More stories

  • in

    Temperature fluctuation promotes the thermal adaptation of soil microbial respiration

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, e0165448 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Y. et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter‐annual variability. Glob. Biogeochem. Cycle 35, e2020GB006918 (2021).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).Article 

    Google Scholar 
    Wang, Q. et al. Soil microbial respiration rate and temperature sensitivity along a north–south forest transect in eastern China: patterns and influencing factors. J. Geophys. Res. Biogeosci. 121, 399–410 (2016).Article 

    Google Scholar 
    Sihi, D. et al. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric. Meteorol. 252, 155–166 (2018).Article 

    Google Scholar 
    Shao, P., Zeng, X., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and Earth system models. Environ. Res. Lett. 8, 034034 (2013).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).Article 

    Google Scholar 
    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).Article 
    PubMed 

    Google Scholar 
    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).Article 

    Google Scholar 
    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Chan, W. P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Biederbeck, V. O. & Campbell, C. A. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53, 363–375 (1973).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Alster, C. J., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry 158, 131–141 (2022).Article 
    CAS 

    Google Scholar 
    Moinet, G. Y. K. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol. 27, 6217–6231 (2021).Article 

    Google Scholar 
    Feng, J. et al. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 1, 71 (2021).Article 

    Google Scholar 
    Li, J. et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 66, 2036–2044 (2021).Article 
    CAS 

    Google Scholar 
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, B. & Cheng, W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol. Biochem. 43, 866–869 (2011).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 
    PubMed 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in Arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 
    PubMed 

    Google Scholar 
    Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Change Biol. 28, 2820–2829 (2022).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol. Lett. 25, 2489–2499 (2022).Article 
    PubMed 

    Google Scholar 
    Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramadhin, C., Yi, C. & Hendrey, G. Temperature variance portends and indicates the extent of abrupt climate shifts. IOP SciNotes 2, 014002 (2021).Article 

    Google Scholar 
    Sun, Y. Q. & Ge, Y. Temporal changes in the function of bacterial assemblages associated with decomposing earthworms. Front. Microbiol. 12, 682224 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z., Xu, J., Li, X., Li, R. & Li, Q. Links of extracellular enzyme activities, microbial metabolism, and community composition in the river-impacted coastal waters. J. Geophys. Res. Biogeosci. 124, 3507–3520 (2019).Article 

    Google Scholar 
    Razanamalala, K. et al. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12, 451–462 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).Article 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Change Biol. 20, 1943–1954 (2014).Article 

    Google Scholar 
    Ning, Q. et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob. Change Biol. 27, 5976–5988 (2021).Article 
    CAS 

    Google Scholar 
    Wan, S. & Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob. Biogeochem. Cycle 17, 1054 (2003).Article 

    Google Scholar 
    Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).Article 

    Google Scholar 
    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).Article 
    CAS 

    Google Scholar 
    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Howard, D. M. & Howard, P. J. A. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biol. Biochem. 25, 1537–1546 (1993).Article 

    Google Scholar 
    Hoyle, F. C., Murphy, D. V. & Brookes, P. C. Microbial response to the addition of glucose in low-fertility soils. Biol. Fertil. Soils 44, 571–579 (2008).Article 
    CAS 

    Google Scholar 
    Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    Billings, S. A. & Ballantyne, F. T. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).Article 

    Google Scholar 
    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).Article 

    Google Scholar 
    Min, K. et al. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Glob. Change Biol. 5, 1793–1807 (2019).Article 

    Google Scholar 
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field-Fote, E. E. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. J. Neurol. Phys. Ther. 43, 83–84 (2019).Article 
    PubMed 

    Google Scholar 
    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 12, 2039–2043 (2010).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 166, 1063–1068 (2005).Article 
    CAS 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).Article 
    CAS 

    Google Scholar 
    Mazerolle, M. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 2, 169–180 (2006).Article 

    Google Scholar 
    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar  More

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More

  • in

    Acclimation of phenology relieves leaf longevity constraints in deciduous forests

    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).Article 

    Google Scholar 
    Hopkins, A. D. The bioclimatic law. Mon. Weather Rev. 48, 355–355 (1920).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenol. Glob. Warm. Sci. 327, 1461–1462 (2010).
    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).Article 

    Google Scholar 
    Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).Article 

    Google Scholar 
    Garrity, S. R. et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 151, 1741–1752 (2011).Article 

    Google Scholar 
    Fracheboud, Y. et al. The control of autumn senescence in European aspen. Plant Physiol. 149, 1982–1991 (2009).Article 
    CAS 

    Google Scholar 
    Mariën, B. et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 18, 3309–3330 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24, 2159–2168 (2018).Article 

    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).Article 

    Google Scholar 
    Gordo, O. & Sanz, J. J. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930–1948 (2009).Article 

