More stories

  • in

    Responses to salinity in the littoral earthworm genus Pontodrilus

    Lavelle, P., Blanchart, E., Martin, A., Spain, A. V. & Martin, S. Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics (eds Lal, R. & Sanchez, P.) 157–185 (Soil Science Society of America, 1992).
    Google Scholar 
    Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).Article 

    Google Scholar 
    Eisenhauer, N. & Eisenhauer, E. The “intestines of the soil”: The taxonomic and functional diversity of earthworms—A review for young ecologists. Preprint at https://doi.org/10.32942/osf.io/tfm5y (2020).Gates, G. E. Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to South-east Asia. Trans. Amer. Phil. Soc. 62, 1–326. https://doi.org/10.2307/1006214 (1972).Article 

    Google Scholar 
    Blakemore, R. J. Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligocaheta: Megascolecidae). Eur. J. Soil Biol. 443, S3–S8. https://doi.org/10.1016/j.ejsobi.2007.08.041 (2007).Article 

    Google Scholar 
    Seesamut, T., Sutcharit, C., Jirapatrasilp, P., Chanabun, R. & Panha, S. Morphological and molecular evidence reveal a new species of the earthworm genus Pontodrilus Perrier, 1874 (Clitellata, Megascolecidae) from Thailand and Peninsular Malaysia. Zootaxa 4496, 218–237. https://doi.org/10.11646/zootaxa.4496.1.18 (2018).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Chanabun, R., Oba, Y. & Panha, S. Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. Zookeys 862, 23–43. https://doi.org/10.3897/zookeys.862.35727 (2019).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93, 103091. https://doi.org/10.1016/j.ejsobi.2019.103091 (2019).Article 

    Google Scholar 
    Attrill, M. J. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262–269. https://doi.org/10.1046/j.1365-2656.2002.00593.x (2002).Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management 3rd edn. (Oxford University Press, 2004).Book 

    Google Scholar 
    Telesh, I. V. & Khlebovich, V. V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 61, 149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008 (2010).Article 
    CAS 

    Google Scholar 
    Owojori, O. J. & Reinecke, A. J. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol. 44, 156–163. https://doi.org/10.1016/j.apsoil.2009.11.006 (2010).Article 

    Google Scholar 
    Guzyte, G., Sujetoviene, G. & Zaltauskaite, J. Effects of salinity on earthworm (Eisenia fetida). Environ. Eng. 8, 111 (2011).
    Google Scholar 
    Ganapati, P. N. & Subba Rao, B. V. S. S. R. Salinity tolerance of a littoral oligochaete, Pontodrilus bermudensis Beddard. Proc. Ind. Nat. Sci. Acad. 38, 350–354 (1972).
    Google Scholar 
    Subba Rao, B. V. S. S. R. Volume regulation in a euryhaline oligochaete, Pontodrilus bermudensis Beddard. Proc. Indian Acad. Sci. 87, 339–347 (1978).Article 

    Google Scholar 
    Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).Article 
    CAS 

    Google Scholar 
    Seesamut, T. et al. Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus. Sci. Rep. 11, 8407 (2021).Article 
    CAS 

    Google Scholar 
    Sivinski, J. & Forrest, T. Luminous defense in an earthworm. Fla. Entomol. 66, 517 (1983).Article 

    Google Scholar 
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32. https://doi.org/10.1093/icb/icx017 (2017).Article 
    CAS 

    Google Scholar 
    Shimomura, O. & Yampolsky, I. Bioluminescence: Chemical Principles and Methods 3rd edn. (World Scientific, 2019).Book 

    Google Scholar 
    Easton, E. G. Earthworms (Oligochaeta) from islands of the south-western Pacific, and a note on two species from Papua New Guinea. N. Z. J. Zool. 11, 111–128. https://doi.org/10.1080/03014223.1984.10423750 (1984).Article 

    Google Scholar 
    Shen, H.-P., Tsai, S.-C. & Tsai, C.-F. Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50, 11–21 (2005).
    Google Scholar 
    Satheeshkumar, P., Khan, A. B. & Senthilkumar, D. Annelida, Oligochaeta, Megascolecidae, Pontodrilus litoralis (Grupe, 1985): First record from Pondicherry mangroves, southeast coast of India. Int. J. Zool. Res. 7, 406–409. https://doi.org/10.3923/ijzr.2011.406.409 (2011).Article 

    Google Scholar 
    Nguyen, T. T., Nguyen, D. A., Tran, T. T. B. & Blakemore, R. J. A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa 4140, 1–92. https://doi.org/10.11646/zootaxa.4140.1.1 (2016).Article 

    Google Scholar 
    Chen, S.-Y., Hsu, C.-H. & Soong, K. How to cross the sea: Testing the dispersal mechanisms of the cosmopolitan earthworm Pontodrilus litoralis. R. Soc. Open Sci. 8, 202297. https://doi.org/10.1098/rsos.202297 (2021).Article 
    ADS 

    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment (eds Solan, M. & Whiteley, N. M.) 161–175 (Oxford University Press, 2016).Chapter 

    Google Scholar 
    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160. https://doi.org/10.1093/mollus/eyv044 (2016).Article 

    Google Scholar 
    Carley, W. W., Caracciolo, E. A. & Mason, R. T. Cell and coelomic fluid volume regulation in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 74, 569–575 (1983).Article 

    Google Scholar 
    Sharif, F. et al. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Arch. Agron. Soil Sci. 62, 1169–1181. https://doi.org/10.1080/03650340.2015.1132838 (2016).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 16, 4737. https://doi.org/10.3390/ijerph16234737 (2019).Article 
    CAS 

    Google Scholar 
    Oglesby, L. C. Volume regulation in aquatic invertebrates. J. Exp. Zool. 215, 289–301 (1981).Article 
    CAS 

    Google Scholar 
    Generlich, O. & Giere, O. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334, 251–261. https://doi.org/10.1007/BF00017375 (1996).Article 

    Google Scholar 
    Carregosa, V. et al. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 171, 36–43. https://doi.org/10.1016/j.cbpa.2014.02.009 (2014).Article 
    CAS 

    Google Scholar 
    Freitas, R. et al. The effects of salinity changes on the polychaete Diopatra neapolitana: Impacts on regenerative capacity and biochemical markers. Aquat. Toxicol. 163, 167–176. https://doi.org/10.1016/j.aquatox.2015.04.006 (2015).Article 
    CAS 

    Google Scholar 
    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760. https://doi.org/10.1242/jeb.135624 (2017).Article 

    Google Scholar 
    Munnoli, P. M. & Bhosle, S. Effect of soil cow dung proportion of vermicomposting. J. Sci. Ind. Res. 68, 57–60 (2009).
    Google Scholar  More

  • in

    Variations in home range and core area of red-backed voles (Myodes regulus) in response to various ecological factors

    Gorosito, I., Benitez, A. & Busch, M. Home range variability, spatial aggregation, and excursions of Akodon azarae and Oligoryzomys flavescens in Pampean agroecosystems. Integr. Zool. 15, 401–415 (2020).Article 

    Google Scholar 
    Christy, M. T., Savidge, J. A., Adams, A. A. Y., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasion. 8, 455–467 (2017).Article 

    Google Scholar 
    Cutrera, A. P., Antinuchi, C. D., Mora, M. S. & Vassallo, A. I. Home-range and activity patterns of the south American subterranean rodent Ctenomys talarum. J. Mammal. 87, 1183–1191 (2006).Article 

    Google Scholar 
    Tisell, H. B., Degrassi, A. L., Stephens, R. B. & Rowe, R. J. Influence of field technique, density, and sex on home range and overlap of the southern red-backed vole (Myodes gapperi). Can. J. Zool. 97, 1101–1108 (2019).Article 

    Google Scholar 
    Vieira, E. M., Baumgarten, L. C., Paise, G. & Becker, R. G. Seasonal patterns and influence of temperature on the daily activity of the diurnal neotropical rodent Necromys lasiurus. Can. J. Zool. 88, 259–265 (2010).Article 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).Article 

    Google Scholar 
    Samuel, M. D., Pierce, D. & Garton, E. O. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 711–719 (1985).Article 

    Google Scholar 
    Worton, B. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).Article 

    Google Scholar 
    White, G. C. & Garrott, R. A. Analysis of Wildlife Radio-tracking Data (Academic Press, 1990).
    Google Scholar 
    Lee, E. J., Rhim, S. J. & Lee, W. S. Seasonal movements and home range sizes of Korean field mouse Apodemus peninsulae in unburned and post-fire pine planted stands within a pine forest. J. Anim. Vet. Adv. 11, 3834–3839 (2012).
    Google Scholar 
    Thompson, R. L., Chambers, C. L. & McComb, B. C. Home range and habitat of western red-backed voles in the Oregon Cascades. Northwest Sci. 83, 46–56 (2009).Article 

    Google Scholar 
    Tu, C. L., He, T. B., Lu, X. H., Luo, Y. & Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. CATENA 163, 204–209 (2018).Article 
    CAS 

    Google Scholar 
    Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt. J. Remote Sens. 21, 87–94 (2018).
    Google Scholar 
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article 

    Google Scholar 
    Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, L21411 (2005).Article 
    ADS 

    Google Scholar 
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).Article 
    CAS 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eom, T. K. & Rhim, S. J. Influence of tree thinning on abundance and survival probability of small rodents in a natural deciduous forest. Turk. J. Zool. 42, 323–329 (2018).
    Google Scholar 
    Navarro-Castilla, A. & Barja, I. Stressful living in lower-quality habitats? Body mass, feeding behavior and physiological stress levels in wild wood mouse populations. Integr. Zool. 14, 114–126 (2019).Article 

