More stories

  • in

    Drivers and potential distribution of anthrax occurrence and incidence at national and sub-county levels across Kenya from 2006 to 2020 using INLA

    Data sourcesWe analyzed records of confirmed and suspected livestock deaths attributed to anthrax occurring from 1 January 2006 to 31 December 2020 across Kenya (available online along with full code for the analysis in this paper https://github.com/spatialmodels/Kenyan_anthrax_model). The case records covering the entire country were reported from the Kenya Directorate of Veterinary Services (KDVS) located in Nairobi and the five Regional Veterinary Investigation Laboratories located in Nakuru, Eldoret, Karatina, Kericho, and Mariakani. The anthrax outbreaks were considered as any livestock (cattle, goats, sheep, pigs, camels) or wildlife deaths confirmed through clinical and laboratory diagnosis. Clinical diagnosis was defined as an acute disease accompanied by sudden death, bleeding from body orifices, swelling, lack of rigor mortis, and oedema of the neck and face in pigs. Laboratory confirmation was done through methylene blue staining to identify the characteristic bacterial capsule and the rod-shaped bacilli in clinical specimens collected from the infected carcasses.We extracted data from old paper records of livestock anthrax cases into Microsoft Excel. These records comprised the location of the livestock outbreaks, name of the farmer, number of animals dead and herd size, species affected, date, method of diagnosis, and the details of the reporting veterinary doctor. Since the locations of livestock anthrax outbreaks were reported at sub-county/district levels (districts refer to the old naming given to current sub-counties before the rollout of the current constitution), we recorded the geographic coordinates of livestock cases at the district level. During data cleaning, we removed duplicate coordinates, outliers, and entries with missing variables. In the end, we had 540 livestock cases that we used for analysis. The spatial granularity and prolonged surveillance period of these data allow for a more detailed perspective on the major drivers of anthrax across Kenya. We also collected wildlife data from the Kenya Wildlife Service (KWS). Most of the data from KWS was lacking information on the geographic coordinates of the outbreaks, so we visited the actual locations and collected the coordinates. We recorded 20 wildlife cases that we used to validate the performance of the spatial model.Processing socio-economic and ecological covariatesWe gathered geospatial data on ecological and socio-economic correlates of B. anthracis ecology and distribution. For the spatial model, we obtained the following variables: rainfall, vegetation, elevation, distance to permanent water bodies, and soil patterns. For the spatiotemporal models, we used human population estimates (total population, population density, and male and female population per sub-county), host population (livestock producing households, total number of indigenous, exotic dairy, and exotic beef cattle per sub-county), and agricultural practices that lead to soil disturbance (agricultural area under cultivation, number of farming households, and crop-producing households).We chose seven environmental covariates for the spatial model based on known correlates of B. anthracis suitability identified from previous peer-reviewed studies9,10,13,15,21,22,23. These comprised three soil variables, including soil pH (× 10) in H2O at a depth of 0 cm, exchangeable calcium at a depth of 0–20 cm, and soil water availability (volume of water per unit volume of soil) retrieved at a resolution of 250 m from the International Soil Reference and Information Centre (ISRIC) data hub (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). We used the shallowest depth available because although the bacterial spores can persist in the surface soil for up to five years and indefinitely in much deeper soils24, the spores in the surface soils are more likely to trigger host infection25. We retrieved monthly Enhanced Vegetation Index (EVI) data from 1 January 2006 to 31 December 2020 (180 tiles in total) from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a resolution of 1 km2 (https://lpdaac.usgs.gov/products/myd13a3v006/). The mean EVI was then calculated using QGIS by averaging all 180 tiles. EVI reduces variations in the canopy background and retains precision over dense vegetation conditions. Monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall data from rain gauge and satellite observations was retrieved from the United States Geological Service (USGS) at a resolution of 0.05 degrees (https://climateserv.servirglobal.net/map). Since the rainfall data also comprised 180 tiles, the mean rainfall was calculated by averaging all 180 tiles using QGIS. We also collected data on the distance to permanent water bodies from a global hydrology map obtained from ArcGIS version 10.6.1.26 and elevation data at 1 km2 resolution from the Global Multi-resolution Terrain Elevation Data (GMTED2010) dataset available from USGS (Table 1).Table 1 Summary of the environmental variables used in the spatial model including variable name, unit, and spatial resolution.Full size tableFor the spatiotemporal sub-county-based models, we accessed the population data per sub-county (total population, male population, female population, and population density) from the 2019 Kenyan census report provided via the Humanitarian Data Exchange platform (https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019). We also obtained data on livestock population (numbers of exotic dairy and beef cattle, and indigenous cattle), area of agricultural land in hectares, number of farming households, and the number of households actively practicing agriculture (crop production and livestock production) aggregated to the sub-county level from the 2019 Kenya Population and Housing Census volume IV provided by the OpenAfrica platform (https://open.africa/dataset/2019-kenya-population-and-housing-census).We conducted data exploration to check for outliers, collinearity, and the relationships between the covariates and the response variables. We used Cleveland dot plots to check for outliers. We measured collinearity using variance inflation factors (VIF), Pearson correlation coefficients, and pairs plots. For VIF scores, the covariates with scores higher than 3 were eliminated one-by-one until all the scores were equal to or less than 3. All the covariates included in the study had correlation coefficient values of less than 0.6 (Figs. 1, 2).Figure 1Results of correlation between covariates using Pearson’s correlation coefficient test for the spatial model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageFigure 2Results of correlation between covariates using Pearson’s correlation coefficient test for the spatiotemporal model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageSpatial model analysisWe used R version 4.1.0 together with the packages raster version 4.1.127, and R-INLA version 4.1.128 to conduct the data processing and statistical modelling. The R-INLA package applies the INLA framework in designing models. We used Quantum Global Information System (QGIS) version 3.16 (https://qgis.org) to create a 50 km buffer polygon around all the observed livestock outbreak points. We then created a 20 km2 grid within this buffer and counted the number of points within each grid cell to create a regular lattice with a given number of counts per cell. We then extracted the coordinates of the centroids of each cell to create marked locations with a given number of livestock cases per location. We essentially converted the data into a count process (number of livestock outbreaks per location). We had 95 cells with one or more counts which formed our new presence locations. We then randomly selected 95 pseudoabsences within the 50 km buffer polygon but at a distance of 10 km from the presence locations as shown in Fig. 3.Figure 3Spatial distribution of thinned livestock anthrax case locations across Kenya from 2006 to 2020. The map shows livestock anthrax case locations (n = 540) thinned to pixels of 20 km2 to form 95 new marked locations. The orange dots show the new presence locations which are marked points with colour intensity representing the number of livestock cases per location. The white triangles show the random pseudo-absence locations. The yellow squares are the wildlife cases obtained from the Kenya Wildlife Service. The green polygon is the background calibration buffer used to derive the random pseudo-absence locations. This map was generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https://www.qgis.org/en/site/forusers/download.html).Full size imageWe defined a Zero-inflated Poisson (ZIP) regression model with spatially correlated random effects, implemented as a generalized additive model (GAM) with anthrax incidence as the response variable. The model is defined as shown in Eqs. (1), (2), and (3)$${C}_{i} sim zero-inflated, Poisson left({mu }_{i},{p}_{i}right),$$
