More stories

  • in

    Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 
    PubMed 

    Google Scholar 
    – Potts, S. G., et al. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination, and food production (eds. Potts, S. G. et al.). 36 pages. (Bonn, Germany, 2016).Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 6, 181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Annoscia, D. et al. Neonicotinoid Clothianidin reduces honeybee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Macías-Macías, J. O. et al. Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Michener, C. D. Pot-honey. In Pot-Honey: A Legacy of Stingless Bees (eds Vit, P. et al.) 3–17 (Springer, 2013).Chapter 

    Google Scholar 
    Rosa, C. A. et al. Yeast communities associated with stingless bees. FEMS Yeast Res. 4, 271–275 (2003).Article 
    PubMed 

    Google Scholar 
    Menezes, C., Vollet-Neto, A. & Fonseca, V. L. I. An advance in the in vitro rearing of stingless bee queens. Apidologie 44, 491–500 (2013).Article 

    Google Scholar 
    Morais, P. B., Calaça, P. S. S. T. & Rosa, C. A. Microorganisms associated with stingless bees. In Pot-Honey Bees (eds Vit, P. et al.) 173–186 (Springer, 2013).Chapter 

    Google Scholar 
    Menegatti, C. et al. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens. J. Chem. Ecol. 44, 1158–1169 (2018).Article 
    PubMed 

    Google Scholar 
    Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 8, 1122321 (2018).Article 

    Google Scholar 
    Paludo, C. R. et al. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS ONE 14, e0219696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamzah, S. A., Zawawi, N. & Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays. 49, 1853–1863 (2020).Article 

    Google Scholar 
    de Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2020).Article 
    PubMed 

    Google Scholar 
    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855 (2015).Article 
    PubMed 

    Google Scholar 
    – Flechtmann, C. H. W. & de Camargo, C. A. Acari associated with stingless bees (Meliponidae, Hymenoptera) from Brazil. in Proceedings of the 4th International Congress of Acarology, Saalfelden (Austria)/edited by Edward Piffl (Budapest, Akademiai Kiado,1979).Dorigo, A. S. et al. In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE 14, e0213109 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa-Fontana, A., Dorigo, A. S., Galaschi-Teixeira, J. S., Nocelli, R. C. F. & Malaspina, O. What is the most suitable native bee species from the neotropical region to be proposed as model-organism for toxicity tests during the larval phase?. Environ. Pollut. 265, 114849 (2020).Article 
    PubMed 

    Google Scholar 
    Miotelo, L., Dos Reis, A. L. M., Malaquias, J. B., Malaspina, O. & Roat, T. C. Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environ. Pollut. 268, 115770 (2021).Article 
    PubMed 

    Google Scholar 
    Rosa, A. E., André, H. & Flechtmann, C. H. W. Acari domun meliponirarum brasiliensium habitantes. Proctotydaeus alvearii 45(1–2), 79–83 (1985).
    Google Scholar 
    Da-Costa, T., dos Santos, C. F., Rodighero, L. F., Ferla, N. J. & Blochtein, B. Mite diversity is determined by the stingless bee host species. Apidologie 52(5), 950–959. https://doi.org/10.1007/s13592-021-00878-2 (2021).Article 

    Google Scholar 
    de Rosa, A. S. et al. Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee Scaptotrigona aff. depilis. Apidologie 47, 729–738 (2016).Article 

    Google Scholar 
    Wu, J. Y., Anelli, C. M. & Sheppard, W. S. Sub-lethal effects of pesticide residues in brood comb on worker honeybee (Apis mellifera) development and longevity. PLoS One 6, e14720 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Carvalho, S. M., Silva-Zacarin, E. C. M. & Malaspina, O. In vitro effects of thiamethoxam on larvae of Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135, 370–378 (2015).Article 
    PubMed 

    Google Scholar 
    Biani, N. B., Mueller, U. G. & Wcislo, W. T. Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests. Am. Nat. 173, 841–847 (2009).Article 
    PubMed 

    Google Scholar 
    Gilliam, M., Roubik, D. W. & Lorenz, B. J. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee Melipona fasciata. Apidologie 21, 89–97 (1990).Article 

    Google Scholar 
    Rebelo, K. S., Ferreira, A. G. & Carvalho-Zilse, G. A. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46, 927–932 (2016).Article 