    Google Scholar 
    Casula, P., Luiselli, L. & Amori, G. Which population density affects home ranges of co-occurring rodents?. Basic Appl. Ecol. 34, 46–54 (2019).Article 

    Google Scholar 
    D’Elia, G., Fabre, P. H. & Lessa, E. P. Rodent systematics in an age of discovery: Recent advances and prospects. J. Mammal. 100, 852–871 (2019).Article 

    Google Scholar 
    Lee, J. K., Eom, T. K., Bae, H. K., Lee, D. H. & Rhim, S. J. Responsive strategies of three sympatric small rodents to the altitudinal effects on microhabitats. Anim. Biol. 72, 63–77 (2022).Article 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eum, T. K., Bae, H. K. & Rhim, S. J. Cascade effects of slope gradient on ground vegetation and small-rodent populations in a forest ecosystem. Anim. Biol. 70, 203–213 (2020).Article 

    Google Scholar 
    Orrock, J. L. & Connolly, B. M. Changes in trap temperature as a method to determine timing of capture of small mammals. PLoS ONE 11, e0165710 (2016).Article 

    Google Scholar 
    Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).Article 

    Google Scholar 
    Kawata, M. & Saitoh, T. The effect of introduced males on spatial patterns of initially introduced red-backed voles. Acta Theriol. 33, 585–588 (1988).Article 

    Google Scholar 
    Desy, E., Batzli, G. & Liu, J. Effects of food and predation on behaviour of prairie voles: A field experiment. Oikos 58, 159–168 (1990).Article 

    Google Scholar 
    Attuquayefio, D., Gorman, M. & Wolton, R. Home range sizes in the wood mouse Apodemus sylvaticus: Habitat, sex and seasonal differences. J. Zool. 210, 45–53 (1986).Article 

    Google Scholar 
    Lovari, S., Sforzi, A. & Mori, E. Habitat richness affects home range size in a monogamous large rodent. Behav. Process. 99, 42–46 (2013).Article 

    Google Scholar 
    Puckey, H., Lewis, M., Hooper, D. & Michell, C. Home range, movement and habitat utilisation of the Carpentarian rock-rat (Zyzomys palatalis) in an isolated habitat patch. Wildlife Res. 31, 327–337 (2004).Article 

    Google Scholar 
    Jones, E. N. Effects of forage availability on home range and population density of Microtus pennsylvanicus. J. Mammal. 71, 382–389 (1990).Article 

    Google Scholar 
    Chun, J. H., Ali, A. & Lee, C. B. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Sci. Total. Environ. 744, 140783 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Koskela, E., Mappes, T. & Ylonen, H. Territorial behaviour and reproductive success of bank vole Clethrionomys glareolus females. J. Anim. Ecol. 66, 341–349 (1997).Article 

    Google Scholar 
    Vlasata, T. et al. Daily activity patterns in the giant root rat (Tachyoryctes macrocephalus), a fossorial rodent from the Afro-alpine zone of the Bale Mountains, Ethiopia. J. Zool. 302, 157–163 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article 

    Google Scholar 
    Rhim, S. J., Kim, K. J., Son, S. H. & Hwang, H. S. Effect of forest road on stand structure and small mammals in temperate forests. J. Anim. Vet. Adv. 11, 2540–2547 (2012).Article 

    Google Scholar 
    Carrilho, M., Teixeira, D., Santos-Reis, M. & Rosalino, L. M. Small mammal abundance in Mediterranean Eucalyptus plantations: How shrub cover can really make a difference. For. Ecol. Manag. 391, 256–263 (2017).Article 

    Google Scholar 
    Emsens, W. J. et al. Effects of food availability on space and refuge use by a beotropical scatterhoarding rodent. Biotropica 45, 88–93 (2013).Article 

    Google Scholar 
    Malo, A. F. et al. Positive effects of an invasive shrub on aggregation and abundance of a native small rodent. Behav. Ecol. 24, 759–767 (2013).Article 

    Google Scholar 
    Johnson, M. D. & De Leon, Y. L. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem. PLoS ONE 10, e0117903 (2015).Article 

    Google Scholar 
    Mori, E., Sangiovanni, G. & Corlatti, L. Gimme shelter: The effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav. Process. 170, 103999 (2020).Article 

    Google Scholar 
    Prugh, L. R. & Golden, C. D. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83, 504–514 (2014).Article 

    Google Scholar 
    Orrock, J. L., Danielson, B. J. & Brinkerhoff, R. J. Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav. Ecol. 15, 433–437 (2004).Article 

    Google Scholar 
    Penteriani, V., Delgado, M. D. M., Campioni, L. & Lourenco, R. Moonlight makes owls more chatty. PLoS ONE 5, e8696 (2010).Article 
    ADS 

    Google Scholar 
    Penteriani, V., Kuparinen, A., del Mar Delgado, M., Lourenço, R. & Campioni, L. Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Anim. Behav. 82, 413–420 (2011).Article 

    Google Scholar 
    Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97, 1543–1554 (2016).Article 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eom, T. K., Lee, D. H. & Rhim, S. J. Slope gradient effect on microhabitat and small rodents in a tree thinned Japanese larch plantation. Pak. J. Zool. 54, 2213–2220 (2022).Article 

    Google Scholar 
    Heroldova, M., Bryja, J., Janova, E., Suchomel, J. & Homolka, M. Rodent damage to natural and replanted mountain forest regeneration. Sci. World J. 2012, 872536 (2012).Article 

    Google Scholar 
    Jo, Y. S., Baccus, J. T. & Koprowski, J. L. Mammals of Korea (National Institute of Biological Resources, 2018).
    Google Scholar 
    Bondrup-Nielsen, S. Investigation of spacing behavior of Clethrionomys gapperi by experimentation. J. Anim. Ecol. 55, 269–279 (1986).Article 

    Google Scholar 
    Ylonen, H., Kojola, T. & Viitala, J. Changing female spacing behavior and demography in an enclosed breeding population of Clethrionomys glareolus. Holarctic Ecol. 11, 286–292 (1988).
    Google Scholar 
    Vander Wall, S. B. Seed harvest by scatter-hoarding yellow pine chipmunks (Tamias amoenus). J. Mammal. 100, 531–536 (2019).Article 

    Google Scholar 
    Lee, E. J. & Rhim, S. J. Seasonal home ranges and activity of three rodent species in a post-fire planted stand. Folia Zool. 65, 101–106 (2016).Article 

    Google Scholar 
    Bondrup-Nielsen, S. & Ims, R. A. Reproduction and spacing behavior of females in a peak density population of Clethrionomys glareolus. Holarctic Ecol. 9, 109–112 (1986).
    Google Scholar 
    Bujalska, G. & Grum, L. Social organization of the bank vole (Clethrionomys glareolus, Schreber 1780) and its demographic consequences: A model. Oecologia 80, 70–81 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Henttonen, H. Importance of demography in understanding disease ecology in small mammals. Therya 13, 33–38 (2022).Article 

    Google Scholar 
    Rezende, E. L., Cortes, A., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J. Arid Environ. 55, 63–74 (2003).Article 
    ADS 

    Google Scholar 
    Guiden, P. W. & Orrock, J. L. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164, 181–192 (2020).Article 

    Google Scholar  More

  • in

    Galápagos tortoise stable isotope ecology and the 1850s Floreana Island Chelonoidis niger niger extinction