    (1)
    $$expectedleft({C}_{i}right)=left(1- {p}_{i}right)times {mu }_{i},$$
    (2)
    $$mathrm{log}left({mu }_{i}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+ sum_{k}{delta }_{k,i}+{u}_{i},$$
    (3)
    where (Ci) denotes the observed number of anthrax livestock cases at location i, ({mu }_{i}) and ({p}_{i}) are parameters of the ZIP distribution. (expectedleft({C}_{i}right)) refers to the expected number of outbreaks at location i, (alpha) is the intercept, (beta) are the beta coefficients for the covariates, X is the matrix with all the covariates, (delta k) are the non-linear effects (cubic regression splines), and ({u}_{i}) is the spatial random effect at location i.To test whether the addition of the GAM smoothers and the spatially correlated random effects improved the fit of the model, we also considered candidate models without smoothers and spatial random effects. We tested three versions of the spatial model: the first used distance to water, elevation, and EVI as linear covariates without spatial random effects, the second applied non-linear terms to elevation and EVI also without spatial random effects, and the final model was similar to the second model but with the addition of spatial random effects. We then measured the DIC values of the candidate models to select the final spatial model.We conducted model validation by assessing the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We checked whether the residuals were independent and normally distributed. We also plotted a sample variogram to check for any residual spatial auto-correlation using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.The estimated model was used to map posterior predicted distributions for the incidence of anthrax disease (plotted as mean and 95% credible intervals). We validated the model using independent evaluation data withheld from the model calibration. This evaluation dataset comprises the wildlife cases collected from KWS. We then calculated the sensitivity by estimating the proportion of wildlife case locations correctly identified by the model, using the minimum presence training threshold (minimum value of the fitted presence training points).Spatiotemporal model analysisOur second objective was to investigate the socio-economic, population-based drivers of livestock anthrax risk at the sub-county level. These socioeconomic variables are usually collected at the sub-county level. Therefore, we developed a second areal model with the number of observations per sub-county as the new response variable. The occurrence data, gathered by the Kenya Directorate for Veterinary Services (KDVS), consisted of monthly case reports of livestock anthrax cases collected by all 290 sub-counties across Kenya between January 2006 to December 2020. We analyzed the whole monthly case time series from the year 2006 to 2020 and mapped out the annual counts of confirmed and suspected livestock anthrax cases across Kenya at the sub-county level to analyse the spatial and temporal trends throughout the surveillance period. The sub-county shapefiles that were used for mapping and modelling were derived from Humanitarian Data Exchange version 1.57.16 under a Creative Commons Attribution for Intergovernmental Organisations license (https://data.humdata.org/dataset/ken-administrative-boundaries).Due to the sparsity of data, we aggregated the monthly case counts and modelled the quarterly occurrence and incidence of anthrax at the sub-county-level scale, including spatial and temporal effects, to determine the spatial socio-economic drivers of livestock anthrax disease risk across Kenya. We used R-INLA version 4.1.1 (26) to conduct the data processing and statistical modelling. We used quarterly case counts that were confirmed per sub-county across the 15 years of surveillance (2006–2020) as a measure of anthrax incidence. Due to the zero-inflated and over-dispersed nature of the distribution, which is difficult to fit incidence counts, we employed a two-stage modelling approach using the hurdle model distribution to separately model anthrax occurrence (presence or absence) across all sub-counties via logistic regression, and incidence counts using a zero-inflated Poisson distribution. We were then able separately to estimate the contributions of the various socio-ecological factors that drive disease occurrence (the presence or absence of anthrax) and total incidence counts.We model the quarterly anthrax occurrence (n = 290 sub-counties over 60 quarters; 17,400 observations) where ({Y}_{i,t}) refers to the binary presence (denoted as 1) or absence (denoted as 0) of anthrax in sub-county i during year t, and ({P}_{i,t}) is the probability of anthrax occurrence, thus:$${Y}_{i,t} sim Bernoullileft({P}_{i,t}right).$$
    (4)
    We model quarterly anthrax incidence counts ({C}_{i,t}) using a zero-inflated Poisson process with parameters ({mu }_{i,t}) and ({p}_{i,t}) (see Eq. (5)). Equation (6) denotes the expected values for the ZIP distribution at sub-county i during year t.$${C}_{i,t} sim Zero-inflated, Poisson left({mu }_{i,t},{p}_{i,t}right),$$
    (5)
    $$expectedleft({C}_{i,t}right)=left(1- {p}_{i,t}right)times {mu }_{i,t}.$$
    (6)
    Both the Bernoulli and the ZIP distributions are modelled separately as functions of the covariates and the spatial and temporal random effects using a general linear predictor as shown in Eqs. (7) and (8):$$logit left({P}_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (7)
    $$mathrm{log}left({mu }_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (8)
    $${y}_{i,t}= {y}_{i,t-1}+ {w}_{i,t},$$
    (9)
    where α denotes the intercept; (X) signifies a matrix made up of the socio-economic covariates accompanied by their linear coefficients denoted as (beta); spatiotemporal reporting trends at the sub-county level were accounted for in the models using spatially structured (({u}_{i,t}); conditional autoregressive) and unstructured noise (({v}_{i,t}); i.i.d—independent and identically distributed) random-effects specified jointly as a Besag–York–Mollie model30,31, as well as temporally structured (({y}_{i,t})) random effects of the first order where ({w}_{i,t}) is a pure noise term that is normally distribute with a mean of zero and a variance of σ2. We used uninformative priors with a Gaussian distribution for the fixed effects and penalized complexity priors for the hyperparameters of all the random effects.For the two spatiotemporal models, we applied linear effects for all the variables: population density, total population, number of exotic dairy cattle, agricultural land area, and number of livestock producing households. We scaled the continuous covariates by standardizing them (to a mean of 0 and standard deviation of 1) before fitting the linear fixed effects.We used R-INLA to conduct model inference and selection and used DIC to evaluate the model fit for both the occurrence and incidence models. For both models (occurrence and incidence), we created 4 candidate models, compared them, and selected the model with the lowest DIC as the final model. The candidate models included: a baseline intercept only model; a second model with the intercept and covariates; a third model with the intercept, covariates, and the spatial random effects; and a fourth model with the intercept, covariates, spatial random effects, and a temporal trend.We evaluated the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We assessed the residuals to check whether they were independent and normally distributed. We also plotted the residuals against the covariates to check for any non-linear patterns using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.Ethics statementLicence to conduct the research was granted by the National Council for Science, Technology, and Innovation (NACOSTI) under reference number 651983, and the Kenya Wildlife Service under reference number KWS-0003-01-21. More

