Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240. https://doi.org/10.1126/science.281.5374.237 (1998).Article
CAS
PubMed
Google Scholar
Valladares, F. In Progress in Botany Vol. 64 (eds Esser, K. et al.) 439–471 (Springer, 2003).Chapter
Google Scholar
Anthony, K. R. N., Ridd, P. V., Orpin, A. R., Larcombe, P. & Lough, J. Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides. Limnol. Oceanogr. 49, 2201–2211. https://doi.org/10.4319/lo.2004.49.6.2201 (2004).Article
Google Scholar
Gattuso, J. P. et al. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3, 489–513. https://doi.org/10.5194/bg-3-489-2006 (2006).Article
Google Scholar
Wright, D. H. Species-energy theory: An extension of species-area theory. Oikos 41, 496–506 (1983).Article
Google Scholar
Cusens, J., Wright, S. D., McBride, P. D. & Gillman, L. N. What is the form of the productivity–animal-species-richness relationship? A critical review and meta-analysis. Ecology 93, 2241–2252. https://doi.org/10.1890/11-1861.1 (2012).Article
PubMed
Google Scholar
Rosenzweig, M. L. & Abramsky, Z. in Species Diversity in Ecological Communities. Historical and Geographical Perspectives (eds Ricklefs, R. E. & Schluter, D.) Ch. 5, 52–65 (The University of Chicago Press, 1993).Abrams, P. A. Monotonic or unimodal diversity-productivity gradients: What does competition theory predict?. Ecology 76, 2019–2027 (1995).Article
Google Scholar
Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95, 2382–2396 (2014).Article
Google Scholar
Roberts, T. E. et al. Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biol. Lett. 15, 20190493. https://doi.org/10.1098/rsbl.2019.0493 (2019).Article
PubMed
PubMed Central
Google Scholar
Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122. https://doi.org/10.1126/sciadv.1601122 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Goreau, T. F. & Goreau, N. I. The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull. 117, 239–250. https://doi.org/10.2307/1538903 (1959).Article
CAS
Google Scholar
Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn. (Cambridge University Press, 2011).
Google Scholar
Stoddart, D. R. Ecology and morphology of recent coral reefs. Biol. Rev. 44, 433–498. https://doi.org/10.1111/j.1469-185X.1969.tb00609.x (1969).Article
Google Scholar
Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).Article
Google Scholar
Ackleson, S. G. Light in shallow waters: A brief research review. Limnol. Oceanogr. 48, 323–328. https://doi.org/10.4319/lo.2003.48.1_part_2.0323 (2003).Article
Google Scholar
Connell, J. H. Diversity in tropical rain forests and coral reefs. High diversity of trees and corals is maintained only in a nonequilibrium state. Science 199, 1302–1310. https://doi.org/10.1126/science.199.4335.1302 (1978).Article
CAS
PubMed
Google Scholar
Dollar, S. J. Wave stress and coral community structure in Hawaii. Coral Reefs 1, 71–81. https://doi.org/10.1007/BF00301688 (1982).Article
Google Scholar
Hughes, T. P. Community structure and diversity of coral reefs: The role of history. Ecology 70, 275–279. https://doi.org/10.2307/1938434 (1989).Article
Google Scholar
Fraser, R. H. & Currie, D. J. The species richness-energy hypothesis in a system where historical factors are thought to prevail: Coral reefs. Am. Nat. 148, 138–159 (1996).Article
Google Scholar
Cornell, H. V. & Karlson, R. H. Coral species richness: Ecological versus biogeographical influences. Coral Reefs 19, 37–49 (2000).Article
Google Scholar
Bellwood, D. R., Hughes, T., Connolly, S. & Tanner, J. Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651. https://doi.org/10.1111/j.1461-0248.2005.00763.x (2005).Article
Google Scholar
Brown, B. E. et al. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: Evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105 (1999).Article
Google Scholar
Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86. https://doi.org/10.3354/meps183073 (1999).Article
Google Scholar
Lesser, M. P. & Gorbunov, M. Y. Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Mar. Ecol. Prog. Ser. 212, 69–77. https://doi.org/10.3354/meps212069 (2001).Article
CAS
Google Scholar
Hoogenboom, M. O., Anthony, K. R. N. & Connolly, S. R. Energetic cost of photoinhibition in corals. Mar. Ecol. Prog. Ser. 313, 1–12. https://doi.org/10.3354/meps313001 (2006).Article
CAS
Google Scholar
Huot, Y. & Babin, M. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications 31–74 (Springer, 2010).Book
Google Scholar
Warner, M. E., Lesser, M. P. & Ralph, P. J. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications Ch. Chapter 10, 209–222 (Springer Science+Business Media B.V., 2010).Skirving, W. et al. Remote sensing of coral bleaching using temperature and light: Progress towards an operational algorithm. Remote Sens. 10, 18 (2018).Article
Google Scholar
Enríquez, S., Merino, M. & Iglesias-Prieto, R. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol. 140, 891–900. https://doi.org/10.1007/s00227-001-0760-y (2002).Article
CAS
Google Scholar
Sundby, C., McCaffery, S. & Anderson, J. M. Turnover of the photosystem II D1 protein in higher plants under photoinhibitory and nonphotoinhibitory irradiance. J. Biol. Chem. 268, 25476–25482 (1993).Article
CAS
PubMed
Google Scholar
Tyystjärvi, E. & Aro, E. M. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. U. S. A. 93, 2213–2218. https://doi.org/10.1073/pnas.93.5.2213 (1996).Article
PubMed
PubMed Central
Google Scholar
Iglesias-Prieto, R., Beltrán, V. H., LaJeunesse, T. C., Reyes-Bonilla, H. & Thomé, P. E. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. Lond. B 271, 1757–1763. https://doi.org/10.1098/rspb.2004.2757 (2004).Article
CAS
Google Scholar
Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).Article
CAS
Google Scholar
Long, S. P., Humphries, S. & Falkowski, P. G. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 633–662. https://doi.org/10.1146/annurev.pp.45.060194.003221 (1994).Article
CAS
Google Scholar
Huner, N. P. A., Öuist, G. & Sarhan, F. Energy balance and acclimation to light and cold. Trends Plant Sci. 3, 224–230 (1998).Article
Google Scholar
Sheppard, C. R. C. Coral cover, zonation and diversity on reef slopes of Chagos Atolls, and population structures of the major species. Mar. Ecol. Prog. Ser. 2, 193–205 (1980).Article
Google Scholar
Huston, M. A. Patterns of species diversity in relation to depth at Discovery Bay, Jamaica. Bull. Mar. Sci. 37, 928–935 (1985).
Google Scholar
Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123. https://doi.org/10.1007/BF00366561 (1972).Article
Google Scholar
Chow, G. S. E., Chan, Y. K. S., Jain, S. S. & Huang, D. Light limitation selects for depth generalists in urbanised reef coral communities. Mar. Environ. Res. 147, 101–112. https://doi.org/10.1016/j.marenvres.2019.04.010 (2019).Article
CAS
PubMed
Google Scholar
Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275. https://doi.org/10.1007/s00338-010-0593-6 (2010).Article
Google Scholar
Iglesias-Prieto, R. Temperature-dependent inactivation of Photosystem II in symbiotic dinoflagellates. in Proc. 8th Int. Coral Reef Sym, 1313–1318 (1997).Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21, 1219–1230. https://doi.org/10.1046/j.1365-3040.1998.00345.x (1998).Article
CAS
Google Scholar
Hennige, S. J., Suggett, D. J., Warner, M. E., McDougall, K. E. & Smith, D. J. Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28, 179–195. https://doi.org/10.1007/s00338-008-0444-x (2008).Article
Google Scholar
Quigg, A. & Beardall, J. Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant Cell Environ. 26, 693–703. https://doi.org/10.1046/j.1365-3040.2003.01004.x (2003).Article
CAS
Google Scholar
