More stories

  • in

    The Andaman day gecko paradox: an ancient endemic without pronounced phylogeographic structure

    1.
    Heaney, L. R. Is a new paradigm emerging for oceanic island biogeography?. J. Biogeogr. 34, 753–757 (2007).
    Google Scholar 
    2.
    Avise, J. C. Molecular Markers, Natural History and Evolution (Springer, New York, 2012).
    Google Scholar 

    3.
    Ali, J. R. Islands as biological substrates: Classification of the biological assemblage components and the physical island types. J. Biogeogr. 44, 984–994 (2017).
    Google Scholar 

    4.
    de Wit, M. J. Madagascar: Heads it’s a continent, tails it’s an island. Annu. Rev. Earth Planet. Sci. 31, 213–248 (2003).
    ADS  Google Scholar 

    5.
    Das, I. Biogeography of the amphibians and reptiles of the Andaman and Nicobar Islands, India. In Tropical Island Herpetofauna. Origin, Current Diversity and Current Status 43–77 (Elsevier, 1999).

    6.
    Bandopadhyay, P. C. & Carter, A. Chapter 6 geological framework of the Andaman–Nicobar Islands. Geol. Soc. Lond. Mem. 47, 75–93 (2017).
    Google Scholar 

    7.
    Ali, J. R. Islands as biological substrates: Continental. J. Biogeogr. 45, 1003–1018 (2018).
    Google Scholar 

    8.
    Smith, M. A. The herpetology of the Andaman and Nicobar Islands. Proc. Linn. Soc. London 153, 150–158 (1941).

    9.
    Biswas, S. & Sanyal, D. A report on the Reptilia fauna of Andaman and Nicobar Islands in the collection of Zoological Survey of India. Rec. Zool. Surv. India 77, 255–292 (1980).
    Google Scholar 

    10.
    Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).
    CAS  Google Scholar 

    11.
    Harikrishnan, S., Vasudevan, K. & Choudhury, B. C. A review of herpetofaunal descriptions and studies from Andaman and Nicobar Islands, with an updated checklist in Recent trends in biodiversity of Andaman and Nicobar Islands (Zoological Survey of India, Kolkata, 2010).
    Google Scholar 

    12.
    Chakravarty, R., Chattopadhyay, B., Ramakrishnan, U. & Sivasundar, A. Comparative population structure in species of bats differing in ecology and morphology in the Andaman Islands India. Acta Chiropt. 20, 85–98 (2018).
    Google Scholar 

    13.
    Mohan, A. V., Swamy, P. & Shanker, K. Population structure in the Andaman keelback, Xenochrophis tytleri: Geographical distance and oceanic barriers to dispersal influence genetic divergence on the Andaman archipelago. PeerJ 6, 5752. https://doi.org/10.7717/peerj.5752 (2018).
    Article  Google Scholar 

    14.
    Rocha, S. et al. Phylogenetic systematics of day geckos, genus Phelsuma, based on molecular and morphological data (Squamata: Gekkonidae). Zootaxa 2429, 1 (2010).
    Google Scholar 

    15.
    Austin, J. J., Arnold, E. N. & Jones, C. G. Reconstructing an island radiation using ancient and recent DNA: The extinct and living day geckos (Phelsuma) of the Mascarene islands. Mol. Phylogenet. Evol. 31, 109–122 (2004).
    CAS  PubMed  Google Scholar 

    16.
    Rocha, S., Posada, D., Carretero, M. A. & Harris, D. J. Phylogenetic affinities of Comoroan and East African day geckos (genus Phelsuma): Multiple natural colonisations, introductions and island radiations. Mol. Phylogenet. Evol. 43, 685–692 (2007).
    CAS  PubMed  Google Scholar 

    17.
    Rocha, S., Vences, M., Glaw, F., Posada, D. & Harris, D. J. Multigene phylogeny of Malagasy day geckos of the genus Phelsuma. Mol. Phylogenet. Evol. 52, 530–537 (2009).
    CAS  PubMed  Google Scholar 

    18.
    Rocha, S. Phylogeography and diversification history of the day-gecko genus Phelsuma in the Seychelles islands. BMC Evol. Biol. 13, 3. https://doi.org/10.1186/1471-2148-13-3 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Cheke, A. & Hume, J. P. Lost Land of the Dodo: The Ecological History of Mauritius, Réunion and Rodrigues (Bloomsbury Publishing, London, 2010).
    Google Scholar 

    20.
    Harmon, L. J., Harmon, L. L. & Jones, C. G. Competition and community structure in diurnal arboreal geckos (genus Phelsuma) in the Indian Ocean. Oikos 116, 1863–1878 (2007).
    Google Scholar 

    21.
    Ratnam, J. Distribution and Behavioural Ecology of the Andaman Day Gecko (Phelsuma andamanensis). MSc dissertation, Pondicherry University (1992).

    22.
    Humphrey, J. E. & Ward, C. F. M. Madagascan Day Geckos (Phelsuma spp.) exhibit differing responses along a gradient of land-use change. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918760282 (2018).
    Article  Google Scholar 

    23.
    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).
    CAS  PubMed  Google Scholar 

    24.
    Gehring, P.-S., Glaw, F., Gehara, M., Ratsoavina, F. M. & Vences, M. Northern origin and diversification in the central lowlands? Complex phylogeography and taxonomy of widespread day geckos (Phelsuma) from Madagascar. Org. Divers. Evol. 13, 605–620 (2013).
    Google Scholar 

    25.
    Mohan, A. V. Comparative phylogeography and patterns of deep genetic differentiation of two gecko species, Paroedura gracilis and Phelsuma guttata, across north-eastern Madagascar. Salamandra 55, 211–220 (2019).
    Google Scholar 

    26.
    Beaumont, M. A. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41, 379–406 (2010).
    Google Scholar 

    27.
    Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. & Evol. 25, 410–418 (2010).
    Google Scholar 

    28.
    Arbogast, B. S. & Kenagy, G. J. Comparative phylogeography as an integrative approach to historical biogeography: guest editorial. J. Biogeogr. 28, 819–825 (2008).
    Google Scholar 

    29.
    Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. Proc. Natl. Acad. Sci. 109, 5358–5363 (2012).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
    CAS  PubMed  Google Scholar 

    31.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures: invited technical review. Mol. Ecol. Resour. 11, 5–18 (2011).
    PubMed  Google Scholar 

    32.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Verity, R. & Nichols, R. A. Estimating the number of subpopulations (K) in structured populations. Genetics 203, 1827–1839 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
    PubMed  PubMed Central  Google Scholar 

    35.
    Thangaraj, K. et al. Genetic affinities of the Andaman Islanders, a vanishing human population. Curr. Biol. 13, 86–93 (2003).
    CAS  PubMed  Google Scholar 

    36.
    Chaubey, G. & Endicott, P. The Andaman Islanders in a regional genetic context: Reexamining the evidence for an early peopling of the archipelago from South Asia. Human Bio. 85, 153–172 (2013).
    Google Scholar 

    37.
    Rico, C. et al. Null alleles are ubiquitous at microsatellite loci in the Wedge Clam (Donax trunculus). 10.7717/peerj.3188 (2017).

    38.
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).
    ADS  CAS  PubMed  Google Scholar 

    39.
    Sharief, M. U. Ethnobotanical studies of the dwindling aboriginal Jarawa tribe in Andaman Islands India. Gen. Res. Crop Evol. 64, 1861–1872 (2017).
    Google Scholar 

    40.
    Chandramouli, S. R. First record of a Phelsuma Gray, 1825 (Sauria: Gekkonidae) from the Nicobar Archipelago, Bay of Bengal. Sauria 39, 49–51 (2017).
    Google Scholar 

    41.
    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
    PubMed  Google Scholar 

    42.
    Andrews, H. V., Vasumati, S. & others. Sustainable management of protected areas in the Andaman and Nicobar Islands. In Sustainable Management of Protected Areas in the Andaman Nicobar Island (2002).

    43.
    Sekhsaria, P. & Pandya, V. Jarawa Tribal Reserve dossier: cultural & biological diversities in the Andaman Islands (UNESCO, 2010).

    44.
    Shen, X.-X., Liang, D. & Zhang, P. The development of three long universal nuclear protein-coding locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS ONE 7, 39256. https://doi.org/10.1371/journal.pone.0039256 (2012).
    ADS  CAS  Article  Google Scholar 

    45.
    Bauer, A. M., de Silva, A., Greenbaum, E. & Jackman, T. A new species of day gecko from high elevation in Sri Lanka, with a preliminary phylogeny of Sri Lankan Cnemaspis (Reptilia, Squamata, Gekkonidae). Mitteilungen aus dem Museum für Naturkunde Berlin Zool. Reihe 83, 22–32 (2007).
    Google Scholar 

    46.
    Leaché, A. D. & McGuire, J. A. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644 (2006).
    PubMed  Google Scholar 

    47.
    Gamble, T., Bauer, A. M., Greenbaum, E. & Jackman, T. R. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J. Biogeogr. 35, 88–104 (2008).
    Google Scholar 

    48.
    Silvestro, D. & Michalak, I. raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).
    Google Scholar 

    49.
    Perl, R. G. B. et al. Population genetic analysis of the recently rediscovered Hula painted frog (Latonia nigriventer) reveals high genetic diversity and low inbreeding. Sci. Rep. 8, 5588. https://doi.org/10.1038/s41598-018-23587-w (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).
    CAS  PubMed  Google Scholar 

    51.
    Bruford, M. Single-locus and multilocus DNA fingerprint. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp. 225–270 (1992).

    52.
    Ryan, W. B. F. et al. Global multi-resolution topography synthesis: Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, 03014. https://doi.org/10.1029/2008GC002332 (2009).
    ADS  Article  Google Scholar 

    53.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment: Cervus likelihood model. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Google Scholar 

    54.
    Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2, 281. https://doi.org/10.7717/peerj.281 (2014).
    Article  Google Scholar 

    55.
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Google Scholar 

    56.
    Fisher, R. The logic of scientific inference. J. R. Stat. Soc. 98, 39–54 (1935).
    MATH  Google Scholar 

    57.
    Adamack, A. T. & Gruber, B. Pop gen report: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
    Google Scholar 

    58.
    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Google Scholar 

    60.
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets: Program note. Mol. Ecol. Notes 3, 167–169 (2003).
    CAS  Google Scholar 

    61.
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity : An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 

    62.
    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).
    CAS  PubMed  Google Scholar 

    63.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Google Scholar 

    64.
    Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).
    PubMed  Google Scholar 

    65.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  Google Scholar 

    67.
    Piry, S. et al. Mapping averaged pairwise information (MAPI): A new exploratory tool to uncover spatial structure. Methods Ecol. Evol. 7, 1463–1475 (2016).
    Google Scholar 

    68.
    Cornuet, J.-M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Google Scholar 

    69.
    Estoup, A., Jarne, P. & Cornuet, J.-M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).
    CAS  PubMed  Google Scholar 

    70.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    71.
    Palumbi, S. Simple fool’s guide to PCR. (1991).