    Sample procurement and data analysisTo establish a diachronic dataset of Galápagos tortoise dietary stable isotope ecology, we selected samples from five sources (see Supplemental Text): the American Museum of Natural History, New York, New York, (2) the California Academy of Sciences, San Francisco, California, (3) the Natural History Museum, London, England, (4) the National Museum of Natural History, Smithsonian Institution, Washington, D.C., and (5) the Thompson’s Cove (CA-SFR-186H) archaeological site in San Francisco, California. We provide details regarding sample provenience information and date-of-death as supplemental information. From these collections, we obtained single or multiple isotope samples from a total of 57 individual tortoises representing the following subspecies (n = 10) and islands: five C. n. abingdonii (Pinta Island), one C. n. becki (Volcán Wolf, Isabela Island), five C. n. chathamensis (San Cristóbal Island), four C. n. darwini (Santiago Island), thirteen C. n. duncanensis (Pinzón Island), four C. n. guentheri (Sierra Nega, Isabela Island), six C. n. hoodensis (Española Island), one C. n. microphyes (Volcán Darwin, Isabela Island), four C. n. niger (Floreana Island), nine C. n. porteri (Western Santa Cruz Island), one C. n. vicina (Cerro Azul, Isabela Island), one unknown Isabela Island tortoise, two C. n. vicina tortoises which were transported, lived and collected on Rabida Island, and one unknown tortoise (Chelonoidis niger ssp.; unknown Island—the San Francisco Gold Rush sample). The two earliest collected tortoises in our sample date to1833 and the latest tortoise is from 1967, representing a period of 134 years.To understand tissue-specific isotopic variation and fractionation for the purposes of reconstructing long-term dietary ecology, we sampled tortoise bone collagen (n = 57), bone apatite (n = 23), scute keratin (n = 8) and skin (n = 2) for carbon (δ13Ccollagen and δ13Capatite), nitrogen (δ15N), hydrogen (δD) and oxygen (δ18Oapatite) stable isotopes. All samples were drilled or cut using a Dremel rotary tool with either a blade or diamond spherical bit attachment and were transported to the University of New Mexico, Center for Stable Isotopes (UNM-CSI), Albuquerque, NM, for preparation and analysis. All statistical and metric data analysis and visualization occurred in R (4.0.4) and RStudio (2022.02.4). We provide reproducible source code supplemental to the text35.Bone collagen δ13C, δ15N and δDAnalysis of bone collagen, skin and scute keratin for carbon, nitrogen and hydrogen stable isotopes followed standardized protocols (e.g., see36). For bone collagen, we cut and demineralized a small portion of bulk bone in 0.5 N hydrochloric acid (HCl) at 5 °C for 24 h prior to rinsing all samples to neutrality using deionized water. For lipid extraction, we immersed the samples in a solution of 2:1 chloroform:methanol (C2H5Cl3) for 24 h (repeated three times) while also sonicating samples for 15 min to ensure complete chemical saturation. Preparation of skin and scute keratin samples was only included this during the later lipid extraction step (i.e., no demineralization required). After 72 h we rinsed all samples to neutrality and lyophilized the tortoise samples for another 24 h. We then measured approximately 0.5–0.6 mg of bone collagen/skin/scute tissue into tin capsules for carbon (δ13Ccollagen) and nitrogen (δ15N) stable isotope analysis. We also measured approximately 0.2–0.3 mg of bone collagen/skin/scute tissue into silver capsules for hydrogen (δD) isotope analysis. We report isotope values in delta (δ) notation, calculated as: ((Rsample/Rstandard) − 1) × 1000, where Rsample and Rstandard are the ratios (e.g., 13C/12C, 15N/14N) of the unknown and standard material, respectively. Delta values are reported as parts per thousand (‰).Carbon and nitrogen samples were measured on a Costech 4010 elemental analyzer (Valencia, California, USA) coupled to a Scientific Delta V Plus isotope ratio mass spectrometer by a Conflo IV, and hydrogen samples were measured on a Finnigan high-temperature conversion elemental analyzer (TC/EA) coupled to a Thermo Scientific Delta V Plus mass spectrometer by a Conflo IV at UNM-CSI (see37 for details on the high temperature conversion method for hydrogen analysis). All nitrogen and carbon isotope data are reported relative to atmospheric N2 and V-PDB, respectively. The data were corrected using lab standards with values of δ15 N = 6.4‰ and δ13C =  − 26.5‰ (casein protein), and of δ15N = 13.3‰ and δ13C =  − 16.7‰ (tuna muscle) that have been calibrated relative to the universally accepted standards: IAEA-N1, USGS 24, IAEA 600, USGS 63, and USGS 40.To ensure equilibrium between the exchangeable hydrogen in tissue samples and local atmosphere38, we weighed hydrogen standards and samples into silver capsules and allowed both to sit in the laboratory for at least 2 weeks before analysis. Hydrogen data were corrected using three UNM-CSI laboratory keratin standards (δDnon-ex =  − 174‰, − 93‰, and − 54‰) of which the δDnon-ex values were previously determined through a series of atmospheric exchange experiments. These standards were also calibrated to USGS standards CBS and KHS values of − 178.8‰ and − 47.5‰, respectively (see39,40 for details and updated values). To quantitate any error imparted to our collagen data through correction with keratin standards, a UNM-CSI cow (Bos taurus) bone collagen standard was analyzed in every run over a 6-month period (July 2017–January 2018) and gave an inter-run standard deviation of 3.9‰, suggesting the difference in percent exchangeable hydrogen between collagen and keratin tissues did not significantly impact our results. All hydrogen isotope data are reported relative to Vienna-Standard Mean Ocean Water (V-SMOW). The H3 factor was between 8 and 8.5 for all runs.Collagen precision (standard deviation; SD) for within-run analyses is  More

  • in

    Epibiotic fauna of the Antarctic minke whale as a reliable indicator of seasonal movements

    Rice, D. W. Marine mammals of the world: systematics and distribution. In The Society for Marine Mammalogy (ed. Rice, D. W.) 231 (Allen Press, 1998).
    Google Scholar 
    Best, P. B. External characters of southern minke whales and the existence of a diminutive form. Sci. Rep. Whales Res. Inst. 36, 1–33 (1985).
    Google Scholar 
    Acevedo, J. et al. Occurrence of dwarf minke whales (Balaenoptera acutorostrata subsp.) around the Antarctic Peninsula. Polar Biol. 34, 313–318 (2011).Article 

    Google Scholar 
    Risch, D., Norris, T., Curnock, M. & Friedlaender, A. Common and Antarctic minke whales: Conservation status and future research directions. Front. Mar. Sci. 6, 247. https://doi.org/10.3389/fmars.2019.00247 (2019).Article 

    Google Scholar 
    International Whaling Commission (IWC). Report of the scientific committee. J. Cetacean Res. Manag. 14, 102 (2013).
    Google Scholar 
    Matsuoka, K. et al. Overview of minke whale sightings surveys conducted on IWC/IDCR and SOWER Antarctic cruises from 1978/79 to 2000/01. J. Cetacean Res. Manag. 5, 173–201 (2003).
    Google Scholar 
    Glover, K. A. et al. Migration of Antarctic minke whales to the Arctic. PLoS One 5, e15197. https://doi.org/10.1371/journal.pone.0015197 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, R., Brierley, A., Friedlaender, A. & Scheidat, M. Densitiy of Antarctic minke whales in Weddell Sea from helicopter survey data. Ecology 63, IA14 (2011).
    Google Scholar 
    Williams, R. et al. Counting whales in a challenging, changing environment. Sci. Rep. 4, 4170. https://doi.org/10.1038/srep04170 (2014).Article 
    CAS 

    Google Scholar 
    Shabangu, F. W., Findlay, K. & Stafford, K. M. Seasonal acoustic occurrence, diel vocalizing patterns and bioduck call-type composition of Antarctic minke whales off the west coast of South Africa and the Maud Rise Antarctica. Mar. Mamm. Sci. 36, 658–675 (2019).Article 

    Google Scholar 
    Kasamatsu, F., Nishiwaki, S. & Ishikawa, H. Breeding areas and southbound migrations of southern minke whales Balaenoptera acutorostrata. Mar. Ecol. Prog. Ser. 119, 1–10 (1995).Article 
    ADS 

    Google Scholar 
    Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in the JARPA research area. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    Perrin, W. F., Mallette, S. D. & Brownell, R. L. Minke whales. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 608–613 (Academic Press, 2018).Chapter 

    Google Scholar 
    Taylor, R. J. F. An unusual record of three species of whale being restricted to pools in Antarctic sea-ice. Proc. R. Soc. Lond. 129, 325–331 (1957).
    Google Scholar 
    Ensor, P. H. Minke whales in the pack ice zone, East Antarctica, during the period of maximum annual ice extent. Rep. Int. Whal. Commn 39, 219–225 (1989).
    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522 (2011).Article 

    Google Scholar 
    Meirelles, A. C. O. & Furtado-Neto, M. A. A. Stranding of an Antarctic minke whale, Balaenoptera bonaerensis Burmeister, 1867, on the northern coast of South America. Lat. Am. J. Aquat. Mamm. 3, 81–82 (2004).Article 

    Google Scholar 
    Juri, E., Valdivia, M., Simoes-Lopes, P. C. & Le Bas, A. A note on minke whales (Cetacea: Balaenopteridae) in Uruguay: Strandings review. JCRM 21, 135–140 (2020).Article 

    Google Scholar 
    Williamson, G. R. Minke whales off Brazil. Sci. Rep. Whales Res. Inst. 27, 37–59 (1975).
    Google Scholar 
    Pastene, L. A. & Goto, M. Genetic characterization and population genetic structure of the Antarctic minke whale Balaenoptera bonaerensis in the Indo-Pacific region of the Southern Ocean. Fish Sci. 82, 873–886 (2016).Article 
    CAS 

    Google Scholar 
    Balbuena, J. A., Aznar, F. J., Fernández, M. & Raga, J. A. Parasites as indicators of social structure and stock identity of marine mammals. Dev. Mar. Biol. 4, 133–139 (1995).
    Google Scholar 
    Kuramochi, T., Araki, J., Uchida, Moriyama, N., Takeda, Y., Hayashi, N., Wakao, H., Machida, M. & Nagasawa, K. Summary of parasite and epizoit investigations during JARPN surveys 1994–1999, with reference to stock structure analysis for the western North Pacific minke whales. IWC Scientific Committee Workshop to Review the Japanese Whaling Programme under Special Permit for North Pacific Minke Whales (JARPN) SC/F2K/J19 (2000).Kaliszewska, Z. A. et al. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus). Mol. Ecol. 14, 3439–3456 (2005).Article 
    CAS 

    Google Scholar 
    Ólafsdóttir, D. & Shinn, A. P. Epibiotic macrofauna on common minke whales, Balaenoptera acutorostrata Lacépède, 1804 Icelandic waters. Parasit. Vectors 6, 1–10 (2013).Article 

    Google Scholar 
    Matthews, C. J., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1010–1014 (2020).Article 

    Google Scholar 
    Flach, L., Van Bressem, M. F., Pitombo, F. & Aznar, F. J. Emergence of the epibiotic barnacle Xenobalanus globicipitis in Guiana dolphins after a morbillivirus outbreak in Sepetiba Bay Brazil. Estuar. Coast. Shelf Sci. 263, 107632. https://doi.org/10.1016/j.ecss.2021.107632 (2021).Article 

    Google Scholar 
    Ten, S., Raga, J. A. & Aznar, F. J. Epibiotic fauna on cetaceans worldwide: A systematic review of records and indicator potential. Front. Mar. Sci. 9, 846558. https://doi.org/10.3389/fmars.2022.846558 (2022).Article 