  • in

    Wildflower phenological escape differs by continent and spring temperature

    We used a hierarchical Bayesian modeling approach to evaluate the relationship between the spring phenology of tree and wildflower species and various climate drivers (see Methods). Following model selection, our final model structure included fixed effects of average spring (March–April) temperature and elevation, as well as species-level random effects. We show continental distributions of spring temperature values in Fig. 1b (means and standard deviations are listed in Table S2). We report estimates for spring temperature sensitivities from the final model structure in the main text. Parameter estimates for elevation sensitivities as well as the model performance of other potential drivers and combinations of drivers are reported in Tables S3 and S4. An extended discussion of model assumptions and limitations is included in the Supplementary Information.Sensitivity differences by strataTree leaf out phenology (LOD) was substantially more sensitive to average spring temperature in North America (mean = −3.62 days °C−1; 95% credible interval (CI) = [−3.76, −3.49]) than in Europe (mean = −2.79; CI = [−3.27, −2.30]) and Asia (mean = −2.62; CI = [−2.97, −2.26]; Fig. 2). These values are consistent with previously reported phenological sensitivities in North America7 (−5.5 to −3.3 days °C−1) and Europe8 (−4.1 to −3.0 days °C−1), as the credible intervals from our results overlap with the reported credible intervals of prior studies. However, the Asian LOD sensitivity was less sensitive than previously reported27 (−3.50 to −3.03 days °C−1), potentially owing to differences in species selection28 or model structure. Previously reported sensitivities were determined in separate studies using either observational data7,8 or long-term observation-based weather station data27. The general consistency between our findings suggests that phenology data from herbarium collections are good indicators of patterns in natural systems29,30,31, a point supported by a recent study of phenological sensitivity derived from herbaria and from observed citizen science data32. These herbarium-based results provide evidence that phenological sensitivity differs across the temperate forest biome (but see ref. 33 for evidence of differences in response to warming and chilling accumulation). To our knowledge, our study is the first to contrast overstory and understory phenology across multiple continents and, therefore, to find differences in phenological sensitivity between trees and forest wildflowers across continents. We recommend future studies explore these differences using alternative approaches and methodologies that focus on the physiological basis for and mechanisms that underlie these patterns.Fig. 2: Posterior estimated means and 95% credible intervals for spring temperature sensitivity.Shapes represent parameter estimates for wildflower First Flower Date (FFD, blue circles; n = 1418, 618, and 1060 for Asia, Europe, and North America, respectively) and canopy tree Leaf Out Date (LOD, yellow triangles; n = 899, 532, and 995, for Asia, Europe, and North America, respectively). Estimates are considered different from 0 if credible intervals do not overlap the dashed 0 line and are considered different from each other if credible intervals do not overlap.Full size imageIn contrast to trees, wildflower sensitivity to spring temperature was similar across all three continents and exhibited no strong differences (i.e., overlap in 95% Bayesian credible intervals) among continents (means and 95% credible intervals in brackets: North America = −3.14, [−3.28, −3.00]; Europe = −3.02, [−3.48, −2.56]; Asia = −3.12, [−3.36, −2.86]; Fig. 2). These values are also generally consistent with those reported elsewhere in the literature (i.e., 95% credible intervals overlap with those reported in other studies; −2.2, [−3.7, −0.76] days °C−1 in North America7 and −3.6, [−4.04, −3.18] days °C−1 in Europe9), although we are unaware of any studies that have estimated phenological sensitivity for Asian forest wildflowers in days °C−1. Ge et al.3 report herbaceous plant sensitivity of −5.71 days per decade in Asia (±7.90 standard deviation; based primarily on long-term observational data), which appears to be roughly consistent with our model results, but the difference in units makes this more speculative than the other comparisons. Discrepancies in mean responses between this study and others may be due in part to different types of data (herbarium specimens versus field observations) and to choice in focal taxa, as temperature sensitivity has been shown to vary widely across taxa28.Particularly noticeable in our results was that r2 coefficients of predicted versus observed phenology were much higher in North America (0.70 and 0.76 for wildflower and tree models, respectively) compared to Asian (0.40 and 0.44, respectively) and European models (0.41 and 0.25, respectively). This difference in model performance could be due to the higher interannual variability of spring temperatures in North America33, leading to greater selective pressure for strong sensitivity to spring temperatures in North American plants. This difference could explain why North American species exhibit higher correlation of phenology with average spring temperatures (Table S4). Alternatively, European and Asian species may have stronger phenological responses to alternative spring forcing windows, winter chilling temperatures, or photoperiod, relative to the March–April temperature period used in this study (see Methods). We think the latter explanation is unlikely, given the strong correlations of phenology with spring temperature across all continents (see Supplementary Information – Justification for March–April Temperature Window).Herbarium-based phenological models may be improved by accounting for spatial autocorrelation within the dataset. For example, Willems et al.9 found that including spatial autocorrelation significantly improved predictability of European herbaceous flowering phenology, even when accounting for multiple drivers of spring phenology. We followed a similar approach as their study and found similar improvements in model performance with the addition of spatial autocorrelation (Tables S3–S4) that had substantial positive effects on r2 values of Asian and European models. However, spatial distributions of specimens differed substantially among continents (see Figs. S2–S4), and these differences could lead to artifacts that make results unreliable to interpret (see Supplementary Information). Therefore, we focus here on results for models without spatial autocorrelation while acknowledging that spatial aggregation of herbarium specimens in Europe and Asia may be partially responsible for the relatively lower r2 values. We encourage other researchers to explore this question further both with our data set and other datasets.Climate change and spring light windowsThe relative difference between wildflower and tree sensitivity varied substantially among continents, with wildflowers being approximately equally as sensitive to spring temperature as trees in Asia and Europe but substantially less sensitive (i.e., 95% BCI do not overlap) than trees in North America (Fig. 2). Importantly, these differences were driven by changes in tree phenological sensitivities among continents and resulted in different expectations for spring light window duration (i.e., the difference in time between estimated wildflower flowering date and canopy tree leaf out date) on different continents under current climate conditions (Fig. 3), based on modeled leaf out and flowering under a climate scenario derived from average climate conditions from 2009–2018 (Fig. S5).Fig. 3: Current estimated phenological escape duration in northern temperate deciduous forests.Estimated mean difference between wildflower First Flower Date (FFD) and canopy tree Leaf Out Date (LOD) (in days) under current climate conditions (averaged from 2009–2018, see methods) in a Asia, b Europe, and c North America. Negative values indicate tree LOD is estimated to occur before wildflower FFD. Estimations were cropped by the estimated area of broadleaf and mixed-broadleaf forest (see methods). Dark gray regions indicate areas where the consensus land classification is More

  • in

    Natural selection under conventional and organic cropping systems affect root architecture in spring barley

    Root morphological traitsThe wild-type parent ISR42-8 produced longer root length (RL) than the modern cultivar parent Golf and tested lines (Table S2, Fig. 1A.h,A.f [h = hydroponic; f = field]). The tested lines of the two evolving barley populations displayed significant variations under hydroponic conditions. Barley lines evolved under OCS had on average 3484 mm longer roots compared to CCS under hydroponic treatment (Fig. 1A.h, Table 2). Complementary results under field conditions show as well higher RL for the OCS lines, even though the variance was significantly less pronounced (Fig. 1A.f). In addition, a less evident variance was observed in the field within both groups compared to the hydroponic (Fig. 1A.d). Across both experimental setups, the observed range of RL was higher in the OCS lines [Standard deviation (SD)OCS = 883, SDCCS = 597] (Table 2).Figure 1Significantly variant root morphological phenotypes. Boxplots illustrate the overall distribution of observed data points for the parents Golf and ISR 42-8 as well as for the conventional (CCS) and organic (OCS) lines. Density plots highlight the overall distribution of organic and conventional adapted lines. (A)—Root length (RL)—the sum of all roots harvested in millimeters (mm), illustrated for all four groups. (A.h)—root length measured in the hydroponic experiment; (A.f)—field experiment; A.d—distribution histogram for root length in both field and hydroponic experiment for CCS and OCS adapted lines. (B)—the ratio of root length to volume (L/V). Data available for hydroponics (B.h), field (B.f), and distribution of the ratio of root length to volume illustrated in B.d. (C.f)—Root mass density (RMD) from the field; (D.f)—Root angle (RA) from the field, distribution of the root angle illustrated in (D.d); (E.f)—root tip per plant count from the field, corresponding histogram visualized in (E.d). (F.f)—root fork per plant count from the field.Full size imageTable 2 Comparison of organic and conventional population root phenotypes under field and hydroponic evaluation.Full size tableThe root length to volume (L/V) is an important indicator of the soil volume that can be explored by the roots. Under hydroponics conditions, variations were found for L/V between the parental genotypes as well as between the OCS and CCS populations (Tables 2 & S3). The organic lines were characterized by a significantly higher L/V, indicating a much more distinct exploration of the soil by these lines (Fig. 1B.h,B.f). In comparison to field, highest diversity in L/V was found under hydroponic experiments within both OCS and CCS populations (Fig. 1B.d).The root mass density (RMD) is the ratio of root volume for a given root mass and is a key indicator of root thickness. Although significant variations existed between ISR42-8 and Golf under hydroponics conditions, such significant variations were not found between the OCS and CCS groups (P = 0.09) (Fig. 1C.f and Tables 2 and S3).The root angle (RA) measurements were only performed under field conditions since plants grown under hydroponics conditions were placed in uniform growing vessels and the direction of root growth is restricted by tubes. Significant variation was observed for the RA between the two parental lines, which was also reflected in the CCS and OCS lines (Fig. 1D.f). ISR42-8 was characterized by an 11.5° average narrower RA than Golf (Table S3). The RA was 4.1° bigger in the OCS compared to the CCS population (P = 0.005) (Table 2). However, a higher diversity in RA was observed in the OCS compared to the CCS lines (Fig. 1D.d, Table 2).In addition to the RA, the number of root tips and forks was measured under field conditions only. Both tips and forks indicate a similar pattern, where the OCS lines produced on average more for both PForks = 0.014, PTips = 0.0041 (Fig. 1E.f,F.f). After applying a P-adjustment, the number of forks count was no longer significantly different between OCS and CCS (PForks = 0.07, Table 2). Complementary, ISR 42-8 was observed to produce more tips and forks than Golf, which remained highly significant even after probability adjustment (Fig. 1E.f,F.f, Table S3). The distribution and the standard deviation of observed phenotypes highlight once more the fact that the OCS lines tend to have a higher variation (Fig. 1E.d, Table 2). Similarly, a significant increasing trend was recorded in root surface area (RSA) and root average diameter (RAD) by ISR42-8 as compared to Golf under hydroponics (Table S3). Contrasting to the parental genotypes, no variation was observed between OCS and CCS lines for RSA (Table 2).Root anatomical traitsWithin the observed anatomical traits, four were considered due to their relevance and variation between the systems. In both hydroponic and field experiments, significant variations were observed for the late metaxylem number (LMXN) between the parental lines as well as OCS and CCS lines (Tables 2 & S3, Fig. 2A.h,A.f). An increased LMXN for ISR 42-8 compared to Golf was observed (Fig. 2A.h). Regarding the CCS and OCS lines, a heterogenic scenario was presented over both experimental setups. While the median LMXN under CCS was identical with ISR 42-8 in the seedling stages of plant development (Fig. 2A.h), it was much lower in flowering stages under field conditions (Fig. 1A.f). Additionally, the LMXN was significantly higher in the CCS lines in the seedling stage compared to OCS lines, vice-versa LMXN was observed at the flowering time point (Fig. 2A.d).Figure 2Significantly variant root anatomical traits. Boxplots illustrate the overall distribution of observed data points for the parents Golf and ISR 42-8 as well as for the conventional (CCS) and organic (OCS) lines. (A) –Late metaxylem number (LMN)—the sum of all roots harvested and expressed by plant−1, illustrated for all four groups. A.h—Late metaxylem number measured in the hydroponic experiment; A.f—field experiment; A.d—distribution histogram for late metaxylem number in both field and hydroponic experiment for CCS and OCS adapted lines. (B)—Aerenchyma area (AA). Data available for hydroponics (B.h), field (B.f), and distribution of the aerenchyma area illustrated in (B.d). (C.f)—Total cortical area (TCA) from the field; (D.f)—Root cross-section area (RA) from the field, distribution of the total cortical area and root cross-section area illustrated in C.d and D.d, respectively.Full size imageThe intercellular space, represented by the aerenchyma area (AA), was observed to be significantly more pronounced in the tested CCS compared to OCS lines in both environments (Fig. 2B.h,B.f). Furthermore, the OCS population did not show significant differences to both parents under hydroponics conditions, however, when grown under field conditions, it was noted that Golf had a significantly higher AA mean value as compared to the OCS population (Table S3). As illustrated by the values, the AA expended from early to late stages by a magnitude of 10-folds (Fig. 2B.d). In general, although the two parents did not indicate phenotypic variations, OCS and CCS lines showed significant variations (Table S4).A 0.12 mm2 decreased average total cortical area (TCA) was recorded in the OCS compared to the CCS population under field conditions (P = 0.003, Fig. 2C.f), although substantial variations for TCA was observed within OCS and CCS populations (Fig. 2C.d). The root cross-section area (RXA) is a two-dimensional axis of the root which is an important indicator of root thickness. In the hydroponic examination of the seedling stage, significant variations existed between the CCS and ISR42-8 as well as OCS population (Tables 2 and S3). The complementary study under field conditions observed a noticeable variation for OCS from both parental genotypes and the CCS (Table S3). About 0.13 mm2 increased average value for RXA was identified for CCS (Fig. 2D.f), while consistent significant variations were also observed between the populations in the under field experiment, where 0.13 mm2 increased average value for RXA was identified for CCS (Fig. 2D.f). Analog (Fig. 2D.d). Analogue to the AA, the RXA indicates a lower root extension in the OCS compared to the CCS population. For the stele area (SA), significant variations were only observed at the flowering stage, where ISR42-8 generally had the highest SA and varies significantly between Golf and its progeny lines (Tables 2 and S3).Shoot-related traitsBeyond the root-related phenotypic observations, above-ground characteristics were also recorded to assess the root-borne shoot dynamics (Figs. 3 and S2). Among the OCS and CCS populations and the parents, ISR42-8 had the longest duration of emergence. While CCS-adapted lines took on average 5.8 days of emergence (DE), OCS-adapted lines emerged 1.8 days later (7.6 days) (Fig. S2). No variation was observed for the tiller number (TN) throughout all tested groups, while ISR 42-8 tends to produce much more leaf number (LN), accompanied by a lower plant height (PH) and higher shoot dry weight (SDW) (Table S4, Fig. S2). The OCS and CCS plants significantly differed in PH as well as SDW (Fig. 3B,C). The LN was marginally above the probability threshold of 0.05 (p = 0.058, Fig. 3A), with a clear tendency of increased variability in phenotypic variation (Fig. 3D). Similar trend was recorded for the SDW (Fig. 3F).Figure 3Above-ground plant characteristics. Boxplots illustrate the overall distribution of observed data points for the parents Golf and ISR 42-8 as well as for the conventional (CCS) and organic (OCS) lines under the hydroponic experiment. (A)—Leaf number (LN) expressed by; (B)—Plant height (PH) and C-Shoot dry weight (SDW). The data distribution of the leaf number, plant height and shoot dry weight is illustrated in (D,E,F), respectively.Full size imageInterconnection of root-shoot traitsWe performed inter-trait correlation analysis to unravel association among root traits and in between root and shoot phenotypes (Fig. 4). Pearson correlation coefficient revealed significant correlations among root-shoot traits. LN, PH and SDW had strong positive associations with all root architectural traits under hydroponic conditions (P  0.30) in both CCS and OCS, while DE has negative association with all shoot traits (r = −0.17 to −0.48) (Fig. 4A.h,B.h). A consistent negative relationship was observed for L/V with shoot traits such as LN, PH and SDW and root morphological traits such as RL, RSA and RAD in both CCS and OSC populations (Fig. 4A.h,B.h). A strong negative association existed between RL and all shoot morphological, root architectural and anatomical traits in both populations, except for L/V where a weak negative (r = −0.09) association was displayed only in the OCS. Likewise, all above-ground traits and all root architectural traits exhibited significant positive associations with all root anatomical features in both groups with an exception for the AA (Fig. 4A.h,B.h). Moreover, correlation analysis revealed strong positive relationships in both groups of SDW and root dry weight (RDW) to all above-ground traits, below-ground traits including, RL, SA, and RAD, as well as in all root anatomical traits (Fig. 4A.h,B.h). This means that the growth of tissue and organ is proportional to the increase in total dry biomass. More importantly, we observed a significant positive correlation among most of the root morphological, architectural, and anatomical traits in both OCS and CCS adapted populations, with few exceptions such as L/V (Fig. 4A.h,B.h).Figure 4Correlation matrix for shoot morphological (only in hydroponic conditions; A.h and B.h), root architectural and anatomical traits in two groups of barley populations and their parental lines grown across two growing conditions. (A)—conventional and (B)—organic cropping systems. (A.h)—conventional under hydroponic, (B.h)—organic under hydroponic, (A.f)—conventional under field, and B.f—organic under field conditions. The color scale represents Spearman’s ranked correlation coefficient. A larger circle size indicates a smaller p-value; blank cells represent that correlation was non-significant at P  −0.90) and RDW (r =   > −0.80) (Fig. 4A.f,B.f) for CCS and OCS populations respectively, which means that narrower the angle of the nodal roots, the longer was the root system. The two root branching traits, the number of tips and number of roots forks which were known to be associated and dependent on the RL have a strong positive correlation reflected by r = 0.81 and 0.90 in CCS and r = 0.74 and 0.84 in OCS developed lines, respectively, while they have a significant negative correlation with RA (r = −0.72 to −0.77) in both barley groups. In addition, RA had also strong negative relationship to RDW contributing architectural traits including, RMD (r = −0.81 to −0.84) and L/V (r = −0.34 to −0.44). However, no positive associations were observed for RA and all root anatomical traits in both OCS and CCS populations (Fig. 4A.f,B.f).Allometry analysisThe correlation analysis identified interconnection among root and shoot-related traits. Therefore, we checked if these correlations can be explained by allometric relations (Tables 3 and 4).Table 3 Summary of allometric analysis of root-shoot system traits under hydroponic condition.Full size tableTable 4 Summary of allometric analysis of root-shoot system traits under field condition.Full size tableIn the hydroponic environment, we observed a total of ten allometric relations, from which six were annotated to the PH. The PH was allometrically related to the SDW, the RSA, the RV, the RDW, the SRL, and the RMD (Table 3). Besides, the SDW was allometrically associated with the RSD. Furthermore, the TCA was related to the RXA. Finally, an allometry relationship was detected between the LMXN and AA (Table 3).In the field experimental setup, we detected in total ten allometric relations (P  More