Järvi, S., Suorsa, M. & Aro, E. M. Photosystem II repair in plant chloroplasts—Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta Bioenerg. 900–909, 2015. https://doi.org/10.1016/j.bbabio.2015.01.006 (1847).Article
CAS
Google Scholar
Jokiel, P. L. Solar ultraviolet radiation and coral reef epifauna. Science 207, 1069–1071 (1980).Article
CAS
PubMed
Google Scholar
López-Londoño, T. et al. Physiological and ecological consequences of the water optical properties degradation on reef corals. Coral Reefs 40, 1243–1256. https://doi.org/10.1007/s00338-021-02133-7 (2021).Article
Google Scholar
Vermeij, M. J. A. & Bak, R. P. M. How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar. Ecol. Prog. Ser. 233, 105–116. https://doi.org/10.3354/meps233105 (2002).Article
Google Scholar
Hoogenboom, M. O., Connolly, S. R. & Anthony, K. R. N. Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology 89, 1144–1154. https://doi.org/10.1890/07-1272.1 (2008).Article
PubMed
Google Scholar
Kaniewska, P., Anthony, K., Sampayo, E., Campbell, P. & Hoegh-Guldberg, O. Implications of geometric plasticity for maximizing photosynthesis in branching corals. Mar. Biol. 161, 313–328 (2014).Article
CAS
Google Scholar
Kramer, N., Tamir, R., Eyal, G. & Loya, Y. Coral morphology portrays the spatial distribution and population size-structure along a 5–100 m depth gradient. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00615 (2020).Article
Google Scholar
Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60. https://doi.org/10.3354/meps13756 (2021).Article
Google Scholar
Prada, C. et al. Linking photoacclimation responses and microbiome shifts between depth-segregated sibling species of reef corals. R. Soc. Open Sci. 9, 211591. https://doi.org/10.1098/rsos.211591 (2022).Article
PubMed
PubMed Central
Google Scholar
Rowan, R., Knowlton, N., Baker, A. & Jara, J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388, 265–269. https://doi.org/10.1038/40843 (1997).Article
CAS
PubMed
Google Scholar
Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol. Oceanogr. 51, 1887–1897. https://doi.org/10.4319/lo.2006.51.4.1887 (2006).Article
Google Scholar
Anthony, K. R. N. & Fabricius, K. E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol. 252, 221–253 (2000).Article
CAS
PubMed
Google Scholar
Hoogenboom, M., Rodolfo-Metalpa, R. & Ferrier-Pagès, C. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol. 213, 2399–2409 (2010).Article
PubMed
Google Scholar
Carlson, R. R., Foo, S. A. & Asner, G. P. Land use impacts on coral reef health: A ridge-to-reef perspective. Front. Mar. Sci 6, 562. https://doi.org/10.3389/fmars.2019.00562 (2019).Article
Google Scholar
Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87. https://doi.org/10.1126/science.aaw7912 (2019).Article
CAS
PubMed
Google Scholar
Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).Article
PubMed
PubMed Central
Google Scholar
Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611. https://doi.org/10.4319/lo.1981.26.4.0601 (1981).Article
CAS
Google Scholar
Jørgensen, S. E. & Bendoricchio, G. Fundamentals of Ecological Modelling 3rd edn, Vol. 21 (Elsevier Sceince B. V., 2001).
Google Scholar
Hennige, S. J. et al. Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. J. Exp. Mar. Biol. Ecol. 391, 143–152. https://doi.org/10.1016/j.jembe.2010.06.019 (2010).Article
Google Scholar
Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci 4, 309. https://doi.org/10.3389/fmars.2017.00309 (2017).Article
Google Scholar
Veron, J. E. N. Corals in Space and Time. The Biogeography and Evolution of the Scleractinia 321 (Cornell University Press, 1995).
Google Scholar
Nelder, J. A. & Mead, R. A simplex method for function minimization. J. Comput. 7, 308–313. https://doi.org/10.1093/comjnl/7.4.308 (1965).Article
MathSciNet
MATH
Google Scholar
R: A languate and environment for statistical computing. Retrieved from http://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2010). More