    Google Scholar 
    Meier, M., Vitasse, Y., Bugmann, H. & Bigler, C. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agric. For. Meteorol. 307, 108485 (2021).Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).Article 

    Google Scholar 
    Keenan, T. F. et al. Terrestrial biosphere model performance for inter-annual variability of land–atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).Article 

    Google Scholar 
    Liu, G., Chen, X., Fu, Y. & Delpierre, N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol. Modell. 394, 34–43 (2019).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Wu, C., Hou, X., Peng, D., Gonsamo, A. & Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 216, 177–187 (2016).Article 

    Google Scholar 
    Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 
    CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).Article 
    CAS 

    Google Scholar 
    Paul, M. J. & Foyer, C. H. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400 (2001).Article 
    CAS 

    Google Scholar 
    Herold, A. Regulation of photosynthesis by sink activity—the missing link. New Phytol. 86, 131–144 (1980).Article 
    CAS 

    Google Scholar 
    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).Article 
    CAS 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci.USA 112, 436–441 (2015).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO. New Phytol. 229, 2413–2445 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Modeling leaf senescence of deciduous tree species in Europe. Glob. Change Biol. 26, 4104–4118 (2020).Article 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 (NASA, 2019).Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Hänninen, H. & Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 16, 412–416 (2011).Article 

    Google Scholar 
    Kikuzawa, K. & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).Article 
    CAS 

    Google Scholar 
    Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).Article 
    CAS 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).Article 
    CAS 

    Google Scholar 
    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).Article 

    Google Scholar 
    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Chung, H. et al. Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res. 126, 447–460 (2013).Article 

    Google Scholar 
    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).Article 

    Google Scholar 
    Tuck, S. L. et al. MODISTools—downloading and processing MODIS remotely sensed data in R. Ecol. Evol. 4, 4658–4668 (2014).Article 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Stocker, B. rsofun: A modelling framework that implements the P-model for leaf-level acclimation of photosynthesis. R package version 4.3 https://github.com/computationales/rsofun (2020).Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B. & Reginato, R. J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 76, 939–945 (1984).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Stocker, B. ingestr: A tool to extract environmental point data from large global files or remote data servers. R package version 1.4 https://github.com/computationales/ingestr (2020).Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015). More

  • in

    Nature-positive goals for an organization’s food consumption

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Díaz, S., et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).Article 

    Google Scholar 
    Locke, H., et al. A Nature-Positive World: The Global Goal for Nature (Wildlife Conservation Society, 2020); https://library.wcs.org/doi/ctl/view/mid/33065/pubid/DMX3974900000.aspxOpen-ended Working Group on the Post-2020 Global Biodiversity Framework. First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (Convention on Biological Diversity, 2021).Open-Ended Working Group on the Post-2020 Global Biodiversity Framework. Draft Recommendation Submitted by the Co-Chairs CBD/WG2020/4/L.2-ANNEX (Convention on Biological Diversity, 2022).Environment Act 2021 (UK) (HM Government, 2021); https://www.legislation.gov.uk/ukpga/2021/30/contents/enactedBull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    Prendeville, S., Cherim, E. & Bocken, N. Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018).de Silva, G. C., Regan, E. C., Pollard, E. H. B. & Addison, P. F. E. The evolution of corporate no net loss and net positive impact biodiversity commitments: understanding appetite and addressing challenges. Bus. Strategy Environ. 28, 1481–1495 (2019).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early‐adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).Article 

    Google Scholar 
    McGlyn, J., et al. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020); https://sciencebasedtargetsnetwork.org/resource-repository/zu Ermgassen, S. O. S. E. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).Article 

    Google Scholar 
    Addison, P. F. E., Bull, J. W. & Milner‐Gulland, E. J. Using conservation science to advance corporate biodiversity accountability. Conserv. Biol. 33, 307–318 (2019).Article 

    Google Scholar 
    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Maron, M. et al. Setting robust biodiversity goals. Conserv. Lett. https://doi.org/10.1111/conl.12816 (2021).Newing, H. & Perram, A. What do you know about conservation and human rights? Oryx 53, 595–596 (2019).Article 

    Google Scholar 
    Standard on Biodiversity Offsets (The Business and Biodiversity Offsets Programme, 2012).Arlidge, W. N. S., et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2020).Article 

    Google Scholar 
    Gupta, T. et al. Mitigation of elasmobranch bycatch in trawlers: a case study in Indian fisheries. Front. Mari. Sci. 7, 571 (2020).Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environ. Change 52, 152–161 (2018).Article 

    Google Scholar 
    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).Article 

    Google Scholar 
    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 
    ADS 

    Google Scholar 
    Wolff, A., Gondran, N. & Brodhag, C. Detecting unsustainable pressures exerted on biodiversity by a company. Application to the food portfolio of a retailer. J. Clean. Prod. 166, 784–797 (2017).Article 

    Google Scholar 
    FAOSTAT Analytical Brief 15 Land Use and Land Cover Statistics: Global, Regional and Country Trends, 1990–2018 (FAO, 2020).Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    ADS 

