High capacity for a dietary specialist consumer population to cope with increasing cyanobacterial blooms
Johannesson, K., Smolarz, K., Grahn, M. & André, C. The future of baltic sea populations: Local extinction or evolutionary rescue?. Ambio 40, 179–190 (2011).Article
CAS
Google Scholar
Reusch, T. B. H. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018).Article
ADS
Google Scholar
Kahru, M. & Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2014).Article
ADS
Google Scholar
Kahru, M., Elmgren, R. & Savchuk, O. P. Changing seasonality of the Baltic Sea. Biogeosciences 13, 1009–1018 (2016).Article
ADS
Google Scholar
Hjerne, O., Hajdu, S., Larsson, U., Downing, A. S. & Winder, M. Climate driven changes in timing, composition and magnitude of the Baltic Sea phytoplankton spring bloom. Front. Mar. Sci. 6, 482 (2019).Article
Google Scholar
Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?. Limnol. Oceanogr. 45, 716–726 (2000).Article
ADS
CAS
Google Scholar
Poutanen, E.-L. & Nikkilä, K. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30, 179–183 (2001).Article
CAS
Google Scholar
Andersson, A., Höglander, H., Karlsson, C. & Huseby, S. Key role of phosphorus and nitrogen in regulating cyanobacterial community composition in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 164, 161–171 (2015).Article
CAS
Google Scholar
Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N. & Karlson, B. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. Harmful Algae 91, 101685 (2020).Article
CAS
Google Scholar
Rolff, C. & Elfwing, T. Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper. Ambio 44, 601–611 (2015).Article
CAS
Google Scholar
Eriksson Wiklund, A.-K., Dahlgren, K., Sundelin, B. & Andersson, A. Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system. Mar. Ecol. Prog. Ser. 396, 13–25 (2009).Article
ADS
Google Scholar
Wikner, J. & Andersson, A. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Glob. Change Biol. 18, 2509–2519 (2012).Article
ADS
Google Scholar
Gulati, R. D. & Demott, W. R. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38, 16 (1997).Article
Google Scholar
Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria- Daphnia magna interface: The role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).Article
ADS
Google Scholar
Hedberg, P., Albert, S., Nascimento, F. J. A. & Winder, M. Effects of changing phytoplankton species composition on carbon and nitrogen uptake in benthic invertebrates. Limnol. Oceanogr. 66, 469–480 (2021).Article
ADS
CAS
Google Scholar
Gorokhova, E. Toxic cyanobacteria Nodularia spumigena in the diet of Baltic mysids: Evidence from molecular diet analysis. Harmful Algae 8, 264–272 (2009).Article
CAS
Google Scholar
Karlson, A. M. L., Gorokhova, E. & Elmgren, R. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders. PLoS ONE 9, e104460 (2014).Article
ADS
Google Scholar
Karlson, A. M. L. et al. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs. Ambio 44, 413–426 (2015).Article
CAS
Google Scholar
Lesutienė, J., Bukaveckas, P. A., Gasiūnaitė, Z. R., Pilkaitytė, R. & Razinkovas-Baziukas, A. Tracing the isotopic signal of a cyanobacteria bloom through the food web of a Baltic Sea coastal lagoon. Estuar. Coast. Shelf Sci. 138, 47–56 (2014).Article
ADS
Google Scholar
Rolff, C. Seasonal variation in d13C and d15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Mar. Ecol. Prog. Ser. 203, 47–65 (2000).Article
ADS
CAS
Google Scholar
Koski, M., Engström, J. & Viitasalo, M. Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar. Ecol. Prog. Ser. 186, 187–197 (1999).Article
ADS
Google Scholar
Koski, M. et al. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr. 47, 878–885 (2002).Article
ADS
Google Scholar
Schmidt, K. & Jónasdóttir, S. Nutritional quality of two cyanobacteria: How rich is ‘poor’ food?. Mar. Ecol. Prog. Ser. 151, 1–10 (1997).Article
ADS
Google Scholar
Kankaanpää, H., Vuorinen, P. J., Sipiä, V. & Keinänen, M. Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat. Toxicol. 61, 155–168 (2002).Article
Google Scholar
Persson, K.-J., Bergström, K., Mazur-Marzec, H. & Legrand, C. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis. Toxicon 76, 178–186 (2013).Article
CAS
Google Scholar