  • in

    Cutmarked bone of drought-tolerant extinct megafauna deposited with traces of fire, human foraging, and introduced animals in SW Madagascar

    Each sedimentary sequence from the three excavated ponds (Tampolove [TAMP], Ankatoke [ANKA], and Andranobe [ANDR]) includes a layer of clay (defined as zone 2), which separates the surface soil formation (zone 1) from the underlying fossiliferous muddy sand and bedrock (zone 3, Figs. S4–S7 & S9). Details regarding the composition of this sediment and its microfossils are given in Appendix-Results-Excavation (Figs. S9–S12).Subfossils and chronologyCoastal survey recovered mostly zebu bones on exposed sandy surfaces, some pygmy hippo and giant tortoise bones on the margins of shallow ponds, and giant tortoise carapace under overhanging limestone outcrops (Appendix-Results-Survey, Fig. S3). A high proportion of surface bone failed 14C analysis (~ 55%, Table S1), yet the successfully analyzed specimens (n = 8) span up to 3390–3220 calibrated years before present (cal BP, PSUAMS 8681, 3150 ± 15 14C BP, a hippo molar). Pond deposits that are relatively deep include bones that cover a relatively long period of time (Figs. S14–S16, Dataset S6). This span ranges from ~ 6000 years at TAMP (~ 120 cm deep) to ~ 2500 years at ANDR (~ 100 cm deep), with the oldest bones present in the fossiliferous sedimentary zone 3 and scarce bones in the overlying clay (zone 2).Zone 3Most bones in this layer are relatively intact and include readily identifiable pygmy hippo long bones and cranial fragments (e.g., Fig. S13a,f), giant tortoise carapace and plastron fragments (Fig. S13d), ratite eggshell and long bones (Fig. S13c,m), and crocodile scutes, cranial fragments, and teeth (Fig. S13b). Scarce bones of a duck (genus Anas) were recovered at ANDR. Remains of subfossil lemurs were scarce or absent, but they may be represented by an unknown type of bone fragment identified through protein fingerprinting (ANDR-1-5-55, Dataset S3). The widespread success of collagen extraction from these bones attests to the excellent preservation of organics in this zone. ANKA also includes keratin (mostly in the form of crocodile claws, e.g., Fig. S13i), as well as two rounded agates found associated with ratite eggshell (Fig. S13m).Remains of a juvenile pygmy hippo were recovered from both TAMP and ANDR (a femur and tibia, respectively, Dataset S3). The epiphyses of some of the pygmy hippo long bones have gnaw marks (Fig. S13f), and none of the bones include chop marks. In association with these bones towards the top of this zone are some large ( > 1 cm diameter) charcoal fragments and scarce bones of bushpig (Fig. S13k) and zebu (Fig. S13e). Protein fingerprinting identified a screened fragment of a non-zebu bovid in ANKA zone 3 and confirmed that a tentatively identified bushpig canine fragment (ANKA 1-4-151) belonged to a hippo. This zone at TAMP and ANDR also includes occasional mangrove whelk (Terebralia palustris) shells (Fig. S13g). These whelks currently live at least ~ 500 m distant from these ponds, and whelk shells at ANDR each have an irregular hole above the operculum.The span of time represented by bones in zone 3 ranges up to ~ 4000 years (~ 6000–2000 cal BP at TAMP, Fig. S14). Confirmed introduced animal bones from zone 3 failed direct 14C analysis. There are multiple examples of directly 14C-dated bone in close stratigraphic association that nonetheless differ in age by  > 1000 years, and there are a couple of examples of bones from the same individual that are separated stratigraphically. For example, two giant tortoise carapace and plastron fragments from TAMP that have indistinguishable 14C ages are separated by 22 cm of sediment (PSUAMS 8670 comes from 112 cm depth, and PSUAMS 8668 comes from 90 cm depth).Although ANKA produced what is thus far the oldest directly 14C dated pygmy hippo bone from a coastal subfossil site (PSUAMS 9383, 4380 ± 25 BP, 5030–4840 cal BP), the mean calibrated age of hippos from the Tampolove excavations (n = 11, x̄ = 2858 cal BP, SD = 972 yr) is significantly less than that of the giant tortoises (n = 9, x̄ = 4582 cal BP, SD = 705 yr, t(18) = − 4.4, p  2000 years older than a closely associated charcoal sample (38 cm depth, PSUAMS 8849, 575 ± 30 14C BP, 630–510 cal BP), which makes this molar comparable in age to bone from zone 3. Consequently, the youngest directly 14C-dated ancient bone from the Tampolove excavations comes from the lowermost zone 3: a pygmy hippo’s vertebra recovered at 90 cm depth at TAMP (PSUAMS 8730, 1865 ± 15 14C BP, 1819–1705 cal BP). Though poorly constrained in time, the deposition of zone 2 sediment came sometime within the past two millennia, which witnessed marine regression and dry intervals recorded in both the δ18O record of a nearby speleothem27 and the salinization of a nearby pan36. Previously directly 14C-dated bone collected around Tampolove attests to the local persistence of at least pygmy hippos and giant tortoises until the start of the last millennium (n = 15), and an atlas from Lamboara/Lamboharana is in fact the most recent confidently dated pygmy hippo bone from the island (PSUAMS 5629, 1100 ± 15 14C BP, 980–930 cal BP).Figure 4Cutmarked pygmy hippo femur recovered from Tampolove during recent excavation at ~ 40 cm depth (TAMP-1-2-61, above), and previously-recovered and directly 14C-dated (~ 3500 and 1600 cal BP37) cutmarked pygmy hippo femora from the nearby site of Lamboara/Lamboharana that are currently housed in the National Museum of Natural History in Paris (MAD 1709 & MAD 1710, below). Four views highlight three locations of cutmarks on the broken shaft of TAMP-1-2-61, and the inset frames show 20 × magnification of these areas, with corresponding orientations given by red lines. Note that the false color insets of TAMP-1-2-61 are meant to highlight linear edges and crevices, and the overview photos of all three femur fragments are on the same scale.Full size imageZone 1A fragment of iron (from TAMP, 16 cm depth) and sparse ceramic fragments (from ANKA, 3 & 9 cm depth) are present only in zone 1, and three 14C dates from TAMP and ANKA suggest that these specimens span the past ~ 200 years (Figs. S14–S15).CharcoalThe directly 14C dated charcoal spans all three stratigraphic zones yet consistently dates to the past millennium (Figs. S14–16). Multiple charcoal samples from different excavated ponds have practically indistinguishable 14C ages (Table S2), and much of the charcoal from Tampolove formed during peaks in the deposition of macrocharcoal at nearby Namonte (17 km distant; Fig. 5A). The onset of directly 14C-dated charcoal deposition approximately coincides with a decrease in Asafora speleothem δ18O values and with multiple directly 14C-dated first and final local occurrences of large animals. While directly 14C dated charcoal is limited to the past millennium, microcharcoal particles were abundant in all TAMP sediment samples (x̄ ± SD = 2.0 × 106 ± 2.8 × 106 particles). Additionally, microcharcoal is relatively abundant near the bottom of TAMP and ANKA, which contains bones that span ~ 6000–2000 cal BP (Fig. 5B).Figure 5Records of fire, drought, and faunal turnover from the vicinity of Tampolove within the past 1200 years, with dashed horizontal lines for reference (5A), and macrocharcoal concentrations from the excavated ponds, with depth intervals containing directly 14C-dated charcoal that spans the past millennium marked in red (5B). The past 1200 years includes the entire summed calibrated distribution of the 10 directly dated prebomb charcoal fragments from the Tampolove excavations. The calibrated probability distributions associated with the latest dates from endemic megafauna bone (giant tortoises and pygmy hippos) and earliest dates from introduced animal bone (zebu cattle and bushpigs) are shown as black distributions, and 95% of each distribution is bracketed. Considering directly dated remains within the past 4 ka from hippos (n = 26), giant tortoises (n = 18), and zebu (n = 9) and the assumption that bones were deposited uniformly over time, the grey distributions and bracketed 95% credible intervals give estimates of extirpation and arrival times. As in Fig. 3, the red line on the Asafora record follows from BCPA.Full size image More

  • in

    Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae

    Caro, T., Izzo, A., Reiner, R. C., Walker, H. & Stankowich, T. The function of zebra stripes. Nat. Commun. 5, 3535 (2014).Article 
    PubMed 

    Google Scholar 
    Merilaita, S., Scott-Samuel, N. E. & Cuthill, I. C. How camouflage works. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160341 (2017).Article 

    Google Scholar 
    Rowland, H. M. From Abbott Thayer to the present day: what have we learned about the function of countershading? Philos. Trans. R. Soc. B Biol. Sci. 364, 519–527 (2009).Article 

    Google Scholar 
    Rogalla, S. et al. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. J. R. Soc. Interface 18, 20210236.Malling Olsen, K. Gulls of the World. (Princeton University Press, 2018).Jawor, J. M. & Breitwisch, R. Melanin Ornaments, Honesty, and Sexual Selection. Auk 120, 249–265 (2003).Article 

    Google Scholar 
    Field, D. J. et al. Melanin Concentration Gradients in Modern and Fossil Feathers. PLOS ONE 8, e59451 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNamara, M. E. et al. Decoding the Evolution of Melanin in Vertebrates. Trends Ecol. Evol. 36, 430–443 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dufour, P. et al. Plumage colouration in gulls responds to their non-breeding climatic niche. Glob. Ecol. Biogeogr. 29, 1704–1715 (2020).Article 

    Google Scholar 
    Hassanalian, M., Abdelmoula, H., Ben Ayed, S. & Abdelkefi, A. Thermal impact of migrating birds’ wing color on their flight performance: Possibility of new generation of biologically inspired drones. J. Therm. Biol. 66, 27–32 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hassanalian, M., Throneberry, G., Ali, M., Ben Ayed, S. & Abdelkefi, A. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross. J. Therm. Biol. 71, 112–122 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spear, L. B. & Ainley, D. G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 139, 221–233 (1997).Article 

    Google Scholar 
    Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, eaat4269.Pennycuick, C. J. Modelling the Flying Bird. (Elsevier, 2008).Buffo, J., Fritschen, L. J. & Murphy, J. L. Direct Solar Radiation on Various Slopes from 0 to 60 Degrees North Latitude. (Pacific Northwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 1972).Hansen, T. F. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution 51, 1341–1351 (1997).Article 
    PubMed 

    Google Scholar 
    Hansen, T. F., Pienaar, J. & Orzack, S. H. A Comparative Method for Studying Adaptation to a Randomly Evolving Environment. Evolution 62, 1965–1977 (2008).PubMed 

    Google Scholar 
    Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).Article 
    PubMed 

    Google Scholar 
    Rayner, J. M. V. FORM AND FUNCTION IN AVIAN FLIGHT. in Current Ornithology vol. 5 1–66 (Plenum Press, 1988).Schreiber, E. A. & Burger, J. Biology of Marine Birds. (CRC Press, 2001).Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Article 

    Google Scholar 
    Shamoun-Baranes, J. & van Loon, E. Energetic influence on gull flight strategy selection. J. Exp. Biol. 209, 3489–3498 (2006).Article 
    PubMed 

    Google Scholar 
    Pennycuick, C. J. & Lighthill, M. J. The flight of petrels and albatrosses (procellariiformes), observed in South Georgia and its vicinity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300, 75–106 (1982).Article 

    Google Scholar 
    Rogalla, S., Shawkey, M. D. & D’Alba, L. Thermal effects of plumage coloration. Ibis 164, 933–948 (2022).Article 

    Google Scholar 
    Flinks, H. & Salewski, V. Quantifying the effect of feather abrasion on wing and tail lengths measurements. J. Ornithol. 153, 1053–1065 (2012).Article 

    Google Scholar 
    Hill, G. E. Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evol. Biol. 42, 251–259 (2015).Article 

    Google Scholar 
    Sonsthagen, S. A. et al. Recurrent hybridization and recent origin obscure phylogenetic relationships within the ‘white-headed’ gull (Larus sp.) complex. Mol. Phylogenet. Evol. 103, 41–54 (2016).Article 
    PubMed 

    Google Scholar 
    Howell, S. & Dunn, J. A reference guide to gulls of the Americas. (Houghton Mifflin Company, 2007).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).Article 
    PubMed 

    Google Scholar 
    Yalden, D. Wing area, wing growth and wing loading of Common Sandpipers Actitis hypoleucos. Wader Study Group Bull. 119, 84–88 (2012).
    Google Scholar 
    Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).Article 

    Google Scholar 
    Harmon, L. J. Phylogenetic Comparative Methods: Learning from Trees. (CreateSpace Independent Publishing Platform, 2018).Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).Article 

    Google Scholar 
    Li, M. & Bolker, B. wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4-verse. https://doi.org/10.5281/zenodo.2639887 (2019).Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 
    PubMed 

    Google Scholar 
    Goumas, M. Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae. Zenodo, https://doi.org/10.5281/zenodo.7156454 (2022). More

  • in

    Soil structure and microbiome functions in agroecosystems

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 

    Google Scholar 
    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).Article 

