The Andaman day gecko paradox: an ancient endemic without pronounced phylogeographic structure
1.
Heaney, L. R. Is a new paradigm emerging for oceanic island biogeography?. J. Biogeogr. 34, 753–757 (2007).
Google Scholar
2.
Avise, J. C. Molecular Markers, Natural History and Evolution (Springer, New York, 2012).
Google Scholar
3.
Ali, J. R. Islands as biological substrates: Classification of the biological assemblage components and the physical island types. J. Biogeogr. 44, 984–994 (2017).
Google Scholar
4.
de Wit, M. J. Madagascar: Heads it’s a continent, tails it’s an island. Annu. Rev. Earth Planet. Sci. 31, 213–248 (2003).
ADS Google Scholar
5.
Das, I. Biogeography of the amphibians and reptiles of the Andaman and Nicobar Islands, India. In Tropical Island Herpetofauna. Origin, Current Diversity and Current Status 43–77 (Elsevier, 1999).
6.
Bandopadhyay, P. C. & Carter, A. Chapter 6 geological framework of the Andaman–Nicobar Islands. Geol. Soc. Lond. Mem. 47, 75–93 (2017).
Google Scholar
7.
Ali, J. R. Islands as biological substrates: Continental. J. Biogeogr. 45, 1003–1018 (2018).
Google Scholar
8.
Smith, M. A. The herpetology of the Andaman and Nicobar Islands. Proc. Linn. Soc. London 153, 150–158 (1941).
9.
Biswas, S. & Sanyal, D. A report on the Reptilia fauna of Andaman and Nicobar Islands in the collection of Zoological Survey of India. Rec. Zool. Surv. India 77, 255–292 (1980).
Google Scholar
10.
Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).
CAS Google Scholar
11.
Harikrishnan, S., Vasudevan, K. & Choudhury, B. C. A review of herpetofaunal descriptions and studies from Andaman and Nicobar Islands, with an updated checklist in Recent trends in biodiversity of Andaman and Nicobar Islands (Zoological Survey of India, Kolkata, 2010).
Google Scholar
12.
Chakravarty, R., Chattopadhyay, B., Ramakrishnan, U. & Sivasundar, A. Comparative population structure in species of bats differing in ecology and morphology in the Andaman Islands India. Acta Chiropt. 20, 85–98 (2018).
Google Scholar
13.
Mohan, A. V., Swamy, P. & Shanker, K. Population structure in the Andaman keelback, Xenochrophis tytleri: Geographical distance and oceanic barriers to dispersal influence genetic divergence on the Andaman archipelago. PeerJ 6, 5752. https://doi.org/10.7717/peerj.5752 (2018).
Article Google Scholar
14.
Rocha, S. et al. Phylogenetic systematics of day geckos, genus Phelsuma, based on molecular and morphological data (Squamata: Gekkonidae). Zootaxa 2429, 1 (2010).
Google Scholar
15.
Austin, J. J., Arnold, E. N. & Jones, C. G. Reconstructing an island radiation using ancient and recent DNA: The extinct and living day geckos (Phelsuma) of the Mascarene islands. Mol. Phylogenet. Evol. 31, 109–122 (2004).
CAS PubMed Google Scholar
16.
Rocha, S., Posada, D., Carretero, M. A. & Harris, D. J. Phylogenetic affinities of Comoroan and East African day geckos (genus Phelsuma): Multiple natural colonisations, introductions and island radiations. Mol. Phylogenet. Evol. 43, 685–692 (2007).
CAS PubMed Google Scholar
17.
Rocha, S., Vences, M., Glaw, F., Posada, D. & Harris, D. J. Multigene phylogeny of Malagasy day geckos of the genus Phelsuma. Mol. Phylogenet. Evol. 52, 530–537 (2009).
CAS PubMed Google Scholar
18.
Rocha, S. Phylogeography and diversification history of the day-gecko genus Phelsuma in the Seychelles islands. BMC Evol. Biol. 13, 3. https://doi.org/10.1186/1471-2148-13-3 (2013).
Article PubMed PubMed Central Google Scholar
19.
Cheke, A. & Hume, J. P. Lost Land of the Dodo: The Ecological History of Mauritius, Réunion and Rodrigues (Bloomsbury Publishing, London, 2010).
Google Scholar
20.
Harmon, L. J., Harmon, L. L. & Jones, C. G. Competition and community structure in diurnal arboreal geckos (genus Phelsuma) in the Indian Ocean. Oikos 116, 1863–1878 (2007).
Google Scholar
21.
Ratnam, J. Distribution and Behavioural Ecology of the Andaman Day Gecko (Phelsuma andamanensis). MSc dissertation, Pondicherry University (1992).
22.
Humphrey, J. E. & Ward, C. F. M. Madagascan Day Geckos (Phelsuma spp.) exhibit differing responses along a gradient of land-use change. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918760282 (2018).
Article Google Scholar
23.
Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).
CAS PubMed Google Scholar
24.
Gehring, P.-S., Glaw, F., Gehara, M., Ratsoavina, F. M. & Vences, M. Northern origin and diversification in the central lowlands? Complex phylogeography and taxonomy of widespread day geckos (Phelsuma) from Madagascar. Org. Divers. Evol. 13, 605–620 (2013).
Google Scholar
25.
Mohan, A. V. Comparative phylogeography and patterns of deep genetic differentiation of two gecko species, Paroedura gracilis and Phelsuma guttata, across north-eastern Madagascar. Salamandra 55, 211–220 (2019).
Google Scholar
26.
Beaumont, M. A. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41, 379–406 (2010).
Google Scholar
27.
Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. & Evol. 25, 410–418 (2010).