    Google Scholar 
    Liouville, J. Cétacés de l’Antarctique. Paris: Deuxième Expédition Antarctique Française (1908–1910) (1913).Ohsumi, S., Masaki, Y. & Kawamura, A. Stock of the Antarctic minke whale. Sci. Rep. Whales Res. Inst. 22, 75–125 (1970).
    Google Scholar 
    Ohsumi, S. Find of marlin spear from the Antarctic minke whales. Sci. Rep. Whales Res. Inst. 25, 237–239 (1973).
    Google Scholar 
    Ivashin, M. V. External Parasites on Lesser Rorquals in the Antarctic 125–127 (Naukova Dumka, 1975).
    Google Scholar 
    Berzin, A. A. & Vlasova, L. P. Fauna of the Cetacea Cyamidae (Amphipoda) of the world ocean. Investig. Cet. 13, 149–164 (1982).
    Google Scholar 
    Best, P. B. Seasonal abundance, feeding, reproduction, age and growth in minke whales off Durban (with incidental observations from the Antarctic). Rep. Int. Whal. Commn 32, 759–786 (1982).
    Google Scholar 
    Avdeev, V. V. Parasitic amphipods of the family Cyamidae and the problem of Cetacea origin. Biol. Morja 4, 27–33 (1989).
    Google Scholar 
    Bushuev, S. G. A study of the population structure of the southern minke whale (Balaenoptera acutorostrata Lacepede) based on morphological and ecological variability. Rep. Int. Whal. Commn 40, 317–324 (1990).
    Google Scholar 
    Sedlak-Weinstein, E. Preliminary report of parasitic infestation of the minke whale Balaenoptera acutorostrata taken during the 1988/89 Antarctic expedition. Unpublished paper (1990).Dailey, M. D. & Vogelbein, W. Parasite fauna of 3 species of Antarctic whales with reference to their use as potential stock indicators. Fish. Bull. 89, 355–365 (1991).
    Google Scholar 
    Nemoto, T., Best, P. B., Ishimaru, K. & Takano, H. Diatom films on whales in South African waters. Sci. Rep. Whales Res. Inst. 32, 97–103 (1980).
    Google Scholar 
    Donovan, G. A review of IWC stock boundaries. Rep. Int. Whal. Commn 13, 39–68 (1991).
    Google Scholar 
    Lester, R. J. G. & MacKenzie, K. The use and abuse of parasites as stock markers for fish. Fish. Res. 97, 1–2 (2009).Article 

    Google Scholar 
    Ten, S. et al. Epibiotic barnacles of sea turtles as indicators of habitat use and fishery interactions: an analysis of juvenile loggerhead sea turtles, Caretta caretta, in the western Mediterranean. Ecol. Indic. 107, 105672. https://doi.org/10.1016/j.ecolind.2019.105672 (2019).Article 

    Google Scholar 
    Calman, W. T. A whale-barnacle of the genus Xenobalanus from Antarctic Seas. Ann. Mag. Nat. Hist. 6, 165–166 (1920).Article 

    Google Scholar 
    Kato, H., Hiroyama, H., Fujise, Y. & Ono, K. Preliminary report of the 1987/88 Japanese feasibility study of the special permit proposal for Southern Hemisphere Minke Whales. Rep. int. Whal. Commn 39, 235–248 (1989).
    Google Scholar 
    International Whaling Commission (IWC). Report of the Intersessional Workshop to review data and results from special permit research on minke whales in the Antarctic, Tokyo, 7–8 December 2006. J. Cetacean Res. Manag. 10, 411–445 (2008).
    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).Article 
    CAS 

    Google Scholar 
    Kim, H., Chan, B., Kang, C., Kim, H. & Kim, W. How do whale barnacles live on their hosts? Functional morphology and mating-group sizes of Coronula diadema (Linnaeus, 1767) and Conchoderma auritum (Linnaeus, 1767) (Cirripedia: Thoracicalcarea). J. Crustac. Biol. 40, 808–824 (2020).Article 

    Google Scholar 
    Reiczigel, J. Confidence intervals for the binomial parameter: Some new considerations. Stat. Med. 22, 611–621 (2003).Article 

    Google Scholar 
    Kato, H. Migration strategy of southern minke whales to maintain high reproductive rate. Dev. Mar. Biol. 4, 465–480 (1995).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. In Statistics for Biology and Health (ed. Gail, M.) (Springer, 2009).MATH 

    Google Scholar 
    Fransen, C. H. J. M. & Smeenk, C. Whale-lice (Amphipoda: Cyamidae) recorded from The Netherlands. Zool. Meded. 65, 393–405 (1991).
    Google Scholar 
    Barton, N. A., Farewell, T. S. & Hallett, S. H. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. NPJ Clean Water 3, 31. https://doi.org/10.1038/s41545-020-0077-3 (2020).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 

    Google Scholar 
    Kane, E. A., Olson, P. A., Gerrodette, T. & Fiedler, P. Prevalence of the commensal barnacle Xenobalanus globicipitis on cetacean species in the eastern tropical Pacific Ocean, and a review of global occurrence. Fish. Bull. 106, 395–404 (2008).
    Google Scholar 
    Aznar, F. J., Balbuena, J. A. & Raga, J. A. Are epizoites biological indicators of a western Mediterranean striped dolphin die-off?. Dis. Aquat. Organ. 18, 159–163 (1994).Article 

    Google Scholar 
    Carrillo, J. M., Overstreet, R. M., Raga, J. A. & Aznar, F. J. Living on the edge: Settlement patterns by the symbiotic barnacle Xenobalanus globicipitis on small cetaceans. PLoS One 10, e0127367. https://doi.org/10.1371/journal.pone.0127367 (2015).Article 
    CAS 

    Google Scholar 
    Moreno-Colom, P., Ten, S., Raga, J. A. & Aznar, F. J. Spatial distribution and aggregation of Xenobalanus globicipitis on the flukes of striped dolphins, Stenella coeruleoalba: An indicator of host hydrodynamics?. Mar. Mamm. Sci. 36, 897–914 (2020).Article 

    Google Scholar 
    Aznar, F. J. et al. Changes in epizoic crustacean infestations during cetacean die-offs: The mass mortality of Mediterranean striped dolphins Stenella coeruleoalba revisited. Dis. Aquat. Org. 67, 239–247 (2005).Article 
    CAS 

    Google Scholar 
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Modell. 157, 157–177 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–58 (2003).Article 

    Google Scholar 
    Beasley, I. et al. Stomach contents of long-finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 14, e0206747. https://doi.org/10.1371/journal.pone.0206747 (2019).Article 
    CAS 

    Google Scholar 
    Ohno, M. & Fujino, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets, season 1950/51. Sci. Rep. Whales Res. Inst. 7, 125–188 (1952).
    Google Scholar 
    Clarke, R. The stalked barnacle Conchoderma, ectoparasitic on whales. Norsk Hvalfangst-Tidende 55, 153–168 (1966).
    Google Scholar 
    Christensen, I. First record of gooseneck barnacles (Conchoderma auritum) on a minke whale (Balaenoptera acutorostrata). ICES C. M. 1985/N:9 (1985).Bertulli, C. G., Cecchetti, A., Van Bressem, M. F. & Van Waerebeek, K. Skin disorders in common minke whales and white-beaked dolphins off Iceland, a photographic assessment. J. Mar. Anim. Ecol. 5, 29–40 (2012).
    Google Scholar 
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. Syst. 24, 189–216 (1993).Article 

    Google Scholar 
    Trontelj, P. & Fišer, C. Perspectives: Cryptic species diversity should not be trivialised. Syst. Biodivers. 7, 1–3 (2009).Article 

    Google Scholar 
    Norris, R. & Hull, P. The temporal dimension of marine speciation. Evol. Ecol. 26, 393–415 (2011).Article 

    Google Scholar 
    Rawson, P., Macnamee, R., Frick, M. & Williams, K. Phylogeography of the coronulid barnacle, Chelonibia testudinaria, from loggerhead sea turtles Caretta caretta. Mol. Ecol. 12, 2697–2706 (2003).Article 
    CAS 

    Google Scholar 
    Cabezas, M. P., Cabezas, P., Machordom, A. & Guerra-García, J. M. Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J. Zool. Syst. Evol. 51, 85–99 (2013).Article 

    Google Scholar 
    Boyd, L. L., Zardus, J. D., Knauer, C. M. & Wood, L. D. Evidence for host selectivity and specialization by epizoic Chelonibia barnacles between hawksbill and green sea turtles. Front. Ecol. Evol. 9, 807237. https://doi.org/10.3389/fevo.2021.807237 (2021).Article 

    Google Scholar 
    Schell, D., Rowntree, V. & Pfeiffer, C. Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin. Can. J. Zool. 78, 721–727 (2000).Article 

    Google Scholar 
    Iwasa-Arai, T. & Serejo, C. S. Phylogenetic analysis of the family Cyamidae (Crustacea: Amphipoda): A review based on morphological characters. Zool. J. Linn. Soc. 184, 66–94 (2018).Article 

    Google Scholar 
    Fraija-Fernández, N. et al. Living in a harsh habitat: Epidemiology of the whale louse, Syncyamus aequus (Cyamidae), infecting striped dolphins in the Western Mediterranean. J. Zool. 303, 199–206 (2017).Article 