    Google Scholar 
    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Benton, T. G. et al. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2, 905–906 (2021). 2021.Article 

    Google Scholar 
    Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).Article 
    CAS 

    Google Scholar 
    Bull, J. W., et al. Analysis: the biodiversity footprint of the University of Oxford. Nature 604, 420–424 (2022).Harrington, R. A., Adhikari, V., Rayner, M. & Scarborough, P. Nutrient composition databases in the age of big data: foodDB, a comprehensive, real-time database infrastructure. BMJ Open 9, e026652 (2019).Article 

    Google Scholar 
    Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Winter, L., Lehmann, A., Finogenova, N. & Finkbeiner, M. Including biodiversity in life cycle assessment—state of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017).Article 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Global Environ. Change 38, 195–204 (2016).Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, B., et al. National Diet and Nutrition Survey Years 1 to 9 of the Rolling Programme (2008/2009–2016/2017): Time Trend and Income Analyses (Public Health England & Food Standards Agency, 2019).Stewart, C., Piernas, C., Cook, B. & Jebb, S. A. Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet. Health 5, e699–e708 (2021).Article 

    Google Scholar 
    Nielsen, K. S. et al. Improving climate change mitigation analysis: a framework for examining feasibility. One Earth 3, 325–336 (2020).Article 
    ADS 

    Google Scholar 
    Selinske, M. J. et al. We have a steak in it: eliciting interventions to reduce beef consumption and its impact on biodiversity. Conserv. Lett. 13, e12721 (2020).Article 

    Google Scholar 
    Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 1–9 (2017).Article 

    Google Scholar 
    Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).Article 

    Google Scholar 
    Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).Article 
    ADS 

    Google Scholar 
    Godar, J., Suavet, C., Gardner, T. A., Dawkins, E. & Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 11, 035015 (2016).Article 
    ADS 

    Google Scholar 
    DeFries, R. S., Fanzo, J., Mondal, P., Remans, R. & Wood, S. A. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environ. Res. Lett. 12, 033001 (2017).Article 
    ADS 

    Google Scholar 
    Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).Article 

    Google Scholar 
    Waddock, S. Achieving sustainability requires systemic business transformation. Glob. Sustain. 3, e12 (2020).Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. J. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).Article 

    Google Scholar 
    Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).Article 

    Google Scholar 
    Astill, J. et al. Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci. Technol. 91, 240–247 (2019).Article 
    CAS 

    Google Scholar 
    Poore, J & Nemecek, T. Full Excel model: life-cycle environmental impacts of food drink products. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:a63fb28c-98f8-4313-add6-e9eca99320a5 (2018).Clark, M., et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).Clark, M., et al. Supplemental Data for ‘Estimating the environmental impacts of 57,000 food products’. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:4ad0b594-3e81-4e61-aefc-5d869c799a87 (2022).Bianchi, F., Dorsel, C., Garnett, E., Aveyard, P. & Jebb, S. A. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: a systematic review with qualitative comparative analysis. IJBNPA 15, 102 (2018).
    Google Scholar 
    Bianchi, F., Garnett, E., Dorsel, C., Aveyard, P. & Jebb, S. A. Restructuring physical micro-environments to reduce the demand for meat: a systematic review and qualitative comparative analysis. Lancet Planet. Health 2, e384–e397 (2018).Article 

    Google Scholar 
    Hillier-Brown, F. C. et al. The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review. Obes. Rev. 18, 227–246 (2017).Article 
    CAS 

    Google Scholar 
    von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, Cd012292 (2019).
    Google Scholar 
    Attwood, S., Voorheis, P., Mercer, C., Davies, K. & Vennard, D. Playbook for Guiding Diners toward Plant-Rich Dishes in Food Service (World Resources Institute, 2020); https://www.wri.org/research/playbook-guiding-diners-toward-plant-rich-dishes-food-serviceGarnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A. & Marteau, T. M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Natl Acad. Sci. USA 116, 20923 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Reinders, M. J., Huitink, M., Dijkstra, S. C., Maaskant, A. J. & Heijnen, J. Menu-engineering in restaurants—adapting portion sizes on plates to enhance vegetable consumption: a real-life experiment. IJBNPA 14, 41 (2017).
    Google Scholar 
    Brunner, F., Kurz, V., Bryngelsson, D. & Hedenus, F. Carbon label at a university restaurant—label implementation and evaluation. Ecol. Econ. 146, 658–667 (2018).Article 

    Google Scholar 
    McClain, A. D., Hekler, E. B. & Gardner, C. D. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention. J. Am. Coll. Health 61, 122–131 (2013).Article 

    Google Scholar 
    de Vaan, J. Eating Less Meat: How to Stimulate the Choice for a Vegetarian Option without Inducing Reactance. MSc thesis, Radboud Univ. (2018). More

