oceanogr. 13, 267–287 (2015).
    Google Scholar 

    37.
    Leifer, I. & Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo-Mar. Lett. 30, 339–353 (2010).
    ADS  CAS  Google Scholar 

    38.
    Sahling, H. R. et al. Emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences 11, 6029–6046 (2014).
    ADS  Google Scholar 

    39.
    Römer, M. R., Scherwath, M., Heesemann, M. & Spence, G. Tidally controlled gas bubble emissions: a comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochem., Geophys. Geosyst. 17, 3797–3814 (2016).
    ADS  Google Scholar 

    40.
    Borowski, W. S., Paull, C. K. & Ussler, W. III Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24, 655–658 (1996).
    ADS  CAS  Google Scholar 

    41.
    Haacke, R. R. et al. Migration and venting of deep gases into the ocean through hydrate-choked chimneys offshore Korea. Geology 37, 531–534 (2009).
    ADS  CAS  Google Scholar 

    42.
    Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).
    ADS  CAS  Google Scholar 

    43.
    Martens, C. S. A. K. & Val Klump, J. Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes. Mar. Geol. 137, 137–147 (1980).
    Google Scholar 

    44.
    Stranne, C., O’Regan, M. & Jakobsson, M. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys. Res. Lett. 44, 8510–8519 (2017).
    ADS  Google Scholar 

    45.
    Stranne, C. et al. Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate? Solid Earth 10, 1541–1554 (2019).
    ADS  Google Scholar 

    46.
    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).
    CAS  PubMed  Google Scholar 

    47.
    Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).
    ADS  CAS  Google Scholar 

    48.
    Milkov, A. V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org. Geochem. 36, 681–702 (2005).
    CAS  Google Scholar 

    49.
    Horozal, S. B. et al. Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar. Pet. Geol. 80, 171–191 (2017).
    CAS  Google Scholar 

    50.
    Mienert, J. et al. Ocean warming and gas hydrate stability on the mid- Norwegian margin at the Storegga Slide. Mar. Pet. Geol. 22, 233–244 (2005).
    CAS  Google Scholar 

    51.
    Brothers, D. S. et al. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin. Geophys. Res. Lett. 41, 96–101 (2014).
    ADS  Google Scholar 

    52.
    Portilho-Ramos, R. C. et al. Methane release from the southern Brazilian margin during the last glacial. Sci. Rep. 8, 5948 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Chiessi, C. M. et al. Atlantic interocean exchange as the trigger for the Bølling warm event. Geology 36, 919–922 (2008).
    ADS  CAS  Google Scholar 

    54.
    Talley, L. D. in The South Atlantic: Present and Past Circulation (ed Wefer, G. et al.) 219–238 (Springer-Verlag, 1996).

    55.
    Schmidtko, S. & Johnson, G. C. Multidecadal warming and shoaling of Antarctic intermediate water. J. Clim. 25, 207–221 (2012).
    ADS  Google Scholar 

    56.
    Westbrook, G. K. et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 

    57.
    Reagan, M. T., Moridis, G. J., Elliott, S. M. & Maltrud, M. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes. J. Geophys. Res. 116, 1–11 (2011).
    Google Scholar 

    58.
    Zhao, J., Meng, J., Zhang, H. & Wang, S. Comprehensive detection of gas plumes from multibeam water column images with minimisation of noise interferences. Sensors https://doi.org/10.3390/s17122755 (2017).

    59.
    Peng, D. & Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundamentals 15, 59–64 (1976).
    CAS  Google Scholar 

    60.
    Berndt, C. F. et al. Constraints on hydrate-controlled methane seepage off Svalbard. Science 343, 284–287 (2014).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Sun, M. S. Z. et al. Dissolved methane in the East China Sea: distribution, seasonal variation and emission. Mar. Chem. 202, 12–26 (2018).
    CAS  Google Scholar 

    62.
    Ferré, B. J. et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 13, 144–148 (2020).
    ADS  Google Scholar 

    63.
    Boudreau, B. P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142 (1996).
    ADS  CAS  Google Scholar 

    64.
    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I: Oceanogr. Res. Pap. 55, 50–72 (2008).
    ADS  Google Scholar 

    65.
    Mondol, N. H., Bjørlykke, K., Jahren, J. & Høeg, K. Experimental mechanical compaction of clay mineral aggregates—changes in physical properties of mudstones during burial. Mar. Pet. Geol. 24, 289–311 (2007).
    Google Scholar  More

  • in

    Methane transport in plants

    Wetlands are the largest natural source of methane to the atmosphere. In freshwater mineral-soil wetlands, about 30–90% of methane fluxes are mediated by plants through a reversal of mechanisms in place to transport oxygen into the roots as an adaptation to the predominantly anoxic conditions in wetland soils. The rates of methane transport by plants, regulated by photosynthesis and stomatal conductance, are highly variable and are not well represented in models due to a lack of observational data, leading to high variability in model results.

    Credit: Jim West / Alamy Stock Photo

    Jorge Villa from Ohio State University, USA, and colleagues investigate methane flux, plant-mediated methane transport and carbon uptake in three plant species (cattail, American lotus and water lily). They find that plant conductance of methane depends on the species as well as leaf area, and varies intra-seasonally. Although methane flux and CO2 uptake were correlated, this relationship cannot be generalized across plant functional types. Nevertheless, using species — distinguished based on whether gas transport is stomatal-controlled — could improve model predictions of wetland methane emissions. More

  • in

    On the natural spatio-temporal heterogeneity of South Pacific nitrous oxide

    AGAGE data for marine N2O studies
    The network of Advanced Global Atmospheric Gases Experiment (AGAGE) stations has been quantifying greenhouse gas levels including N2O since the late 1970s27. This global network now produces high frequency, high precision measurements; the data improved substantially in the mid-1990s with the incorporation of higher precision methodologies28. N2O data from the last ~20 years are measured every 40 min (Fig. 1b, Supplementary Figs. 1 and 2) and have a precision on any individual measurement of 0.1 ppb but much higher confidence for the ensemble28,29. Combining these measurements with atmospheric back trajectories generated by the HYSPLIT4 model from monitoring stations (Fig. 1a, Supplementary Data 1), we map the relationship between atmospheric N2O concentrations and marine O2 content. Similar analyses have previously been conducted to investigate recent continuing sources of chlorofluorocarbons from land30. The marine environment is dynamic, and time-resolution is difficult to sample for many biologically-active chemical parameters requiring in situ point measurements. The AGAGE dataset, however, does not suffer the same restrictions, and the high-frequency measurements can be utilized to investigate variability in detail, including the important interannual dynamics that arise due to the influence of El Niño–Southern Oscillation (ENSO) on these regions.
    Land sources could obscure the attribution of marine N2O, so all back trajectories that intersect continents over a 20-day model run are excluded in our analysis. This rigid protocol limits the choice of stations and marine areas. Multiple stations were considered for analysis, but eliminated as being ill-suited for identifying features in the OMZs. The land and monsoonal influence in the Arabian Sea obscures any marine signal in that OMZ. Similarly, the available high precision North Pacific atmospheric measurement stations are located along the California coast and in Hawaii, and do not communicate with the eastern tropical North Pacific OMZ before mixing homogenizes any advected signal (Supplementary Fig. 3). The station at American Samoa, however, permits excellent monitoring of the ETSP. The easterly trade winds rapidly transport air parcels intersecting the region of low O2 across the Pacific (scale of days to weeks) before turbulent mixing with other air masses is able to fully mask the OMZ signal (Fig. 2). Moreover, along this trajectory, air tends to remain in the troposphere (Supplementary Fig. 4), minimizing stratospheric impacts on surface conditions. The raw N2O data from Samoa, when de-trended for the long-term anthropogenic effect and de-seasonalized to minimize the intra-annual oscillation driven largely by interhemispheric transport from the north as the Intertropical Convergence Zone moves southward during boreal winter (Supplementary Figs. 1 and 2), reveal striking relationships with the ocean biogeochemical state (Fig. 3).
    Fig. 2: Back trajectory of Samoa atmospheric N2O.