    Google Scholar 
    Angot, M. Rapport scientifique sur les expeditions baleinieres autour de Madagascar (saisons 1949 et 1950). Mem. Inst. Sci. Madag. Ser. A 6, 439–486 (1951).
    Google Scholar 
    Newman, W. A. & Abbott, D. P. Cirripedia: The barnacles. In Intertidal Invertebrates of California (eds Morris, R. H. et al.) 504–535 (Stanford University Press, 1980).
    Google Scholar 
    Nogata, Y. & Matsumura, K. Larval development and settlement of a whale barnacle. Biol Lett. 2, 92–93 (2006).Article 

    Google Scholar 
    Hiro, F. The fauna of Akkeshi Bay. II. Cirripedia. J. Fac. Sci. Hokkaido Univ. 4, 213–229 (1935).
    Google Scholar 
    Rice, D. W. Progress report on biological studies of the larger Cetacea in the waters off California. Norsk Hvalfangst-Tid 52, 181–187 (1963).
    Google Scholar 
    Klinkhart, E. G. The beluga whale in Alaska. State Alsk. Dep. Fish 7, 11 (1966).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedia Thoracica and Acrothoracica. MIOS 5, 1–133 (1978).
    Google Scholar 
    Scarff, J. E. Occurrence of the barnacles Coronula diadema, C. reginae and Cetopirus complanatus (Cirripedia) on right whales. Sci. Rep. Whales Res. Inst. 37, 129–153 (1986).
    Google Scholar 
    Kakuwa, Z., Kawakami, T. & Iguchi, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets in the 1951–52 season. Sci. Rep. Whales Res. Inst. 8, 147–213 (1953).
    Google Scholar 
    Nishiwaki, M. Humpback whales in Ryukyuan waters. Sci. Rep. Whales Res. Inst. 14, 49–87 (1959).
    Google Scholar 
    Best, P. B. The presence of coronuline barnacles on a southern right whale Eubalaena australis. S. Afr. J. Mar. Sci. 11, 585–587 (1991).Article 

    Google Scholar 
    Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Disc. Rep. 1, 257–540 (1929).
    Google Scholar 
    Nilsson-Cantell, C. A. Thoracic cirripedes collected in 1925–1927. Disc. Rep. 2, 223–260 (1930).
    Google Scholar 
    Nishiwaki, M. & Hayashi, K. Biological survey of fin and blue whales taken in the Antarctic season 1947–48 by the Japanese fleet. Sci. Rep. Whales Res. Inst. 3, 132–190 (1950).
    Google Scholar 
    Mizue, K. & Murata, T. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets season 1949–50. Sci. Rep. Whales Res. Inst. 6, 73–131 (1951).
    Google Scholar 
    Nishiwaki, M. & Oye, T. Biological investigation on blue whales (Balaenoptera musculus) and Fin Whales (Balaenoptera physalus) caught by the Japanese Antarctic Whaling Fleets. Sci. Rep. Whales Res. Inst. 5, 91–167 (1951).
    Google Scholar 
    Tomilin, A. G. Cetacea. In Mammals of the U.S.S.R. and Adjacent Countries Vol. 9 (ed. Tomilin, A. G.) 717 (Akademii Nauk SSSR, 1957).
    Google Scholar 
    Cockrill, W. R. Pathology of the cetacea. A veterinary study on whales. Br. Vet. J. 116, 1–28 (1960).
    Google Scholar 
    Kawamura, A. Some consideration on the stock unit of sei whales by the aspect of ectoparasitic organisms on the body. Bull. Jpn. Soc. Fish. Oceanogr. 14, 38–43 (1969).
    Google Scholar 
    Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A. E., Raga, J. A. & Aznar, F. J. Taxonomic status and epidemiology of the mesoparasitic copepod Pennella balaenoptera in cetaceans from the western Mediterranean. Dis. Aquat. Org. 128, 249–258 (2018).Article 

    Google Scholar 
    Foster, B. A. & Willan, R. C. Foreign barnacles transported to New Zealand on an oil platform. N. Z. J. Mar. Freshw. Res. 13, 143–149 (1979).Article 

    Google Scholar 
    González, J. et al. Cirripedia of the Canary islands: Distribution and ecological notes. J. Mar. Biol. Assoc. U.K. 92, 129–141 (2012).Article 

    Google Scholar 
    Zettler, M. L. An example for transatlantic hitchhiking by macrozoobenthic organisms with a research vessel. Helgol. Mar. Res. 75, 4. https://doi.org/10.1186/s10152-021-00549-w (2021).Article 

    Google Scholar 
    Matthews, L. H. The humpback whale Megaptera novaeangliae. Disc. Rep. 17, 7–92 (1937).
    Google Scholar 
    Scheffer, V. B. Organisms collected from whales in the Aleutian Islands. Murrelet 20, 67–69 (1939).Article 

    Google Scholar 
    Symons, H. W. & Weston, R. D. Studies on the humpback whale (Megaptera nodosa) in the Bellinghausen Sea. Norsk Hvalfangsttid 47, 53–81 (1958).
    Google Scholar 
    Van Waerebeek, K., Reyes, J. C. & Alfaro, J. Helminth parasites and phoronts of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) from Peru. Aquat. Mamm. 19, 159–169 (1993).
    Google Scholar 
    Fertl, D. Barnacles. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 75–78 (Academic Press, 2002).
    Google Scholar 
    Cornwall, I. E. The barnacles of british Columbia. Br. Col. Prov. Mus. Dept. 7, 5–69 (1955).
    Google Scholar 
    Abaunza, P., Arroyo, N. L. & Preciado, I. A contribution to the knowledge on the morphometry and the anatomical characters of Pennella balaenopterae (Copepoda, Ciphonostomatoida, Pennellidae), with special reference to the buccal complex. Crustaceana 74, 193–210 (2001).Article 

    Google Scholar 
    Marcer, F. et al. Parasitological and pathological findings in fin whales Balaenoptera physalus stranded along Italian coastlines. Dis. Aquat. Org. 133, 25–37 (2019).Article 
    CAS 

    Google Scholar 
    Turner, W. On Pennella balænopteræ: A crustacean, parasitic on a finner whale, Balaenoptera musculus. Earth. Environ. Sci. Trans. R. Soc. Edinb. 41, 409–434 (1905).Article 

    Google Scholar 
    Walker, W. A. & Hanson, M. B. Biological observations on Stejneger’s beaked whale, Mesoplodon stejnegeri, from strandings on Adak Alaska. Mar. Mamm. Sci. 15, 1314–1329 (1999).Article 

    Google Scholar 
    Delaney, M. A., Ford, J. K. B., Tang, K. & Gaydos, J. K. Mesoparasitic copepod (Pennella balaenopterae) infestation of a stranded offshore orca (Orcinus orca) in Southeast Alaska: Review of significance as a health indicator in cetaceans. In IAAAM 21–26 (2016).Suyama, S., Kakehi, S., Yanagimoto, T. & Chow, S. Infection of the pacific saury Cololabis saira (Brevoort, 1856) (Teleostei: Beloniformes: Scomberesocidae) by Pennella sp. (Copepoda: Siphonostomatoida: Pennellidae) south of the Subarctic Front. J. Crust. Biol. 40, 384–389 (2020).Article 

    Google Scholar 
    Rowntree, V. J. Feeding, distribution and reproductive behavior of cyamids (Crustacea: Amphipoda) living on humpback and right whales. Can. J. Zool. 74, 103–109 (1996).Article 

    Google Scholar 
    Leung, Y. M. Life cycle of Cyamus scammoni (Amphipoda: Cyamidae), ectoparasite of gray whale, with a remark on the associated species. Sci. Rep. Whales Res. Inst. 28, 153–160 (1976).
    Google Scholar 
    MacIntyre, R. J. Rapid growth in stalked barnacles. Nature 212, 637–638 (1966).Article 
    ADS 

    Google Scholar 
    Rasmussen, T. Notes on the biology of the shipfouling gooseneck barnacle Conchoderma auritum Linnaeus, 1776 (Cirripedia; Lepadomorpha). Biol. Mar. 2, 37–44 (1980).
    Google Scholar 
    Dalley, R. & Crisp, D. J. Conchoderma: A fouling hazard to ships underway. Mar. Biol. Lett. 2, 141–152 (1981).
    Google Scholar 
    Dalley, R. The larval stages of the oceanic, pedunculate barnacle Conchoderma auritum (L) (Cirripedia, Thoracica). Crustaceana 46, 39–54 (1984).Article 

    Google Scholar 
    Foskolos, I., Provata, M. T. & Frantzis, A. First record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece. Ann. Ser. Hist. 27, 29–34 (2017).
    Google Scholar 
    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelem. 5, 23. https://doi.org/10.1186/s40317-017-0138-7 (2017).Article 

    Google Scholar 
    Darwin, C. A Monograph on the Subclass Cirripedia Vol. 1 (The Ray Society, 1851).
    Google Scholar 
    Tsikhon-Lukanina, V. A., Soldatova, I. N., Kuznetsova, I. A. & Il’in, I. I. Macrofouling community in the Strait of Tunisia (Sicily). Oceanology 16, 519–522 (1977).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedien von der Stewart Insel und von Südgeorgien. Senckenbergiana 12, 210–213 (1930).
    Google Scholar 
    Slijper, E. J. Whales (Hutchinson, 1962).
    Google Scholar 
    Kaufman, G. D. & Forestell, P. H. Hawaii’s humpback whales, a complete whalewatching guide (Pacific Whale Foundation Press, 1986).
    Google Scholar 
    Dawbin, W. H. Baleen whales. In Whales, Dolphins and Porpoises (eds Harrison, R. & Bryden, M.) 44–65 (Facts on File, 1988).
    Google Scholar 
    Félix, F., Bearson, B. & Falconí, J. Epizoic barnacles removed from the skin of a humpback whale after a period of intense surface activity. Mar. Mamm. Sci. 22, 979–984 (2006).Article 