  • in

    Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).Article 
    CAS 

    Google Scholar 
    Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).Article 

    Google Scholar 
    Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME Archaea. Microbes Environ. 32, 5–13 (2017).Article 

    Google Scholar 
    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).Article 
    CAS 

    Google Scholar 
    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).Article 
    CAS 

    Google Scholar 
    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).Article 
    CAS 

    Google Scholar 
    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio 11, e01325-20 (2020).Cai, C. et al. Response of the anaerobic methanotrophic archaeon Candidatus ‘Methanoperedens nitroreducens’ to the long-term ferrihydrite amendment. Front. Microbiol. 13, 799859 (2022).Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front. Microbiol. 6, 1423 (2015).Article 

    Google Scholar 
    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).Article 
    CAS 

    Google Scholar 
    Walker, D. J. F. et al. The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10, e00579-19 (2019).Article 
    CAS 

    Google Scholar 
    Krukenberg, V. et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).Article 
    CAS 

    Google Scholar 
    Schubert, C. J. et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol. Ecol. 76, 26–38 (2011).Article 
    CAS 

    Google Scholar 
    Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).Article 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 36, 660 (2018).Article 
    CAS 

    Google Scholar 
    Vo, C. H., Goyal, N., Karimi, I. A. & Kraft, M. First observation of an acetate switch in a methanogenic autotroph (Methanococcus maripaludis S2). Microbiol. Insights 13, 1178636120945300 (2020).Article 

    Google Scholar 
    Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).Article 
    CAS 

    Google Scholar 
    Ratcliff, W. C. & Denison, R. F. Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun. Integr. Biol. 4, 98–100 (2011).Article 
    CAS 

    Google Scholar 
    Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. W. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).Article 
    CAS 

    Google Scholar 
    Simon, G.-C. et al. Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18 (2018).
    Google Scholar 
    van der Star, W. R. L. et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294 (2008).Article 

    Google Scholar 
    Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).Article 
    CAS 

    Google Scholar 
    Schwarzer, S., Rodriguez-Franco, M., Oksanen, H. M. & Quax, T. E. F. Growth phase dependent cell shape of Haloarcula. Microorganisms 9, 231 (2021).Article 
    CAS 

    Google Scholar 
    Dang, H. Y. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).Article 
    CAS 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).Article 

    Google Scholar 
    Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Res. 221, 118743 (2022).Article 
    CAS 

    Google Scholar 
    Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic Archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).Article 
    CAS 

    Google Scholar 
    Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).Article 
    CAS 

    Google Scholar 
    Orphan, V. J. et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 205, 265–289 (2004).Article 
    CAS 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, A. M. & Smith, C. J.) 213–239 (Taylor & Francis, 2005).Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).Article 
    CAS 

    Google Scholar 
    Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).Article 
    CAS 

    Google Scholar 
    Fuchs, B. M., Glockner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000).Article 
    CAS 

    Google Scholar 
    Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).Article 

    Google Scholar 
    Ostle, A. G. & Holt, J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982).Article 
    CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091 (2019).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).Article 

    Google Scholar 
    Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).Article 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).Article 
    CAS 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138 (2021).Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).Article 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).Article 

    Google Scholar 
    Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).Article 
    CAS 

    Google Scholar 
    Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).Article 

    Google Scholar 
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).Article 
    CAS 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).Article 
    CAS 

    Google Scholar 
    Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).Article 
    CAS 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    CAS 

    Google Scholar 
    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).Article 
    CAS 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).Article 
    CAS 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).Article 
    CAS 

    Google Scholar 
    Schmid, M. C. et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71, 1677–1684 (2005).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar  More

  • in

    Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology

    Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).Article 
    ADS 

    Google Scholar 
    Page, S., et al. Tropical Fire Ecology Ch. 9 (Springer, 2009).Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150176 (2016).Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 075007 (2016).Article 
    ADS 

    Google Scholar 
    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014).Article 

    Google Scholar 
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article 
    ADS 

    Google Scholar 
    Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011).Article 

    Google Scholar 
    Harrison, M. E. & Rieley, J. O. Tropical peatland biodiversity and conservation in Southeast Asia. Mires Peat 22, 1–7 (2018).
    Google Scholar 
    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).Article 

    Google Scholar 
    Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).Article 

    Google Scholar 
    Taufik, M., Setiawan, B. I. & Van Lanen, H. A. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 48, 363–373 (2019).Article 

    Google Scholar 
    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).Article 
    ADS 

    Google Scholar 
    Fanin, T. & Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article 
    ADS 

    Google Scholar 
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. 113, 9204–9209 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 18, 3410–3422 (2012).Article 
    ADS 

    Google Scholar 
    Ohkubo, S., Hirano, T. & Kusin, K. Influence of fire and drainage on evapotranspiration in a degraded peat swamp forest in Central Kalimantan Indonesia. J. Hydrol. 603, 126906 (2021).Article 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 1–8 (2020).Article 