    Locations of air parcels with their de-trended nitrous oxide measurements at Samoa are plotted (a) 5, (b) 10, (c) 15, and (d) 20 days prior to arrival at Samoa. De-trended nitrous oxide measurements are represented by the color of the corresponding dot, as anomalies relative to the station mean. The data maintain a clear spatial delineation for the full 20-day period, with much higher concentrations passing over the eastern tropical Pacific, and much lower concentrations arriving from the west and the Southern Ocean. Overlain on this map are the 10 and 20% oxygen saturation horizons at the 1026.5 kg m−3 potential density level (black contours). The orange circle indicates the location of the Samoa station.

    Full size image

    Fig. 3: Gridded N2O anomalies relative to the Samoa mean.

    De-trended and de-seasonalized N2O concentrations from Samoa (color) are gridded based on back-trajectory locations 15 days prior, and a mean value is calculated for air passing over each 5° grid cell at that time (color). Overlain on this map are the 10 and 20% oxygen saturation horizons at the 1026.5 kg m−3 potential density level (black lines). These two data sets come from entirely independent sources, and the coincidence between them is striking; high atmospheric N2O concentrations align with the oxygen minimum zone, extending westward into the tropical Pacific and down the Chilean coast of South America. The orange circle indicates the location of the Samoa station.

    Full size image

    The seasonal modulation in Samoa N2O has been well-established as an effect of northern influence. However, across the Pacific sites, trajectories remain mostly well-confined to the hemispheres in which they originated (Supplementary Fig. 5). The air parcels that reach Samoa from the northern hemisphere however, do not have markedly higher N2O concentrations than their southern counterparts. Many high concentration trajectories do travel across the Isthmus of Panama from the Caribbean (Supplementary Fig. 6), but these are filtered out by the land filter. Notably, 20 days prior there are still a large number of high concentration trajectories in the southern hemisphere, which travel northward off the coast of South America before transiting to Samoa. Indeed, very few trajectories actually cross over the South American continent; most are deflected either north or south along its western edge. As a result, land emissions of N2O from South America are unlikely to have a large impact on the visible spatial signal.
    Oxygen minimum zones emerge as N2O hotspots
    A divergence in concentrations is visible just one-day prior, with higher concentrations arriving from the north than from the south (Supplementary Fig. 3). This pattern remains moving further back in time; the highest concentrations pass over the eastern tropical Pacific, while the lowest come from the west passing over the Southern Ocean. The pattern becomes slightly less defined between 15 and 20 days-prior, as parcels with high concentrations diverge again along the western coasts of North and South America. Given the velocity of the trade winds and the distance between Samoa and the ETSP, ~8 m s−1 and 104 km, respectively, this time scale is reasonable. Certainly the observed atmospheric concentration anomalies of N2O at Samoa are a combined result of intra-hemispheric biological production with interhemispheric transport, but the analysis presented herein aims to tease apart the biological impact from the tropical Pacific ocean from the additional seasonal supply from the N2O-enriched northern hemisphere (Supplementary Fig. 7).
    In defining the OMZ boundary by the 20% O2 saturation contour on the 1026.5 kg m−3 potential density surface, the 15-day back trajectories identify higher than average N2O among the air parcels passing over the OMZ (Fig. 3). This isopycnal layer, generally at depths of ~200–500 m (shallower in the eastern Pacific), tends to co-locate the minimum O2 concentration within the water column31. Whereas water this deep does not tend to equilibrate rapidly with the atmosphere, this density surface reflects broader features in the water column, such as the existence of a shallower N2O maximum driven by microbial processes18. This shallower N2O maximum can be more easily transmitted to the surface waters from the interplay of upwelling and lateral and vertical mixing32. Mesoscale and sub-mesoscale eddies in particular, below the spatial resolution that can be resolved by these data, are likely pathways that promote mixing of deeper N2O into the surface waters33,34.
    The air masses reaching Samoa that pass over the OMZ are ~0.4 ppb higher than the remainder of the South Pacific. This intense localization to the lowest O2 waters in the eastern tropical Pacific, extending southward along the Peruvian and Chilean margin, suggests a disproportionate role of OMZs and coastal upwelling waters in generating atmospheric N2O relative to the open ocean. Extension of higher N2O anomalies along the equator outside of the 20% O2 contour also remain visible west to 140° W (Fig. 3), albeit with reduced magnitude, indicative of a separate likely N2O source from equatorial upwelling and subsequent outgassing35,36. Further, the air overlying the coastal Pacific along the South American upwelling region is especially high in its N2O content, indicative of the heterogeneities that exist even within suboxic waters17. The coastal-most waters are the most productive and the resulting organic matter fuels greater microbial generation of N2O. Moreover, the depth of the anoxic onset and coincident N2O maximum is generally shallower toward the coast, increasing the communication between ocean and air. Narrow, shallow shelves within the OMZs in particular are important producers of N2O17,23,37,38, but local sources with such spatial resolution cannot be identified via our methods.
    While the absolute difference between N2O mixing ratios in air that has passed over the OMZ versus those that did not is small, the abundances above the OMZs are likely much higher but are diluted to the observed anomalies after 15 days of transport and mixing. Notably, the air parcels will continue to gain N2O as they travel over supersaturated water masses or lose N2O over undersaturated areas. The coherence of the 15-day backtracked Samoan N2O signal and its clear demarcation with the ETSP highlight the significance of the OMZs for the marine N2O efflux. Indeed, the offset between the air passing over the OMZ grid cells and the rest of the South Pacific matches the average seasonal variability in the Samoan data. The seasonal cycle, which includes terrestrial sources and is heavily influenced by seasonal shifts in the intertropical convergence zone, peaks in Austral winter (January/February) with minima 0.50 ± 0.13 ppb (se) lower in summer (July/August). The rapid N2O cycling rates inherent to the highly productive OMZs cause these regions to respond quickly to time-dependent shifts in the underlying biogeochemistry and physical structure of the water column18,24.
    Further modulation by El Niño and La Niña
    It is known that ETSP biogeochemistry is influenced by the El Niño/La Niña oscillations of the tropical Pacific39,40. La Niña brings enhanced upwelling of nutrients to the surface, thereby increasing primary production, further de-oxygenating the subsurface region, and supplying more organic matter to drive greater denitrification and N2O production13. Conversely, during an El Niño decreased upwelling reduces the surface productivity in the eastern tropical Pacific and deepens the oxycline, thereby contracting the OMZ and decreasing N2O emissions. In this study, the near-continuous data over 21 years permits a more quantitative analysis. The period from 1996 through 2016 included both a number of strong El Niño (1997/98, 2002/03, 2009/10, 2015/16) and La Niña (1998/99, 2007/08, 2010/11) states. Our analysis consists of dividing the N2O dataset among ENSO states in two different ways, both of which produced equivalent results: First, by aligning the N2O oscillation against the Niño 3.4 index, resulting in a time lag of 3 months relative to the ENSO state; second, by producing a running integral of the Niño 3.4 index forward in time, which essentially represents a cumulative effect of prolonged El Niño/La Niña periods (Fig. 1c). The Niño 3.4 index describes a 5-month running mean of sea surface temperature anomalies in the central equatorial Pacific, and was used because it is indicative of the broader Pacific region.
    Strikingly, during La Niña, air parcels passing over OMZ grid cells increase on top of their already higher than average concentrations, whereas parcels that do not pass over OMZ grid cells exhibit no systematic change (Fig. 4). This increase with La Niña is not uniform across the OMZ, however, as the lowest O2 waters ( More

  • in

    Cover crops and chicken grazing in a winter fallow field improve soil carbon and nitrogen contents and decrease methane emissions