    Google Scholar 
    Towers, J. R. et al. Seasonal movements and ecological markers as evidence for migration of common minke whales photo-identified in the eastern North Pacific. J. Cetacean Res. Manag. 13, 221–229 (2013).
    Google Scholar 
    Iwasa-Arai, T. et al. The host-specific whale louse (Cyamus boopis) as a potential tool for interpreting humpback whale (Megaptera novaeangliae) migratory routes. J. Exp. Mar. Biol. Ecol. 505, 45–51 (2018).Article 

    Google Scholar 
    Lehnert, K. et al. Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – Morphological and molecular characterization and health implications. Int. J. Parasitol. 15, 22–30 (2021).
    Google Scholar 
    Dreyer, N. et al. How whale and dolphin barnacles attach to their hosts and the paradox of remarkably versatile attachment structures in cypris larvae. Org. Divers. Evol. 20, 233–249 (2020).Article 

    Google Scholar 
    Visser, I. N., Cooper, T. E. & Grimm, H. Duration of pseudo-stalked barnacles (Xenobalanus globicipitis) on a New Zealand Pelagic ecotype orca (Orcinus orca), with comments on cookie cutter shark bite marks (Isistius sp.); can they be used as biological tags?. Biol. Divers. 11, 1067–1086 (2020).
    Google Scholar 
    Van Waerebeek, K. & Reyes, J. C. A note on incidental fishery mortality of southern minke whales off western South America. Rep. Int. Whal. Commn 15, 521–523 (1994).
    Google Scholar 
    Félix, F. & Haase, B. A note on the northernmost record of the Antarctic minke whale (Balaenoptera bonaerensis) in the Eastern Pacific. J. Cetacean Res. Manag. 13, 191–194 (2013).
    Google Scholar 
    Esposito, C., Bichet, O. & Petit, M. First sightings of Antarctic minke whale (Balaenoptera bonaerensis) mother–calf pairs in French Polynesia. Aquat. Mamm. 47, 175–180 (2021).Article 

    Google Scholar 
    Karaa, S., Insacco, G., Bradai, M. N. & Scaravelli, D. Records of Xenobalanus globicipitis on Balaenoptera physalus and Stenella coeruleoalba in Tunisian and Sicilian waters. Nat. Rerum 1, 55–59 (2011).
    Google Scholar 
    Oliveira, J. B., Morales, J. A., González-Barrientos, R. C., Hernández-Gamboa, J. & Hernández-Mora, G. Parasites of cetaceans stranded on the Pacific Coast of Costa Rica. Vet. Parasitol. 182, 319–328. https://doi.org/10.1016/j.vetpar.2011.05.014 (2011).Article 
    CAS 

    Google Scholar 
    Dı́az-Gamboa, R. E. Varamiento de orcas pigmeas (Feresa attenuata Gray 1874) en Yucatán: Reporte de caso. Bioagrociencias 8, 36–43 (2015).
    Google Scholar 
    IJsseldijk, L. L. et al. Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the north sea. PloS One 13, e0201221. https://doi.org/10.1371/journal.pone.0201221 (2018).Article 
    CAS 

    Google Scholar 
    Guerrero-Ruiz, M. & Urbán, J. R. First report of remoras on two killer whales (Orcinus orca) in the Gulf of California Mexico. Aquat. Mamm. 26, 148–150 (2000).
    Google Scholar 
    Kautek, G., Van Bressem, M. F. & Ritter, F. External body conditions in cetaceans from La Gomera, Canary Islands Spain. J. Marine Anim. Ecol. 11, 4–17 (2008).
    Google Scholar 
    Bearzi, M. & Patonai, K. Occurrence of the barnacle (Xenobalanus globicipitis) on coastal and offshore common bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay and adjacent areas California. Bull. S. Calif. Acad. Sci. 109, 37–44. https://doi.org/10.3160/0038-3872-109.2.37 (2010).Article 

    Google Scholar 
    Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641. https://doi.org/10.1111/j.1365-294X.2010.04957.x (2011).Article 

    Google Scholar 
    Toth, J. L., Hohn, A. A., Able, K. W. & Gorgone, A. M. Defining bottlenose dolphin (Tursiops truncatus) stocks based on environmental, physical and behavioral characteristics. Mar. Mamm. Sci. 28, 461–478. https://doi.org/10.1111/j.1748-7692.2011.00497.x (2012).Article 

    Google Scholar 
    Urian, K. W., Kaufmann, R., Waples, D. M. & Read, A. J. The prevalence of ectoparasitic barnacles discriminates stocks of Atlantic common bottlenose dolphins (Tursiops truncatus) at risk of entanglement in coastal gill net fisheries. Mar. Mamm. Sci. 35, 290–299. https://doi.org/10.1111/mms.12522 (2019).Article 

    Google Scholar 
    Siciliano, S. et al. Epizoic barnacle (Xenobalanus globicipitis) infestations in several cetacean species in South-Eastern Brazil. Mar. Biol. Res. 16, 1–13. https://doi.org/10.1080/17451000.2020.1783450 (2020).Article 

    Google Scholar 
    Whitehead, T. O., Rollinson, D. P. & Reisinger, R. R. Pseudostalked barnacles Xenobalanus globicipitis attached to killer whales Orcinus orca in South African waters. Mar. Biodivers. Rec. 45, 873–876. https://doi.org/10.1007/s12526-014-0296-2 (2014).Article 

    Google Scholar 
    Methion, S. & Dı́az López, B. First record of atypical pigmentation pattern in fin whale Balaenoptera physalus in the Atlantic ocean. Dis. Aquat. Org. 135, 121–125. https://doi.org/10.3354/dao03385 (2019).Article 

    Google Scholar 
    Herr, H., Burkhardt-Holm, P., Heyer, K., Siebert, U. & Selling, J. Injuries, malformations and epidermal conditions in cetaceans of the strait of Gibraltar. Aquat. Mamm. 46, 215–235. https://doi.org/10.1578/AM.46.2.2020.215 (2020).Article 

    Google Scholar 
    Herr, H. et al. Return of large fin whale feeding aggregations to historical whaling grounds in the southern ocean. Sci. Rep. 12, 9458. https://doi.org/10.1038/s41598-022-13798-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Gruvel, J. A. Cirrhipèdes Provenant Des Campagnes Scientifiques De S.A.S. Le Prince De Monaco, (1885– 1913). In Résultas Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert Ler (Monaco: Prince Souverain de Monaco) 1-88 (1920).Annandale, N. The rate of growth in Conchoderma and Lepas. Rec. Indian Mus. 3, 295 (1909).
    Google Scholar 
    Il’in, I. I., Kuznetsova, L. A. & Starostin, I. V. Oceanic fouling in the equatorial Atlantic. Oceanology 18, 597–599 (1978).
    Google Scholar 
    Eckert, K. L. & Eckert, S. A. Growth rate and reproductive condition of the barnacle Conchoderma virgatum on gravid leatherback sea turtles in Caribbean waters. J. Crust. Biol. 7, 682–690. https://doi.org/10.2307/1548651 (1987).Article 

    Google Scholar 
    Arroyo, N. L., Abaunza, P. & Preciado, I. The first naupliar stage of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Siphonostomatoida, Pennellidae). Sarsia 87, 333–337. https://doi.org/10.1080/0036482021000155785 (2002).Article 

    Google Scholar  More

  • in

    Dung beetles prefer used land over natural greenspace in urban landscape

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. in Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 31–52 (Springer, 2013).McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Müller, N., Ignatieva, M., Nilon, C. H., Werner, P. & Zipperer, W. C. Patterns and trends in urban biodiversity and landscape design. In Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 123–174 (Springer, 2013).Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B. 285, 20180643 (2018).Article 

    Google Scholar 
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol. Invasions. 19, 3489–3503 (2017).Article 

    Google Scholar 
    Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).Article 

    Google Scholar 
    Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H. P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).Article 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    Roshnath, R. & Sinu, P. A. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: Implications for habitat management. Curr. Zool. 63, 599–605 (2017).Article 

    Google Scholar 
    Roshnath, R., Athira, K. & Sinu, P. A. Does predation pressure drive heronry birds to nest in the urban landscape?. J. Asia Pac. Biodivers. 12, 311–315 (2019).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Saari, S. et al. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals-dissecting the literature through meta-analysis. Urban Ecosyst. 19, 1251–1264 (2016).Article 

    Google Scholar 
    Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve. Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).Article 
    ADS 

    Google Scholar 
    Baldock, K. C. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. 282, 20142849 (2015).Article 

    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).Article 

    Google Scholar 
    Rocha, E. A. & Fellowes, M. D. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci. Rep. 10, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Carvalho, R. L. et al. Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecol. Indic. 108, 105764 (2020).Article 

    Google Scholar 
    Asha, G., Manoj, K., Megha, P. P. & Sinu, P. A. Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Correa, C. M. A., da Silva, P. G., Ferreira, K. R. & Puker, A. Residential sites increase species loss and cause high temporal changes in functional diversity of dung beetles in an urbanized Brazilian Cerrado landscape. J. Insect Conserv. 25, 417–428 (2021).Article 

    Google Scholar 
    Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D. & Korasaki, V. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. 24, 1023–1034 (2021).Article 

    Google Scholar 
    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetle in a human-modified tropical forest landscape. Ecol. Indic. 95, 418–526 (2018).Article 