    Google Scholar 
    Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 024017 (2017).Article 
    ADS 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. & Mezbahuddin, S. ProbFire: A probabilistic fire early warning system for Indonesia. Nat. Hazards Earth Syst. Sci. 22, 303–322 (2022).Article 
    ADS 

    Google Scholar 
    Taufik, M., Veldhuizen, A. A., Wösten, J. H. M. & van Lanen, H. A. J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 347, 160–169 (2019).Article 
    ADS 

    Google Scholar 
    Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 26, 1–30 (2021).Article 

    Google Scholar 
    Lestari, I., Murdiyarso, D. & Taufik, M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province Indonesia. Forests 13, 505 (2022).Article 

    Google Scholar 
    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).Article 
    ADS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland. Biogeosciences 11, 577–599 (2014).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).Article 
    ADS 

    Google Scholar 
    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).Article 
    ADS 

    Google Scholar 
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra Indonesia. Geoderma 338, 410–421 (2019).Article 
    ADS 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1–13 (2013).
    Google Scholar 
    Khasanah, N. M. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 24, 147 (2019).Article 

    Google Scholar 
    Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. & Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 64, 386–395 (2018).Article 
    CAS 

    Google Scholar 
    Lubis, M. E. S. et al. Changes in water table depth in an oil palm plantation and its surrounding regions in Sumatra Indonesia. J. Agron. 13, 140–146 (2014).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Wüst, R. Developments in Earth Surface Processes (Volume 9) Ch. 3 (Elsevier, 2006).Haffiez, N. et al. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 839, 156211 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Grant, R. F., Desai, A. R. & Sulman, B. N. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9, 4215–4231 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Flanagan, L. B. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland. J. Geophys. Res. Biogeosci. 121, 2216–2242 (2016).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    ADS 

    Google Scholar 
    Dimitrov, D. D., Bhatti, J. S. & Grant, R. F. The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan. Ecol. Modell. 274, 57–70 (2014).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).Article 

    Google Scholar 
    Osaki, M., Hirose, K., Segah, H. & Helmy, F. Tropical Peatland Ecosystems Ch. 9 (Springer, 2016).Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Modell. Softw. 144, 105159 (2021).Article 

    Google Scholar  More

  • in

    Similar adaptative mechanism but divergent demographic history of four sympatric desert rodents in Eurasian inland