    72.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  PubMed  Google Scholar 

    73.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  Google Scholar 

    74.
    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    75.
    Winter, D. J. mmod: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12, 1158–1160 (2012).
    CAS  PubMed  Google Scholar  More

  • in

    Geobiochemistry characteristics of rare earth elements in soil and ground water: a case study in Baotou, China

    Distribution characteristics of REEs in ground water
    In this study, ground water samples were collected from 18 ground water monitoring wells around tailings ponds and their chemical characteristics were also having been determined, as showed in Figure S1. Fe, Mn2+, Cl−, SO42−, ammonia nitrogen and total hardness showed the same trend and decreased with distance. The ground water environmental quality standard (III Grade, National Standard Bureau of PR China, GB3838-2002, the water quality above III Grade can be used for living and drinking after treatment, but the water quality below III Grade was bad and cannot be used as drinking water source) was used as the evaluation standard. The ratio of the number of wells with Fe, Mn2+, Cl−, SO42−, ammonia nitrogen and total hardness exceeding the standard in the total number of wells was 33.33%, 61.11%, 66.67%, 77.78%, 100% and 81.25%, respectively.
    In order to study the accumulation of REEs in ground water, the concentration of REEs in 18 ground water samples around the tailings pond were measured. The total REEs concentrations in ground water ranged from 0.0820 to 12.3 μg/L, and rare earth in the ground water accumulated in the southeast of the tailings pond (Fig. 2). In addition, the concentrations of REEs in ground water around the tailings pond decreased in the order of Ce  > La  > Nd  > Pr  > Gd  > Sm  > Dy  > Er  > Eu  > Yb  > Tb  > Ho  > Tm  > Lu. Chondrite-normalized REEs patterns for ground waters around the tailings were shown in Fig. 4b and Table 1. The well points have the same normalization pattern with a predominance of LREEs over HREEs.
    Figure 2

    Distribution of rare earth elements in the ground water surrounding the rare earth tailings pond (μg/L).

    Full size image

    Table 1 Distribution characteristics of REEs in ground water surrounding tailings pond.
    Full size table

    The distribution patterns of REEs in ground water were characterized by obvious fractionation of LREEs and HREEs with the LREEs/HREEs ratios of 2.77 ~ 25.9, and (La/Yb)N of 1.445 ~ 50.67. The degree of LREEs fractionation with (La/Sm)N of 0.5806 ~ 5.216. Most sampling points presented the positive anomaly of Ce and Eu, however, GW1, GW5, GW6, GW9, GW10, GW13 and GW6 were negative anomalies of Ce, while GW1, GW5, GW7 and GW8 were negative anomalies of Eu. Individual anomalies showed differentiation between selected elements (Ce and Eu) and the other REEs (Table 1).
    Baotou environmental monitoring station, Inner Mongolia, China detected ground water leakage around the pond, and various degrees of ground water pollution were found with relatively lower metals concentration and higher anionic concentration21,22,23. Therefore, in addition to REEs, for our ground water correlation analysis we chose to also look at Fe, Mn2+, Cl−, SO42−, ammonia nitrogen and some other ions (HCO3−, total hardness). Correlation analysis showed that total hardness (r = 0.541, p  More

  • in

    Tall fescue sward structure affects the grazing process of sheep

    1.
    Keating, B. A., Carberry, P., Thomas, S., Clark, J. Eco-efficient agriculture and climate change: Conceptual foundations and frameworks. In Eco-Efficiency: From Vision to Reality (ed. Hershey, C. H., Neate, P.) 19–28 (CIAT, Cali, 2013).
    2.
    Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).
    Article  Google Scholar 

    3.
    Rouquette, F. M. Jr. Grazing systems research and impact of stocking strategies on pasture–animal production efficiencies. Crop Sci. 55, 2513–2530. https://doi.org/10.2135/cropsci2015.01.0062 (2015).
    CAS  Article  Google Scholar 

    4.
    Carvalho, P. C. F. et al. From the bite to precision grazing: Understanding the plant-animal interface to exploit the multi-functionality of grasslands. R. Bras. Zootec. 38, 109–122 (2009).
    Article  Google Scholar 

    5.
    Laca, E. A. Precision livestock production: Tools and concepts. R. Bras. Zootec. 38, 123–132 (2009).
    Article  Google Scholar 

    6.
    Bonaudo, T. et al. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010 (2014).
    Article  Google Scholar 

    7.
    Massey, F. P. & Hartley, S. E. Experimental demonstration of the anti-herbivore effects of silica in grasses: Impacts on foliage digestibility and vole growth rates. Proc. R. Soc. B. 273, 2299–2304. https://doi.org/10.1098/rspb.2006.3586 (2006).
    CAS  Article  PubMed  Google Scholar 

    8.
    Shipley, L. A. The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116, 1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x (2007).
    Article  Google Scholar 

    9.
    Mendoza, M. & Palmqvist, P. Hypsodonty in ungulates: An adaptation for grass consumption or for foraging in open habitat?. J. Zool. 274, 134–142. https://doi.org/10.1111/j.1469-7998.2007.00365.x (2008).
    Article  Google Scholar 

    10.
    Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Ann. Rev. Earth Planet Sci. 39, 517–544. https://doi.org/10.1146/annurev-earth-040809-152402 (2011).
    ADS  CAS  Article  Google Scholar 

    11.
    Allden, W. G. & Whittaker, I. A. M. D. The determinants of herbage intake by grazing sheep: The interrelationship of factors influencing herbage intake and availability. Aust. J. Agric. Res. 21, 755–766 (1970).
    Article  Google Scholar 

    12.
    Laca, E. A., Ungar, E. D., Seligman, N. G. & Demment, M. W. Effects of sward height and bulk density on the bite dimensions of cattle grazing homogeneous sward. Grass Forage Sci. 47, 91–102. https://doi.org/10.1111/j.1365-2494.1992.tb02251.x (1992).
    Article  Google Scholar 

    13.
    Laca, E. A., Ortega, I. M. Integrating foraging mechanisms across spatial and temporal scales. In Proceedings of the 5th International Rangeland Congress (Scarnecchia, D.L., West, N.E., eds.) 129−132 (Society for Range Management, Denver, 1996).

    14.
    Prache, S. & Delagarde, R. The influence of vegetation characteristics on foraging strategy and ingestive behaviour. In Grassland Productivity and Ecosystem Services (eds Lemaire, G. et al.) 27–36 (CABI, Cambridge, 2011).
    Google Scholar 

    15.
    Gross, J. E., Shipley, L. A., Hobbs, N. T., Spalinger, D. E. & Wunder, B. A. Functional response of herbivores in food-concentrated patches: Tests of a mechanistic model. Ecology 74, 778–791. https://doi.org/10.2307/1940805 (1993).
    Article  Google Scholar 

    16.
    Decruyenaere, V., Buldgen, A. & Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 13, 559–573 (2009).
    Google Scholar 

    17.
    Amaral, M. F. et al. Sward structure management for a maximum short-term intake rate in annual ryegrass. Grass Forage Sci. 68, 271–277. https://doi.org/10.1111/j.1365-2494.2012.00898.x (2012).
    ADS  Article  Google Scholar 

    18.
    Barre, J. P. et al. Morphological characteristics of perennial ryegrass leaves that influence short-term intake in dairy cows. Agron. J. 98, 978–985. https://doi.org/10.2134/agronj2005.0213 (2006).
    Article  Google Scholar 

    19.
    Hodgson J. Grazing Management: Science Into Practice. Longman Scientific and Technical. 1st edn. (Longman Group, London, 1990).

    20.
    Fonseca, L. et al. Management targets for maximizing the short-term herbage intake rate of cattle grazing in Sorghum bicolor. Livest. Sci. 145, 205–211. https://doi.org/10.1016/j.livsci.2012.02.003 (2012).
    Article  Google Scholar 

    21.
    Mezzalira, J. C. et al. Rotational grazing management in a tropical pasture to maximize the dairy cow’s herbage intake rate. Arq. Bras. Med. Vet. Zootec. 65, 833–840 (2013).
    Article  Google Scholar 

    22.
    Mezzalira, J. C. et al. Behavioural mechanisms of intake rate by heifers grazing swards of contrasting structures. Appl. Anim. Behav. Sci. 153, 1–9. https://doi.org/10.1016/j.applanim.2013.12.014 (2014).
    Article  Google Scholar 

    23.
    Orr, R. et al. Intake characteristics of perennial ryegrass varieties when grazed by sheep under continuous stocking management. Euphytica 134, 247–260. https://doi.org/10.1023/B:EUPH.0000004949.49050.78 (2003).
    Article  Google Scholar 

    24.
    Guzatti, G. C. et al. Changes in the short-term intake rate of herbage by heifers grazing annual grasses throughout the growing season. Grassl. Sci. 63, 255–264. https://doi.org/10.1111/grs.12170 (2017).
    Article  Google Scholar 

    25.
    Bailey, D. W. et al. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 49, 386–400 (1996).
    Article  Google Scholar 

    26.
    Griffiths, W. M., Hodgson, J. & Arnold, G. C. The influence of sward canopy structure on foraging decisions by grazing cattle I. Patch selection. Grass Forage Sci. 58, 112–124. https://doi.org/10.1046/j.1365-2494.2003.00360.x (2003).
    Article  Google Scholar 

    27.
    Gonçalves, E. N. et al. Plant-animal relationships in pastoral heterogeneous environment: Process of herbage intake. R. Bras. Zootec. 38, 611–617 (2009).
    Article  Google Scholar 

    28.
    Fonseca, L. et al. Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards. J. Anim. Sci. 91, 4357–4365. https://doi.org/10.2527/jas2012-5602 (2013).
    CAS  Article  PubMed  Google Scholar 

    29.
    Carvalho, P. C. F. Harry stobbs memorial lecture: Can grazing behavior support innovations in grassland management?. Trop. Grassl-Forrajes Trop. 1, 137–155 (2013).
    Article  Google Scholar 

    30.
    Baumont, R., Cohen-Salmon, D., Prache, S. & Sauvant, D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 112, 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005 (2004).
    Article  Google Scholar 

    31.
    Mezzalira, J. C. et al. Mechanisms and implications of a type iv functional response for short-term intake rate of dry matter in large mammalian herbivores. J. Anim. Ecol. 86, 1159–1168. https://doi.org/10.1111/1365-2656.12698 (2017).
    Article  PubMed  Google Scholar 

    32.
    Ungar, E. D., Genizi, A. & Demment, M. W. Bite dimensions and herbage intake by cattle grazing short hand-constructed swards. Agron. J. 83, 973–978. https://doi.org/10.2134/agronj1991.00021962008300060010x (1991).
    Article  Google Scholar 

    33.
    Laca, E. A., Ungar, E. D. & Demment, M. W. Mechanisms of handling time and intake rate of a large mammalian grazer. Appl. Anim. Behav. Sci. 39, 3–19. https://doi.org/10.1016/0168-1591(94)90011-6 (1994).
    Article  Google Scholar 

    34.
    Black, J. L. & Kenney, P. A. Factors affecting diet selection by sheep. II. Height and density of pasture. Aust. J. Agric. Res. 35, 551–563. https://doi.org/10.1071/AR9840565 (1984).
    Article  Google Scholar 

    35.
    Burlison, A. J., Hodgson, J. & Illius, A. W. Sward canopy structure and the bite dimensions and bite weight of grazing sheep. Grass Forage Sci. 46, 29–38. https://doi.org/10.1111/j.1365-2494.1991.tb02205.x (1991).
    Article  Google Scholar 

    36.
    Gregorini, P. et al. Effect of herbage depletion on short-term foraging dynamics and diet quality of steers grazing wheat pastures. J. Anim. Sci. 89, 3824–3830. https://doi.org/10.2527/jas.2010-3725 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci. 61, 272–281. https://doi.org/10.1111/j.1365-2494.2006.00531.x (2006).
    Article  Google Scholar 

    38.
    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effects of stem density of tropical swards and age of grazing cattle on their foraging behaviour. Grass Forage Sci. 63, 1–8. https://doi.org/10.1111/j.1365-2494.2007.00609.x (2008).
    Article  Google Scholar 

    39.
    Pretorius, Y. et al. Why elephant have trunks and giraffe long tongues: how plants shape large herbivoremouth morphology. Acta Zool. 97, 246–254. https://doi.org/10.1111/azo.12121 (2016).
    Article  Google Scholar 

    40.
    Verdenal, A., Combes, D. & Escobar-Gutiérrez, A. J. A study of ryegrass architecture as a self-regulated system, using functional–structural plant modelling. Funct. Plant Biol. 35, 911–924. https://doi.org/10.1071/FP08050 (2008).
    Article  Google Scholar 

    41.
    Sonohat, G. et al. Leaf dispersion and light partitioning in three dimensionally digitized tall fescue–white clover mixtures. Plant Cell Environ. 25, 529–538. https://doi.org/10.1046/j.1365-3040.2002.00833.x (2002).
    Article  Google Scholar 

    42.
    Greenwood, R. M. & Atkinson, I. A. E. Evolution of divaricating plants in new zealand in relation to moa browsing. Proc. N. Z. Ecol. Soc. 24, 21–33 (1977).
    Google Scholar 

    43.
    McQueen, D. R. Divaricating shrubs in patagonia and new zealand. N Z J. Ecol. 24, 69–80 (2000).
    Google Scholar 

    44.
    Bond, W. J., Lee, W. G. & Craine, J. M. Plant structural defenses against browsing birds: A legacy of New Zealand’ extinct moas. Oikos 104, 500–508. https://doi.org/10.1111/j.0030-1299.2004.12720.x (2004).
    Article  Google Scholar 

    45.
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).
    Article  Google Scholar 

    46.
    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Article  Google Scholar 

    47.
    Illius, A. W., Gordon, I. J., Milne, J. D. & Wright, W. Costs and benefits of foraging on grasses varying in canopy structure and resistance to defoliation. Funct. Ecol. 9, 894–903. https://doi.org/10.2307/2389988 (1995).
    Article  Google Scholar 

    48.
    Hirata, M., Kunieda, E. & Tobisa, M. Short-term ingestive behaviour of cattle grazing tropical stoloniferous grasses with contrasting growth forms. J. Agric. Sci. 148, 615–624. https://doi.org/10.1017/S0021859610000353 (2010).
    Article  Google Scholar 

    49.
    Savian, J. V. et al. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean Prod. 186, 602–608. https://doi.org/10.1016/j.jclepro.2018.03.162 (2018).
    Article  Google Scholar 

    50.
    Soreng, R. J., Terrell, E. E., Wiersema, J., Darbyshire, S. J. (1488) Proposal to conserve the name Schedonorus arundinaceus (Schreb.) Dumort. against Schedonorus arundinaceus Roem. & Schult. (Poaceae: Poeae). Taxonomy 50, 915–917 (2001).

    51.
    Barthram GT. Experimental techniques: The HFRO sward stick. In Biennial Report of the Hill Farming Research Organization (ed. Alcock, M. M.) 29–30 (Midlothian: Hill Farming Research Organization, 1985).

    52.
    Rutter, S. M., Champion, R. A. & Penning, P. D. An automatic system to record foraging behaviour in free-ranging ruminants. Appl. Anim. Behav. Sci. 54, 185–195. https://doi.org/10.1016/S0168-1591(96)01191-4 (1997).
    Article  Google Scholar 

    53.
    Rutter, S. M. Graze: A program to analyze recordings of the jaw movements of ruminants. Behav. Res. Methods 32, 86–92. https://doi.org/10.3758/BF03200791 (2000).
    CAS  Article  Google Scholar 

    54.
    Gibb M. Animal grazing/intake terminology and definitions. In Pasture Ecology and Animal Intake 21–37 (Proceedings 3, Dublin, 1998).

    55.
    Penning, P. D. & Hooper, G. E. N. An evaluation of the use of short-term weight changes in grazing sheep for estimating herbage intake. Grass Forage Sci. 40, 79–84. https://doi.org/10.1111/j.1365-2494.1985.tb01722.x (1985).
    Article  Google Scholar 

    56.
    Bonnet, O. J. F. et al. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 55, 339–349. https://doi.org/10.1071/AN14540 (2015).
    Article  Google Scholar 

    57.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016). More

  • in

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    1.
    Woo, M. K. Permafrost Hydrology (Springer, New York, 2012).
    Google Scholar 
    2.
    Braun, C., Hardy, D. R., Bradley, R. S. & Retelle, M. J. Streamflow and suspended sediment transfer to Lake Sophia, Cornwallis Island, Nunavut, Canada. Arct. Antarct. Alp. Res. 32(4), 456–465. https://doi.org/10.1080/15230430.2000.12003390 (2000).
    Article  Google Scholar 

    3.
    Woo, M. K. & McCann, B. S. Climatic variability, climatic change, runoff, and suspended sediment regimes in northern Canada. Phys. Geogr. 15(3), 201–226. https://doi.org/10.1080/02723646.1994.10642513 (1994).
    Article  Google Scholar 

    4.
    Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 23, 169–182. https://doi.org/10.1002/hyp.7196 (2009).
    ADS  CAS  Article  Google Scholar 

    5.
    Lafrenière, M. J. et al. Chapter 6: Drivers, trends and uncertainties of changing freshwater systems. In From Science to Policy in the Eastern Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization (eds Bell, T. & Brown, T. M.) (ArcticNet, Halifax, 2018).
    Google Scholar 

    6.
    Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5(12), eaaw9883. https://doi.org/10.1126/sciadv.aaq9883 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-drive thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45(4), 371–374. https://doi.org/10.1130/G38626.1 (2017).
    ADS  Article  Google Scholar 

    8.
    Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692. https://doi.org/10.1002/jgrf.20063 (2013).
    ADS  Article  Google Scholar 

    9.
    Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R. & England, J. H. Accelerating thermokarst transforms ice-cored terrain triggering a downstream cascade to the ocean. Geophys. Res. Lett. 44(21), 11080–11087. https://doi.org/10.1002/2017GL074912 (2017).
    ADS  Article  Google Scholar 

    10.
    Malone, L., Lacelle, D., Kokelj, S. & Clark, I. D. Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada). Chem. Geol. 356, 38–49. https://doi.org/10.1016/j.chemgeo.2013.07.010 (2013).
    ADS  CAS  Article  Google Scholar 

    11.
    Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119. https://doi.org/10.1002/ppp.1779 (2013).
    Article  Google Scholar 

    12.
    Lantz, T. C. & Kokelj, S. V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys. Res. Lett. 35, L06502. https://doi.org/10.1029/2007/GL032433 (2008).
    ADS  Article  Google Scholar 

    13.
    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329. https://doi.org/10.1038/s41467-019-09314-7(2019) (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Bowden, W. B. et al. Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J. Geophys. Res. 113, G02026. https://doi.org/10.1029/2007JG000470 (2008).
    ADS  CAS  Article  Google Scholar 

    15.
    Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223. https://doi.org/10.1016/j.earscirev.2019.02.018 (2019).
    ADS  CAS  Article  Google Scholar 

    16.
    Kokelj, S. V. & Burn, C. R. Geochemistry of the active layer and near-surface permafrost, Mackenzie Delta region, Northwest Territories, Canada. Can. J. Earth Sci. 42(1), 37–48. https://doi.org/10.1139/E04-089 (2005).
    ADS  CAS  Article  Google Scholar 

    17.
    Keller, K., Blum, J. D. & Kling, G. W. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chem. Geol. 273, 76–81. https://doi.org/10.1016/j.chemgeo.2010.02.013 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Vonk, J. E. et al. A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Torneträsk. J. Geophys. Res. 117, G03018. https://doi.org/10.1029/2011JG001887 (2012).
    Article  Google Scholar 

    19.
    Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88. https://doi.org/10.1002/lol2.10065 (2018).
    Article  Google Scholar 

    20.
    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740. https://doi.org/10.5194/bg-12-3725-2015 (2015).
    ADS  CAS  Article  Google Scholar 

    21.
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023. https://doi.org/10.1029/2008GB003327 (2009).
    ADS  CAS  Article  Google Scholar 

    22.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).
    ADS  Article  Google Scholar 

    23.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179. https://doi.org/10.1038/nature14338 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Semiletov, I. P. et al. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8, 2407–2426. https://doi.org/10.5194/bg-8-2407-2011 (2011).
    ADS  CAS  Article  Google Scholar 

    25.
    Schädel, C. et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 13, 105002. https://doi.org/10.1088/1748-9326/aae0ff (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Dean, J. F. et al. East Siberian Arctic inland waters emit mostly contemporary carbon. Nat. Commun. 11, 1627. https://doi.org/10.1038/s41467-020-15511-6 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    O’Donnell, J. A. et al. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. J. Geophys. Res. 121(10), 2727–2744. https://doi.org/10.1002/2016JG003431 (2016).
    CAS  Article  Google Scholar 

    28.
    Tank, S. E. et al. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob. Biogeochem. Cycles 26, GB0E02. https://doi.org/10.1029/2012GB004299 (2012).
    CAS  Article  Google Scholar 

    29.
    Thienpont, J. R. et al. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw. Biol. 58, 337–353. https://doi.org/10.1111/fwb.12061 (2012).
    Article  Google Scholar 