    Google Scholar 
    Fuzessy, L. F. et al. Identifying the anthropogenic drivers of declines in tropical dung beetle communities and functions. Biol. Conserv. 256, 109063 (2021).Article 

    Google Scholar 
    Barragan, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    Filgueiras, B. K. C., Liberal, C. N., Aguiar, C. D. M., Hernández, M. I. M. & Iannuzzi, L. Attractivity of omnivore, carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera: Scarabaeidae) in a tropical Atlantic rainforest remnant. Rev. Bras. Entomol. 53, 422–427 (2009).Article 

    Google Scholar 
    Ramírez-Restrepo, L. & Halffter, G. Copro-necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review. Urban Ecosyst. 19, 1179–1195 (2016).Article 

    Google Scholar 
    Krell, F. T. et al. Human influence on the dung fauna in Afrotropical grasslands (Insecta: Coleoptera). In African Biodiversity: Molecules Organisms Ecosystems (eds Huber, B. A. et al.) 133–139 (Springer, 2005).Chapter 

    Google Scholar 
    Jiménez-Ferbans, L., Mendieta-Otálora, W., García, H. & Amat-García, G. Notes on dung beetles (Coleoptera: Scarabaeinae) in dry environments of the Santa Marta region, Colombia. Acta Biol. Colomb. 13, 203–208 (2008).
    Google Scholar 
    Costa, F. C. et al. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage?. Rev. Bras. Entomol. 57, 329–334 (2013).Article 

    Google Scholar 
    Korasaki, V., Lopes, J., Gardner, B. G. & Louzada, J. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci. 20, 393–406 (2013).Article 

    Google Scholar 
    Audino, L., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Conserv. 169, 248–257 (2014).Article 

    Google Scholar 
    Gómez-Cifuentez, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic Forest of Argentina. J. Insect. Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    Magnano, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    GiménezGómez, V. C., Verdú, J. R., Casanoves, F. & Zurita, G. A. Functional responses to anthropogenic disturbance and the importance of selected traits: a study case using dung beetles. Ecol. Entomol. 1, 1–12 (2022).
    Google Scholar 
    Lobo, J. M. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biol. Conserv. 97, 43–50 (2001).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmentalperceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. The role of informal protected areas in maintaining biodiversity in the Western Ghats of India. Ecol. Soc 10, 108 (2005).Article 

    Google Scholar 
    Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Arrow, G. J. The Fauna Of British India Including Ceylon And Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.20. http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. https://CRAN.R-project.org/package=gplots (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. J. Threat. Taxa. 4, 2685–2692 (2012).Article 

    Google Scholar 
    Sabu, T. K. & Nithya, S. Comparison of the arboreal dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) of the wet and dry forests of the western Ghats. India. Coleopt. Bull. 70, 144–148 (2016).Article 

    Google Scholar 
    Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    Rodrigues, M. M., Uchôa, M. A. & Ide, S. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz. J. Biol. 73, 211–220 (2013).Article 
    CAS 

    Google Scholar 
    Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect. Conserv. 25, 13–26 (2020).Article 

    Google Scholar 
    Carrión-Paladines, V. et al. Effects of land-use change on the community structure of the dung beetle (Scarabaeinae) in an altered ecosystem in Southern Ecuador. Insects. 12, 306 (2021).Article 

    Google Scholar 
    Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).Article 

    Google Scholar 
    Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect. Sci. 7, 1–14 (2007).Article 
    CAS 

    Google Scholar 
    Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).Article 

    Google Scholar 
    Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).Article 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar  More

  • in

    Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Assis, J., Serrão, E. A., Duarte, C. M., Fragkopoulou, E. & Krause-Jensen, D. Major expansion of marine forests in a warmer Arctic. Front. Mar. Sci. 9, 850368 (2022).Article 

    Google Scholar 
    Assis, J. et al. Major shifts at the range edge of marine forests: The combined effects of climate changes and limited dispersal. Sci. Rep. 7(44348), 1–10 (2017).CAS 

    Google Scholar 
    O’Leary, J. K. et al. The resilience of marine ecosystems to climatic disturbances. BioScience. https://doi.org/10.1093/biosci/biw161 (2017).Article 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R. E. Detrital kelp subsidy supports high reproductive condition of deep-living sea urchins in a sedimentary basin. Aquat. Biol. 23, 71–86 (2014).Article 

    Google Scholar 
    Filbee-Dexter, K. Ocean forests hold unique solutions to our current environmental crisis. One Earth https://doi.org/10.1016/j.oneear.2020.05.004 (2020).Article 

    Google Scholar 
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps09940 (2012).Article 

    Google Scholar 
    Edwards, M. S. & Hernández-Carmona, G. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Niño. Mar. Biol. 147, 273–279 (2005).Article 

    Google Scholar 
    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and Baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).Article 

    Google Scholar 
    Butler, C. L., Lucieer, V. L., Wotherspoon, S. J. & Johnson, C. R. Multi-decadal decline in cover of giant kelp Macrocystis pyrifera at the southern limit of its Australian range. Mar. Ecol. Prog. Ser. 653, 1–18 (2020).Article 
    ADS 

    Google Scholar 
    Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).Article 

    Google Scholar 
    Bell, T. W., Allen, J. G., Cavanaugh, K. C. & Siegel, D. A. Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sens. Environ. 238, 110811 (2020).Article 
    ADS 

    Google Scholar 
    Mann, M. E. & Emanuel, K. A. Atlantic Hurricane trends linked to climate change. Eos 87, 233–241 (2006).Article 
    ADS 

    Google Scholar 
    Jensen, J. R., Estes, J. E. & Tinney, L. Remote sensing techniques for kelp surveys. Photogramm. Eng Remote Sens. 46, 743–755 (1980).
    Google Scholar 
    Cavanaugh, K. C. et al. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.753531 (2021).Article 

    Google Scholar 
    Cavanaugh, K. C., Siegel, D. A., Reed, D. C. & Dennison, P. E. Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar. Ecol. Prog. Ser. 429, 1–17 (2011).Article 
    ADS 

    Google Scholar 
    Kadhim, M. A. & Abed, M. H. Convolutional neural network for satellite image classification. Stud. Comput. Intell. 830, 165–178 (2020).Article 

    Google Scholar 
    Segal-Rozenhaimer, M., Li, A., Das, K. & Chirayath, V. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 237, 111446 (2020).Article 
    ADS 

    Google Scholar 
    Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367 (2019).Article 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Yu, L. & Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 33, 3966–3986 (2012).Article 

    Google Scholar 
    Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D. & Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 9, 14259 (2019).Article 
    ADS 

    Google Scholar 
    Borowicz, A. et al. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PLoS ONE 14, 1–15 (2019).Article 

    Google Scholar 
    Lorencin, I., Anđelić, N., Mrzljak, V. & Car, Z. Marine objects recognition using convolutional neural networks. Nase More 66, 112–119 (2019).Article 

    Google Scholar 
    Ridge, J. T., Gray, P. C., Windle, A. E. & Johnston, D. W. Deep learning for coastal resource conservation: Automating detection of shellfish reefs. Remote Sens. Ecol. Conserv. 6, 431–440 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Machine learning-based ship detection and tracking using satellite images for maritime surveillance. J. Ambient Intell. Smart Environ. 13, 361–371 (2021).Article 

    Google Scholar 
    Han, Q., Yin, Q., Zheng, X. & Chen, Z. Remote sensing image building detection method based on Mask R-CNN. Complex Intell. Syst. https://doi.org/10.1007/s40747-021-00322-z (2021).Article 

    Google Scholar 
    Girshick, R. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV) 1440–1448. https://doi.org/10.1109/ICCV.2015.169 (2015).Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal. Mach. Intell. 39, 28 (2017).Article 

    Google Scholar 
    Shelhamer, E., Long, J. & Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 3431–3440 (2017).Article 

    Google Scholar 
    He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In Proceedings of the IEEE international Conference on Computer Vision (2017).Arafeh-Dalmau, N. et al. Extreme Marine Heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 1–18 (2019).Article 
    ADS 

    Google Scholar 
    Nie, X., Duan, M., Ding, H., Hu, B. & Wong, E. K. Attention Mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020).Article 

    Google Scholar 
    Abdulla, W. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub Repository (2017).Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13450 (2022).Article 

    Google Scholar 
    Markham, B. L., Storey, J. C., Williams, D. L. & Irons, J. R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2004.840720 (2004).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Aghamohamadnia, M. & Abedini, A. A morphology-stitching method to improve Landsat SLC-off images with stripes. Geodesy Geodyn. 5, 27–33 (2014).Article 

    Google Scholar 
    Houskeeper, H. F. et al. Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas). PLoS ONE 17, e0257933 (2022).Article 
    CAS 

    Google Scholar 
    Mantha, K. B. et al. From Fat Droplets to Floating Forests: Cross-Domain Transfer Learning Using a PatchGAN-Based Segmentation Model (2022).Finger, D. J. I., McPherson, M. L., Houskeeper, H. F. & Kudela, R. M. Mapping bull kelp canopy in northern California using Landsat to enable long-term monitoring. Remote Sens. Environ. 254, 112243 (2021).Article 
    ADS 

    Google Scholar 
    Siegel, D. A., Wang, M., Maritorena, S. & Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 39, 3582–3591 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Loisel, H., Nicolas, J. M., Sciandra, A., Stramski, D. & Poteau, A. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2005JC003367 (2006).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Dutta, A. & Zisserman, A. The VIA annotation software for images, audio and video. In MM 2019: Proceedings of the 27th ACM International Conference on Multimedia. https://doi.org/10.1145/3343031.3350535 (2019).Pfister, C. A., Berry, H. D. & Mumford, T. The dynamics of Kelp Forests in the Northeast Pacific Ocean and the relationship with environmental drivers. J. Ecol. 106, 1520–1533 (2018).Article 