    Experimental site and test cultivars
    A field experiment of cover crop planting in a winter fallow field was conducted in Changsha (28° 11′ N, 113° 04′ E), Hunan Province, China, from 2014–2015. The soil in the experimental field was tidal clay, with 1.16% organic carbon, 0.17% total N, and a pH of 6.15.
    Experimental design and field management
    A randomized block experiment was established with 3 different treatments, including cover crops (Lolium spp. and Astragalus sinicus) with chicken grazing (+ C), cover crops without chicken grazing (− C), and a bare, fallow field (CK). Each field plot covers 140 m2, and there were three replications. To prevent the movement of water between adjacent plots, ridges were covered with a plastic sheet inserted into the soil to a depth of 0.5 m.
    Ryegrass and milk vetch were planted on October 10th, 2014, at seed densities of 23 and 40 kg ha−1, respectively. Thirty-day-old yellow chickens were introduced into the field on November 25th. To ensure the homogeneity of the chicken manure inputs, a 3 m × 3 m cage was used during the process of chicken grazing. There were 30 chickens in each cage. Five kilograms of corn flour was fed to the chickens in each cage daily. The corn flour was 1.8% nitrogen. The cage was moved every 7 days in the chicken-grass plot until February 2, 2015. The quantity of in situ chicken manure input into the system within the symbiotic period (69 days) in these plots was estimated to be 96.3 t ha−1 by collecting the chicken waste in an underground container. The underground container was a square with a side length of 50 cm and a height of 10 cm. There were 3 symbiotic periods in these plots, and the chicken waste samples were collected every 12 h for three days. On March 27th, 2015, the average aboveground biomass of the cover crops was 11.7 t ha−1 in the + C plot and 14.4 t ha−1 in the − C plot. All the procedures used in this experiment were conducted in accordance with the Chinese Guidelines for Animal Welfare. The experimental procedures performed in the current study were approved by the Hunan Agricultural University Institutional Animal Care and Use Committee (Changsha, China). Furthermore, all the experimental protocols, including animal handling, were performed humanly, and animal welfare was specially considered. We further confirmed that no animals were harmed or stressed during the experimental period.
    The cover crops were incorporated into the soil on March 27th, and all the plots were used to grow double-season rice. The early rice cultivar ‘Zhongjiazao 17’ and the late rice cultivar ‘Xiangwanxian 12’ were used in the experiment, and their growth durations were 109 days and 115 days, respectively. Rice seedlings were transplanted on May 5th and harvested on July 12th for the early-season rice, followed by the late-season rice, which was transplanted on July 25th and harvested on October 30th. The seedlings were 35 and 25 days old in the early and late seasons, respectively. The transplantation density was 30 hills m−2 for the early rice season and 25 hills m−2 for the late rice season.
    We supplied nitrogen (N) in the form of urea, calcium superphosphate for phosphorus pentoxide (P2O5), and potassium chloride for potassium oxide (K2O) in the rice growing season. The quantity of N supplied was 74 kg ha−1 in the early rice season and 102 kg ha−1 in the late rice season. Urea was applied three times during the rice season; the ratio of tillering fertilizer to panicle fertilizer (grain fertilizer) was 70:30 in the early rice season and 50:50 in the late rice season. The quantity of P2O5 and K2O supplied was 60 kg ha−1, and the same quantity was applied in both seasons. Potassium chloride was applied twice during the rice season, 50% as basal fertilizer and 50% as tillering fertilizer. The calcium superphosphate was applied as a basal fertilizer before transplantation. Water management was performed according to the technology used for double rice cropping systems (local high-yield cultivation) (Table 4).
    Table 4 Experimental design16.
    Full size table

    Soil chemical properties
    Soil samples from the 0–20 cm soil layer were used to determine the soil chemical properties. The samples were collected during cover crop harvesting, early rice harvesting and late rice harvesting. The soil samples were air dried and the soil organic matter was determined using K2Cr2O7 and concentrated H2SO4 and heating. The soil total N was determined with the Kjeldahl method, which involved two steps: (1) the digestion of the samples to convert organic N into ({text{NH}}_{4}^{ + })–N and (2) the determination of ({text{NH}}_{4}^{ + })–N in the digest. The soil C:N ratio was calculated by dividing the SOC concentration by the TN concentration. Soil ammonium N was analyzed using indophenol blue colorimetry. Soil nitrate–N was analyzed using ultraviolet spectrophotometry.
    In situ CH4 and CO2 flux measurements
    During the rice growing season, in situ CH4 and CO2 flux were measured with a static chamber by circulating the gas within the chamber and pipes of an ultraportable greenhouse gas analyzer (CH4/CO2/H2O Analyzer; Los Gatos Research Corp., USA). The static chamber was a square with a side length of 50 cm and a height of 120 cm. A fluted base consistent with the static chamber was inserted in the soil in advance. On the sampling dates, daytime samples were collected from 9:00–11:00 a.m. and 15:00–17:00 p.m., and nighttime samples were collected from 19:00–21.00 p.m. The testing time in each plot was 5 min. The sampling dates were 170, 185, 199, 215, 230, 252, 268, 291, 304, 322, and 347 days after the chickens were introduced into the field. The samples were collected at intervals of 14 days, plus or minus one day if the weather forecast for a sampling date was rainy.
    The temperature inside the static chamber needs to be accurately recorded at a soil depth of 3 cm. Plants (excluding the border plants) were sampled from a 0.24 m2 area of each plot on the sampling date. The plant samples were manually separated into leaf and straw and/or grains. The volume of the plant samples was measured with drainage. The effective volume in the chamber was reduced to subtract the internal plant volume from the chamber. The leaf area was determined with a leaf area meter (LI-3000A, LICOR, Lincoln, NE, USA). Lastly, the plant samples were oven-dried at 70 °C to constant weight to determine the aboveground biomass.
    The CO2 (F, g m−2 day−1) and CH4 (F, mg m−2 day−1) fluxes were calculated using the following formula (Eq. 1):

    $$ {text{F}} = frac{{{text{P}} times {text{V}}}}{{{text{R}} times {text{A}} times left( {{text{T}} + 273.15} right)}} times frac{{{text{dc}}}}{{{text{dt}}}}, $$
    (1)

    where P is the atmospheric pressure under standard conditions (101.2237 × 103 Pa); V is the effective volume in the chamber (m3), the difference between the volume of the static chamber and the volume of the plant, fan and temperature recorder; R is a gas constant (8.3144 J⋅mol−1 K−1); A is the area of the chamber cover (m2); T is the average temperature at testing time inside the chamber (°C); and dc/dt is the rate of change in the concentration of CO2 and CH4.
    To accurately calculate the CO2 and CH4 fluxes in the paddy field, the daytime and nighttime CO2 and CH4 fluxes on the sampling dates were calculated using the following formulas (Eq. 2–4):

    $$ {text{F}}_{{{text{daytime}}}} = {text{ S}}_{{{text{daytime}}}} times {text{M}} times left( {{text{F}}_{{1}} + {text{F}}_{{2}} } right)/{2,} $$
    (2)

    $$ {text{F}}_{{{text{night}}}} = {text{ F}}_{{3}} times {text{S}}_{{{text{night}}}} times {text{M,}} $$
    (3)

    $$ {text{F}}_{{{text{day}}}} = {text{ F}}_{{{text{daytime}}}} + {text{F}}_{{{text{night}}}} , $$
    (4)

    where F1, F2 and F3 represent the values at 9:00–11:00 a.m. and 15:00–17:00 p.m. on sunny days and 19:00–21:00 p.m., respectively; S is the day length (s day−1) on the sampling date; and M is the relative molecular mass of CO2 or CH4 (g mol−1).
    Seasonal emissions in CO2 and CH4 were calculated using the following formula (Eq. 5):

    $$ {text{T }} = {text{a}} times {1}0 times left( {mathop sum limits_{{{text{i}} = 1}}^{{text{n}}} [frac{{{text{F}}_{{text{i}}} + {text{F}}_{{{text{i}} + 1}} }}{2}left( {{text{t}}_{{{text{i}} + 1}} – {text{t}}_{{text{i}}} } right)] + frac{{{text{F}}_{{text{i}}} + {text{F}}_{{text{n}}} }}{2}} right), $$
    (5)

    where T (g m−2) is the total seasonal emissions, Fi and Fi+1 are the measured fluxes on two consecutive sampling days, ti+1 − ti is the number of days between the two sampling dates, 10 is the conversion coefficient from g m−2 to kg ha−1, and a is the conversion coefficient of the rice growth period (86/61 in the early season and 132/96 in the late season).
    In addition, the period from early rice harvesting to late rice transplanting is 13 days. The emissions were calculated using the following formula (Eq. 6):