Monserrat, J. M., Yunes, J. O. S. & Bianchini, A. Effects of Anabaena Spiroides (cyanobacteria) aqueous extracts on the acetylcholinesteraseactivity of aquatic species. Environ. Toxicol. Chem. 20, 1228–1235 (2001).Article
CAS
Google Scholar
Lehtonen, K. K. et al. Accumulation of nodularin-like compounds from the cyanobacterium Nodularia spumigena and changes in acetylcholinesterase activity in the clam Macoma balthica during short-term laboratory exposure. Aquat. Toxicol. 64, 461–476 (2003).Article
CAS
Google Scholar
Fulton, M. H. & Key, P. B. Acetylcholinesterase inhibition in esturai fish and invertebrates as an indicator of organophoshorus insecticide exposure and effects. Environ. Toxicol. Chem. 20, 37–45 (2001).Article
CAS
Google Scholar
DeMott, W. R., Zhang, Q.-X. & Carmichael, W. W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36, 1346–1357 (1991).Article
ADS
CAS
Google Scholar
Hogfors, H. et al. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea. PLoS ONE 9, e112692 (2014).Article
ADS
Google Scholar
Motwani, N. H., Duberg, J., Svedén, J. B. & Gorokhova, E. Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea: Cyanobacteria blooms support zooplankton growth. Limnol. Oceanogr. 63, 672–686 (2018).Article
ADS
Google Scholar
Gorokhova, E., El-Shehawy, R., Lehtiniemi, M. & Garbaras, A. How copepods can eat toxins without getting sick: Gut bacteria help zooplankton to feed in cyanobacteria blooms. Front. Microbiol. 11, 589816 (2021).Article
Google Scholar
Elmgren, R. Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro- and meiofauna. Kieler Meeresforsch. Sonderh. 4, 1–22 (1978).
Google Scholar
Laine, A. O. Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuar. Coast. Shelf Sci. 57, 87–97 (2003).Article
ADS
CAS
Google Scholar
Hill, C., Quigley, M. A., Cavaletto, J. F. & Gordon, W. Seasonal changes in lipid content and composition in the benthic amphipods Monoporeia afinis and Pontoporeia femorata. Limnol. Oceanogr. 37, 1280–1289 (1992).Article
ADS
CAS
Google Scholar
Lehtonen, K. K. Ecophysiology of the benthic amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea: Seasonal variations in body composition, with bioenergetic considerations. Mar. Ecol. Prog. Ser. 143, 87–98 (1996).Article
ADS
Google Scholar
Karlson, A. M. L., Nascimento, F. J. A. & Elmgren, R. Incorporation and burial of carbon from settling cyanobacterial blooms by deposit-feeding macrofauna. Limnol. Oceanogr. 53, 2754–2758 (2008).Article
ADS
Google Scholar
Karlson, A. M. L. & Mozūraitis, R. Deposit-feeders accumulate the cyanobacterial toxin nodularin. Harmful Algae 12, 77–81 (2011).Article
CAS
Google Scholar
Savage, C. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio 34, 145–150 (2005).Article
Google Scholar
Newsome, S. D., Del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article
Google Scholar
Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratio provide for community-wide mesures of trophic structure?. Ecology 88, 42–48 (2007).Article
Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).Article
Google Scholar
Blomqvist, S. & Lundgren, L. A benthic sled for sampling soft bottoms. Helgol. Meeresunters. 50, 453–456 (1996).Article
Google Scholar
Karlson, A. M. L., Nascimento, F. J. A., Näslund, J. & Elmgren, R. Higher diversity of deposit-feeding macrofauna enhances phytodetritus processing. Ecology 91, 1414–1423 (2010).Article
Google Scholar
Mazur-Marzec, H., Tymińska, A., Szafranek, J. & Pliński, M. Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, southern Baltic Sea. Environ. Toxicol. 22, 101–111 (2007).Article
ADS
CAS
Google Scholar
van de Bund, W., Ólafsson, E., Modig, H. & Elmgren, R. Effects of the coexisting Baltic amphipods Monoporeia affinis and Pontoporeia femorata on the fate of a simulated spring diatom bloom. Mar. Ecol. Prog. Ser. 212, 107–115 (2001).Article
ADS
Google Scholar
Larsson, U., Hobro, R. & Wulff, F. Dynamics of a Phytoplankton Spring Bloom in a Coastal Area of the Northern Baltic Proper (University of Stockholm, 1986).
Google Scholar
Heiskanen, A.-S. Factors Governing Sedimentation and Pelagic Nutrient Cycles in the Northern Baltic Sea: = Sedimentaatioon ja Ravinteiden Kiertoon Vaikuttavat Tekijät Pohjoisen Ltämeren Ulapaekosysteemissä (Finnish Environment Institute, 1998).