    Google Scholar 
    DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).Article 

    Google Scholar 
    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article 

    Google Scholar 
    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).Article 

    Google Scholar 
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).Article 

    Google Scholar 
    Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Proxy global assessment of land degradation. Soil Use Manage. 24, 223–234 (2008).Article 

    Google Scholar 
    Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 

    Google Scholar 
    Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164, 108472 (2022).Article 

    Google Scholar 
    König, S., Vogel, H.-J., Harms, H. & Worrich, A. Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00053 (2020).Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).Article 

    Google Scholar 
    Status of the World’s Soil Resources (SWSR) — Main Report, 650 (FAO/Intergovernmental Technical Panel on Soils, 2015).Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).Article 

    Google Scholar 
    Gougoulias, C., Clark, J. M. & Shaw, L. J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94, 2362–2371 (2014).Article 

    Google Scholar 
    Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).Article 

    Google Scholar 
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).Article 

    Google Scholar 
    Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336 (2012).Article 

    Google Scholar 
    Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions 2nd edition (Wiley, 1994).Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).Article 

    Google Scholar 
    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).Article 

    Google Scholar 
    Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).Article 

    Google Scholar 
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).Article 

    Google Scholar 
    Dutta, H. & Dutta, A. The microbial aspect of climate change. Energy Ecol. Environ. 1, 209–232 (2016).Article 

    Google Scholar 
    Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).Article 

    Google Scholar 
    Marschner, P. in Nutrient Cycling in Terrestrial Ecosystems (eds Petra, M. & Zdenko, R.) 159–182 (Springer, 2007).Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).Article 

    Google Scholar 
    Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. Soil Biological Communities and Ecosystem Resilience (eds Martin, L., Paola, G. & Mauro, G.) 9–24 (Springer, 2017).Jetten, M. S. M. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909 (2008).Article 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 

    Google Scholar 
    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).Article 

    Google Scholar 
    Clark, I. M., Hughes, D. J., Fu, Q., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).Article 

    Google Scholar 
    Philippot, L., Hallin, S. & Schloter, M. in Advances in Agronomy Vol. 96, 249–305 (Academic, 2007).Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45 (2008).Article 

    Google Scholar 
    Mackey, K. R. M. & Paytan, A. in Encyclopedia of Microbiology 3rd edition (ed. Moselio, S.) 322–334 (Academic, 2009).Richardson, A. E., Barea, J.-M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil. 321, 305–339 (2009).Article 

    Google Scholar 
    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant. Physiol. 156, 989–996 (2011).Article 

    Google Scholar 
    Li, J.-t. et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. 96, 2771–2793 (2021).Article 

    Google Scholar 
    Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Env. Sci. https://doi.org/10.3389/fenvs.2018.00159 (2019).Oberson, A. & Joner, E. J. in Organic Phosphorus in the Environment (eds Turner, B. L. et al.) 133–164 (CABI, 2005).Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).Article 

    Google Scholar 
    Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518–541 (2021).Article 

    Google Scholar 
    Nascimento, F. X., Hernandez, A. G., Glick, B. R. & Rossi, M. J. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ. Microbiol. 22, 1341–1355 (2020).Article 

    Google Scholar 
    Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H. & Dixon, K. W. Preparing for the worst: utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 1, e12027 (2020).Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Article 

    Google Scholar 
    Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82 (2019).Article 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01636 (2018).Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285 (2019).Article 

    Google Scholar 
    Singh, D. P. et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 10, 4818 (2020).Article 

    Google Scholar 
    Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F. & Ruiz-Lozano, J. M. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 27, 349–363 (2014).Article 

    Google Scholar 
    Gamalero, E. & Glick, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22 (2015).Article 

    Google Scholar 
    Le Pioufle, O., Ganoudi, M., Calonne-Salmon, M., Ben Dhaou, F. & Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00897 (2019).Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01068 (2019).Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00845 (2019).Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).Article 

    Google Scholar 
    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).Article 

    Google Scholar 
    Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).Article 

    Google Scholar 
    Soares, F. Ed. F., Sufiate, B. L. & de Queiroz, J. H. Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 52, 1–8 (2018).
    Google Scholar 
    Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. in eLS (Wiley, 2011); https://doi.org/10.1002/9780470015902.a0000374.pub3.Tian, B., Yang, J. & Zhang, K.-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61, 197–213 (2007).Article 

    Google Scholar 
    Shafi, J., Tian, H. & Ji, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459 (2017).Article 

    Google Scholar 
    Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).Article 

    Google Scholar 
    Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).Article 

    Google Scholar 
    Wei, J.-Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765 (2003).Article 

    Google Scholar 
    Flury, P. et al. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10, 2527–2542 (2016).Article 

    Google Scholar 
    Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19, 952 (2018).Article 

    Google Scholar 
    Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).Article 

    Google Scholar 
    MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).Article 

    Google Scholar 
    Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).Article 

    Google Scholar 
    Gworek, B., Kijeńska, M., Wrzosek, J. & Graniewska, M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 232, 145 (2021).Article 

    Google Scholar 
    Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).Article 

    Google Scholar 
    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).Article 

    Google Scholar 
    Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261 (2016).
    Google Scholar 
    Teng, Y. & Chen, W. Soil microbiomes — a promising strategy for contaminated soil remediation: a review. Pedosphere 29, 283–297 (2019).Article 

    Google Scholar 
    Vogt, C. & Richnow, H. H. in Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (eds Schippers, A. et al.) 123–146 (Springer, 2014).Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.632059 (2021).Rolli, E. et al. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ. Microbiol. 23, 5690–5703 (2021).Article 

    Google Scholar 
    Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00324-19 (2019).Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).Article 

    Google Scholar 
    Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).Article 

    Google Scholar 
    Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A. & de Ment, J. D. in Advances in Agronomy Vol. 7 (ed. Norman, A. G.) 1–37 (Academic, 1955).Chotte, J.-L. in Microorganisms in Soils: Roles in Genesis and Functions (eds Varma, A. & Buscot, F.) 107–119 (Springer, 2005).Oades, J. M. Soil organic matter and structural stability: mechanisms and implications for management. Plant. Soil. 76, 319–337 (1984).Article 

    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).Article 

    Google Scholar 
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).Article 

    Google Scholar 
    Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).Article 

    Google Scholar 
    Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).Article 

    Google Scholar 
    Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).Article 

    Google Scholar 
    Zhang, Q. et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80, 97–111 (2016).Article 

    Google Scholar 
    Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265 (2015).Article 

    Google Scholar 
    Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).Article 

    Google Scholar 
    Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T. & Tebbe, C. C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00149 (2018).Hemkemeyer, M., Christensen, B. T., Tebbe, C. C. & Hartmann, M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol. 94, 103103 (2019).Article 

    Google Scholar 
    Christensen, B. T. & Olesen, J. E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. Eur. J. Soil Sci. 49, 25–36 (1998).Article 

    Google Scholar 
    Christensen, B. T. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435 (1987).Article 

    Google Scholar 
    Luo, G. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 

    Google Scholar 
    Mummey, D., Holben, W., Six, J. & Stahl, P. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb. Ecol. 51, 404–411 (2006).Article 

    Google Scholar 
    Ranjard, L. et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 39, 263–272 (2000).
    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217 (2014).Article 

    Google Scholar 
    Rillig, M. C., Muller, L. A. H. & Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 11, 1943–1948 (2017).Article 

    Google Scholar 
    Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).Article 

    Google Scholar 
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).Article 

    Google Scholar 
    Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).Article 

    Google Scholar 
    Bhattacharyya, S. S. et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 826, 154161 (2022).Article 

    Google Scholar 
    Zhang, W. et al. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 389, 114970 (2021).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).Article 

    Google Scholar 
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 

    Google Scholar 
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).Article 

    Google Scholar 
    Degrune, F. et al. The pedological context modulates the response of soil microbial communities to agroecological management. Front. Ecol. Environ. 7, 261 (2019).Article 

    Google Scholar 
    Longepierre, M. et al. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Commun. 1, 44 (2021).Article 

    Google Scholar 
    Delitte, M., Caulier, S., Bragard, C. & Desoignies, N. Plant microbiota beyond farming practices: a review. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.624203 (2021).Hobbs, P. R., Sayre, K. & Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 363, 543–555 (2008).Article 

    Google Scholar 
    Van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuzere, M. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241 (2010).Article 

    Google Scholar 
    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie 22, 755–775 (2002).Article 

    Google Scholar 
    Young, I. M. & Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 53, 201–213 (2000).Article 

    Google Scholar 
    Degrune, F. et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 8, 1127 (2017).Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).Article 

    Google Scholar 
    Babin, D. et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2018.11.002 (2018).Article 

    Google Scholar 
    Srour, A. Y. et al. Microbial communities associated with long-term tillage and fertility treatments in a corn–soybean cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01363 (2020).Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00568 (2020).Cooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).Article 

    Google Scholar 
    Mangalassery, S. et al. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2014).Article 

    Google Scholar 
    Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29, 199–209 (2013).Article 

    Google Scholar 
    Six, J. et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 155–160 (2004).Article 

    Google Scholar 
    van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).Article 

    Google Scholar 
    Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).Article 

    Google Scholar 
    Schäffer, B., Stauber, M., Mueller, T. L., Muller, R. & Schulin, R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma 146, 183–191 (2008).Article 

    Google Scholar 
    Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244 (2014).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Methane oxidation potentials and fluxes in agricultural soil: effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339 (2000).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere Glob. Change Sci. 2, 367–371 (2000).Article 

    Google Scholar 
    Beckett, C. T. S. et al. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471–481 (2017).Article 

    Google Scholar 
    Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R. & Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 102, 242–254 (2009).Article 

    Google Scholar 
    von Wilpert, K. & Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur. J. For. Res. 125, 129–138 (2006).Article 

    Google Scholar 
    Tim Chamen, W. C., Moxey, A. P., Towers, W., Balana, B. & Hallett, P. D. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. Soil Tillage Res. 146, 10–25 (2015).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).Article 

    Google Scholar 
    Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).Article 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Galindo-Castañeda, T., Lynch, J. P., Six, J. & Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827369 (2022).Venter, Z. S., Jacobs, K. & Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).Article 

    Google Scholar 
    Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 660749 (2021).Article 

    Google Scholar 
    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article 

    Google Scholar 
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).Article 

    Google Scholar 
    Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).Article 

    Google Scholar 
    Kong, A. Y. Y. & Six, J. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant Soil 356, 315–330 (2012).Article 

    Google Scholar 
    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).Article 

    Google Scholar 
    Alahmad, A. et al. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 56, 651–664 (2019).Article 

    Google Scholar 
    Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 6198 (2020).Article 

    Google Scholar 
    Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).Article 

    Google Scholar 
    Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466-467, 164–174 (2014).Article 

    Google Scholar 
    Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).Article 

    Google Scholar 
    Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).Article 

    Google Scholar 
    Vanlauwe, B. et al. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01446 (2016).Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol. Ecol. 23, 3341–3355 (2014).Article 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity — a meta-analysis and meta-regression. PLoS One 12, e0180442 (2017).Article 

    Google Scholar 
    Bebber, D. P. & Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 175, 104450 (2022).Article 

    Google Scholar 
    Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01967 (2016).Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M. & Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9 (2018).Article 

    Google Scholar 
    Řezáčová, V. et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548 (2021).Article 

    Google Scholar 
    Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022 (2007).Article 

    Google Scholar 
    Fu, B., Chen, L., Huang, H., Qu, P. & Wei, Z. Impacts of crop residues on soil health: a review. Environ. Pollut. Bioavailab. 33, 164–173 (2021).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28, 139–163 (2009).Article 

    Google Scholar 
    Yang, H. et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01811 (2019).Enebe, M. C. & Babalola, O. O. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express 11, 24 (2021).Article 

    Google Scholar 
    Skinner, C. et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9, 1702 (2019).Article 

    Google Scholar 
    Lazcano, C., Zhu-Barker, X. & Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review. Microorganisms https://doi.org/10.3390/microorganisms9050983 (2021).Tilston, E. L., Pitt, D. & Groenhof, A. C. Composted recycled organic matter suppresses soil-borne diseases of field crops. N. Phytol. 154, 731–740 (2002).Article 

    Google Scholar 
    Bonanomi, G., Antignani, V., Capodilupo, M. & Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42, 136–144 (2010).Article 

    Google Scholar 
    Briceño, G., Palma, G. & Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 37, 233–271 (2007).Article 

    Google Scholar 
    Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Routledge, 2015).Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).Article 

    Google Scholar 
    Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016).Article 

    Google Scholar 
    Lehmann, J. et al. Biochar effects on soil biota — a review. Soil Biol. Biochem. 43, 1812–1836 (2011).Article 

    Google Scholar 
    Liu, X., Shi, Y., Zhang, Q. & Li, G. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 28, 6649–6663 (2021).Article 

    Google Scholar 
    Zhang, L. et al. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. GCB Bioenergy 13, 1859–1873 (2021).Article 

    Google Scholar 
    Deb, D., Kloft, M., Lässig, J. & Walsh, S. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol. Sustain. Food Syst. 40, 145–168 (2016).Article 

    Google Scholar 
    Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci. Total Environ. 749, 141593 (2020).Article 

    Google Scholar 
    Yoo, G., Lee, Y. O., Won, T. J., Hyun, J. G. & Ding, W. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Sci. Total Environ. 626, 603–611 (2018).Article 

    Google Scholar 
    Verhoeven, E. et al. Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46, 237–246 (2017).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 

    Google Scholar 
    Wang, W. et al. Biochar application alleviated negative plant–soil feedback by modifying soil microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00799 (2020).Duan, M. et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 224, 787–795 (2017).Article 

    Google Scholar 
    Liu, Y., Lonappan, L., Brar, S. K. & Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645, 60–70 (2018).Article 

    Google Scholar 
    du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).Article 

    Google Scholar 
    Le Mire, G. et al. Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 1–15 (2016).
    Google Scholar 
    Leggett, M. et al. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron. J. 109, 1031–1038 (2017).Article 

    Google Scholar 
    Coniglio, A., Mora, V., Puente, M. & Cassán, F. in Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (eds Zúñiga-Dávila, D. et al.) 45–70 (Springer, 2019).Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer, 2017).Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).Article 

    Google Scholar 
    Mawarda, P. C., Le Roux, X., Dirk van Elsas, J. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil. Biol. Biochem. 148, 107874 (2020).Article 

    Google Scholar 
    Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).Article 

    Google Scholar 
    Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. https://doi.org/10.3389/fagro.2021.753474 (2021).Bender, S. F., Schlaeppi, K., Held, A. & Van der Heijden, M. G. A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 273, 13–24 (2019).Article 

    Google Scholar 
    Schreiter, S. et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 90, 718–730 (2014).Article 

    Google Scholar 
    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).Article 

    Google Scholar 
    Kennedy, T. L., Suddick, E. C. & Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 170, 16–27 (2013).Article 

    Google Scholar 
    Fonte, S. J., Barrios, E. & Six, J. Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155, 320–328 (2010).Article 

    Google Scholar 
    Pauli, N., Barrios, E., Conacher, A. J. & Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual slash-and-mulch agroforestry system, western Honduras. Appl. Soil. Ecol. 47, 119–132 (2011).Article 

    Google Scholar 
    Eichorst, S. A. et al. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv106 (2015).Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).Article 