    $$ {text{T}}_{{{text{ER}} – {text{LR}}}} = {text{ T}}_{{{text{ER}}}} /{86} times {6}.{5} + {text{T}}_{{{text{LR}}}} /{132} times {6}.{5,} $$
    (6)

    where TER-LR (g m−2) is the total emissions from early rice harvesting to late rice transplanting, TER and TLR are the total seasonal emissions in the early rice season and late rice season, respectively, and 86 and 132 are the number of days from sowing to harvesting in the early rice season and late rice season, respectively.
    Soil microbe and dissolved carbon and nitrogen measurements
    In 2014, soil was sampled from the 0–20 cm soil layer, and the sampling dates were 10, 28, 56, 74, 120, 170, 183, 199, 215, 234, 252, 268, 294, 301, 322, and 347 days after chicken grazing. Fresh soil samples were taken to determine the soil microbial carbon and nitrogen contents by chloroform fumigation-incubation and K2SO4 extraction. Soil microbial carbon (SMC, mg kg−1) = EC/0.38 and soil microbial nitrogen (SMN, mg kg−1) = EN × 0.45, where 0.33 and 0.45 are the conversion coefficients of SMC and SMN, respectively. EC and EN are the differences in organic carbon and nitrogen between fumigation and nonfumigation based K2SO4 extraction. In addition, other fresh soil samples were used to determine the soil dissolved carbon and nitrogen by K2SO4 extraction.
    Yield and its components
    When the rice was mature, 10 hills were sampled randomly from a 5 m2 harvest area to determine the yield components. Panicle number was counted on each hill to determine the panicle number per m2. The panicles were hand-threshed, and the filled spikelets were separated from the unfilled spikelets by submerging them in tap water. Three subsamples of 30 g of filled spikelets and 3 g of unfilled spikelets were taken to count the number of spikelets. Based on the spikelets per panicle, the grain-filling percentage (100 × filled spikelet number/total spikelet number) was determined. The grain yield was determined from a 5 m2 area in each plot and adjusted to the standard moisture content of 0.14 g H2O g−1.
    Data analysis
    The global warming potential (GWP) was the overall GWP of CH4 and N2O emissions per unit rice field (ha). The 100-year radiative forcing potential coefficients relative to CO2 were 25 and 298 for CH4 and N2O, respectively (IPCC, 2007). The net ecosystem exchange (NEE) was the value of Fdaytime, ecosystem respiration (Reco) was the value of Fnighttime, and gross primary production (GPP) was the sum of the NEE and Reco. The means of the indexes were organized in Excel 2016. The SD (standard deviation) of the indexes were determined by descriptive statistics with a 95% confidence interval. Analysis of variance (ANOVA) and multiple comparisons were performed using Statistix ver. 8.0 (2004) to evaluate the effects of planting cover crops and chicken grazing on the SOC, STN, C:N ratio, DOC, DON, SMN, SMC, and grain yield and its components. More

  • in

    Coccolithophore community response to ocean acidification and warming in the Eastern Mediterranean Sea: results from a mesocosm experiment

    1.
    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).
    ADS  Google Scholar 

    3.
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R. K. et al.) (IPCC, 2014).

    4.
    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) (IPCC, 2019).

    5.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Google Scholar 

    6.
    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 1–4 (2006).
    Google Scholar 

    7.
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).
    PubMed  Google Scholar 

    8.
    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).
    Google Scholar 

    9.
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).
    ADS  Google Scholar 

    10.
    Schneider, A., Wallace, D. W. R. & Körtzinger, A. Alkalinity of the Mediterranean Sea. Geophys. Res. Lett. 34, 1–5 (2007).
    Google Scholar 

    11.
    Goyet, C. et al. Thermodynamic forecasts of the mediterranean sea acidification. Mediterr. Mar. Sci. 17, 508–518 (2016).
    Google Scholar 

    12.
    IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Solomon, S. et al.) (IPCC, 2007).

    13.
    Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 18, 1481–1493 (2018).
    Google Scholar 

    14.
    Sakalli, A. Sea surface temperature change in the Mediterranean Sea under climate change: a linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 15, 707–716 (2017).
    Google Scholar 

    15.
    Hausfather, Z. & Peters, G. P. Emissions: the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).
    ADS  CAS  PubMed  Google Scholar 

    16.
    D’Ortenzio, F. & D’Alcalà, M. R. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosci. Discuss. 5, 2959–2983 (2009).
    ADS  Google Scholar 

    17.
    Krom, M. D., Kress, N. & Brenner, S. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424–432 (1991).
    ADS  CAS  Google Scholar 

    18.
    Tanhua, T. et al. The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci. 9, 789–803 (2013).
    ADS  Google Scholar 

    19.
    Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 1980–1996 (2011).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger?. Geophys. Res. Lett. 36, 1–4 (2009).
    Google Scholar 

    21.
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 

    22.
    Corrales, X. et al. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Sci. Rep. 8, 14284 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Lacoue-Labarthe, T. et al. Impacts of ocean acidification in a warming Mediterranean Sea: an overview. Reg. Stud. Mar. Sci. 5, 1–11 (2016).
    Google Scholar 

    24.
    Danovaro, R. Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. Rend. Lincei. Sci. Fis. Nat. 29, 525–541 (2018).
    Google Scholar 

    25.
    Van der Wal, P., De Jong, E. W., Westbroek, P., De Bruijn, W. C. & Mulder-Stapel, A. A. Ultrastructural polysaccharide localization in calcifying and naked cells of the coccolithophorid Emiliania huxleyi. Protoplasma 118, 157–168 (1983).
    Google Scholar 

    26.
    Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24, 1–11 (2009).
    Google Scholar 

    27.
    Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a non-steady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).
    ADS  CAS  Google Scholar 

    28.
    Oviedo, A., Ziveri, P., Álvarez, M. & Tanhua, T. Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?. Ocean Sci. 11, 13–32 (2015).
    ADS  Google Scholar 

    29.
    Skejić, S. et al. Coccolithophore diversity in open waters of the middle Adriatic Sea in pre- and post-winter periods. Mar. Micropaleontol. 143, 30–45 (2018).
    ADS  Google Scholar 

    30.
    Meyer, J. & Riebesell, U. Reviews and synthesis: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682 (2015).
    ADS  Google Scholar 

    31.
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).
    ADS  Google Scholar 

    32.
    Jin, P. & Gao, K. Reduced resilience of a globally distributed coccolithophore to ocean acidification: confirmed up to 2000 generations. Mar. Pollut. Bull. 103, 101–108 (2016).
    CAS  PubMed  Google Scholar 

    33.
    Riebesell, U. et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat. Geosci. 10, 19–23 (2017).
    ADS  CAS  Google Scholar 

    34.
    Arnold, H. E., Kerrison, P. & Steinke, M. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Glob. Chang. Biol. 19, 1007–1016 (2013).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Benner, I. et al. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos. Trans. R. Soc. A 368, 1–17 (2013).
    Google Scholar 

    36.
    De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K. & Chou, L. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7, 1401–1412 (2010).
    ADS  Google Scholar 

    37.
    Fiorini, S., Middelburg, J. J. & Gattuso, J.-P. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 64, 221–232 (2011).
    Google Scholar 

    38.
    Milner, S., Langer, G., Grelaud, M. & Ziveri, P. Ocean warming modulates the effects of acidification on Emiliania huxleyi calcification and sinking. Limnol. Oceanogr. 61, 1322–1336 (2016).
    ADS  CAS  Google Scholar 

    39.
    Rouco, M., Branson, O., Lebrato, M. & Iglesias-Rodríguez, M. D. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Front. Microbiol. 4, 1–11 (2013).
    Google Scholar 

    40.
    Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Chang. 4, 1024–1030 (2014).
    ADS  Google Scholar 

    41.
    Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE 9, e88308 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    42.
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores: a review. Deep Sea Res. II 54, 521–537 (2007).
    ADS  Google Scholar 

    43.
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 1–18 (2018).
    Google Scholar 

    44.
    Maugendre, L., Guieu, C., Gattuso, J.-P. & Gazeau, F. Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis. Estuar. Coast. Shelf Sci. 186, 1–10 (2017).
    ADS  CAS  Google Scholar 