Google Scholar
Nadon, M.-O. & Himmelman, J. H. Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted?. Limnol. Oceanogr. 51, 2828–2836 (2006).Article
ADS
CAS
Google Scholar
Gorokhova, E. Shifts in rotifer life history in response to stable isotope enrichment: Testing theories of isotope effects on organismal growth. Methods Ecol. Evol. 9, 269–277 (2017).Article
Google Scholar
Karlson, A. M. L., Reutgard, M., Garbaras, A. & Gorokhova, E. Isotopic niche reflects stress-induced variability in physiological status. R. Soc. Open Sci. 5, 171398 (2018).Article
ADS
Google Scholar
del Rio, C. M., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology 10 years after a call for more laboratory experiments. Biol. Rev. 84, 91–111 (2009).Article
Google Scholar
Ledesma, M., Gorokhova, E., Holmstrand, H., Garbaras, A. & Karlson, A. M. L. Nitrogen isotope composition of amino acids reveals trophic partitioning in two sympatric amphipods. Ecol. Evol. 10, 10773–10784 (2020).Article
Google Scholar
Bocquené, G. & Galgani, F. Biological Effects of Contaminants: Cholinesterase Inhibitation by Organophosphate and Carbamate Compounds (ICES Techniques in Marine Environmental Science (TIMES). Report., 1998). https://doi.org/10.17895/ices.pub.5048.
Book
Google Scholar
Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).Article
CAS
Google Scholar
Jarek, S. mvnormtest: Normality test for multivariate variables. (2012). R package version 0.1-9. https://CRAN.R-project.org/package=mvnormtestR Core Team. R: A Language and Environment for Statistical Computing. (2021).Nascimento, F. J. A., Karlson, A. M. L., Näslund, J. & Gorokhova, E. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. J. Exp. Mar. Biol. Ecol. 368, 138–146 (2009).Article
Google Scholar
Roche-Mayzaud, O., Mayzaud, P. & Biggs, D. Medium-term acclimation of feeding and of digestive and metabolic enzyme activity in the neritic copepod Acartia clause. I. Evidence from laboratory experiments. Mar. Ecol. Prog. Ser. 69, 25–40 (1991).Article
ADS
CAS
Google Scholar
Stuart, V., Head, E. J. H. & Mann, K. H. Seasonal changes in the digestive enzyme levels of the amphipod Corophium volutator (Pallas) in relation to diet. J. Exp. Mar. Biol. Ecol. 88, 243–256 (1985).Article
CAS
Google Scholar
Schwarzenberger, A., Ilić, M. & Von Elert, E. Daphnia populations are similar but not identical in tolerance to different protease inhibitors. Harmful Algae 106, 102062 (2021).Article
CAS
Google Scholar
Schwarzenberger, A. & Fink, P. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences. Comp. Biochem. Physiol. B 218, 23–29 (2018).Article
CAS
Google Scholar
Sipiä, V. O. et al. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the Northern Baltic Sea. Ecotoxicol. Environ. Saf. 53, 305–311 (2002).Article
Google Scholar
Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).Article
MathSciNet
Google Scholar
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article
Google Scholar
Wiklund, A.-K.E., Sundelin, B. & Rosa, R. Population decline of amphipod Monoporeia affinis in Northern Europe: Consequence of food shortage and competition?. J. Exp. Mar. Biol. Ecol. 367, 81–90 (2008).Article
Google Scholar
Leonardsson, K., Sörlin, T., Samberg, H. & Sorlin, T. Does Pontoporeia affinis (Amphipoda) optimize age at reproduction in the Gulf of Bothnia?. Oikos 52, 328 (1988).Article
Google Scholar
Eriksson Wiklund, A.-K. & Andersson, A. Benthic competition and population dynamics of Monoporeia affinis and Marenzelleria sp. in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 144, 46–53 (2014).Article
ADS
Google Scholar
Karlson, A. M. L. et al. Linking consumer physiological status to food-web structure and prey food value in the Baltic Sea. Ambio 49, 391–406 (2020).Article
CAS
Google Scholar
Olofsson, M. Nitrogen fixation estimates for the Baltic Sea indicate high rates for the previously overlooked Bothnian Sea. Ambio https://doi.org/10.1007/s13280-020-01331-x (2021).Article
Google Scholar More