    Google Scholar 
    Mohammad, S. M., Mahmud-Ab-Rashid, N.-K. & Zawawi, N. Stingless bee-collected pollen (bee bread): Chemical and microbiology properties and health benefits. Molecules 26, 957 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    da Cruz Landim, C. (2009). Abelhas. Unesp.Rosa, A. S. et al. Quantification of larval food and its pollen content in the diet of stingless bees: Subsidies for toxicity bioassays studies. Braz. J. Biol. 75(3), 771–772. https://doi.org/10.1590/1519-6984.22314 (2015).Article 
    PubMed 

    Google Scholar 
    Vollet-Neto, A., Maia-Silva, C., Menezes, C. & Imperatriz-Fonseca, V. L. Newly emerged workers of the stingless bee Scaptotrigona aff. depilis prefer stored pollen to fresh pollen. Apidologie 48, 204–210 (2017).Article 

    Google Scholar 
    Hartfelder, K. & Engels, W. The composition of larval food in stingless bees: evaluating nutritional balance by chemosystematic methods. Insect. Soc. 36, 1–14 (1989).Article 

    Google Scholar 
    Costa, R. A. C. & da Cruz-Landim, C. Distribution of acid phosphatases in the hypopharyngeal glands from workers, queens, and males of a Brazilian stingless bee Scaptotrigona postica Latreille: An ultrastructural cytochemical study. Histochem. J. 33, 653–662 (2001).Article 
    PubMed 

    Google Scholar 
    de Moraes, R. L. M. S., Brochetto-Braga, M. R. & Azevedo, A. Electrophoretical studies of proteins of the hypopharyngeal glands and of the larval food of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Meliponinae). Insect. Soc. 43, 183–188 (1996).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G., Muccillo, G. & Zucoloto, F. S. Determination of minimum quantity of pollen and nutritive value of different carbohydrates for Scaptotrigona depilis Moure (Hymenoptera, Apidae). Apidologie 24, 73–79 (1993).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G. & Serrão, J. E. Nutritive value and apparent digestibility of bee-collected and bee-stored pollen in the stingless bee, Scaptotrigona postica Latr. (Hymenoptera, Apidae, Meliponini). Apidologie 31, 39–45 (2000).Article 

    Google Scholar 
    Crailsheim, K. & Stolberg, E. Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol. 35, 595–602 (1989).Article 

    Google Scholar 
    Oliveira, R. A., Roat, T. C., Carvalho, S. M. & Malaspina, O. Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ. Toxicol. 29, 1122–1133 (2014).Article 
    PubMed 

    Google Scholar 
    Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honeybees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).Article 
    PubMed 

    Google Scholar 
    Moreira, D. R. et al. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata Lepeletier, 1836 (Hymenoptera: Apidae). Environ. Toxicol. 33, 463–475 (2018).Article 
    PubMed 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Silva-Zacarin, E. C. M., Nocelli, R. C. F. & Malaspina, O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honeybee. Ecotoxicol. Environ. Saf. 169, 523–528 (2019).Article 
    PubMed 

    Google Scholar 
    Roat, T. C. et al. Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere 258, 127362 (2020).Article 
    PubMed 

    Google Scholar 
    Caesar, L. et al. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J. Gen. Virol. 100, 1153–1164 (2019).Article 
    PubMed 

    Google Scholar 
    Guimarães-Cestaro, L. et al. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci. Nat. 107, 1–14 (2020).Article 

    Google Scholar 
    Teixeira, É. W. et al. European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J. Invertebr. Pathol. 172, 107357 (2020).Article 
    PubMed 

    Google Scholar 
    Alberoni, D., Gaggìa, F., Baffoni, L. & Di Gioia, D. Beneficial microorganisms for honeybees: problems and progresses. Appl. Microbiol. Biotechnol. 100, 9469–9482 (2016).Article 
    PubMed 

    Google Scholar 
    Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: ecological, evolutionary, and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manley, R. et al. Knock- on community impacts of a novel vector: spillover of emerging DWV- B from Varroa- infested honeybees to wild bumblebees. Ecol. Lett. 22, 1306–1315 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasit. Wildl. 5, 64–75 (2016).Article 

    Google Scholar 
    Requier, F. et al. The conservation of native honeybees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).Article 
    PubMed 

    Google Scholar 
    Test No. 237: Honey Bee (Apis Mellifera) Larval Toxicity Test, Single Exposure. (2013). OECD. https://doi.org/10.1787/9789264203723-enMoral, R. A., Hinde, J. & Demétrio, C. G. Half-normal plots and overdispersed models in R: the hnp package. J. Stat. Softw. 81(1), 1–23 (2017).
    Google Scholar 
    – Kassambara, A. Survminer. GitHub repository. https://github.com/kassambara/survminer (2020).- Therneau, T., Crowson, C., & Atkinson, E. Multi-state models and competing risks. CRAN-R https://cran.r-project.org/web/packages/survival/vignettes/compete (2020). More

  • in

    Assessment of suitable habitat of mangrove species for prioritizing restoration in coastal ecosystem of Sundarban Biosphere Reserve, India

    Banerjee, A. K. et al. Setting the priorities straight-Species distribution models assist to prioritize conservation targets for the mangroves. Sci. Total Environ. 806, 150937 (2022).Article 
    CAS 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science 317(5834), 41–42 (2007).Article 
    CAS 

    Google Scholar 
    Friess, D. A. Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests 7(9), 183 (2016).Article 

    Google Scholar 
    Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321 (2020).Article 
    CAS 

    Google Scholar 
    Blankespoor, B., Dasgupta, S. & Lange, G. M. Mangroves as a protection from storm surges in a changing climate. Ambio 46(4), 478–491 (2017).Article 

    Google Scholar 
    FAO. TheWorld’s Mangroves 1980–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1427e/a1427e00.htm. (2007).Abd-El Monsef, H., Hassan, M. A. & Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 141, 310–326 (2017).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).Article 
    CAS 

    Google Scholar 
    Aheto, D. W. et al. Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean Coast. Manag. 127, 43–54 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Stephanie, S. R. et al. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).Article 
    CAS 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Feller, I. C. et al. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2, 395–417 (2010).Article 
    CAS 

    Google Scholar 
    Polidoro, B. A. et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).Article 

    Google Scholar 
    IUCN. Global Assessments of Mangrove Losses and Degradation, 2016; https://www.iucn.org/sites/dev/files/content/documents/mangroveloss-brief-4pp-19.10.low_.pdf.Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., Radhakrishnan, C. K. & Suresh, V. R. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—a case study at Sundarban delta, east coast of India. Reg. Stud. Mar. Sci. 35, 101111 (2020).
    Google Scholar 
    Sahana, M. et al. Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environ. Earth Sci. 78(10), 1–22 (2019).Article 

    Google Scholar 
    FSI. India State of Forest Report. Forest Survey of India, Dehradun (2017).Ellison, A. M., Mukherjee, B. B. & Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 88(5), 813–824 (2000).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Sajjad, H. & Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. CATENA 189, 104450 (2020).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Rem. Sens. Appl. Soc. Env. 13, 106–120 (2019).
    Google Scholar 
    Chowdhury, M. Q. et al. Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA J. 29(3), 265–276 (2008).Article 

    Google Scholar 
    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Sci. Rep. 6(1), 1–12 (2016).Article 

    Google Scholar 
    Iftekhar, M. S. & Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetlands Ecol. Manage. 16(4), 291–312 (2008).Article 

    Google Scholar 
    Siddiqi, N. A. In Mangrove forestry in Bangladesh, Institute of Forestry and Environmental Sciences. University of Chittagong, Chittagong, Bangladesh 201 (2001).Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24(4), 403–418 (2005).Article 

    Google Scholar 
    Peterson, T. A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158. https://doi.org/10.1080/136588199241391 (1999).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Feng, Z. et al. Dynamics ofmangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, 125271. https://doi.org/10.1016/j.jhydrol.2020.125271 (2020).Article 

    Google Scholar 
    Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).Article 

    Google Scholar 
    Pecchi, M. et al. Species distribution modelling to support forest management A literature review. Ecol. Model. 411, 108817 (2019).Article 

    Google Scholar 
    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation-based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27, 2931–2949 (2018).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).Article 

    Google Scholar 
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    Gilani, H., Goheer, M. A., Ahmad, H. & Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 111, 106049 (2020).Article 

    Google Scholar 
    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327. https://doi.org/10.3389/fmars.2020.00327 (2020).Article 

    Google Scholar 
    Ellison, A. M. Mangrove restoration: Do we know enough?. Restor. Ecol. 8(3), 219–229 (2000).Article 

    Google Scholar 
    Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. In From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales ( > 5000 ha). SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 7.2 (2014).Rodríguez-Rodríguez, J. A., Mancera-Pineda, J. E. & Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manage. 496, 119414 (2021).Article 

    Google Scholar 
    Romañach, S. S. et al. Conservation and restoration
    of mangroves: Global status, perspectives, and prognosis. Ocean Coast Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Sulochanan, B. et al. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin 176, 113450. https://doi.org/10.1016/j.marpolbul.2022.113450 (2022).Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20(10), e3001836 (2022).Article 
    CAS 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nature Ecol. Evol. 3(8), 1135–1135 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12(1), 1–13 (2021).Article 

    Google Scholar 
    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecol. Evol. 3(6), 870–872 (2019).Article 

    Google Scholar 
    Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S. & Roy, S. Future Mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 234, 597–614 (2019).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145 (2020).Article 

    Google Scholar 
    Hu, W. et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manage. 478, 118517 (2020).Article 

    Google Scholar 
    Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J. & Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15(8), e0237701 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914 (2021).Article 
    CAS 

    Google Scholar 
    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68(3), 338–354 (2006).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Paul, A. K. & Sajjad, H. Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geol. Ecol. Landsc. 5(1), 40–52 (2021).Article 

    Google Scholar 
    Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35(3), 519–528 (2008).Article 

    Google Scholar 
    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73(1–2), 91–100 (2007).Article 

    Google Scholar 
    Islam, S. N. & Gnauck, A. Effects of salinity intrusion in mangrove wetlands ecosystems in the Sundarbans: An alternative approach for sustainable management. Wetlands Monitor. Modell. Manag. 2007, 315 (2007).
    Google Scholar 
    Hazra, S., Ghosh, T., DasGupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68(9/12), 309–321 (2002).
    Google Scholar 
    Purkait, B. Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarban delta, India. Front. Earth Sci. China 3(1), 21–33 (2009).Article 

    Google Scholar 
    World Bank (2014). Building resilience for sustainable development of the Sundarbans: Strategy report (No. 20116; World Bank Other Operational Studies). The World Bank Group. https://ideas.repec.org/p/wbk/wboper/20116.html.Das, M. A. H. U. A. Impact of commercial coastal fishing on the environment of Sundarbans for sustainable development. Asian Fish. Sci. 22(1), 157–167 (2009).
    Google Scholar 
    Hoq, M. E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 50(5–6), 411–427 (2007).Article 

    Google Scholar 
    Census of India (2011). Primary census abstract, census of India. The government of India, Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India. https://censusindia.gov.in/nada/index.php/catalog/41021Chowdhury, A. & Maiti, S. K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 22(7), 1519–1541 (2016).Article 
    CAS 

    Google Scholar 
    Hajra, R. et al. Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustain. Sci. 12(3), 453–464 (2017).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Assessing Influence of Erosion and Accretion on Landscape Diversity in Sundarban Biosphere Reserve, Lower Ganga Basin: A Geospatial Approach. In Quaternary Geomorphology in India, (eds Das, B. et al.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-90427-6_10 (2018).Chaudhuri, A. B., Choudhury, A., Hussain, Z., & Acharya, G. Mangroves of the Sundarbans. Vol. I. India, The IUCN Wetlands Programme 247 (IUCN, 1994).GBIF.org. GBIF Occurrence Download, 2018. https://www.gbif.org/. Avicennia marina: https://doi.org/10.15468/dl.vmlooq and R. mucronata: https://doi.org/10.15468/dl.ewnqnm (accessed March 2019).Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49(2), 131–146 (2008).
    Google Scholar 
    Mandal, A. K., & Nandi, N. C. Fauna of Sundarban mangrove ecosystem, west Bengal, India, Vol. 3 (Zoological Survey of India, 1989).Mitra, A. & Pal, S. The Oscillating Mangrove Ecosystem and the Indian Sundarbans (WWF-India-WBSO, 2002).Naskar, K., & Guha Bakshi, D. N. Mangrove Swamps of the Sundarbans (Naya Prokash, 1987).Barik, J. & Chowdhury, S. True mangrove species of Sundarbans delta, West Bengal, eastern India. Check list 10(2), 329–334. https://doi.org/10.15560/10.2.329 (2014).IUCN 2018. The IUCN Red List of Threatened Species. Version 2018. 2018. Electronic database accessible, accessed 15 Nov 2018; http://www.iucnredlist.org.Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).MATH 

    Google Scholar 
    Cavanaugh, K. C. et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. 116(43), 21602–21608 (2019).Article 
    CAS 

    Google Scholar 
    Naskar, K. & Mandal, R. Ecology and Biodiversity of Indian Mangroves, Vol. 1 (Daya Books, 1999).Figueiredo, F. O. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45(1), 190–200 (2018).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20(1), 1–9 (2014).Article 

    Google Scholar 
    Asbridge, E., Lucas, R., Ticehurst, C. & Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 6(11), 3523–3539 (2016).Article 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    STR Annual Report. In Conservator of Forest & Field Director, Sundarban Tiger Reserve. Canning, West Bengal, India: Directorate of Forests, Government of West Bengal (2013–2014).Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. biogeogr. 31(10), 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3), 853–867. https://doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 (2003).Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. distribut. 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12(1), 40–45 (2019).Article 
    CAS 

    Google Scholar 
    Hoguane, A. M., Hill, A. E., Simpson, J. H. & Bowers, D. G. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar. Coast. Shelf S. 49(2), 251–264. https://doi.org/10.1006/ecss.1999.0499 (1999).  Article 
    CAS 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 (2016).Srivastava, J., Farooqui, A. & Seth, P. Pollen-vegetation relationship in surface sediments, Coringa mangrove ecosystem, India: palaeoecological applications. Palynology 43(3), 451–466. https://doi.org/10.1080/01916122.2018.1458755 (2019).Nandy, P., Das, S., Ghose, M. & Spooner-Hart, R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15(4), 347–357 (2007).Article 
    CAS 

    Google Scholar 
    Washington, W., Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40 (2001).
    Google Scholar 
    Blasco, F., Aizpuru, M. & Gers, C. Depletion of the mangroves of Continental Asia. Wetlands Ecol. Manage. 9(3), 255–266 (2001).Article 

    Google Scholar 
    Datta, D. & Deb, S. Forest structure and soil properties of mangrove ecosystems under management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean Coast. Manag. 140, 22–33 (2017).Article 

    Google Scholar 
    Wahid, S. M., Babel, M. S. & Bhuiyan, A. R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 332(3–4), 381–395 (2007).Article 

    Google Scholar 
    Iftekhar, M. S. & Islam, M. R. Degeneration of Bangladesh’s Sundarbans mangroves: A management issue. Int. For. Rev. 6(2), 123–135 (2004).
    Google Scholar 
    Saenger, P. Mangrove Ecology, Silviculture, and Conservation (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    Feka, Z. N. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean Coast. Manag. 116, 341–352. https://doi.org/10.1016/j.ocecoaman.2015.08.006 (2015).Article 

    Google Scholar 
    Giri, S. et al. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast Conserv. 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3 (2014).Article 

    Google Scholar 
    Moschetto, F. A., Ribeiro, R. B. & De Freitasa, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 24, 105418. https://doi.org/10.1016/j.ocecoaman.2020.105418 (2020).Article 

    Google Scholar 
    Tuholskea, C., Tane, Z., López-Carra, D., Roberts, D. & Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 88, 84–93. https://doi.org/10.1016/j.apgeog.2017.08.018 (2017).Article 

    Google Scholar 
    Kantharajan, G. et al. Vegetative structure and species composition of mangroves along the Mumbai coast, Maharashtra, India. Reg. Stud. Mar. Sci. 19, 1–8 (2018).
    Google Scholar 
    Marcinko, C. L. et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 13(4), 528 (2021).Article 

    Google Scholar 
    Sahana, M. et al. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remot. Sens. Appl. Soc. Environ. 26, 100754. https://doi.org/10.1016/j.rsase.2022.100754 (2022).Saha, S., & Choudhury, A. Vegetation Analysis of Restored And Natural Mangrove Forest In Sagar Island, Sundarbans, East Coast of India. Indian J. Mar. Sci. 24, 133–136. http://nopr.niscpr.res.in/bitstream/123456789/37297/1/IJMS%2024%283%29%20133-136.pdf (1995).Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pantropical categorization. Earth Surf. Process. Landf. 41, 231–239. https://doi.org/10.1002/esp.3841 (2016).Article 

    Google Scholar 
    Alongi, D. M. Mangrove forests of timor-leste: Ecology, degradation and vulnerability to climate change. In Mangrove ecosystems of Asia 199–212 (Springer, 2014).Biswas, S. R., Mallik, A. U., Choudhury, J. K. & Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetlands Ecol. Manage. 17(4), 365–383 (2009).Article 

    Google Scholar 
    Dubey, S. K., Censkowsky, U., Roy, M., Chand, B. K., & Dey, A. Framework for rapid evaluation of a mangrove restoration site: A case study from Indian Sundarban. In Sabkha Ecosystems 363–378 (Springer, 2019).Islam, M. M. & Shamsuddoha, M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ. Sci. Pol. 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014 (2018).Article 

    Google Scholar 
    Bosire, J., Celliers, L., Groeneveld, J., Paula, J. & Schleyer, M.H. Regional State of the Coast Report-Western Indian Ocean. UNEP-Nairobi Convention and WIOMSA 546 (2015).Owuor, M. A., Mulwa, R., Otieno, R., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. https://doi.org/10.1016/j.ecoser.2019.101040 (2019).Article 

    Google Scholar 
    Barwell, L. et al. (2018). Regional
    State of the Coast Report Western Indian Ocean. The United Nations Environment
    Programme/Nairobi Convention Secretariat. https://wedocs.unep.org/handle/20.500.11822/9700?show=fullde Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int. J. disaster risk reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).Bardhan, M. An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. In Modern Cartography Series, vol. 10 387–405 (Academic Press, 2021).Kumar, M. C., Bholanath, M. & Debashis, S. Study on utility and revival through community approach in sundarbans mangrove. Int. J. Soc. Sci. https://doi.org/10.5958/2321-5771.2014.00101.X (2014).Article 

    Google Scholar 
    Chakraborty, S. K., Giri, S., Chakravarty, G. & Bhattacharya, N. Impact of eco-restoration on the biodiversity of Sundarbans Mangrove Ecosystem, India. Water Air Soil Pollut. Focus 9(3), 303–320 (2009).Article 

    Google Scholar 
    Paulson Institute. Research report on mangrove protection and restoration strategy in China, 2020; https://paulsoninstitute.org.cn/wpcontent/uploads/2020/06/%E4%B8%AD%E5%9B%BD%E7%BA%A2%E6%A0%91%E6%9E%97%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%81%A2%E5%A4%8D%E6%88%98%E7%95%A5%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A%E2%80%94%E6%91%98%E8%A6%81%E7%89%88.pdf.Fan, H. Q. & Wang, W. Q. Some thematic issues for mangrove conservation in China. J. Xiamen Univ. Nat. Sci 56, 323–330. https://doi.org/10.6043/j.issn.0438-0479.201612003 (2017).Article 

    Google Scholar 
    Wang, W., Fu, H., Lee, S. Y., Fan, H. & Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? Fromrapid destruction to rampant degradation. Forests 11, 55. https://doi.org/10.3390/f11010055 (2020).Article 

    Google Scholar 
    Roy, A. K. D. & Alam, K. Participatory forest management for the sustainable management of the sundarbans mangrove forest. Am. J. Env. Sci. 8(5), 549–555. https://doi.org/10.3844/ajessp.2012.549.555 (2012).Article 

    Google Scholar 
    Selvam, V. et al. In Toolkit for establishing coastal bioshield. M. S. Swaminathan Research Foundation, Centre for Research on Sustainable Agriculture and Rural Development (2005).Raju, J. S. S. N. Xylocarpus (Meliaceae): A less-known mangrove taxon of the Godavari estuary, India. Curr. Sci. 84(7), 879–881. https://www.currentscience.ac.in/Volumes/84/07/0879.pdf (2003).
    Google Scholar 
    Siddiqui, A. H. & Khair, A. Infestation status of heart rot disease of pasur (Xylocarpus mekongensis), tree in the sundarbans. Indian For. 138(2), 165–168 (2012).
    Google Scholar 
    Iqbal, M. & