Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34(1), 99–125 (2003).Article
Google Scholar
Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67(11), 3258–3273 (2013).Article
Google Scholar
Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22(24), 5983–5999 (2013).Article
Google Scholar
Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).Article
Google Scholar
Broquet, T. & Petit, E. J. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40, 193–216 (2009).Article
Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article
Google Scholar
Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188(2), 149–162 (2016).Article
Google Scholar
Mayr, E. Ecological factors in speciation. Evolution 1(4), 263–288 (1947).
Google Scholar
Hua, X. & Wiens, J. J. How does climate influence speciation?. Am. Nat. 182(1), 1–12 (2013).Article
Google Scholar
Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8(3), 336–352 (2005).Article
Google Scholar
Schluter, D. Evidence for ecological speciation and its alternative. Science 323(5915), 737–741 (2009).Article
ADS
Google Scholar
Wielstra, B. et al. Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS ONE 7(9), e46671 (2012).Article
ADS
Google Scholar
Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58(1), 193–197 (2004).
Google Scholar
Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18(4), 189–197 (2003).Article
Google Scholar
Alvarado-Serrano, D. F. & Hickerson, M. J. Spatially explicit summary statistics for historical population genetic inference. Methods Ecol. Evol. 7(4), 418–427 (2016).Article
Google Scholar
Rissler, L. J. Union of phylogeography and landscape genetics. PNAS 113(29), 8079–8086 (2016).Article
ADS
Google Scholar
Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).Article
Google Scholar
Sobel, J. M., Chen, G. F., Watt, L. R. & Schemske, D. W. The biology of speciation. Evolution 64(2), 295–315 (2010).Article
Google Scholar
Richards, C. L., Carstens, B. C. & Knowles, L. L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34(11), 1833–1845 (2007).Article
Google Scholar
Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. 14(2), 233–248 (2014).Article
Google Scholar
Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67(12), 3403–3411 (2013).Article
Google Scholar
Wright, S. Isolation by distance. Genetics 28(2), 114–138 (1943).Article
Google Scholar
Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68(1), 1–15 (2014).Article
Google Scholar
Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23(23), 5649–5662 (2014).Article
Google Scholar
Lee, C. R. & Mitchell-Olds, T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 20(22), 4631–4642 (2011).Article
Google Scholar
Moreira-Muñoz, A. Plant Geography of Chile Vol. 10, 978–990 (Springer, 2011).Book
Google Scholar
Orme, A. R. Tectonism, climate, and landscape change. Phys. Geogr. South Am. 1, 23–44 (2007).
Google Scholar
Morando, M. et al. Diversification and evolutionary histories of Patagonian steppe lizards. in Lizards of Patagonia (pp. 217–254). (Springer, 2020).Rull, V. Neotropical diversification: historical overview and conceptual insights. In Neotropical Diversification: Patterns and Processes (eds Rull, V. & Carnaval, A. C.) (Springer, 2020).Chapter
Google Scholar
Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Mammalian biogeography of Patagonia and Tierra del Fuego. In Bones, Clones and Biomes: The History and Recent Geography of Neotropical Animals (eds Patterson, B. D. & Costa, L. P.) 379–398 (University of Chicago Press, 2012).Chapter
Google Scholar
Pardiñas, U. F., D’Elía, G. & Lessa, E. P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol. J. Linn. Soc. 2(103), 495–513 (2011).Article
Google Scholar
Alarcón, O., D’Elía, G., Lessa, E. P. & Pardiñas, U. Phylogeographic structure of the Fossorial Long-Clawed Mouse Chelemys macronyx (Cricetidae: Sigmodontinae). Zool. Stud. 50(5), 682–688 (2011).