    Google Scholar  More

  • in

    MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs

    Data sourcesData for the trophic parameters and data categories listed in Tables 1 and 2 were gathered from peer-reviewed scientific publications, grey literature (e.g., agency reports, theses, and dissertations) and unpublished data by the authors of this paper. Data compilation on stomach contents, stable isotopes, FATM, and trophic positions, focussed on mesopelagic organisms, their potential prey and predators. For major and trace elements, energy density and estimates of diet proportions, our search concentrated on mesopelagic taxa. Nevertheless, we also gathered information from small or intermediate-sized epi-, bathy- or benthopelagic species found in the compiled data sources. These species were included because they play key roles in most marine ecosystems, both as important consumers of phytoplankton and zooplankton, and prey for many top predators, and can represent alternative energy pathways to mesopelagic organisms. However, we stress that the data coverage for these species in the current version of the database is very incomplete. Our main interest was on data from the central and eastern North Atlantic, and the Mediterranean, corresponding to the study regions of the SUMMER project. When we could not find suitable data within this region, we extended the geographic scope of our literature search to the western North Atlantic. We did not search for datasets in open access repositories since those data can be easily accessed and extracted. However, some of the data provided by the authors of this paper have been previously deposited in PANGAEA.DNA sequencing-based methods, such as metabarcoding and direct shotgun sequencing, are emerging as promising tools in dietary analyses due to the high resolution in taxonomic identification of many prey simultaneously, and the potential to provide quantitative diet estimates from relative read abundance29. However, recent studies have shown that various methodological and biological factors can break the correlation between the number and abundance of ingested prey and the prey DNA present in the sample, and lead to biased estimates of taxonomic diversity and composition of diet29,30. Given the uncertainties remaining in the interpretation of DNA sequencing-based diet data, we decided not to include these data in MesopTroph until additional research demonstrates that these techniques can be confidently applied for quantitative diet assessment.We identified available data sources in the literature through systematic searches on Web of Science, Google Scholar, ResearchGate, and the Google search engine. We used multiple combinations of terms related to specific data categories (Table 3), in conjunction with the common or scientific taxon names (from genus to order), and the ocean basin. For example, the search for stomach content data of fishes belonging to the family Myctophidae was undertaken using the following terms: “stomach content” OR “gut content” OR “prey composition” OR “diet composition”, AND “mesopelagic fish” OR “myctophid” OR “Myctophiformes” OR “Myctophidae”, AND “Atlantic” or “Mediterranean”. For the mesopelagic and predator species known to be numerically abundant in the SUMMER study regions, we performed a second literature search using the common or scientific name of the species, along with the terms “diet”, “feeding habits”, “trophic ecology”, “trophic markers”, or “food web”. We also examined the literature cited within each collected publication to locate additional data sources.Table 3 Terms used in the literature search for each data category.Full size tableWe next screened the full text of the compiled studies and retained data sources that: (1) were collected within the region of interest, (2) reported quantitative data for the trophic parameters of interest, (3) reported the number of samples for pooled or aggregated data, and (4) provided sufficient details on the methodology to enable a quality check. In the case of stable isotope data, we only included data sources reporting both δ13C and δ15N measurements.Data extraction, cleaning, and formattingWe created a template table for each data category in Microsoft Excel to assemble all datasets into a single file, and to facilitate cleaning and standardization of data records. We added a large number of metadata fields to the tables to annotate details about the sampling (e.g., location, date, methods), sampled specimen(s) (e.g., taxonomy, number and size of individuals, number of replicates, tissue analysed), and data source (e.g., full reference, DOI) for every record.Data contributors formatted and incorporated their datasets directly into the tables. For published sources, the data and associated metadata were extracted manually or digitized from the article text, tables, or supplementary material into the tables. Extraneous or hidden characters, and values such as “NA” (Not Available) or “ND” (Not Determined), were deleted from the parameter and metadata fields. Measurements of trophic parameters were standardized to the same units (see Tables 1 and 2). Parameter values that were clearly incorrect (e.g., δ15N  > 20, or the frequency of occurrence of a prey higher than the number of stomachs sampled) were corrected by searching for the value within the data source. When values could not be corrected, we deleted that data record.When available, we extracted information at the individual level. However, most studies reported data obtained from pooled samples of the same species. In some cases (e.g., small specimens such as planktonic organisms), a minimum and maximum number of individuals in the sample was provided instead of the actual number of individuals sampled. We added two columns to the tables presenting the minimum and maximum number of individuals in the sample. By filtering the column “Ind No (maximum per sample)” for values >1, users can easily identify records with aggregated data and differentiate them from records where information was drawn from a single individual (i.e., where “Ind No (maximum per sample)” =1). In addition, the tables Stomach contents and Estimates of diet proportions include a field “Sample ID” with a unique identifier of the sample. If data are reported at the individual level (i.e., “Ind No (maximum per sample)” =1) then Sample ID is the individual animal ID. If the data are from a group of individuals (i.e., “Ind No (maximum per sample)” >1), then Sample ID identifies that group.We standardized the taxonomic classification and nomenclature of fishes and elasmobranchs following the Eschmeyer’s Catalog of Fishes (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp)31,32. For the remaining taxa, we used the World Register of Marine Species (http://www.marinespecies.org/)33. Unaccepted or alternate taxon names were replaced by the most up-to-date valid name. When the identification of a taxon was uncertain, the taxonomic level of identification was decreased to a satisfactory level. For example, prey reported as “Cephalopods” were changed to “Cephalopoda”, “Sepiolids” to “Sepiolidae”, and “Myctophum punctatum?” to the genus “Myctophum”.Stomach contentsStomach contents analysis is a standard dietary assessment method that potentially enables quantifying diet components with high taxonomic resolution34. Three parameters are typically used to describe diet composition from stomach contents: the number of individuals of a prey type as a proportion of the total number of prey items (%N), the proportion of a prey item by weight or volume (%W), and the proportion of stomachs containing a particular prey item (i.e., percent frequency of occurrence, %F)35. When available, we collected data on the three parameters, as well as on the absolute number, weight, and frequency of occurrence of each prey type in the stomachs of each sampled individual or group of individuals. If stated in the data source, we indicate if prey weights were directly measured or reconstructed from hard remains (fish otoliths and vertebrae, cephalopod beaks), and if they represent dry or wet weight. Some datasets contained records of prey items without corresponding weights or numbers. As a result, the cumulative percent of all prey items did not sum to 100%. This occurred in 11 data records for the cumulative %W, and nine for the cumulative %N. While we checked the accuracy of percentage values and adjusted rounding errors, we did not attempt to fill in missing values nor did we remove records with missing values. When prey values were reported by an upper bound (e.g., “ More

  • in

    An odorant-binding protein in the elephant's trunk is finely tuned to sex pheromone (Z)-7-dodecenyl acetate

    MaterialsTrunk wash was collected from one male (Tembo, born 1985) and five female (Tonga, 1984; Numbi, 1992; Mongu, 2003; Iqhwa, 2013; Kibali, 2019) African elephants at the Vienna Zoo during routine procedures. Briefly, 100 mL of a sterile 0.9% saline solution is injected in each nostril of the trunk, which is kept in a lifted position, so that the solution is running up to the base of the trunk. The mixture of the solution and trunk mucus is collected in sterile plastic bags by active blowing of the elephant. Chemicals were all from Merck, Austria, unless otherwise stated. Restriction enzymes and kits for DNA extraction and purification were from New England Biolabs, USA. Oligonucleotides and synthetic genes were custom synthesised at Eurofins Genomics, Germany.Ethics declarationWe confirm that the trunk wash performed to provide a sample of the mucus was carried out as a routine procedure to monitor the health of elephants at the Vienna Zoo and in accordance with relevant guidelines and regulations.Trunk wash fractionationTrunk wash was centrifuged for 1 h at 10,000 g, the supernatant was dialyzed against 50 mM Tris–HCl buffer, pH 7.4 and concentrated by ultrafiltration in the Amicon stirred cell, then fractionated by anion-exchange chromatography on HiPrep-Q 16/10 column, 20 mL (Bio-Rad), along with standard protocols.Protein alkylation and digestion, and mass spectrometry analysisSDS-PAGE gel portions of proteins from whole elephant trunk wash (for component identification), chromatographic fractions of the elephant trunk wash (for PTMs analysis) or SDS-PAGE gel bands of LafrOBP1 expressed in P. pastoris were in parallel triturated, washed with water, in gel-reduced, S-alkylated, and digested with trypsin (Sigma, sequencing grade). Resulting peptide mixtures were desalted by μZip-TipC18 (Millipore) using 50% (v/v) acetonitrile, 5% (v/v) formic acid as eluent, vacuum-dried by SpeedVac (Thermo Fisher Scientific, USA), and then dissolved in 20 μL of aqueous 0.1% (v/v) formic acid for subsequent MS analyses by means of a nanoLC-ESI-Q-Orbitrap-MS/MS system, comprising an UltiMate 3000 HPLC RSLC nano-chromatographer (Thermo Fisher Scientific) interfaced with a Q-ExactivePlus mass spectrometer (Thermo Fisher Scientific) mounting a nano-Spray ion source (Thermo Fisher Scientific). Chromatographic separations were obtained on an Acclaim PepMap RSLC C18 column (150 mm × 75 μm ID; 2 μm particle size; 100 Å pore size, Thermo Fisher Scientific), eluting the peptide mixtures with a gradient of solvent B (19.92/80/0.08 v/v/v water/acetonitrile/formic acid) in solvent A (99.9/0.1 v/v water/formic acid), at a flow rate of 300 nL/min. In particular, solvent B started at 3%, increased linearly to 40% in 45 min, then achieved 80% in 5 min, remaining at this percentage for 4 min, and finally returned to 3% in 1 min. The mass spectrometer operated in data-dependent mode in positive polarity, carrying out a full MS1 scan in the range m/z 345–1350, at a nominal resolution of 70,000, followed by MS/MS scans of the 10 most abundant ions in high energy collisional dissociation (HCD) mode. Tandem mass spectra were acquired in a dynamic m/z range, with a nominal resolution of 17,500, a normalized collision energy of 28%, an automatic gain control target of 50,000, a maximum ion injection time of 110 ms, and an isolation window of 1.2 m/z. Dynamic exclusion was set to 20 s36.Bioinformatics for peptide identification and post-translational modification assignmentRaw mass data files were searched by Proteome Discoverer v. 2.4 package (Thermo Fisher Scientific), running the search engine Mascot v. 2.6.1 (Matrix Science, UK), Byonic™ v. 2.6.46 (Protein Metrics, USA) and Peaks Studio 8.0 (BSI, Waterloo, Ontario, Canada) software, both for peptide assignment/protein identification and for post-translational modification analysis.In the first case, analyses were carried out against a customized database containing protein sequences downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) for superorder Afrotheria (consisting of 192,838 protein sequences, December 2021) plus the most common protein contaminants and trypsin. Parameters for database searching were fixed carbamidomethylation at Cys, and variable oxidation at Met, deamidation at Asn/Gln, and pyroglutamate formation at Gln. Mass tolerance was set to ± 10 ppm for precursors and to ± 0.05 Da for MS/MS fragments. Proteolytic enzyme and maximum number of missed cleavages were set to trypsin and 3, respectively. All other parameters were kept at default values. In the latter case, raw mass data were analyzed against a customized database containing LafrOBP1 (XP_023395442.1) protein sequence plus the most common protein contaminants and trypsin, allowing to search Lys-acetylation (Δm =  + 42.01), Ser/Thr/Tyr-phosphorylation (Δm =  + 79.97), and the most common mammals N-linked glycans at Asn and O-linked glycans at Ser/Thr/Tyr, using the same parameters previously set. The max PTM sites per peptide was set to 2.Proteome Discoverer peptide candidates were considered confidently identified only when the following criteria were satisfied: (i) protein and peptide false discovery rate (FDR) confidence: high; (ii) peptide Mascot score:  > 30; (iii) peptide spectrum matches (PSMs): unambiguous; (iv) peptide rank (rank of the peptide match): 1; (v) Delta CN (normalized score difference between the selected PSM and the highest-scoring PSM for that spectrum): 0. Byonic peptide candidates were considered confidently identified only when the following criteria were satisfied: (i) PEP 2D and PEP 1D:  More