    45.
    Alvarez-Fernandez, S. et al. Plankton responses to ocean acidification: the role of nutrient limitation. Prog. Oceanogr. 165, 11–18 (2018).
    ADS  Google Scholar 

    46.
    Bach, L. T. et al. Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS ONE 11, e0159068 (2016).
    PubMed  PubMed Central  Google Scholar 

    47.
    Gazeau, F. et al. First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project). Estuar. Coast. Shelf Sci. 186, 11–29 (2017).
    ADS  CAS  Google Scholar 

    48.
    Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. 7, 9006 (2006).
    ADS  Google Scholar 

    49.
    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).
    ADS  CAS  Google Scholar 

    50.
    Oviedo, A. M., Ziveri, P. & Gazeau, F. Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters. Estuar. Coast. Shelf Sci. 186, 58–71 (2017).
    ADS  CAS  Google Scholar 

    51.
    Meier, K. J. S., Beaufort, L., Heussner, S. & Ziveri, P. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea. Biogeosciences 11, 2857–2869 (2014).
    ADS  CAS  Google Scholar 

    52.
    Cros, L. Planktonic Coccolithophores of the NW Mediterranean (Universitat de Barcelona, Barcelona, 2001). https://doi.org/10.1017/CBO9781107415324.004.
    Google Scholar 

    53.
    Ignatiades, L., Gotsis-Skretas, O., Pagou, K. & Krasakopoulou, E. Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. J. Plankton Res. 31, 411–428 (2009).
    Google Scholar 

    54.
    O’Brien, C. J., Vogt, M. & Gruber, N. Global coccolithophore diversity: drivers and future change. Prog. Oceanogr. 140, 27–42 (2016).
    ADS  Google Scholar 

    55.
    Cros, L. & Estrada, M. Holo-heterococcolithophore life cycles: ecological implications. Mar. Ecol. Prog. Ser. 492, 57–68 (2013).
    ADS  Google Scholar 

    56.
    Guerreiro, C. et al. Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Cont. Shelf Res. 59, 65–83 (2013).
    ADS  Google Scholar 

    57.
    D’Amario, B., Ziveri, P., Grelaud, M., Oviedo, A. & Kralj, M. Coccolithophore haploid and diploid distribution patterns in the Mediterranean Sea: can a haplo-diploid life cycle be advantageous under climate change?. J. Plankton Res. 39, 781–794 (2017).
    Google Scholar 

    58.
    Sommer, U., Paul, C. & Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton: from species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10, 1–17 (2015).
    Google Scholar 

    59.
    Marie, D., Zhu, F., Balagué, V., Ras, J. & Vaulot, D. Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol. Ecol. 55, 403–415 (2006).
    CAS  PubMed  Google Scholar 

    60.
    Polat, S. & Uysal, Z. Abundance and biomass of picoplanktonic Synechococcus (Cyanobacteria) in a coastal ecosystem of the northeastern Mediterranean, the Bay of Iskenderum. Mar. Biol. Res. 5, 363–373 (2009).
    Google Scholar 

    61.
    Somot, S., Sevault, F. & Déqué, M. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn. 27, 851–879 (2006).
    Google Scholar 

    62.
    Planton, S. et al. The climate of the Mediterranean region in future climate projections. In The Climate of the Mediterranean Region: From the Past to the Future (ed. Lionello, P.) 449–502 (Elsevier, Amsterdam, 2012).
    Google Scholar 

    63.
    Shaltout, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56, 411–443 (2014).
    Google Scholar 

    64.
    Mariotti, A., Pan, Y., Zeng, N. & Alessandri, A. Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim. Dyn. 44, 1437–1456 (2015).
    Google Scholar 

    65.
    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).
    Google Scholar 

    66.
    Palmiéri, J. et al. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12, 781–802 (2015).
    ADS  Google Scholar 

    67.
    Macias, D., Garcia-Gorriz, E. & Stips, A. Understanding the causes of recent warming of Mediterranean waters. How much could be attributed to climate change?. PLoS ONE 8, e81591 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    68.
    Pastor, F., Valiente, J. A. & Palau, J. L. Sea surface temperature in the mediterranean: trends and spatial patterns (1982–2016). In Meteorology and Climatology of the Mediterranean and Black Seas (eds Vilibić, I. et al.) 297–309 (Springer, New York, 2019).
    Google Scholar 

    69.
    Marullo, S., Artale, V. & Santoleri, R. The SST multidecadal variability in the Atlantic-Mediterranean region and its relation to AMO. J. Clim. 24, 4385–4401 (2011).
    ADS  Google Scholar 

    70.
    Jordà, G. et al. The Mediterranean Sea heat and mass budgets: estimates, uncertainties and perspectives. Prog. Oceanogr. 156, 174–208 (2017).
    Google Scholar 

    71.
    Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. & Wild, M. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett. 41, 5605–5611 (2014).
    ADS  CAS  Google Scholar 

    72.
    Dell’Aquila, A. et al. Evaluation of simulated decadal variations over the Euro-Mediterranean region from ENSEMBLES to Med-CORDEX. Clim. Dyn. 51, 857–876 (2018).
    Google Scholar 

    73.
    Guiot, J. & Cramer, W. Climate change: the 2016 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468 (2016).
    ADS  CAS  PubMed  Google Scholar 

    74.
    Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).
    ADS  Google Scholar 

    75.
    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).
    ADS  Google Scholar 

    76.
    Marbà, N., Jordà, G., Agustí, S., Girard, C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 1–11 (2015).
    ADS  Google Scholar 

    77.
    Ramón, M., Fernández, M. & Galimany, E. Development of mussel (Mytilus galloprovincialis) seed from two different origins in a semi-enclosed Mediterranean Bay (N.E. Spain). Aquaculture 264, 148–159 (2007).
    Google Scholar 

    78.
    Torrents, O., Tambutté, E., Caminiti, N. & Garrabou, J. Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): assessing the potential effects of warming in the NW Mediterranean. J. Exp. Mar. Biol. Ecol. 357, 7–19 (2008).
    Google Scholar 

    79.
    Crisci, C., Bensoussan, N., Romano, J.-C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814–e23814 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Front. Mar. Sci. 4, 1–14 (2017).
    Google Scholar 

    81.
    Gao, K., Zhang, Y. & Häder, D. P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759 (2018).
    CAS  Google Scholar 

    82.
    Brand, L. E. Genetic variability and spatial patterns of genetic differentiation in there productive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol. Oceanogr. 27, 236–245 (1982).
    ADS  Google Scholar 

    83.
    Heinle, M. The Effects of Light, Temperature and Nutrients on Coccolithophores and Implications for Biogeochemical Models (University of East Anglia, Norwich, 2013).
    Google Scholar 

    84.
    Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).
    ADS  Google Scholar 

    85.
    Kleijne, A. Holococcolithophorids from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Mar. Micropaleontol. 17, 1–76 (1991).
    ADS  Google Scholar 

    86.
    Knappertsbusch, M. Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Mar. Micropaleontol. 21, 219–247 (1993).
    ADS  Google Scholar 

    87.
    Varkitzi, I. et al. Phytoplankton dynamics and bloom formation in the oligotrophic Eastern Mediterranean: field studies in the Aegean, Levantine and Ionian seas. Deep Sea Res. II 171, 104662 (2019).
    Google Scholar 

    88.
    Egge, J. K. & Heimdal, B. R. Blooms of phytoplankton including Emiliania huxleyi (haptophyta). Effects of nutrient supply in different N:P ratios. Sarsia 79, 333–348 (1994).
    Google Scholar 

    89.
    Riegman, R., Stolte, W., Noordeloos, A. A. M. & Slezak, D. Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J. Phycol. 36, 87–96 (2000).
    CAS  Google Scholar 

    90.
    Godrijan, J., Young, J. R., Marić Pfannkuchen, D., Precali, R. & Pfannkuchen, M. Coastal zones as important habitats of coccolithophores: a study of species diversity, succession, and life-cycle phases. Limnol. Oceanogr. 63, 1692–1710 (2018).
    ADS  Google Scholar 