Google Scholar
Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol. Ecol. 19(15), 3031–3037 (2010).Article
Google Scholar
Valdez, L. & D’Elía, G. Genetic diversity and demographic history of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front. Genet. 12, 184 (2021).Article
Google Scholar
Valdez, L., Quiroga-Carmona, M. & D’Elía, G. Genetic variation of the Chilean endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae) in a geographical and environmental context. PeerJ 8, e9517 (2020).Article
Google Scholar
Valdez, L. & D’Elía, G. Local persistence of Mann’s soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile. PeerJ 6, e6130 (2018).Article
Google Scholar
Quiroga-Carmona, M., Abud, C., Lessa, E. P. & D’Elía, G. The mitochondrial genetic diversity of the olive field mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is latitudinally structured across its geographic distribution. J. Mamm. Evol. 29, 431–433 (2022).Article
Google Scholar
Cañón, C., D’Elía, G., Pardiñas, U. F. & Lessa, E. P. Phylogeography of Loxodontomys micropus with comments on the alpha taxonomy of Loxodontomys (Cricetidae: Sigmodontinae). J. Mamm. 91(6), 1449–1458 (2010).Article
Google Scholar
Palma, R. E., Boric-Bargetto, D., Torres-Perez, F., Hernández, C. E. & Yates, T. L. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7(3), e32206 (2012).Article
ADS
Google Scholar
Rodríguez-Serrano, E., Cancino, R. & Palma, R. E. Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J. Mamm. 87(5), 971–980 (2006).Article
Google Scholar
Rodríguez-Serrano, E., Hernandez, C. & Palma, R. E. A new record and an evaluation of the phylogenetic relationships of Abrothrix olivaceus markhami (Rodentia: Sigmodontinae). Mamm. Biol. 73(4), 309–317 (2008).Article
Google Scholar
Sánchez, J., Poljak, S., Teta, P., Lanusse, L. & Lizarralde, M. S. A contribution to the knowledge of the taxonomy of the subgenus Abrothrix (Angelomys) (Rodentia, Cricetidae) in southernmost South America. Polar Biol. 45(4), 601–614 (2022).Article
Google Scholar
Patton, J., Pardiñas, U. F. & D’Elía, G. Mammals of South America Vol. 2 (The University of Chicago Press, 2015).Book
Google Scholar
Patterson, B. D., Smith, M. F. & Teta, P. Genus Abrothrix Waterhouse, 1837. In Mammals of South America Vol. 2 (eds Patton, J. L. et al.) 109–127 (The University of Chicago Press, 2015).
Google Scholar
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).Article
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005).Article
Google Scholar
Quantum GIS Development Team (2021) Quantum GIS Geographic Information System. Version 3.18.2-ZürichHijmans, R. J. et al. Package ‘raster’. R package. (2015).Kuhn, M. caret: Classification and Regression Training. (2019) https://CRAN.R-project.org/package=caret.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. (2020). https://CRAN.R-project.org/package=vegan.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article
Google Scholar
Wang, C. et al. Comparing spatial maps of human population-genetic variation using Procrustes analysis. Stat. Appl. Genet. Mol. Biol. 9(1), 13 (2010).Article
MathSciNet
Google Scholar
Wang, C., Zöllner, S. & Rosenberg, N. A. A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genet. 8(8), e1002886 (2012).Article
Google Scholar
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5–28. (2021). https://CRAN.R-project.org/package=rgdal.Kierepka, M. E. & Latch, K. E. Performance of partial statistics in individual-based landscape genetics. Mol. Ecol. 15(3), 512–525 (2015).Article
Google Scholar
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH
Google Scholar
Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Soft. 25(1), 1–8 (2008).Article
Google Scholar
Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: the ecologically diverse frog Pleurodema thaul as study case. Evol. Biol. 47(3), 206–219 (2020).Article
Google Scholar
Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biol. 23(5), 595–609 (2014).Article
Google Scholar
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5), 541–545 (2015).Article
Google Scholar
Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).Book
Google Scholar
Viale, M. et al. Contrasting climates at both sides of the Andes in Argentina and Chile. Front. Environ. Sci. 7, 69 (2019).Article
Google Scholar
Pacifici, M. et al. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11(1), 1–9 (2020).Article
Google Scholar
Di Marco, M., Pacifici, M., Maiorano, L. & Rondinini, C. Drivers of change in the realised climatic niche of terrestrial mammals. Ecography 44(8), 1180–1190 (2021).Article
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190(3–4), 231–259 (2006).Article
Google Scholar
Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent Software for Modeling Species Niches and Distributions. (American Museum of Natural History, 2018) http://biodiversityinformatics.amnh.org/opensource/maxent/.Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article