    Species distribution modeling, spatial climate segregation and niche widthTo explore the selective regimes of the four species on external environmental factors, we first constructed species distribution modeling (SDM). We obtained a dataset including 22 environmental factors represented by climate, relief, and vegetation variables from 620 localities for DS, 1028 localities for OS, 581 localities for MM and 332 localities for PR, covering most of the species’ distribution ranges (Supplementary Fig. 1). The distribution areas of the four species overlapped widely. The contributions of environmental factors to SDMs showed similarities among the four species. The summer NDVI made important contributions for DS (41.0), OS (44.8), MM (32.5) and PR (8.1), and sand cover contributed significantly to PR (72.7) and DS (16.0) (Fig. 1c). Then, we assessed which set of environmental variables was most closely associated with species distribution via principal component analysis. The bioclimatic space occupied by the four species revealed a large overlap (Fig. 1d), which was consistent with SDM (Supplementary Fig. 1). The distribution of OS was more closely associated with higher-precipitation areas, whereas MM seemed to prefer areas with higher temperatures. Finally, we evaluated the macrohabitat niche breadth of each species. The breadths of environmental space occupation were similar for DS (0.527), MM (0.571), and PR (0.548) and slightly higher for OS (0.622), which suggests that niche selection among the four species is partially overlapping. In total, the four species are mostly similar in the selection of external environmental factors.High-quality genomic landscapes of the four desert rodentsTo investigate the genetic mechanism for desert adaptation of the four sympatric desert rodents, we generated four high-quality de novo genomes (Supplementary Fig. 2). The DS was sequenced using a combined strategy and generated 377.67 Gb of data from Illumina reads, 261.01 Gb from PacBio long reads, 299.51 Gb from 10X Genomics reads, and 389.13 Gb from Hi-C reads (Supplementary Table 1). The final genome size was 2.81 Gb with contig N50 of 31.41 Mb and ~472X mean coverage (Table 1, Supplementary Fig. 3, and Supplementary Tables 2, 3). The contigs for DS were further assembled into pseudochromosomes with lengths on the order of full chromosomes and a scaffold N50 size of 147.24 Mb (Fig. 2a, b, Table 1, and Supplementary Fig. 4). The OS, MM and PR were sequenced using the same hybrid strategy and generated 162.58 Gb, 172.22 Gb, and 214.34 Gb Illumina reads and 183.09 Gb, 161.34 Gb, and 186.45 Gb Oxford Nanopore Technologies long reads, respectively (Supplementary Table 1). The final assembly of OS, MM and PR was 2.83 Gb, 2.43 Gb, and 2.16 Gb with contig N50 of 25.87 Mb, 24.08 Mb, and 42.68 Mb, respectively (Table 1, Supplementary Fig. 4, and Supplementary Tables 2, 3).Table 1 Genome assembly statistics of the four desert rodents.Full size tableFig. 2: High-quality assembly of Dipus sagitta genome and genomic elements of the four sequenced desert rodents.a Hi-C heat map of Dipus sagitta genome assembly. b CIRCOS plot showing the distribution of GC content, transposable elements (TE), and coding sequences (CDS) in the D. sagitta genome. c Orthologous coding sequences composition inferred for thirteen rodents’ genomes. Mcar Mus caroli, Mmus Mus musculus, Mpah Mus Pahari, Mmer Meriones meridianus, Mung Meriones unguiculatus, Cgri Cricetulus griseus, Prob Phodopus roborovskii, Sgal Spalax galili, Osib Orientallactaga sibirica, Dsag Dipus sagitta, Jjac Jaculus jaculus, Hgla Heterocephalus glaber, Cpor Cavia porcellus. d Proportion of transposable elements (TEs). The barplots show the proportions of different types of TEs in corresponding species on the phylogenetic tree.Full size imageAnalyses of the four draft genomes showed that 92.9–95.9% of mammalian BUSCOs were complete, and the GC content was 41.38–42.16% (Table 1 and Supplementary Table 3). Whole-genome annotation was performed via three complementary methods: ab initio prediction, homology-based prediction and RNA-seq based prediction. A total of 23,482, 22,859, 22,533, and 22,314 protein-coding genes were annotated for DS, OS, MM, and PR, respectively (Fig. 2c, Supplementary Fig. 5, Supplementary Table 4). Approximately 98.8–99.1% of genes were functionally annotated for the four species (Supplementary Table 4). Transposable elements (TEs) accounted for 31.38–53.02% of genome assemblies, which predominantly consisted of long-terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and other unknown TEs (Fig. 2d). DS and OS displayed significant LTR expansion of 47.39% and 50.88% in four sequenced genomes, while MM showed an unexpectedly high LINE expansion of 28.99% and sharp LTR contraction to 9.38% (Supplementary Table 5).Phylogenetic relationship and evolutionary historyUsing 5,102 single-copy orthologous groups, we constructed a high-confidence phylogenetic tree using the maximum-likelihood algorithm, including time calibrations based on fossil records and previous studies (Figs. 1b, 2c)22. The phylogenetic tree strongly supported nodes uniting the subfamilies Murinae and Gerbillinae, which together represented the family Muridae (Supplementary Fig. 6). This group was sister to a clade containing cricetids. Spalacidae was recovered as the earliest divergent lineage from Muridae and Cricetidae in the superfamily Muroidea. The split of the most recent common ancestor of Dipodoidea and Muroidea dated to ~56.5 Mya (Fig. 1b, Supplementary Fig. 7). In the Miocene epoch (23 Mya–5.3 Mya), accelerated global geotectonic movement aggravated global climate drying and cooling23. Geological disruptions that modified landscapes and offered new habitats favored the early adaptive radiation of extant desert rodents. The ancestors of four sequenced species emerged separately during this period (Supplementary Note 1). Our phylogenetic tree is consistent with previous evolutionary research on rodents22 and supports the independent evolution of desert adaptations in Jerboas, Gerbils and Hamsters.Expanded and contracted gene familiesComparative genomic analysis revealed 23/32, 4/22, 39/73, and 22/83 gene families exhibiting significant expansion/contraction in the genomes of DS, OS, MM, and PR, respectively (Fig. 1b and Supplementary Fig. 8). Genes belonging to the expanded/contracted families were functionally enriched (Fisher Exact  More

  • in

    Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334(6056), 660–664 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science https://doi.org/10.1126/science.aaf7671 (2016).Article 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292(5517), 673–679 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science https://doi.org/10.1126/science.1200303 (2011).Article 

    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).Article 
    ADS 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. PNAS 109(22), 8606–8611 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308(5730), 1912–1915 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Bradshaw, W. E., Zani, P. A. & Holzapfel, C. M. Adaptation to temperate climates. Evolution 58(8), 1748–1762 (2004).
    Google Scholar 
    Thomas, C. D. et al. Ecological and evolutionary processes at expanding range margins. Nature 411(6837), 577–581 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348(6234), 571–573 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Waller, N. L., Gynther, I. C., Freeman, A. B., Lavery, T. H. & Leung, L. K. P. The bramble cay melomys Melomys rubicola (Rodentia:Muridae): A first mammalian extinction caused by human-induced climate change?. Wildl. Res. 44(1), 9–21 (2017).Article 

    Google Scholar 
    Murray, K. A., Rosauer, D., McCallum, H. & Skerratt, L. F. Integrating species traits with extrinsic threats: Closing the gap between predicting and preventing species declines. Proc. R. Soc. B: Biol. Sci. 278(1711), 1515–1523 (2011).Article 