    Google Scholar 
    Cavanaugh, K. C., Cavanaugh, K. C., Bell, T. W. & Hockridge, E. G. An automated method for mapping giant kelp canopy dynamics from UAV. Front. Environ. Sci. 8, 587354 (2021).Article 

    Google Scholar 
    Castorani, M. C. N. et al. Connectivity structures local population dynamics: A long-term empirical test in a large metapopulation system. Ecology 96, 3141–3152 (2015).Article 

    Google Scholar 
    Irmak, E. Implementation of convolutional neural network approach for COVID-19 disease detection. Physiol. Genom. 52, 590–601 (2020).Article 
    CAS 

    Google Scholar 
    Assis, J., Araújo, M. B. & Serrão, E. A. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob. Change Biol. 24, 1365–2486 (2017).
    Google Scholar 
    Cao, C. et al. An improved faster R-CNN for small object detection. IEEE Access 7, 106838–106846 (2019).Article 

    Google Scholar 
    Konar, J., Khandelwal, P. & Tripathi, R. Comparison of various learning rate scheduling techniques on convolutional neural network. In 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2020. https://doi.org/10.1109/SCEECS48394.2020.94 (2020).LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).Article 

    Google Scholar 
    Johnson, J. W. Automatic nucleus segmentation with mask-RCNN. Adv. Intell. Syst. Comput. 944, 399–407 (2020).
    Google Scholar 
    Lin, T. Y. et al. Microsoft COCO: Common objects in context. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8693 LNCS (2014).McKnight, P. E. & Najab, J. Mann-Whitney U Test. Corsini Encycl. Psychol. https://doi.org/10.1002/9780470479216.corpsy0524 (2010).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Haklay, M. & Weber, P. OpenStreet map: User-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).Article 

    Google Scholar 
    Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13075 (2018).Article 
    MATH 

    Google Scholar 
    Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12780 (2018).Article 

    Google Scholar 
    Chilson, C. et al. Automated detection of bird roosts using NEXRAD radar data and Convolutional Neural Networks. Remote Sens. Ecol. Conserv. 5, 20–32 (2019).Article 

    Google Scholar 
    O’Gara, S. & McGuinness, K. Comparing data augmentation strategies for deep image classification. Ir. Mach. Vis. Image Process. Conf. https://doi.org/10.21427/148b-ar75 (2019).Article 

    Google Scholar 
    Li, W., Chen, C., Zhang, M., Li, H. & Du, Q. Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16, 593–597 (2019).Article 
    ADS 

    Google Scholar 
    Bharati, P. & Pramanik, A. Deep learning techniques—R-CNN to Mask R-CNN: A survey. In Computational Intelligence in Pattern Recognition (eds Das, A. K. et al.) 657–668 (Springer, 2020).Chapter 

    Google Scholar 
    Li, A. S., Chirayath, V., Segal-Rozenhaimer, M., Torres-Perez, J. L. & van den Bergh, J. NASA NeMO-Net’s convolutional neural network: Mapping marine habitats with spectrally heterogeneous remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5115–5133 (2020).Article 
    ADS 

    Google Scholar 
    Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud-Colvert, K. A. & Menge, B. A. Remote sensing: generation of long-term kelp bed data sets for evaluation of impacts of climatic variation. Ecology 101, e03031 (2020).Article 

    Google Scholar 
    Bell, T. W., Cavanaugh, K. C. & Siegel, D. A. Remote monitoring of giant kelp biomass and physiological condition: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) mission. Remote Sens. Environ. 167, 218–228 (2015).Article 
    ADS 

    Google Scholar 
    Schroeder, S. B., Dupont, C., Boyer, L., Juanes, F. & Costa, M. Passive remote sensing technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and regional case study. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00683 (2019).Article 

    Google Scholar 
    Kristollari, V. & Karathanassi, V. Convolutional neural networks for detecting challenging cases in cloud masking using Sentinel-2 imagery. Remote Sens. Geoinf. Environ. https://doi.org/10.1117/12.2571111 (2020).Article 

    Google Scholar 
    Wilson, M. J. & Oreopoulos, L. Enhancing a simple MODIS cloud mask algorithm for the landsat data continuity mission. IEEE Trans. Geosci. Remote Sens. 51, 723–731 (2013).Article 
    ADS 

    Google Scholar 
    Zhuge, X. Y., Zou, X. & Wang, Y. A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems. IEEE Trans. Geosci. Remote Sens. 55, 6111–6119 (2017).Article 
    ADS 

    Google Scholar 
    Lin, T. Y. et al. Feature pyramid networks for object detection. In Proceedings: 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (2017).Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and comparison to past events. Geophys. Res. Lett. https://doi.org/10.1002/2016GL069716 (2016).Article 

    Google Scholar 
    Chavez, F. P. et al. Biological and chemical consequences of the 1997–1998 El Niño in central California waters. Prog. Oceanogr. https://doi.org/10.1016/S0079-6611(02)00050-2 (2002).Article 

    Google Scholar 
    Tegner, M. J. & El Dayton, P. K. Niño effects on Southern California kelp forest communities. Adv. Ecol. Res. 17, 243–279 (1987).Article 

    Google Scholar 
    Bartsch, I. et al. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol. 39, 2021–2036 (2016).Article 

    Google Scholar 
    Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11438 (2015).Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00734 (2019).Article 

    Google Scholar  More

  • in

    Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison

    Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).
    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).Book 

    Google Scholar 
    Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).
    Google Scholar 
    Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).Article 

    Google Scholar 
    Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).
    Google Scholar 
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).Article 

    Google Scholar 
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).
    Google Scholar 
    Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).Article 

    Google Scholar 
    Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).Article 
    CAS 

    Google Scholar 
    Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).Article 
    CAS 

    Google Scholar 
    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).Article 
    CAS 

    Google Scholar 
    Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).Article 
    CAS 

    Google Scholar 
    Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).Article 

    Google Scholar 
    Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).
    Google Scholar 
    Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).
    Google Scholar 
    Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).Article 
    CAS 

    Google Scholar 
    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).Article 

    Google Scholar 
    Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).
    Google Scholar 
    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).
    Google Scholar 
    Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).
    Google Scholar 
    Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).Article 

    Google Scholar 
    Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).
    Google Scholar 
    Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).Article 

    Google Scholar 
    Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).Article 

    Google Scholar 
    Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).Article 
    ADS 

    Google Scholar 
    Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).Article 

    Google Scholar 
    Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).Article 

    Google Scholar 
    Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).Article 

    Google Scholar 
    Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).Article 

    Google Scholar 
    Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).Article 

    Google Scholar 
    Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).Article 

    Google Scholar 
    Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).
    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).Article 

    Google Scholar 
    Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).Article 

    Google Scholar 
    Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).Article 
    CAS 

    Google Scholar 
    You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).Article 

    Google Scholar 
    Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).Article 
    CAS 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).Article 

    Google Scholar 
    Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).Article 
    CAS 

    Google Scholar 
    Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).Article 

    Google Scholar 
    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).Article 

    Google Scholar 
    Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).Article 
    CAS 

    Google Scholar 
    Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).Article 

    Google Scholar 
    Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).Article 

    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).Article 

    Google Scholar  More

  • in

    Incorporating dead material in ecosystem assessments and projections

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).Turetsky, M. R. et al. Nat. Geosci. 8, 11–14 (2014).Article 

    Google Scholar 
    Wenger, S. J., Subalusky, A. L. & Freeman, M. C. Food Webs 18, e00106 (2019).Article 

    Google Scholar 
    Tomatsuri, M. & Kon, K. Hydrobiologia 790, 225–232 (2017).Article 

    Google Scholar 
    Henry, L. A. & Roberts, J. M. in Marine Animal Forests (eds Rossi, S. et al.) 235–256 (Springer, 2017).Walton, M. E. M. et al. Sci. Total Environ. 820, 153191 (2022).Article 
    CAS 

    Google Scholar 
    Wolfe, K., Kenyon, T. M. & Mumby, P. J. Coral Reefs 40, 1769–1806 (2021).Article 

    Google Scholar 
    Kim, H. et al. Glob. Change Biol. 28, 6180–6193 (2022).Jackson, R. B. et al. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    Pan, Y. et al. Science 333, 988–993 (2011).Article 
    CAS 

    Google Scholar 
    Hedges, J. I., Keil, R. G. & Benner, R. Org. Geochem. 27, 195–212 (1997).Article 
    CAS 

    Google Scholar 
    Lønborg, C. et al. Front. Mar. Sci. 7, 466 (2020).Article 

    Google Scholar 
    Harden, J. W. et al. Glob. Change Biol. 6, 174–184 (2000).Davidson, E. A. & Janssens, I. A. Nature 440, 165–173 (2006).Article 
    CAS 

    Google Scholar 
    Hugelius, G. et al. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).Article 
    CAS 

    Google Scholar 
    Hennige, S. J. et al. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00668 (2020).Article 

    Google Scholar 
    Wolfram, U. et al. Sci. Rep. 12, 8052 (2022).Article 
    CAS 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Science 312, 543–547 (2006).Article 
    CAS 

    Google Scholar 
    Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In Proc. 10th Int. Coral Reef Symp. 1849–1868 (ICRS, 2006).Maier, S. R. et al. Deep Sea Res. I 175, 103574 (2021).. More