    91.
    Cerino, F., Malinverno, E., Fornasaro, D., Kralj, M. & Cabrini, M. Coccolithophore diversity and dynamics at a coastal site in the Gulf of Trieste (northern Adriatic Sea). Estuar. Coast. Shelf Sci. 196, 331–345 (2017).
    ADS  Google Scholar 

    92.
    Ausín, B. et al. Spatial and temporal variability in coccolithophore abundance and distribution in the NW Iberian coastal upwelling system. Biogeosciences 15, 245–262 (2018).
    ADS  Google Scholar 

    93.
    Kleijne, A. Extant Rhabdosphaeraceae (coccolithophorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Scr. Geol. 100, 1–63 (1992).
    Google Scholar 

    94.
    Okada, H. & McIntyre, A. Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Mar. Biol. 54, 319–328 (1979).
    Google Scholar 

    95.
    Dimiza, M. D., Triantaphyllou, M. V. & Dermitzakis, M. D. Seasonality and ecology of living coccolithophores in Eastern Mediterranean coastal environments (Andros Island, Middle Aegean Sea). Micropaleontology 54, 159–175 (2008).
    Google Scholar 

    96.
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification. Limnol. Oceanogr. Lett. 4, 62–70 (2019).
    CAS  Google Scholar 

    97.
    O’Brien, C. J. et al. Global marine plankton functional type biomass distributions: coccolithophores. Earth Syst. Sci. Data 5, 259–276 (2013).
    ADS  Google Scholar 

    98.
    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–298 (2005).
    Google Scholar 

    99.
    Yang, T. & Wei, K. How many coccoliths are there in a coccosphere of the extant coccolithophorids? A compilation. J. Nannoplankton Res. 25, 7–15 (2003).
    Google Scholar 

    100.
    Triantaphyllou, M. V. et al. Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean). PLoS ONE 13, e0200012 (2018).
    PubMed  PubMed Central  Google Scholar 

    101.
    Saruwatari, K., Satoh, M., Harada, N., Suzuki, I. & Shiraiwa, Y. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas. Biogeosciences 13, 2743–2755 (2016).
    ADS  Google Scholar 

    102.
    Tyrrell, T., Schneider, B., Charalampopoulou, A. & Riebesell, U. Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5, 485–494 (2008).
    ADS  CAS  Google Scholar 

    103.
    Dimiza, M. D. et al. The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean). Micropaleontology 61, 521–540 (2015).
    Google Scholar 

    104.
    Rosas-Navarro, A., Langer, G. & Ziveri, P. Temperature affects the morphology and calcification of Emiliania huxleyi strains. Biogeosciences 13, 2913–2926 (2016).
    ADS  Google Scholar 

    105.
    Oviedo, A. M., Langer, G. & Ziveri, P. Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi. J. Exp. Mar. Biol. Ecol. 459, 105–113 (2014).
    CAS  Google Scholar 

    106.
    Fielding, S. R., Herrle, J. O., Bollmann, J., Worden, R. H. & Montagnes, D. J. S. Assessing the applicability of Emiliania huxleyi coccolith morphology as a sea-surface salinity proxy. Limnol. Oceanogr. 54, 1475–1480 (2009).
    ADS  Google Scholar 

    107.
    Green, J. C., Heimdal, B. R., Paasche, E. & Moate, R. Changes in calcification and the dimensions of coccoliths of Emiliania huxleyi (Haptophyta) grown at reduced salinities. Phycologia 37, 121–131 (1998).
    Google Scholar 

    108.
    Paasche, E., Brubak, S., Skattebøl, S., Young, J. R. & Green, J. C. Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities. Phycologia 35, 394–403 (1996).
    Google Scholar 

    109.
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).
    ADS  Google Scholar 

    110.
    Langer, G. & Benner, I. Effect of elevated nitrate concentration on calcification in Emiliania huxleyi. J. Nannoplankt. Res. 30, 77–80 (2009).
    Google Scholar 

    111.
    Langer, G., Oetjen, K. & Brenneis, T. On culture artefacts in coccolith morphology. Helgol. Mar. Res. 67, 359–369 (2013).
    ADS  Google Scholar 

    112.
    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–366 (2000).
    ADS  CAS  PubMed  Google Scholar 

    113.
    Langer, G., Probert, I., Nehrke, G. & Ziveri, P. The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes: an inter-strain comparison. J. Nannoplankt. Res. 32, 29–34 (2010).
    Google Scholar 

    114.
    Watabe, N. & Wilbur, K. M. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnol. Oceanogr. 11, 567–575 (1966).
    ADS  Google Scholar 

    115.
    Gerecht, A. C., Luka, Š, Langer, G. & Henderiks, J. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi. Biogeosciences 15, 833–845 (2018).
    ADS  CAS  Google Scholar 

    116.
    Honjo, S. Coccoliths: production, transportation and sedimentation. Mar. Micropaleontol. 1, 65–79 (1976).
    ADS  Google Scholar 

    117.
    Faucher, G. et al. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences 14, 3603–3613 (2017).
    ADS  CAS  Google Scholar 

    118.
    Herfort, L., Loste, E., Meldrum, F. & Thake, B. Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. J. Struct. Biol. 148, 307–314 (2004).
    CAS  PubMed  Google Scholar 

    119.
    Leonardos, N., Read, B., Thake, B. & Young, J. R. No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania huxleyi. J. Phycol. 45, 1046–1051 (2009).
    PubMed  Google Scholar 

    120.
    Walker, C. E. et al. The requirement for calcification differs between ecologically important coccolithophore species. New Phytol. 220, 147–162 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    121.
    U.S. EPA. Method development and preliminary applications of Leptospira spirochetes in water samples (U.S. Environmental Protection Agency, 2018).

    122.
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    123.
    Schulz, K. et al. Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front. Mar. Sci. 4, 1–18 (2017).
    Google Scholar 

    124.
    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO 2measurements, PICES Special Publication 3. (PICES, 2007).

    125.
    Lavigne, H. & Gattuso, J. P. Seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).

    126.
    Orr, J. C., Epitalon, J., Dickson, A. G. & Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107 (2018).
    CAS  Google Scholar 

    127.
    Strickland, J. D. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, Toronto, 1972).
    Google Scholar 

    128.
    Rimmelin, P. & Moutin, T. Re-examination of the MAGIC method to dermine low orthophosphate concentraion in seawater. Anal. Chim. Acta 548, 174–182 (2005).
    CAS  Google Scholar 

    129.
    Ivančič, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143–1147 (1984).
    Google Scholar 

    130.
    Bollmann, J. et al. Techniques for quantitative analyses of calcareous marine phytoplankton. Mar. Micropaleontol. 44, 163–185 (2002).
    ADS  Google Scholar 

    131.
    Horigome, M. T. et al. Environmental controls on the Emiliania huxleyi calcite mass. Biogeosciences 11, 2295–2308 (2014).
    ADS  CAS  Google Scholar 

    132.
    Dollfus, D. & Beaufort, L. Fat neural network for recognition of position-normalised objects. Neural Netw. 12, 553–560 (1999).
    CAS  PubMed  Google Scholar 

    133.
    Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73 (2004).
    ADS  Google Scholar 

    134.
    RStudio Team. RStudio: integrated development for R. https://www.rstudio.com (2016). More

  • in

    Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer

    1.
    Turnbaugh, P. et al. The human microbiome project. Nature 449, 804–810 (2007).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Sivasubramaniam, D. & Franks, A. Bioengineering microbial communities: their potential to help, hinder and disgust. Bioengineered 7, 137–144 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Dunbar, J. et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Clement, B. G., Kehl, L. E., DeBord, K. L. & Kitts, C. L. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Methods 31, 135–142 (1998).
    CAS  Google Scholar 

    7.
    Brunk, C. F., Avaniss-Aghajani, E. & Brunk, C. A. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl. Environ. Microbiol. 62, 872–879 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Ferris, M. J., Muyzer, G. & Ward, D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62, 340–346 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. https://doi.org/10.1155/2012/251364 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    12.
    Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13, 341 (2012).
    CAS  Google Scholar 

    13.
    Cai, L. et al. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE 8, e53649 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Guo, F., Ju, F., Cai, L. & Zhang, T. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS ONE 8, e76185 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Wang, F. et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 8, 182–182 (2018).
    PubMed  PubMed Central  Google Scholar 