    Google Scholar 
    Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the Tropics. Am. Nat. 133(2), 240–256 (1989).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12(3), 450–455 (2006).Article 
    ADS 

    Google Scholar 
    Virkkala, R., Heikkinen, R. K., Leikola, N. & Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 141(5), 1343–1353 (2008).Article 

    Google Scholar 
    Sales, L. P. et al. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86(5), 1214–1223 (2017).Article 

    Google Scholar 
    Gouveia, S. F. et al. Climate and land use changes will degrade the configuration of the landscape for titi monkeys in eastern Brazil. Glob. Change Biol. 22(6), 2003–2012 (2016).Article 
    ADS 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12(5), 361–371 (2003).Article 

    Google Scholar 
    Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography 32(1), 34–45 (2009).Article 

    Google Scholar 
    Ozinga, W. A. et al. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108(3), 555–561 (2005).Article 

    Google Scholar 
    Takahashi, K. & Kamitani, T. Effect of dispersal capacity on forest plant migration at a landscape scale. J. Ecol. 92(5), 778–785 (2004).Article 

    Google Scholar 
    Koo, K. A. & Park, S. U. The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecol. Indic. 142, 109192 (2022).Article 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Vanderwal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).Article 
    ADS 

    Google Scholar 
    Lira, A. F. de A., Badillo-Montaño, R., Lira-Noriega, A. & de Albuquerque, C. M. R. Potential distribution patterns of scorpions in north-eastern Brazil under scenarios of future climate change. Austral Ecol. 45(2), 215–228 (2020).Castro, M. B. et al. Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?. Biodivers. Conserv. 29(2), 591–607 (2020).Article 

    Google Scholar 
    Wilson, O. J., Walters, R. J., Mayle, F. E., Lingner, D. V. & Vibrans, A. C. Cold spot microrefugia hold the key to survival for Brazil’s Critically Endangered Araucaria tree. Glob. Change Biol. 25(12), 4339–4351 (2019).Article 
    ADS 

    Google Scholar 
    Esser, L. F. et al. Future uncertainties for the distribution and conservation of Paubrasilia echinata under climate change. Acta Bot. Bras. 33(4), 770–776 (2019).Article 

    Google Scholar 
    Cabanne, G. S. et al. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol. J. Linn. Soc. 119(4), 856–872 (2016).Article 

    Google Scholar 
    Iturralde-Pólit, P., Dangles, O., Burneo, S. F. & Meynard, C. N. The effects of climate change on a mega-diverse country: predicted shifts in mammalian species richness and turnover in continental Ecuador. Biotropica 49(6), 821–831 (2017).Article 

    Google Scholar 
    Vu, T. T. et al. An assessment of the impact of climate change on the distribution of the grey-shanked douc Pygathrix cinerea using an ecological niche model. Primates 61(2), 267–275 (2020).Article 

    Google Scholar 
    Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42(10), 1789–1801 (2019).Article 

    Google Scholar 
    Hill, S. E. & Winder, I. C. Predicting the impacts of climate change on Papio baboon biogeography: Are widespread, generalist primates ‘safe’?. J. Biogeogr. 46(7), 1380–1405 (2019).
    Google Scholar 
    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21(6), 2155–2168 (2015).Article 
    ADS 

    Google Scholar 
    Fernández, D. et al. The current status of the world’s primates: Mapping threats to understand priorities for primate conservation. Int. J. Primatol. 43, 15–39 (2022).Article 

    Google Scholar 
    Stewart, B. M., Turner, S. E. & Matthews, H. D. Climate change impacts on potential future ranges of non-human primate species. Clim. Change 162, 2301–2318 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Estrada, A. et al. Primates in peril: The significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ 6, e4869; https://doi.org/10.7717/peerj.4869 (2018).Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).Article 

    Google Scholar 
    Graham, T. L., Matthews, H. D. & Turner, S. E. A global-scale evaluation of primate exposure and vulnerability to climate change. Int. J. Primatol. 37(2), 158–174 (2016).Article 

    Google Scholar 
    Meyer, A. L. S., Pie, M. R. & Passos, F. C. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am. J. Primatol. 76(6), 551–562 (2014).Article 

    Google Scholar 
    Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 25(4), 536–550 (2019).Article 

    Google Scholar 
    Lima, A. A. de, Ribeiro, M. C., Grelle, C. E. de V. & Pinto, M. P. Impacts of climate changes on spatio-temporal diversity patterns of Atlantic Forest primates. Perspect. Ecol. Conserv. 17(2), 50–56 (2019).Colombo, A. F. & Joly, C. A. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70(3), 697–708 (2010).Article 
    CAS 

    Google Scholar 
    Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27(3), 298–309 (2018).Article 

    Google Scholar 
    Lemes, P., Melo, A. S. & Loyola, R. D. Climate change threatens protected areas of the Atlantic Forest. Biodivers. Conserv. 23(2), 357–368 (2014).Article 