Google Scholar
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).Article
Google Scholar
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).Article
Google Scholar
Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diver. Dist. 20(3), 334–343 (2014).Article
Google Scholar
Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36(10), 1058–1069 (2013).Article
Google Scholar
Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).Article
Google Scholar
Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11(10), 1199–1206 (2020).Article
Google Scholar
Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522 (2018).Article
ADS
Google Scholar
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2008).Article
ADS
Google Scholar
Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4(4), 845 (2011).Article
ADS
Google Scholar
Knowles, L. L., Massatti, R., He, Q., Olson, L. E. & Lanier, H. C. Quantifying the similarity between genes and geography across Alaska’s alpine small mammals. J. Biogeogr. 43(7), 1464–1476 (2016).Article
Google Scholar
McGaughran, A., Morgan, K. & Sommer, R. J. Environmental variables explain genetic structure in a beetle-associated nematode. PLoS ONE 9(1), e87317 (2014).Article
ADS
Google Scholar
Wang, I. J. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol. Ecol. 20(12), 2480–2482 (2011).Article
Google Scholar
Bohonak, A. J. & Vandergast, A. G. The value of DNA sequence data for studying landscape genetics. Mol. Ecol. 20(12), 2477–2479 (2011).Article
Google Scholar
Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16(5), 977–992 (2007).Article
Google Scholar
Pearson, O. P. & Smith, M. F. Genetic similarity between Akodon olivaceus and Akodon xanthorhinus (Rodentia: Muridae) in Argentina. J. Zool. 247(1), 43–52 (1999).Article
Google Scholar
Smith, M. F., Kelt, D. A. & Patton, J. L. Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol. Ecol. 10(2), 397–405 (2001).Article
Google Scholar
Palma, R. E., Marquet, P. A. & Boric-Bargetto, D. Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J. Biogeogr. 32(11), 1931–1941 (2005).Article
Google Scholar
Arroyo, M. T. K., Squeo, F. A., Armesto, J. J. & Villagran, C. Effects of aridity on plant diversity in the northern Chilean Andes: Results of a natural experiment. Ann. Mol. Bot. Gard. 1, 55–78 (1988).Article
Google Scholar
Del Pozo, A. H., Fuentes, E. R., Hajek, E. R. & Molina, J. D. Zonación microclimática por efecto de los manchones de arbustos en el matorral de Chile central. Rev. Chil. Hist. Nat. 62, 85–94 (1989).
Google Scholar
Armesto, J. J., Vidiella, P. E. & Gutiérrez, J. R. Plant communities of the fog-free coastal desert of Chile: Plant strategies in a fluctuating environment. Rev. Chil. Hist. Nat. 66, 271–282 (1993).
Google Scholar
Veblen, T. T., Young, K. R. & Orme, A. R. The Physical Geography of South America (Oxford University Press, 2015).
Google Scholar
Kelt, D. A. et al. Community structure of desert small mammals: Comparisons across four continents. Ecology 77(3), 746–761 (1996).Article
Google Scholar
Shenbrot, G. B., Krasnov, B. R. & Rogovin, K. A. Spatial Ecology of Desert Rodent Communities (Springer, 1999).Book
Google Scholar
Van Strien, M. J., Holderegger, R. & Van Heck, H. J. Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114(1), 27–37 (2015).Article
Google Scholar
Diniz-Filho, J. A. F. et al. Mantel test in population genetics. Genet. Mol. Biol. 36(4), 475–485 (2013).Article
Google Scholar
Blier, P. U., Dufresne, F. & Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation. Trends Genet. 17(7), 400–406 (2001).Article
Google Scholar
Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the mitochondrial genome. Trends Genet. 23(6), 259–263 (2007).Article
Google Scholar
Giorello, F. M. et al. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol. Ecol. 27(16), 3274–3286 (2018).Article
Google Scholar
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).Article
Google Scholar
Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106(Supplement 2), 19659–19665 (2009).Article
ADS
Google Scholar
Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. PNAS 106(Supplement 2), 19644–19650 (2009).Article
ADS
Google Scholar
Kearney, M. & Porter, W. P. Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85(11), 3119–3131 (2004).Article
Google Scholar
Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12(4), 334–350 (2009).Article
Google Scholar
Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: A phylogenetic analysis in amphibians. Proc. R. Soc. B. 281(1795), 20133229 (2014).Article
Google Scholar
Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).Article
Google Scholar
Holt, R. D. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 5(2), 159–178 (2003).