    16.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    17.
    Wommack, K. E., Bhavsar, J. & Ravel, J. Metagenomics: read length matters. Appl. Environ. Microbiol. 74, 1453–1463 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Earl, J. P. et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using pacific biosciences sequencing of full-length 16S rRNA genes. Microbiome 6, 190 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Whon, T. W. et al. The effects of sequencing platforms on phylogenetic resolution in 16 S rRNA gene profiling of human feces. Sci. Data 5, 180068 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2016).
    PubMed  Google Scholar 

    21.
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience. https://doi.org/10.1093/gigascience/giy033 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Benítez-Páez, A., Portune, K. J. & Sanz, Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience https://doi.org/10.1186/s13742-016-0111-z (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Mitsuhashi, S. et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci. Rep. 7, 5657 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17, 96 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Smyth, R. P. et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51 (2010).
    CAS  PubMed  Google Scholar 

    26.
    Gołębiewski, M. & Tretyn, A. Generating amplicon reads for microbial community assessment with next-generation sequencing. J. Appl. Microbiol. 128, 330–354 (2020).
    PubMed  Google Scholar 

    27.
    Hongoh, Y., Yuzawa, H., Ohkuma, M. & Kudo, T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221, 299–304 (2003).
    CAS  PubMed  Google Scholar 

    28.
    D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 17, 55 (2016).
    Google Scholar 

    29.
    Wu, J. Y. et al. Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiol. 10, 255 (2010).
    PubMed  PubMed Central  Google Scholar 

    30.
    Aird, D. et al. Analyzing and minimizing PCR amplification bias in illumina sequencing libraries. Genome Biol. 12, R18 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint, arXiv:1303.3997 (2013).

    34.
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
    CAS  PubMed  Google Scholar 

    35.
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 

    36.
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
    Google Scholar 

    37.
    Nicholls, S. M., Quick, J. C., Tang, S. & Loman, N. J. Ultra-deep, long-read nanopore sequencing of MOCK microbial community standards. Gigascience https://doi.org/10.1093/gigascience/giz043 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Kai, S. et al. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer. FEBS Open Bio. 9, 548–557 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Suzuki, M. T. & Giovannoni, S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).
    CAS  PubMed  Google Scholar 

    41.
    Penna, V. T., Martins, S. A. & Mazzola, P. G. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health 2, 13 (2002).
    PubMed  PubMed Central  Google Scholar 

    42.
    Burrows, S. M. et al. Bacteria in the global atmosphere: part 2—modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9, 9281–9297 (2009).
    ADS  CAS  Google Scholar 

    43.
    Nakagawa, S. et al. Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia. Clin. Transl. Immunol. 8, e01087 (2019).
    Google Scholar 

    44.
    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264 (1953).
    MathSciNet  MATH  Google Scholar 

    45.
    Lemos, L. N., Fulthorpe, R. R., Triplett, E. W. & Roesch, L. F. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86, 42–51 (2011).
    CAS  PubMed  Google Scholar 

    46.
    Walker, A. W. et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3, 26 (2015).
    PubMed  PubMed Central  Google Scholar 

    47.
    Hu, L. et al. Assessment of Bifidobacterium species using groEL gene on the basis of Illumina MiSeq high-throughput sequencing. Genes 8, 336 (2017).
    PubMed Central  Google Scholar 

    48.
    Nygaard, A. B., Tunsjø, H. S., Meisal, R. & Charnock, C. A preliminary study on the potential of nanopore MinION and illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci. Rep. 10, 3209 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ichijo, T. et al. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan. PLoS ONE 9, e110554 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Arai, S. et al. Assessment of pig saliva as a Streptococcus suis reservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am. J. Vet. Res. 79, 941–948 (2018).
    CAS  PubMed  Google Scholar 

    51.
    Lu, Q., Hu, H., Mo, J. & Shu, L. Enhanced amplification of bacterial and fungal DNA using a new type of DNA polymerase. Aust. Plant Pathol. 41, 661–663 (2012).
    CAS  Google Scholar 

    52.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.

    53.
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
    PubMed  PubMed Central  Google Scholar 

    54.
    Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018). More

  • in

    Keeping pace with marine heatwaves

    1.
    Mills, K. E. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).
    Google Scholar 
    2.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    Google Scholar 

    3.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
    Google Scholar 

    4.
    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).
    Google Scholar 

    5.
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
    Google Scholar 

    6.
    Benthuysen, J. A., Oliver, E. C. J., Chen, K. & Wernberg, T. Advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7, 147 (2020).
    Google Scholar 

    7.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    Google Scholar 

    8.
    Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change. Ecological Studies (eds. Canadell, J. G. & Jackson, R. B.) (Springer-Nature, 2020).

    9.
    Pearce, A. et al. The “Marine Heat Wave” Off Western Australia During the Summer of 2010/11. Fisheries Research Report No. 222 (40pp) (Department of Fisheries, Western Australia, 2011)

    10.
    Olita, A. et al. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3, 273–289 (2007).
    Google Scholar 

    11.
    Pearce, A. F. & Feng, M. The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).
    Google Scholar 

    12.
    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119, 218–227 (2014).
    Google Scholar 

    13.
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).
    Google Scholar 

    14.
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
    Google Scholar 

    15.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
    Google Scholar 

    16.
    Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).
    Google Scholar 

    17.
    Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).
    Google Scholar 

    18.
    Jacox, M., Tommasi, D., Alexander, M., Hervieux, G. & Stock, C. Predicting the evolution of the 2014-16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019).
    Google Scholar 

    19.
    Lee, T. et al. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys. Res. Lett. 37, L19704 (2010).
    Google Scholar 

    20.
    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).
    Google Scholar 

    21.
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
    Google Scholar 

    22.
    Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).
    Google Scholar 

    23.
    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).
    Google Scholar 

    24.
    Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).
    Google Scholar 

    25.
    Caputi, N. et al. Management Implications of Climate Change Effect on Fisheries in Western Australia, Part 2: Case Studies. Fisheries Research Report No. 261 (156pp) (Department of Fisheries, Western Australia, 2015).

    26.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    Google Scholar 

    27.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
    Google Scholar 

    28.
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).
    Google Scholar 

    29.
    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).
    Google Scholar 

    30.
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).
    Google Scholar 

    31.
    Zisserson, B. & Cook, A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean. Fish. Res. 195, 12–18 (2017).
    Google Scholar 

    32.
    Caputi, N., Jackson, G. & Pearce, A. The Marine Heat Wave Off Western Australia During the Summer of 2010/11 – 2 Years On. Fisheries Research Report No. 250 (40pp) (Department of Fisheries, Western Australia, 2014).

    33.
    Cavole, L. M. et al. Biological Impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 

    34.
    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).
    Google Scholar 

    35.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    Google Scholar 

    36.
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
    Google Scholar 

    37.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Google Scholar 

    38.
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
    Google Scholar 

    39.
    Rodrigues, R. R., Taschetto, A. S., Sen Gupta, A. & Foltz, G. R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019).
    Google Scholar 

    40.
    Black, E., Blackburn, M., Harrison, R. G., Hoskins, B. J. & Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).
    Google Scholar 

    41.
    Chen, K., Gawarkiewicz, G., Kwon, Y.-O. & Zhang, W. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120, 4324–4339 (2015).
    Google Scholar 

    42.
    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).
    Google Scholar 

    43.
    Perkins-Kirkpatrick, S. E. et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 100, S105–S110 (2019).
    Google Scholar 

    44.
    Sparnocchia, S., Schiano, M. E., Picco, P., Bozzano, R. & Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452 (2006).
    Google Scholar 

    45.
    Swain, D. L. et al. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 95, S3–S7 (2014).
    Google Scholar 

    46.
    Alexander, M. A., Deser, C. & Timlin, M. S. The reemergence of SST anomalies in the North Pacific Ocean. J. Clim. 12, 2419–2433 (1999).
    Google Scholar 

    47.
    Benthuysen, J., Feng, M. & Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 91, 232–246 (2014).
    Google Scholar 

    48.
    Kataoka, T., Tozuka, T. & Yamagata, T. Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans 122, 8913–8932 (2017).
    Google Scholar 