    Google Scholar 
    Rezende, G. C., Sobral-Souza, T. & Culot, L. Integrating climate and landscape models to prioritize areas and conservation strategies for an endangered arboreal primate. Am. J. Primatol. 82(12), e23202. https://doi.org/10.1002/ajp.23202 (2020).Article 

    Google Scholar 
    Silva, L. B. et al. How future climate change and deforestation can drastically affect the species of monkeys endemic to the eastern Amazon, and priorities for conservation. Biodivers. Conserv. 31, 971–988 (2022).Article 

    Google Scholar 
    Sales, L., Ribeiro, B. R., Chapman, C. A. & Loyola, R. Multiple dimensions of climate change on the distribution of Amazon primates. Perspect. Ecol. Conserv. 18(2), 83–90 (2020).
    Google Scholar 
    Moraes, B., Razgour, O., Souza-Alves, J., Boubli, J. & Bezerra, B. Habitat suitability for primate conservation in north-east Brazil. Oryx 54(6), 803–813 (2020).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. PNAS 114(48), 12755–12760 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: Mechanisms and consequences. Trends Ecol. Evol. 32(5), 346–355 (2017).Article 

    Google Scholar 
    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    Lenoir, J. & Svenning, J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    Raghunathan, N., François, L., Huynen, M. C., Oliveira, L. C. & Hambuckers, A. Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic forest under a scenario of future climate change. Reg. Environ. Change 15, 683–693 (2015).Article 

    Google Scholar 
    Lawler, J. J., Ruesch, A. S., Olden, J. D. & McRae, B. H. Projected climate-driven faunal movement routes. Ecol. Lett. 16(8), 1014–1022 (2013).Article 
    CAS 

    Google Scholar 
    Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).Article 

    Google Scholar 
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10(10), e0142024. https://doi.org/10.1371/journal.pone.0140486 (2015).Article 
    CAS 

    Google Scholar 
    Davies, T. J., Purvis, A. & Gittleman, J. L. Quaternary climate change and the geographic ranges of mammals. Am. Nat. 174(3), 297–307 (2009).Article 

    Google Scholar 
    Gaston, K.J. The structure and dynamics of geographic ranges (Oxford University Press, 2003).Meyer, A. L. S. & Pie, M. R. Climate change estimates surpass rates of climatic niche evolution in primates. Int. J. Primatol. 43, 40–56 (2021).Article 

    Google Scholar 
    Zeigler, S. L., Fagan, W. F., DeFries, R. & Raboy, B. E. Identifying important forest patches for the long-term persistence of the endangered golden-headed lion tamarin (Leontopithecus chrysomelas). Trop. Conserv. Sci. 3(1), 63–77 (2010).Article 

    Google Scholar 
    Dosen, J., Fortin, M. J. & Raboy, B. E. Restoration strategies to improve connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in the Bahian Atlantic Forest. Brazil. Int. J. Primatol. 38(5), 962–983 (2017).Article 

    Google Scholar 
    Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic Forest. Environ. Res. Lett. 17(4), 045009. https://doi.org/10.1088/1748-9326/ac5ae1 (2022).Article 
    ADS 

    Google Scholar 
    Estrada, A., Raboy, B. E. & Oliveira, L. C. Agroecosystems and primate conservation in the tropics: A review. Am. J. Primatol. 74, 696–711 (2012).Article 

    Google Scholar 
    Galea, B., Humle, T. Identifying and mitigating the impacts on primates of transportation and service corridors. Conserv. Biol. 36, e13836; https://doi.org/10.1111/cobi.13836 (2022).Gouveia, S. F. et al. Functional planning units for the management of an endangered Brazilian titi monkey. Am. J. Primatol. 79(5), e22637; https://doi.org/10.1002/ajp.22637 (2017).Rezende, G. et al. Leontopithecus chrysopygus. The IUCN Red List of Threatened Species, e.T11505A17935400; https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T11505A17935400.en (2020).Culot, L. et al. ATLANTIC-PRIMATES: A dataset of communities and occurrences of primates in the Atlantic Forests of South America. Ecology 100(1), e02525; https://doi.org/10.1002/ecy.2525 (2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists (Cambridge University Press, 2002).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).Article 

    Google Scholar 
    Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3(2), 260–267 (2012).Article 

    Google Scholar 
    Hidasi-Neto, J. et al. Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspect. Ecol. Conserv. 17(2), 57–63 (2019).
    Google Scholar 
    Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83(7), 2049–2055 (2002).Article 

    Google Scholar 
    Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. & Arasa-Gisbert, R. Ecological traits of the world’s primates. Sci. Data 6, 55. https://doi.org/10.1038/s41597-019-0059-9 (2019).Article 

    Google Scholar 
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria (2017).QGIS Development Team. QGIS Geographic Information System (2016). More