Google Scholar
Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 7(1), 1–14 (2014).Article
Google Scholar
Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119(4), 214–225 (2017).Article
Google Scholar
Novoa, F., Rivera, A., Rosenmann, M. & Sabat, P. Intraspecific differences in metabolic rate of Chroeomys olivaceus (Rodentia: Muridae): The effect of thermal acclimation in arid and mesic habitats. Rev. Chil. Hist. Nat. 78, 207–214 (2005).Article
Google Scholar
Bozinovic, F., Rojas, J. M., Maldonado, K., Sabat, P. & Naya, D. E. Between-population differences in digestive flexibility in the olivaceous field mouse. Zool 113(6), 373–377 (2010).Article
Google Scholar
Bozinovic, F., Rojas, J. M., Gallardo, P. A., Palma, R. E. & Gianoli, E. Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. J. Arid. Environ. 75(5), 411–415 (2011).Article
ADS
Google Scholar
Naya, D. E. et al. Digestive morphology of two species of Abrothrix (Rodentia, Cricetidae): Comparison of populations from contrasting environments. J. Mammal. 95(6), 1222–1229 (2014).Article
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62(11), 2868–2883 (2008).Article
Google Scholar
Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9(1), 1–12 (2019).Article
Google Scholar
Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 90(4), 1248–1262 (2015).Article
Google Scholar
Latorre, C. et al. Late Quaternary environments and paleoclimate. In The Geology of Chile (eds Moreno, T. & Gibbons, W.) 309–328 (Geological Society, 2007).Chapter
Google Scholar
Kaplan, M. R., Moreno, P. I. & Rojas, M. Glacial dynamics in southernmost South America during Marine Isotope Stage 5e to the Younger Dryas chron: A brief review with a focus on cosmogenic nuclide measurements. J. Quat. Sci. 23(6–7), 649–658 (2008).Article
Google Scholar
McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci. 15(4), 409–417 (2000).Article
Google Scholar
Giorello, F. M., D’Elía, G. & Lessa, E. P. Genomic footprints of Quaternary colonization and population expansion in the Patagonian-Fuegian region rules out a separate southern refugium in Tierra del Fuego. J. Biogeogr. 48(10), 2656–2670 (2021).Article
Google Scholar
Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17(11), 940–946 (2007).Article
Google Scholar
Diniz-Filho, J. A. F. et al. Correlation between genetic diversity and environmental suitability: Taking uncertainty from ecological niche models into account. Mol. Ecol. 15(5), 1059–1066 (2015).Article
Google Scholar
Guevara, L., León-Paniagua, L., Rios, J. & Anderson, R. P. Variación entre modelos de circulación global para reconstrucciones de distribuciones geográficas del Último Máximo Glacial: Relevancia en la filogeografía. Ecosistemas 27(1), 62–76 (2018).Article
Google Scholar
Guevara, L., Morrone, J. J. & León-Paniagua, L. Spatial variability in species’potential distributions during the Last Glacial Maximum under different Global Circulation Models: Relevance in evolutionary biology. J. Zool. Syst. Evol. Res. 57(1), 113–126 (2019).Article
Google Scholar
Cab-Sulub, L. & Álvarez-Castañeda, S. T. Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecol. 116, 103847 (2022).Article
Google Scholar
Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 00, 1–12 (2022).
Google Scholar
León-Tapia, M. A. DNA barcoding and demographic history of Peromyscus yucatanicus (Rodentia: Cricetidae) endemic to the Yucatan Peninsula, Mexico. J. Mammal. Evol. 28(2), 481–495 (2021).Article
Google Scholar
Lin, X. et al. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol. Evol. 11, 10353–10368 (2021).Article
Google Scholar More