Google Scholar
28.
Arbogast, B. S. & Kenagy, G. J. Comparative phylogeography as an integrative approach to historical biogeography: guest editorial. J. Biogeogr. 28, 819–825 (2008).
Google Scholar
29.
Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. Proc. Natl. Acad. Sci. 109, 5358–5363 (2012).
ADS CAS PubMed Google Scholar
30.
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
CAS PubMed Google Scholar
31.
Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures: invited technical review. Mol. Ecol. Resour. 11, 5–18 (2011).
PubMed Google Scholar
32.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
33.
Verity, R. & Nichols, R. A. Estimating the number of subpopulations (K) in structured populations. Genetics 203, 1827–1839 (2016).
PubMed PubMed Central Google Scholar
34.
Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
PubMed PubMed Central Google Scholar
35.
Thangaraj, K. et al. Genetic affinities of the Andaman Islanders, a vanishing human population. Curr. Biol. 13, 86–93 (2003).
CAS PubMed Google Scholar
36.
Chaubey, G. & Endicott, P. The Andaman Islanders in a regional genetic context: Reexamining the evidence for an early peopling of the archipelago from South Asia. Human Bio. 85, 153–172 (2013).
Google Scholar
37.
Rico, C. et al. Null alleles are ubiquitous at microsatellite loci in the Wedge Clam (Donax trunculus). 10.7717/peerj.3188 (2017).
38.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).
ADS CAS PubMed Google Scholar
39.
Sharief, M. U. Ethnobotanical studies of the dwindling aboriginal Jarawa tribe in Andaman Islands India. Gen. Res. Crop Evol. 64, 1861–1872 (2017).
Google Scholar
40.
Chandramouli, S. R. First record of a Phelsuma Gray, 1825 (Sauria: Gekkonidae) from the Nicobar Archipelago, Bay of Bengal. Sauria 39, 49–51 (2017).
Google Scholar
41.
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
PubMed Google Scholar
42.
Andrews, H. V., Vasumati, S. & others. Sustainable management of protected areas in the Andaman and Nicobar Islands. In Sustainable Management of Protected Areas in the Andaman Nicobar Island (2002).
43.
Sekhsaria, P. & Pandya, V. Jarawa Tribal Reserve dossier: cultural & biological diversities in the Andaman Islands (UNESCO, 2010).
44.
Shen, X.-X., Liang, D. & Zhang, P. The development of three long universal nuclear protein-coding locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS ONE 7, 39256. https://doi.org/10.1371/journal.pone.0039256 (2012).
ADS CAS Article Google Scholar
45.
Bauer, A. M., de Silva, A., Greenbaum, E. & Jackman, T. A new species of day gecko from high elevation in Sri Lanka, with a preliminary phylogeny of Sri Lankan Cnemaspis (Reptilia, Squamata, Gekkonidae). Mitteilungen aus dem Museum für Naturkunde Berlin Zool. Reihe 83, 22–32 (2007).
Google Scholar
46.
Leaché, A. D. & McGuire, J. A. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644 (2006).
PubMed Google Scholar
47.
Gamble, T., Bauer, A. M., Greenbaum, E. & Jackman, T. R. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J. Biogeogr. 35, 88–104 (2008).
Google Scholar
48.
Silvestro, D. & Michalak, I. raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).
Google Scholar
49.
Perl, R. G. B. et al. Population genetic analysis of the recently rediscovered Hula painted frog (Latonia nigriventer) reveals high genetic diversity and low inbreeding. Sci. Rep. 8, 5588. https://doi.org/10.1038/s41598-018-23587-w (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
50.
Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).
CAS PubMed Google Scholar
51.
Bruford, M. Single-locus and multilocus DNA fingerprint. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp. 225–270 (1992).
52.
Ryan, W. B. F. et al. Global multi-resolution topography synthesis: Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, 03014. https://doi.org/10.1029/2008GC002332 (2009).
ADS Article Google Scholar
53.
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment: Cervus likelihood model. Mol. Ecol. 16, 1099–1106 (2007).
PubMed Google Scholar
54.
Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2, 281. https://doi.org/10.7717/peerj.281 (2014).
Article Google Scholar
55.
Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
PubMed Google Scholar
56.
Fisher, R. The logic of scientific inference. J. R. Stat. Soc. 98, 39–54 (1935).
MATH Google Scholar
57.
Adamack, A. T. & Gruber, B. Pop gen report: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
Google Scholar
58.
Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
CAS PubMed PubMed Central Google Scholar
59.
Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
CAS PubMed Google Scholar
60.
Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets: Program note. Mol. Ecol. Notes 3, 167–169 (2003).
CAS Google Scholar
61.
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity : An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
Google Scholar
62.
Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).
CAS PubMed Google Scholar
63.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Google Scholar
64.
Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).
PubMed Google Scholar
65.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
CAS PubMed PubMed Central Google Scholar
66.
Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
CAS PubMed Google Scholar
67.
Piry, S. et al. Mapping averaged pairwise information (MAPI): A new exploratory tool to uncover spatial structure. Methods Ecol. Evol. 7, 1463–1475 (2016).
Google Scholar
68.
Cornuet, J.-M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
CAS PubMed Google Scholar
69.
Estoup, A., Jarne, P. & Cornuet, J.-M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).
CAS PubMed Google Scholar
70.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
CAS PubMed Google Scholar
71.
Palumbi, S. Simple fool’s guide to PCR. (1991).
72.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
CAS PubMed Google Scholar
73.
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
CAS PubMed Google Scholar
74.
Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
CAS PubMed Google Scholar
75.
Winter, D. J. mmod: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12, 1158–1160 (2012).
CAS PubMed Google Scholar More