    30.
    Vonk, J. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40(11), 2689–2693. https://doi.org/10.1002/grl.50348 (2013).
    ADS  CAS  Article  Google Scholar 

    31.
    Littlefair, C. A., Tank, S. E. & Kokelj, S. V. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada. Biogeosciences 14, 5487–5505. https://doi.org/10.5194/bg-14-5487-2017 (2017).
    ADS  CAS  Article  Google Scholar 

    32.
    Fouché, J., Lafrenière, M. J., Rutherford, K. & Lamoureux, S. F. Seasonal hydrology and permafrost disturbance impacts on dissolved organic matter composition in High Arctic headwater catchments. Arct. Sci. 3, 378–405. https://doi.org/10.1139/as-2016-0031 (2017).
    Article  Google Scholar 

    33.
    Lamoureux, S. F. & Lafrenière, M. J. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances. Environ. Res. Lett. 9, 045002. https://doi.org/10.1088/1748-9326/9/4/045002 (2014).
    ADS  CAS  Article  Google Scholar 

    34.
    Guo, L., Ping, C.-L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys. Res. Lett. 34, L13603. https://doi.org/10.1029/2007GL030689 (2007).
    ADS  CAS  Article  Google Scholar 

    35.
    Schreiner, K. M., Bianchi, T. S. & Rosenheim, B. E. Evidence for permafrost thaw and transport from an Alaskan North Slope watershed. Geophys. Res. Lett. 41, 3117–3126. https://doi.org/10.1002/2014GL059514 (2014).
    ADS  Article  Google Scholar 

    36.
    Wang, J.-J. et al. Differences in riverine and pond water dissolved organic matter composition and sources in Canadian High Arctic watersheds affected by active layer detachments. Environ. Sci. Technol. 52, 1062–1071. https://doi.org/10.1021/acs.est.7b05506 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Guo, L. & Macdonald, R. W. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob. Biogeochem. Cycles 20, GB2011. https://doi.org/10.1029/2005GB002593 (2006).
    ADS  CAS  Article  Google Scholar 

    38.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267. https://doi.org/10.1038/nclimate3240 (2017).
    ADS  Article  Google Scholar 

    39.
    Bintanja, A. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 16001. https://doi.org/10.1038/s41598-018-34450-3 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Lewis, T., Lafrenière, M. J. & Lamoureux, S. F. Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost change, Cape Bounty, Melville Island, Canada. Hydrol. Process. 26, 2003–2018. https://doi.org/10.1002/hyp.8335 (2012).
    ADS  Article  Google Scholar 

    41.
    Beel, C. R., Lamoureux, S. F. & Orwin, J. F. Fluvial response to a period of hydrometeorological change and landscape disturbance in the Canadian High Arctic. Geophys. Res. Lett. 45(19), 10446–10455. https://doi.org/10.1029/2018GL079660 (2018).
    ADS  Article  Google Scholar 

    42.
    Roberts, K. E. et al. Climate and permafrost effects on the chemistry and ecosystems of High Arctic lakes. Sci. Rep. 7, 13292. https://doi.org/10.1038/s41598-017-13658-9 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Lamoureux, S. F., Lafrenière, M. J. & Favaro, E. A. Erosion dynamics following localized permafrost slope disturbances. Geophys. Res. Lett. 41(15), 5499–5505. https://doi.org/10.1002/2014GL060677 (2014).
    ADS  Article  Google Scholar 

    44.
    Lamhonwah, D., Lafrenière, M. J., Lamoureux, S. F. & Wolfe, B. B. Multi-year impacts of permafrost disturbance and thermal perturbation on High Arctic stream chemistry. Arct. Sci. 3, 254–276. https://doi.org/10.1139/as-2016-0024 (2017).
    Article  Google Scholar 

    45.
    Lamoureux, S. F. & Lafrenière, M. J. More than just snowmelt: integrated watershed science for changing climate and permafrost at the Cape Bounty Arctic Watershed Observatory. WIREs Water 5(1), e1255. https://doi.org/10.1002/wat2.1255 (2017).
    Article  Google Scholar 

    46.
    Hodgson, D. A., Vincent, J.-S. & Fyles, J. G. Quaternary Geology of Central Melville Island, Northwest Territories. Geological Survey of Canada, Paper 83-16. https://doi.org/10.4095/119784 (1984).

    47.
    Soil Classification Working Group. The Canadian System of Soil Classification 3rd edn, Vol. 1646 (Agriculture and Agri-Food Canada Publication, Revised, 1998). https://sis.agr.gc.ca/cansis/publications/manuals/1998-cssc-ed3/index.html

    48.
    Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simpson, M. J. Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochemistry 128(3), 397–415. https://doi.org/10.1007/s10533-016-0215-7 (2016).
    CAS  Article  Google Scholar 

    49.
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x (2005).
    Article  Google Scholar 

    50.
    Favaro, E. A. & Lamoureux, S. F. Antecedent controls on rainfall runoff response and sediment transport in a High Arctic catchment. Geogr. Ann. Phys. Geogr. 96(4), 433–446. https://doi.org/10.1111/geoa.12063 (2014).
    Article  Google Scholar 

    51.
    Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, 1982).
    Google Scholar 

    52.
    Watt, W. E., Lathem, K. W., Neill, C. R., Richards, T. L. & Rousselle, J. Hydrology of Floods in Canada: A Guide to Planning and Design (National Research Council of Canada, Ottawa, 1989).
    Google Scholar 

    53.
    Government of Canada – Environment and Natural Resources. Historical Climate Data. www.climat.meteo.gc.ca (2017).

    54.
    Singh, V. Elementary Hydrology (Prentice Hall, Upper Saddle River, 1992).
    Google Scholar 

    55.
    Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, GB1024. https://doi.org/10.1029/2006GB002856 (2008).
    ADS  CAS  Article  Google Scholar 

    56.
    Gareis, J. A. L. & Lesack, L. F. W. Fluxes of particulates and nutrients during hydrologically defined seasonal periods in an ice-affect great Arctic river, the Mackenzie. Water Resour. Res. 53, 6109–6132. https://doi.org/10.1002/2017WR020623 (2017).
    ADS  CAS  Article  Google Scholar 

    57.
    Kennedy, P., Kennedy, H. & Papadimitriou, S. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun. Mass Spectrom. 19, 1063–1068. https://doi.org/10.1002/rcm.1889 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Komada, T., Anderson, M. R. & Dorfmeier, C. L. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr. Methods 6, 254–262. https://doi.org/10.4319/lom.2008.6.254 (2008).
    CAS  Article  Google Scholar 

    59.
    Searcy, J. K. & Hardison, C. H. Double-mass curves. In Manual of Hydrology: Part 1. General Surface-Water Techniques. Water-Supply Paper 1541-B (US Geological Survey, 1960).

    60.
    Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42, 2830–2835. https://doi.org/10.1002/2015GL063498 (2015).
    ADS  Article  Google Scholar 

    61.
    Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, L05305. https://doi.org/10.1029/2003GL019251 (2004).
    ADS  CAS  Article  Google Scholar 

    62.
    Raymond, P. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, GB4011. https://doi.org/10.1029/2007GB002934 (2007).
    ADS  CAS  Article  Google Scholar 

    63.
    Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska 2001–2005. Water Resour. Res. 43, W02411. https://doi.org/10.1029/2006WR005201 (2007).
    ADS  CAS  Article  Google Scholar 

    64.
    Drake, T. W. et al. The ephemeral signature of permafrost carbon in an Arctic fluvial network. JGR Biogeosci. 123(5), 1475–1485. https://doi.org/10.1029/2017JG004311 (2018).
    CAS  Article  Google Scholar 

    65.
    Pautler, B. G., Simpson, A. J., McNally, D. J., Lamoureux, S. F. & Simpson, M. J. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 44, 4076–4082. https://doi.org/10.1021/es903685j (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simspon, M. J. Potential shifts in Canadian High Arctic sedimentary organic matter composition with permafrost active layer detachments. Org. Geochem. 79, 1–13. https://doi.org/10.1016/j.orggeochem.2014.11.007 (2015).
    CAS  Article  Google Scholar 

    67.
    Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37(7), 1319–1331. https://doi.org/10.1016/j.soilbio.2004.11.028 (2005).
    CAS  Article  Google Scholar 

    68.
    Owens, P. N., Petticrew, E. L. & van der Perk, M. Sediment response to catchment disturbances. J. Soils Sediments 10, 591–596. https://doi.org/10.1007/s11368-010-0235-1 (2010).
    Article  Google Scholar 

    69.
    Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).
    CAS  Article  Google Scholar 

    70.
    Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167. https://doi.org/10.5194/bg-12-7129-2015 (2015).
    ADS  CAS  Article  Google Scholar 

    71.
    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374. https://doi.org/10.1007/s10584-013-0730-7 (2013).
    ADS  CAS  Article  Google Scholar 

    72.
    Vonk, J. E., van Dongen, B. E. & Gustafsson, Ö. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys. Res. Lett. 37, L11605. https://doi.org/10.1029/2010GL042909 (2010).
    ADS  CAS  Article  Google Scholar 

    73.
    Gordeev, V. V. & Kravchishina, M. D. River flux of dissolved organic carbon (DOC) and particulate organic carbon (POC) to the Arctic Ocean: what are the consequences of the global changes. In Influence of Climate Change on the Changing Arctic and sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 145–161 (Springer, Berlin, 2009).
    Google Scholar 

    74.
    Rudy, A. C. A., Lamoureux, S. F., Treitz, P. & Collingwood, A. Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques. Cold Reg. Sci. Technol. 88, 37–49. https://doi.org/10.1016/j.coldregions.2012.12.008 (2013).
    Article  Google Scholar  More

  • in

    Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS

    1.
    Sauer, J. D. Revision of the dioecious amaranths. Madroño 13, 5–46 (1955).
    Google Scholar 
    2.
    Bayón, N. D. Revisión taxonómica de las especies monoicas de Amaranthus L. (Amaranthaceae): Amaranthus subg. Albersia y Amaranthus subg. Amaranthus. Ann. Mo. Bot. Gard. 101, 261–383 (2015).
    Article  Google Scholar 

    3.
    Plant Protection and Quarantine. Weed risk assessment for Amaranthus palmeri (Amaranthaceae) – Palmer amaranth, ver. 3. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (PPQ), Raleigh, NC. 27 pp. (2020).

    4.
    CABI. Fallopia japonica. Invasive Species Compendium. Wallingford, UK: CAB International. https://www.cabi.org/isc (2020).