    49.
    Behrens, E., Fernandez, D. & Sutton, P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci. 6, 228 (2019).
    Google Scholar 

    50.
    Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. & Mills, K. E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076 (2016).
    Google Scholar 

    51.
    Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).
    Google Scholar 

    52.
    Marshall, A. G. & Hendon, H. H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 42, 579–595 (2014).
    Google Scholar 

    53.
    Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. & Zinke, J. Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Sci. Rep. 7, 2443 (2017).
    Google Scholar 

    54.
    Kataoka, T., Tozuka, T., Behera, S. & Yamagata, T. On the Ningaloo Niño/Niña. Clim. Dyn. 43, 1463–1482 (2013).
    Google Scholar 

    55.
    Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E. & Power, S. B. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 547–558 (2011).
    Google Scholar 

    56.
    Li, Z., Holbrook, N. J., Zhang, X., Oliver, E. C. J. & Cougnon, E. A. Remote forcing of Tasman Sea marine heatwaves. J. Clim. 33, 5337–5354 (2020).
    Google Scholar 

    57.
    Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).
    Google Scholar 

    58.
    Elzahaby, Y. & Schaeffer, A. Observational Insight Into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).
    Google Scholar 

    59.
    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares — Application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Google Scholar 

    60.
    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).
    Google Scholar 

    61.
    Moltmann, T. The “coastal data paradox”. J. Ocean Technol. 13, 148–149 (2018).
    Google Scholar 

    62.
    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).
    Google Scholar 

    63.
    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).
    Google Scholar 

    64.
    Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 

    65.
    Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 74, 1–68 (2016).
    Google Scholar 

    66.
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Mar. Policy 88, 295–302 (2018).
    Google Scholar 

    67.
    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).
    Google Scholar 

    68.
    White, C. J. et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 24, 315–325 (2017).
    Google Scholar 

    69.
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016).
    Google Scholar 

    70.
    Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).
    Google Scholar 

    71.
    Johnson, C. R., Chabot, R. H., Marzloff, M. P. & Wotherspoon, S. Knowing when (not) to attempt ecological restoration. Restor. Ecol. 25, 140–147 (2017).
    Google Scholar 

    72.
    Tommasi, D. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).
    Google Scholar 

    73.
    Marshall, A. G., Hendon, H. H., Feng, M. & Schiller, A. Initiation and amplification of the Ningaloo Niño. Clim. Dyn. 45, 2367–2385 (2015).
    Google Scholar 

    74.
    D’Andrea, F. et al. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dyn. 14, 385–407 (1998).
    Google Scholar 

    75.
    Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).
    Google Scholar 

    76.
    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Clim. 29, 8823–8840 (2016).
    Google Scholar 

    77.
    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).
    Google Scholar 

    78.
    Pilo, G. S., Mata, M. M. & Azevedo, J. L. L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Sci. 11, 629–641 (2015).
    Google Scholar 

    79.
    Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).
    Google Scholar 

    80.
    Oliver, E. C. J., O’Kane, T. J. & Holbrook, N. J. Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans 120, 7150–7165 (2015).
    Google Scholar 

    81.
    Hu, Z-Z., Kumar, A., Jha, B., Zhu, J. & Huang, B. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific ocean during 2014–16. J. Clim. 30, 689–702 (2017).
    Google Scholar 

    82.
    Spillman, C. M. Operational real-time seasonal forecasts for coral reef management. J. Oper. Oceanogr. 4, 13–22 (2011).
    Google Scholar 

    83.
    Yang, Y. et al. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 15, 207–211 (2018).
    Google Scholar 

    84.
    Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019).
    Google Scholar 

    85.
    Quinting, J. F. & Reeder, M. J. Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev. 145, 4109–4125 (2017).
    Google Scholar 

    86.
    Quinting, J. F., Parker, T. J. & Reeder, M. J. Two synoptic routes to subtropical heat waves as illustrated in the Brisbane region of Australia. Geophys. Res. Lett. 45, 10,700–10,708 (2018).
    Google Scholar 

    87.
    Doblin, M. A. & Van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).
    Google Scholar 

    88.
    Zhang, X., Cornuelle, B. & Roemmich, D. Sensitivity of western boundary transport at the mean north equatorial current bifurcation latitude to wind forcing. J. Phys. Oceanogr. 42, 2056–2072 (2012).
    Google Scholar 

    89.
    Pecl, G. T. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019).
    Google Scholar 

    90.
    Serrao-Neumann, S. et al. Marine governance to avoid tipping points: can we adapt the adaptability envelope? Mar. Policy 65, 56–67 (2016).
    Google Scholar 

    91.
    Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).
    Google Scholar 

    92.
    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16 (2011).
    Google Scholar 

    93.
    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
    Google Scholar 

    94.
    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).
    Google Scholar 

    95.
    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).
    Google Scholar 

    96.
    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).
    Google Scholar 

    97.
    Coleman, M. A. & Goold, H. D. Harnessing synthetic biology for kelp forest conservation1. J. Phycol. 55, 745–751 (2019).
    Google Scholar 

    98.
    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).
    Google Scholar 

    99.
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 57–78 (Academic, 2019).

    100.
    Filbee-Dexter, K. & Smajdor, A. Ethics of assisted evolution in marine conservation. Front. Mar. Sci. 6, 20 (2019).
    Google Scholar 

    101.
    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).
    Google Scholar 

    102.
    Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510 (2019).
    Google Scholar 

    103.
    Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).
    Google Scholar 

    104.
    Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).
    Google Scholar 

    105.
    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).
    Google Scholar 

    106.
    Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science 361, 42–47 (2018).
    Google Scholar 

    107.
    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).
    Google Scholar 

    108.
    Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 

    109.
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
    Google Scholar 

    110.
    Jacox, M. G. et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183, 102307 (2020).
    Google Scholar 

    111.
    Feng, M., McPhaden, M. J., Xie, S. P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1227 (2013).
    Google Scholar 

    112.
    Gammelsrød, T., Bartholomae, C. H., Boyer, D. C., Filipe, V. L. L. & O’Toole, M. J. Intrusion of warm surface water along the Angolan Namibian coast in February–March 1995: the 1995 Benguela Niño. S. Afr. J. Mar. Sci. 19, 41–56 (1998).
    Google Scholar 

    113.
    Spencer, T., Teleki, K. A., Bradshaw, C. & Spalding, M. D. Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean warm event. Mar. Pollut. Bull. 40, 569–586 (2000).
    Google Scholar 

    114.
    McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).
    Google Scholar 

    115.
    Vivekanandan, E., Hussain Ali, M., Jasper, B. & Rajagopalan, M. Thermal thresholds for coral bleaching in the Indian seas. J. Mar. Biol. Assoc. India 50, 209–214 (2008).
    Google Scholar 

    116.
    Krishnan, P. et al. Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr. Sci. 100, 111–117 (2011).
    Google Scholar 

    117.
    Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

    118.
    Frölicher, T. L. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M., Cheung, W. W. L. & Yoshitaka, O.) 53–60 (Elsevier, 2019).

    119.
    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
    Google Scholar 

    120.
    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
    Google Scholar 

    121.
    Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).
    Google Scholar 

    122.
    Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K. & Janssen, P. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).
    Google Scholar 

    123.
    Giese, B. S., Seidel, H. F., Compo, G. P. & Sardeshmukh, P. D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Oceans 121, 6891–6910 (2016).
    Google Scholar 

    124.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    Google Scholar 

    125.
    Griffin, C., Beggs H. & Majewski, L. GHRSST compliant AVHRR SST products over the Australian region – Version 1, Technical Report, 151 pp (Bureau of Meteorology, Melbourne, Australia, 2017).

    126.
    Wijffels, S. E. et al. A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): Seasonal variability and trends around Australasia and New Zealand revisited. J. Mar. Syst. 187, 156–196 (2018).
    Google Scholar 

    127.
    Oke, P. R. et al. Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model. 67, 52–70 (2013).
    Google Scholar 

    128.
    Wessel, P. & Smith, W. H. F. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).
    Google Scholar 

    129.
    Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).
    Google Scholar 

    130.
    Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl Acad. Sci. USA 116, 18378–18383 (2019).
    Google Scholar  More