    5.
    Mosyakin, S. L. & Robertson, K. R. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Ann. Bot. Fenn. 33, 275–281 (1996).
    Google Scholar 

    6.
    Stetter, M. G. & Schmid, K. J. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol. Phylogenet. Evol. 109, 80–92 (2017).
    Article  Google Scholar 

    7.
    Waselkov, K. E., Boleda, A. S. & Olsen, K. M. A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Syst. Bot. 43, 439–458 (2018).
    Article  Google Scholar 

    8.
    Heap, I. The International Survey of Herbicide Resistant Weeds. (Available at: www.weedscience.org; Accessed on: 16 March, 2020)

    9.
    Ward, S. M., Webster, T. M. & Steckel, L. E. Palmer Amaranth (Amaranthus palmeri): A review. Weed Tech. 27, 12–27 (2013).
    Article  Google Scholar 

    10.
    Hager, A. G., Wax, L. M., Stoller, E. W. & Bollero, G. A. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50, 607–610 (2002).
    CAS  Article  Google Scholar 

    11.
    Delye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).
    CAS  Article  Google Scholar 

    12.
    Jasieniuk, M., Brule-Babel, A. L. & Morrison, I. N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44, 176–193 (1996).
    CAS  Article  Google Scholar 

    13.
    Umbarger, H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47, 533–606 (1978).
    CAS  Article  Google Scholar 

    14.
    Tranel, P. J., Jiang, W. L., Patzoldt, W. L. & Wright, T. R. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52, 236–241 (2004).
    CAS  Article  Google Scholar 

    15.
    Tranel, P. J., Wright, T. R. & Heap, I. M. Mutations in herbicide-resistant weeds to ALS inhibitors. (Available at: https://www.weedscience.com; Accessed on: 16 March, 2020).

    16.
    Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned?. Weed Sci. 50, 700–712 (2002).
    CAS  Article  Google Scholar 

    17.
    Riggins, C. W., Peng, Y. H., Stewart, C. N. Jr. & Tranel, P. J. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag. Sci. 66, 1042–1052 (2010).
    CAS  Article  Google Scholar 

    18.
    Baldwin, B. G., Sanderson, M. J. & Porter, J. M. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. MO. Bot. Gard. 82, 247–277 (1995).
    Article  Google Scholar 

    19.
    China Plant BOL Group et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).
    ADS  Article  Google Scholar 

    20.
    Song, B. H., Chen, Z. D. & Wang, X. Q. Sequence analysis of the ITS region of nuclear ribosomal DNA (nrDNA) in Chinese Amaranthus and its systematic utility. Acta Botan. Sin. 11, 1184–1189 (2000).
    Google Scholar 

    21.
    Xu, H., Li, Z. Y. & Li, J. S. Phylogenetic analysis of alien species of Amaranthus in China based on ITS sequences. Guihaia 37, 139–144 (2017).
    Google Scholar 

    22.
    Murphy, B. P., Plewa, D. E., Phillippi, E., Bissonnette, S. M. & Tranel, P. J. A quantitative assay for Amaranthus palmeri identification. Pest Manag. Sci. 73, 2221–2224 (2017).
    CAS  Article  Google Scholar 

    23.
    Murphy, B. P. & Tranel, P. J. Identification and validation of Amaranthus species-specific SNPs within the its region: Applications in quantitative species identification. Crop Sci. 58, 304–311 (2018).
    CAS  Article  Google Scholar 

    24.
    Wassom, J. J. & Tranel, P. J. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J. Hered. 96, 410–416 (2005).
    CAS  Article  Google Scholar 

    25.
    Nandula, V. K. et al. EPSPS Amplification in Glyphosate-Resistant Spiny Amaranth (Amaranthus spinosus): A case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer Amaranth (Amaranthus palmeri). Pest Manag. Sci. 70, 1902–1909 (2014).
    CAS  Article  Google Scholar 

    26.
    Molin, W. T. & Nandula, V. K. Morphological characterization of Amaranthus palmeri x A. spinosus hybrids. AJPS 8, 1499–1510 (2017).
    Article  Google Scholar 

    27.
    Pratt, D. B. & Clark, L. G. Amaranthus rudis and A. tuberculatus, one species or two?. J. Torrey Bot. Soc. 128, 282–296 (2001).
    Article  Google Scholar 

    28.
    Mosyakin, S. L. & Robertson, K. R. Amaranthus. In Flora of North America and North of Mexico 405–410 (Oxford University Press, Oxford, 2003).
    Google Scholar 

    29.
    Sauer, J. D. The grain amaranths and their relatives: A revised taxonomic and geographic survey. Ann. Mo. Bot. Gard. 54, 103–137 (1967).
    Article  Google Scholar 

    30.
    Sogbohossou, O. E. D. & Achigan-Dako, E. G. Phenetic differentiation and use-type delimitation in Amaranthus spp. from worldwide origins. Sci. Hortic. 178, 31–42 (2014).
    Article  Google Scholar 

    31.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066 (2002).
    CAS  Article  Google Scholar 

    32.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  Article  Google Scholar 

    33.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  Article  Google Scholar 

    34.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
    CAS  Article  Google Scholar  More

  • in

    Factors controlling the distributions of dissolved organic matter in the East China Sea during summer

    1.
    Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361. https://doi.org/10.1016/S0146-6380(97)00056-9 (1997).
    CAS  Article  Google Scholar 
    2.
    Hansell, D. A. In Carlson Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 685–715 (Academic Press, Cambridge, 2002).
    Google Scholar 

    3.
    Lechtenfeld, O. J. et al. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 126, 321–337. https://doi.org/10.1016/j.gca.2013.11.009 (2014).
    ADS  CAS  Article  Google Scholar 

    4.
    Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41–49 (2001).
    Article  Google Scholar 

    5.
    Carlson, C. A. et al. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep Sea Res. Part II 57, 1433–1445. https://doi.org/10.1016/j.dsr2.2010.02.013 (2010).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, Q. et al. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data. J. Geophys. Res. 119, 6557–6574. https://doi.org/10.1002/2014jc009868 (2014).
    ADS  CAS  Article  Google Scholar 

    7.
    Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R. & Knapp, A. N. Dissolved organic nitrogen in the global surface ocean: Distribution and fate. Glob. Biogeochem. Cycles 27, 141–153. https://doi.org/10.1029/2012GB004449 (2013).
    ADS  CAS  Article  Google Scholar 

    8.
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Micro 8, 593–599 (2010).
    CAS  Article  Google Scholar 

    9.
    Chen, C.-T.A. & Wang, S.-L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res. 104, 20675–20686. https://doi.org/10.1029/1999JC900055 (1999).
    ADS  CAS  Article  Google Scholar 

    10.
    Gu, H., Moore, W. S., Zhang, L., Du, J. & Zhang, J. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Cont. Shelf Res. 35, 95–107. https://doi.org/10.1016/j.csr.2012.01.002 (2012).
    ADS  Article  Google Scholar 

    11.
    Kim, J., Cho, H.-M. & Kim, G. Significant production of humic fluorescent dissolved organic matter in the continental shelf waters of the northwestern Pacific Ocean. Sci. Rep. 8, 4887. https://doi.org/10.1038/s41598-018-23299-1 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Su, Y. Water Masses in China Sea (Kluwer Academic Publishers, Boston, 1994).
    Google Scholar 

    13.
    Ogawa, H., Usui, T. & Koike, I. Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res. Part II 50, 353–366. https://doi.org/10.1016/S0967-0645(02)00459-9 (2003).
    ADS  CAS  Article  Google Scholar 

    14.
    Zhang, J., Liu, S. M., Ren, J. L., Wu, Y. & Zhang, G. L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74, 449–478. https://doi.org/10.1016/j.pocean.2007.04.019 (2007).
    ADS  Article  Google Scholar 

    15.
    Kwon, H. K. et al. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci. Rep. 8, 12768. https://doi.org/10.1038/s41598-018-31105-1 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Zhang, J. Biogeochemistry of Chinese estuarine and coastal waters: nutrients, trace metals and biomarkers. Reg. Environ. Change 3, 65–76. https://doi.org/10.1007/s10113-001-0039-3 (2002).
    Article  Google Scholar 

    17.
    Sun, Q., Wang, C., Wang, P., Hou, J. & Ao, Y. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environ. Sci. Pollut. Res. 21, 3460–3473. https://doi.org/10.1007/s11356-013-2287-4 (2014).
    CAS  Article  Google Scholar 

    18.
    Gao, L., Fan, D., Li, D. & Cai, J. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Mar. Environ. Res. 69, 187–197. https://doi.org/10.1016/j.marenvres.2009.10.004 (2010).
    CAS  Article  PubMed  Google Scholar 

    19.
    Zhu, W.-Z., Zhang, H.-H., Zhang, J. & Yang, G.-P. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea. J. Mar. Syst. 180, 9–23. https://doi.org/10.1016/j.jmarsys.2017.12.003 (2018).
    Article  Google Scholar 

    20.
    Gao, X. & Song, J. Main Geochemical Characteristics and Key Biogeochemical Carbon Processes in the East China Sea. J. Coast. Res. 2006, 1330–1339, 1310 (2006).

    21.
    Chen, C.-T.A. Distributions of nutrients in the East China Sea and the South China Sea connection. J. Oceanogr. 64, 737–751. https://doi.org/10.1007/s10872-008-0062-9 (2008).
    CAS  Article  Google Scholar 

    22.
    Stedmon, C. A. & Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50, 686–697 (2005).
    ADS  CAS  Article  Google Scholar 

    23.
    Yamashita, Y., Jaffé, R., Maie, N. & Tanoue, E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 53, 1900–1908 (2008).
    ADS  CAS  Article  Google Scholar 

    24.
    Fellman, J. B., Hood, E. & Spencer, R. G. M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55, 2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452 (2010).
    ADS  CAS  Article  Google Scholar 

    25.
    Carlson, C. A. & Ducklow, H. W. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Res. Part II 42, 639–656. https://doi.org/10.1016/0967-0645(95)00023-J (1995).
    ADS  CAS  Article  Google Scholar 

    26.
    Doval, M. D. & Hansell, D. A. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem. 68, 249–264. https://doi.org/10.1016/S0304-4203(99)00081-X (2000).
    CAS  Article  Google Scholar 

    27.
    Hansell, D. A. & Carlson, C. A. Net community production of dissolved organic carbon. Glob. Biogeochem. Cycles 12, 443–453. https://doi.org/10.1029/98gb01928 (1998).
    ADS  CAS  Article  Google Scholar 

    28.
    Chen, Y., Yang, G.-P., Xia, Q.-Y. & Wu, G.-W. Enrichment and characterization of dissolved organic matter in the surface microlayer and subsurface water of the South Yellow Sea. Mar. Chem. 182, 1–13. https://doi.org/10.1016/j.marchem.2016.04.001 (2016).
    CAS  Article  Google Scholar 

    29.
    Zhao, L. & Gao, L. Dynamics of dissolved and particulate organic matter in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea shelf. J. Mar. Syst. 198, 103188. https://doi.org/10.1016/j.jmarsys.2019.103188 (2019).
    Article  Google Scholar 

    30.
    Hansell, D. A. & Carlson, C. A. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea Res. Part II 48, 1649–1667. https://doi.org/10.1016/S0967-0645(00)00153-3 (2001).
    ADS  CAS  Article  Google Scholar 

    31.
    Koike, I. & Tupas, L. Total dissolved nitrogen in the Northern North Pacific assessed by a high-temperature combustion method. Mar. Chem. 41, 209–214. https://doi.org/10.1016/0304-4203(93)90121-4 (1993).
    CAS  Article  Google Scholar 

    32.
    Vidal, M., Duarte, C. M. & Agusti, S. Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnol. Oceanogr. 44, 106–115. https://doi.org/10.4319/lo.1999.44.1.0106 (1999).
    ADS  CAS  Article  Google Scholar 

    33.
    Chen, Y., Yang, G.-P., Liu, L., Zhang, P.-Y. & Leng, W.-S. Sources, behaviors and degradation of dissolved organic matter in the East China Sea. J. Mar. Syst. 155, 84–97. https://doi.org/10.1016/j.jmarsys.2015.11.005 (2016).
    Article  Google Scholar 

    34.
    Guo, J.-Q. et al. Composition and bioavailability of dissolved organic matter in different water masses of the East China sea. Estuar. Coast. Shelf Sci. 212, 189–202. https://doi.org/10.1016/j.ecss.2018.07.009 (2018).
    ADS  CAS  Article  Google Scholar 

    35.
    Kim, T.-H. & Kim, G. Factors controlling the C:N: P stoichiometry of dissolved organic matter in the N-limited, cyanobacteria-dominated East/Japan Sea. J. Mar. Syst. 115–116, 1–9. https://doi.org/10.1016/j.jmarsys.2013.01.002 (2013).
    Article  Google Scholar 

    36.
    Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6, 658–661. https://doi.org/10.1039/C3AY41935E (2014).
    CAS  Article  Google Scholar 

    37.
    Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107, 402–418. https://doi.org/10.1021/cr050350+ (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Kim, J. & Kim, G. Inputs of humic fluorescent dissolved organic matter via submarine groundwater discharge to coastal waters off a volcanic island (Jeju, Korea). Sci. Rep. 7, 7921. https://doi.org/10.1038/s41598-017-08518-5 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Kim, T.-H., Kwon, E., Kim, I., Lee, S.-A. & Kim, G. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean. J. Sea Res. 78, 18–24. https://doi.org/10.1016/j.seares.2012.12.009 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the Oceans. J. Geol. 91, 1–21. https://doi.org/10.1086/628741 (1983).
    ADS  Article  Google Scholar 

    41.
    Isobe, A. et al. Freshwater and temperature transports through the Tsushima-Korea Straits. J. Geophys. Res. C 107, 2–1 (2002).
    Article  Google Scholar 

    42.
    Liu, S. M. et al. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. J. Mar. Syst. 154, 15–27. https://doi.org/10.1016/j.jmarsys.2015.05.010 (2016).
    Article  Google Scholar 

    43.
    Hopkinson, C. S., Vallino, J. J. & Nolin, A. Decomposition of dissolved organic matter from the continental margin. Deep Sea Res. Part II 49, 4461–4478. https://doi.org/10.1016/S0967-0645(02)00125-X (2002).
    ADS  CAS  Article  Google Scholar 

    44.
    Lee, H., Kim, G., Kim, J., Park, G. & Song, K.-H. Tracing the flow rate and mixing ratio of the Changjiang diluted water in the northwestern Pacific marginal seas using radium isotopes. Geophys. Res. Lett. https://doi.org/10.1002/2014GL060230 (2014).
    Article  Google Scholar 

    45.
    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).
    ADS  CAS  Article  Google Scholar 

    46.
    Bai, Y., Su, R., Han, X., Zhang, C. & Shi, X. Investigation of seasonal variability of CDOM fluorescence in the southern changjiang river estuary by EEM-PARAFAC. Acta Oceanol. Sin. 34, 1–12. https://doi.org/10.1007/s13131-015-0714-8 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Birdwell, J. E. & Engel, A. S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 41, 270–280. https://doi.org/10.1016/j.orggeochem.2009.11.002 (2010).
    CAS  Article  Google Scholar 

    48.
    Huguet, A. et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 40, 706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002 (2009).
    CAS  Article  Google Scholar 

    49.
    Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep. 9, 4690. https://doi.org/10.1038/s41598-019-40753-w (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Helms, J. R. et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar. Chem. 155, 81–91. https://doi.org/10.1016/j.marchem.2013.05.015 (2013).
    CAS  Article  Google Scholar 

    51.
    Chupakova, A. A., Chupakov, A. V., Neverova, N. V., Shirokova, L. S. & Pokrovsky, O. S. Photodegradation of river dissolved organic matter and trace metals in the largest European Arctic estuary. Sci. Total Environ. 622–623, 1343–1352. https://doi.org/10.1016/j.scitotenv.2017.12.030 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Miranda, M. L. et al. Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC. Spectrochim. Acta Part A 230, 118027. https://doi.org/10.1016/j.saa.2020.118027 (2020).
    CAS  Article  Google Scholar 

    53.
    Spencer, R. G. M. et al. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. https://doi.org/10.1029/2009JG000968 (2009).
    Article  Google Scholar 

    54.
    Zhao, W., Lv, L. & Miao, H. Tracing the variability of dissolved organic matter fluorescence in the East China Sea in the red tide season with use of excitation-emission matrix spectroscopy and parallel factor analysis. J. Mar. Sci. 4, 1–6 (2013).
    CAS  Google Scholar 

    55.
    Zheng, H. et al. Seasonal variations of dissolved organic matter in the East China Sea using EEM-PARAFAC and implications for carbon and nutrient cycling. Sustainability 10, 1444 (2018).
    Article  Google Scholar 

    56.
    Gong, G.-C., Wen, Y.-H., Wang, B.-W. & Liu, G.-J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res. Part II 50, 1219–1236. https://doi.org/10.1016/S0967-0645(03)00019-5 (2003).
    ADS  CAS  Article  Google Scholar 

    57.
    Malej, A. et al. Changes in particulate and dissolved organic matter in nutrient-enriched enclosures from an area influenced by mucilage: the northern Adriatic Sea. J. Plankton Res. 25, 949–966. https://doi.org/10.1093/plankt/25.8.949 (2003).
    CAS  Article  Google Scholar 

    58.
    Hung, C. C. et al. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences 10, 6469–6484. https://doi.org/10.5194/bg-10-6469-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    59.
    Chen, B. et al. The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production. Acta Oceanol. Sin. 33, 166–177. https://doi.org/10.1007/s13131-014-0528-0 (2014).
    Article  Google Scholar 

    60.
    Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A. & Osburn, C. L. Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00430 (2018).
    Article  Google Scholar 

    61.
    Zepp, R. G., Sheldon, W. M. & Moran, M. A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 89, 15–36. https://doi.org/10.1016/j.marchem.2004.02.006 (2004).
    CAS  Article  Google Scholar 

    62.
    Stedmon, C. A. & Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. 6, 572–579 (2008).
    CAS  Article  Google Scholar 

    63.
    Kim, J. & Kim, G. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan). Geophys. Res. Lett. 43, 7609–7616. https://doi.org/10.1002/2016GL069335 (2016).
    ADS  CAS  Article  Google Scholar 

    64.
    Cory, R. M. & McKnight, D. M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 39, 8142–8149 (2005).
    ADS  CAS  Article  Google Scholar 

    65.
    Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36, 742–746. https://doi.org/10.1021/es0155276 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).
    CAS  Article  Google Scholar 

    67.
    Murphy, K. R., Bro, R. & Stedmon, C. A. In Aquatic Organic Matter Fluorescence (eds Coble, P. G. et al.) 339–375 (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    68.
    Walker, S. A., Amon, R. M. W. & Stedmon, C. A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys. Res. 118, 1689–1702. https://doi.org/10.1002/2013JG002320 (2013).
    CAS  Article  Google Scholar 

    69.
    Catalá, T. S. et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. https://doi.org/10.1038/ncomms6986 (2015).
    Article  PubMed  Google Scholar 

    70.
    Dalmagro, H. J. et al. Streams with Riparian Forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in Southern Amazonia. Water 11, 390 (2019).
    CAS  Article  Google Scholar 

    71.
    Liu, C. et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environ. Pollut. 246, 207–216. https://doi.org/10.1016/j.envpol.2018.11.092 (2019).
    CAS  Article  PubMed  Google Scholar 

    72.
    Dainard, P. G., Guéguen, C., McDonald, N. & Williams, W. J. Photobleaching of fluorescent dissolved organic matter in Beaufort Sea and North Atlantic Subtropical Gyre. Mar. Chem. 177, 630–637. https://doi.org/10.1016/j.marchem.2015.10.004 (2015).
    CAS  Article  Google Scholar 

    73.
    Yamashita, Y. et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. Part II 57, 1478–1485. https://doi.org/10.1016/j.dsr2.2010.02.016 (2010).
    ADS  CAS  Article  Google Scholar 

    74.
    Peleato, N. M., Sidhu, B. S., Legge, R. L. & Andrews, R. C. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy. Chemosphere 172, 225–233. https://doi.org/10.1016/j.chemosphere.2016.12.118 (2017).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles

    1.
    Spitze, K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139, 229–247 (1992).
    Google Scholar 
    2.
    Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).
    PubMed  Google Scholar 

    3.
    Relyea, R. A. et al. Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution Int. J. Organic Evolut. 72, 663–678 (2018).
    Google Scholar 

    4.
    Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evolut. 2, 100–107 (2018).
    Google Scholar 

    5.
    Nunes, A. L., Richter-Boix, A., Laurila, A. & Rebelo, R. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171, 115–127 (2013).
    ADS  PubMed  Google Scholar 

    6.
    Johnston, C. A., Wilson Rankin, E. E. & Gruner, D. S. Foraging connections: Patterns of prey use linked to invasive predator diel movement. PLoS ONE 13, e0201883 (2018).
    PubMed  PubMed Central  Google Scholar 

    7.
    Hollander, J. & Bourdeau, P. E. Evidence of weaker phenotypic plasticity by prey to novel cues from non-native predators. Ecol. Evolut. 6, 5358–5365 (2016).
    Google Scholar 

    8.
    Relyea, R. A. Trait-mediated indirect effects in larval anurans: Reversing competition with the threat of predation. Ecology 81, 2278–2289 (2000).
    Google Scholar 

    9.
    Gallie, J. A., Mumme, R. L. & Wissinger, S. A. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus. Herpetologica 57, 376–383 (2001).
    Google Scholar 

    10.
    McCollum, S. A. & Leimberger, J. D. Predator-induced morphological changes in an amphibian: Predation by dragonflies affects tadpole shape and color. Oecologia 109, 615–621 (1997).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).
    Google Scholar 

    12.
    Fraker, M. E. The effect of hunger on the strength and duration of the antipredator behavioral response of green frog (Rana clamitans) tadpoles. Behav. Ecol. Sociobiol. 62, 1201–1205 (2008).
    Google Scholar 

    13.
    VanBuskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).
    Google Scholar 

    14.
    Kishida, O. & Nishimura, K. Multiple inducible defences against multiple predators in the anuran tadpole, Rana pirica. Evolut. Ecol. Res. 7, 619–631 (2005).
    Google Scholar 

    15.
    Van Buskirk, J., McCollum, S. A. & Werner, E. E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution Int. J. Organic Evolut. 51, 1983–1992 (1997).
    Google Scholar 

    16.
    Kishida, O., Trussell, G. C., Mougi, A. & Nishimura, K. Evolutionary ecology of inducible morphological plasticity in predator-prey interaction: Toward the practical links with population ecology. Popul. Ecol. 52, 37–46 (2010).
    Google Scholar 

    17.
    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. Biol. Sci. 280, 20123075 (2013).
    PubMed  PubMed Central  Google Scholar 

    19.
    Adamec, R., Kent, P., Anisman, H., Shallow, T. & Merali, Z. Neural plasticity, neuropeptides and anxiety in animals—Implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci. Biobehav. Rev. 23, 301–318 (1998).
    CAS  PubMed  Google Scholar 

    20.
    Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144, 5249–5258 (2003).
    CAS  PubMed  Google Scholar 

    21.
    Jongren, M., Westander, J., Natt, D. & Jensen, P. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). Genes Brain Behav. 9, 751–758 (2010).
    CAS  PubMed  Google Scholar 

    22.
    Sanogo, Y. O., Hankison, S., Band, M., Obregon, A. & Bell, A. M. Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav. Evol. 77, 270–285 (2011).
    PubMed  PubMed Central  Google Scholar 

    23.
    Fraser, B. A., Weadick, C. J., Janowitz, I., Rodd, F. H. & Hughes, K. A. Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 12, 202 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Drew, R. E. et al. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 13, 323 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Cinel, S. D. & Taylor, S. J. Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) brain. Front. Behav. Neurosci. 13, 36 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Miksys, S. & Tyndale, R. F. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab. Rev. 36, 313–333 (2004).
    CAS  PubMed  Google Scholar 

    27.
    Ekins, S. & Wrighton, S. A. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31, 719–754 (1999).
    CAS  PubMed  Google Scholar 

    28.
    Hiroi, T. et al. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142, 3901–3908 (2001).
    CAS  PubMed  Google Scholar 

    29.
    Seliskar, M. & Rozman, D. Mammalian cytochromes P450–importance of tissue specificity. Biochim. Biophys. Acta 1770, 458–466 (2007).
    CAS  PubMed  Google Scholar 

    30.
    Borkum, J. M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 56, 12–35 (2016).
    PubMed  Google Scholar 

    31.
    Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).
    CAS  PubMed  Google Scholar 

    32.
    Paitel, E., Fahraeus, R. & Checler, F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 278, 10061–10066 (2003).
    CAS  PubMed  Google Scholar 

    33.
    Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).
    CAS  PubMed  Google Scholar 

    34.
    Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).
    CAS  PubMed  Google Scholar 

    35.
    Klumpe, I. et al. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J. Mol. Med. (Berlin, Germany) 94, 645–653 (2016).
    CAS  Google Scholar 

    36.
    Avila, D. V. et al. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 125, 376–385 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    You, T. et al. Roflupram, a phosphodiesterase 4 inhibitor, suppresses inflammasome activation through autophagy in microglial cells. ACS Chem. Neurosci. 8, 2381–2392 (2017).
    CAS  PubMed  Google Scholar 

    38.
    Glover, E. M., Ressler, K. J. & Davis, M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs cued fear memories. Learn. Mem. (Cold Spring Harbor, N.Y.) 17, 577–581 (2010).
    CAS  Google Scholar 

    39.
    Parsons, R. G., Gafford, G. M. & Helmstetter, F. J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Slipczuk, L. et al. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 4, e6007 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Fifield, K. et al. Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal. Behav. Brain Res. 286, 104–111 (2015).
    CAS  PubMed  Google Scholar 

    42.
    Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).
    PubMed  PubMed Central  Google Scholar 

    43.
    Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Front. Cell. Neurosci. 9, 343 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Penazzi, L., Bakota, L. & Brandt, R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016).
    CAS  PubMed  Google Scholar 

    45.
    Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Hoogenraad, C. C. & Bradke, F. Control of neuronal polarity and plasticity—A renaissance for microtubules?. Trends Cell Biol. 19, 669–676 (2009).
    CAS  PubMed  Google Scholar 

    47.
    Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).
    CAS  PubMed  Google Scholar 

    48.
    Vargas, J. P., Lopez, J. C. & Portavella, M. What are the functions of fish brain pallium?. Brain Res. Bull. 79, 436–440 (2009).
    PubMed  Google Scholar 

    49.
    Portavella, M. & Vargas, J. P. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur. J. Neurosci. 21, 2800–2806 (2005).
    PubMed  Google Scholar 

    50.
    Fletcher, M. L. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses. Front. Syst. Neurosci. 6, 16 (2012).
    PubMed  PubMed Central  Google Scholar 

    51.
    Kass, M. D., Rosenthal, M. C., Pottackal, J. & McGann, J. P. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342, 1389–1392 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Laberge, F. & Roth, G. Organization of the sensory input to the telencephalon in the fire-bellied toad, Bombina orientalis. J. Comp. Neurol. 502, 55–74 (2007).
    PubMed  Google Scholar 

    53.
    Laberge, F., Muhlenbrock-Lenter, S., Dicke, U. & Roth, G. Thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis. J. Comp. Neurol. 508, 806–823 (2008).
    PubMed  Google Scholar 

    54.
    54Nieuwenhuys, R., Donkelaar, H. J. t. & Nicholson, C. The Central Nervous System of Vertebrates. Vol. 3 (Springer, New York, 1998).

    55.
    Grossman, E. N., Giurumescu, C. A. & Chisholm, A. D. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 195, 899–913 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Borasio, G. D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096 (1989).
    CAS  PubMed  Google Scholar 

    57.
    Sloniowski, S. & Ethell, I. M. Looking forward to EphB signaling in synapses. Semin. Cell Dev. Biol. 23, 75–82 (2012).
    CAS  PubMed  Google Scholar 

    58.
    Cruz, E. et al. Infralimbic EphB2 modulates fear extinction in adolescent rats. J. Neurosci. 35, 12394–12403 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
    CAS  PubMed  Google Scholar 

    60.
    Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981).
    CAS  PubMed  Google Scholar 

    61.
    61Garcia-Nafria, J., Herguedas, B., Watson, J. F. & Greger, I. H. The dynamic AMPA receptor extracellular region: A platform for synaptic protein interactions. J. Physiol. (2016).

    62.
    Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Barrett, T. D. et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)- 1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol. Pharmacol. 79, 910–920 (2011).
    CAS  PubMed  Google Scholar 

    64.
    Sugiyama, M. et al. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol. Open 1, 1035–1042 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).
    PubMed  Google Scholar 

    66.
    Komatsu, Y., Kishigami, S. & Mishina, Y. In situ hybridization methods for mouse whole mounts and tissue sections with and without additional beta-galactosidase staining. Methods Mol. Biol. (Clifton, N.Y.) 1092, 1–15 (2014).
    CAS  Google Scholar 

    67.
    Mori, T. et al. Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145 (2005).
    CAS  PubMed  Google Scholar  More

  • in

    Environmental DNA detection tracks established seasonal occurrence of blacktip sharks (Carcharhinus limbatus) in a semi-enclosed subtropical bay

    Study species and area
    The blacktip shark (Carcharhinus limbatus; Fig. 1B) is a cosmopolitan species, encountered globally in tropical and subtropical waters34,35,36. It is a commercially and recreationally important species in the southeast U.S. and Gulf of Mexico shark fisheries, as well as being one of the top four species in the global shark fin trade37,38. The species has moderately slow growth rates and low fecundity; producing pups in alternating years after a 10–12 month gestation period, giving birth to 4–7 pups34,39. This leads to low natural recruitment abilities, rendering their populations susceptible to stock collapses from overexploitation. However, the U.S. C. limbatus population is well managed and sustainably fished. In this study we refer to four life-stage categories: neonate, young of the year, immature, and mature, following the definitions of Castro35. Neonates are animals with an open umbilical scar, these scars close within the first 2–3 weeks of life. Young of the year (YOY) have closed umbilical scars, which are typically still visible. YOY can also be distinguished from older immature animals based on size40. Mature males are distinguished from immature males based on claspers that are elongated and calcified, while for females, 50% size-at-maturity was used to distinguish between immature and mature animals39. Along the Florida Gulf Coast, neonate, YOY, and immature C. limbatus seasonally use inshore nursery areas including Terra Ceia Bay1,41,42. Terra Ceia Bay is a small (~ 5 km × 1.5 km), shallow (~ 4 m maximum depth) bay with a narrow (~ 1 km) opening into Tampa Bay (Fig. 1A). As C. limbatus is a migratory species that prefers temperatures above 21 °C, there is an influx of immature sharks into the bay during April after an absence for most of the winter. Gravid females enter the bay for parturition in May and June1,33,34. Natural mortality of neonates is highest within the first 15 weeks of life, which is reflected in a sharp decrease in their abundance from July into August. The remaining young of the year and immature animals leave the bay and migrate southward during the fall months1,33. These patterns have held with continued sampling in the bay until the present, although some immature animals now stay in the bay until later in the year and return earlier, possibly because waters have warmed in recent years (Gardiner, unpublished data).
    Figure 1

    (A) Map of sampling locations in Terra Ceia Bay (FL, USA). Indicated are in green the eDNA sampling sites, in blue the gillnet sites in 2018 and 2019, and in red circles the longline sampling sites in 2019. Sampling events are aggregated per year and method (i.e. not all sites were sampled every month, see Supplementary Material 1 for detail). (B) A juvenile Carcharhinus limbatus, caught, tagged and released in Terra Ceia Bay (photo credit: T. R. Wiley). Map was generated with R v 3.4.0 (https://www.R-project.org/) using polygons extracted from Google Earth, (https://earth.google.com/web/).

    Full size image

    Shark sampling
    Shark surveys in Terra Ceia Bay were conducted as part of the GulfSPAN survey (www.fisheries.noaa.gov/southeast/endangered-species-conservation/shark-and-sawfish-surveys-and-tagging), a fishery-independent effort to assess shark diversity and relative abundance along the Florida Gulf Coast in order to inform stock assessments. All protocols for the handling and use of animals were approved by the Institutional Animal Care and Use Committee at the University of South Florida (protocol # W IS00004541) and sampling was conducted in accordance with Florida Fish and Wildlife Conservation Commission Special Activities Licenses SAL-18-1666-SRP and SAL-19-1666-SRP. The surveys are conducted each year from April to October. In order to conserve limited resources for this survey, sampling is not conducted from November to March when shark abundances are known to be very low due to decreased water temperatures during these winter months. The primary sampling method of this project for 2018 was monofilament gillnet. However, as this method primarily captures neonate and YOY sharks, it was considered not to be an appropriate comparison on its own to eDNA, which is shed by all life stages. Therefore, bottom longline gear was also deployed on a monthly basis in 2019 to sample a wider variety of life stages and to provide a better comparison to eDNA when combined with gillnets. For each month of sampling in 2019, catches were summed over 3–4 longline and gillnet stations and used to calculate monthly catch-per-unit-effort (CPUE), defined as the number of individuals caught per station per hour. All sampling coordinates and details of the fishing gear are summarized in Supplementary Material 1 and Supplementary Material 2, respectively.
    eDNA collection and processing
    Water samples were collected on a monthly basis concurrent with GulfSPAN surveys during June–October 2018 and April–October (except July) 2019. Four to six water samples were collected at each sampling location per monthly survey, immediately after gear is set in order to avoid contamination from captured animals. eDNA samples were collected in mid-water to avoid catching suspended sediment, ensuring that only recently released eDNA was collected43,44. A total of 58 water samples of 2 L each (Supplementary Material 1) were collected with a Kemmerer type water sampler and vacuum filtration was carried out immediately after collection with a Pegasus Alexis peristaltic pump (www.fondriest.com). The cups containing the hydrophilic polyethersulfone (PES) filters (Pall Corporation; 47 mm diameter; 0.45 µm pore size) were placed in a clean, iced cooler (containing only eDNA samples) for transport to the laboratory. The filters containing sample filtrates were stored in sterile 5.0 mL cryogenic screw-cap vials containing silica beads. The silica beads function as a desiccator, drying out the filters, preventing the DNA from degradation26. The filters were then stored at − 20 °C until extraction. DNA extraction from half of each filter was performed using the DNeasy PowerSoil Kit (www.qiagen.com), following the manufacturers’ protocol, with three additional specifications. As the outer circumference of the filter does not contain any DNA (due to placement of the filter cup), it was cut off and discarded. The remainder of the half filter was cut into small pieces prior to being added to the bead tubes for the first step of the extraction process. The vortexing (bead-beating) step of the protocol was performed in a shaker at 58 °C (for 10 min) instead of at room temperature, in order to maximize the DNA yield. Genomic DNA was eluted into 100 μL and frozen at − 20 °C until further processing.
    Real-time PCR assay development
    Primer design
    Primers were designed to target a 149 bp fragment of the mitochondrial (mtDNA) nicotine adenine dinucleotide dehydrogenase subunit 2 (NADH2) gene within the C. limbatus genome, while excluding cross amplification with other elasmobranch species known to co-occur in the study area (Rhizoprionodon terraenovae, R. porosus, Carcharhinus brevipinna, C. acronotus, C. leucas, Sphyrna mokarran, S. lewini, S. zygaena, and S. tiburo). Primers were designed manually using Geneious Prime, version 2019.2.3 (https://www.geneious.com). NADH2 sequences from C. limbatus and the non-target shark species were downloaded from GenBank (Supplementary Material 3) and aligned using the Muscle 3.8.425 plugin in Geneious45. Forward (588 F-limbatus-NADH2: 5′-TGCCCCCAATCTCACCTTAC-3′) and reverse (776 R-limbatus-NADH2: 5′-CCGGAAAGTGGGGGTAATCC-3′) primers were designed to amplify the fragment of interest exclusively in C. limbatus. This was accomplished by maximizing the number of mismatches in the ligation sites of both primers in the nine exclusion species. In order to confirm primer specificity, they were first tested by applying conventional PCR to total genomic DNA (gDNA) extracted from eight C. limbatus individuals and from eight individuals per each of the nine species known to co-occur in the study area. Genomic DNA was extracted from tissue samples using the DNeasy Blood & Tissue kit (www.qiagen.com) following the manufacturer’s protocol. Each amplification reaction was performed in a total volume of 15 µL and consisted of: 7.5 µL of Master Mix ‘Applied 2×’ (Applied Biosystems), 3.5 µL of DNase/RNase-free water (Fisher Scientific), 1 µL of each primer (10 µM) and 2 µL of genomic DNA (10 ng/µL). The PCR profile included an initial denaturing step of 95 °C for 2 min, 35 cycles of 95 °C for 30 s, 63 °C for 30 s and 72 °C for 30 s and a final extensions step of 72 °C for 5 min. The quality of all amplifications was assessed by electrophoresis, running the products through a 1.5% agarose gel stained with Gel Red (Gentaur, Kampenhout, Belgium) and visualized on a UV light platform. Subsequently, the primers were tested on the real-time PCR platform for amplification of tissue-derived gDNA from C. limbatus and the non-target species. PCR products were sequenced in both directions to confirm species identity, using an ABI 3730 genetic analyzer (Applied Biosystems). Sequences were checked using Geneious.
    Real-time PCR
    Concentrations of C. limbatus NADH2 fragments in our eDNA samples were checked by running six replicate reactions for each sample, using the Chai Open PCR System platform (Chai Biotechnologies, Santa Clara, CA, USA). The real-time PCR recipe was optimized to a final volume of 15 µL, containing 7.5 µL of PowerUp SYBR Green Master Mix (Applied Biosystems), 2.5 µL of DNase/RNase-free water (Fisher Scientific), 1 µL of each primer (5 µM) and 3 µL of eDNA template. The real-time PCR program consisted of 50 °C for 2 min, an initial denaturation step at 95 °C for 2 min, followed by 80 cycles of 95 °C for 30 s, 62 °C for 30 s, and 72 °C for 30 s. A final melting curve analysis step at 60 °C for 1 min was followed by an increasing ramp temperature of 5 °C per second to reach 95 °C for 5 min. Using 80 amplification cycles in real-time PCR is not standard protocol when working with tissue extractions, but with appropriate negative controls it has been found to be useful for detecting the presence of eDNA that which is usually present in very low concentrations16. The melt curve protocol was used to detect primer dimers, to check specificity by determining that a single amplicon was produced, and to obtain a melting temperature (Tm) value for that sample, which may then be compared with the standard curve of C. limbatus DNA. Each real-time PCR run consisted of 16 reactions (two 8-well PCR strips per run), including two positive (13.1 × 10−1 ng/μL gDNA), and two negative (DNase/RNase-free water) controls. Cq values of the standard concentrations were compared between independent runs to check for consistency and replicability of results.
    Primer efficiency, LOD and LOQ
    Primer efficiency, limit of detection (LOD), and limit of quantification (LOQ) were assessed following the protocol and curve fitting method described in Klymus et al.46. For the standard curve, tenfold dilutions (in ddH2O) of C. limbatus gDNA derived from tissue extractions were used. The dilution series spanned seven orders of magnitude, ranging from 13.1 × 10−1 to 13.1 × 10−7 ng/μL, measured with a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). Each dilution was run ten times and reported Cq (cycle quantification) values were used to determine primer efficiency, LOD, and LOQ46. LOD and LOQ were determined at a concentration of 13.1 × 10−6 ng/μL of gDNA (the conc. at which at least 95% of the replicates amplified with a CV of 54% or less, see “Results” section). Amplification efficiency was determined by plotting Cq values against gDNA dilutions and calculating the linear slope and the coefficient of determination (R2) value.
    Contamination control
    Strict adherence to contamination control procedures was followed during all field and laboratory stages. In the field, disposable gloves were used and changed between each sample. A section of the boat was allocated as a clean area for water collection and filtration. Work surfaces, water collection and filtration equipment were cleaned prior to and after each use with a 50% bleach solution. To prevent cross-contamination between samples, filtration was performed using disposable, single-use filter funnels, which were subsequently stored individually in two layers of double sealed plastic bags prior to being stored on ice. All eDNA sample processing and analyses were conducted in the Crustacean Genomics and Systematics Lab at Florida International University where there had never been any shark tissue or PCR product present. Extractions, pre-PCR preparations and (post)PCR procedures were physically and temporally separated. All laboratory equipment was cleaned with bleach solution and subsequently exposed to UV sterilization (including ddH2O used for PCR reactions) for 15 min, before and after each use. Pertaining to filter extractions, bags containing the individual filters were cleaned on the outside with bleach prior to entering the lab. All work surfaces were cleaned with 50% bleach solution prior to and after each use, and between processing of individual samples. All equipment used for the extractions was likewise cleaned with bleach between each individual sample. Disposable gloves were used and changed between each sample or in addition, more often when deemed appropriate. Aerosol barrier pipette tips were used for all laboratory procedures. C. limbatus tissue extraction was performed months prior to the onset of the eDNA laboratory work, in a separate dedicated tissue extraction room. Separate laboratory rooms, located in different parts of the building, were used for PCR and real-time PCR experiments. No equipment was shared between the laboratories and commuting between the different laboratories within the same day was prohibited, this included colleagues who were not part of this study. In order to identify potential contamination, negative controls were added at multiple stages. Negative controls were collected in the field by filtering 2 L of tap water, processed as standard samples. In the laboratory, DNA extraction blanks (elution buffer from extraction kit) and PCR blanks were included.
    Data analysis
    Cq and melting temperature (Tm) values were used to determine the presence/absence of C. limbatus eDNA in a sample, by comparison with those of the standard curves and the positive controls. The Cq value indicates the cycle at which the fluorescence produced by the DNA amplification in a sample surpasses a preset threshold of fluorescence background noise, which is a proxy for the quantity of eDNA present in a sample. When a sample has a Cq value, it means that target DNA is present assuming there is no non-specific amplification. The Cq value represents the PCR cycle at which amplification is first detected and is positively correlated with the template DNA present in the sample. Filters were considered positive when at least two out of the six replicates produced a Cq value, in combination with an associated Tm value close (± 2 °C) to the mean Tm of the standard curve (78.2 °C). For each filter sample, the average Cq of all positive replicates were calculated to obtain a single value per filter.
    Because many detections presented Cq values below LOQ and LOD (Cq >42.09, see “Results” section), they were treated as qualitative data (presence or absence of target DNA on the filter)46. A Chi square proportion test was performed to test for a difference in the proportion of C. limbatus positive filters between the high (April–July) and low abundance (August–October) seasons over 2018 and 2019, and the catch data (CPUE) was also compared between the same two seasons in 2018 and 2019 using the Wilcoxon signed-rank test. In order to determine the correlation between the proportion of positive filters and catch data (CPUE) per month, a non-parametric Spearman correlation was performed. All statistical analyses were performed in R v 3.4.0 (https://www.R-project.org/). More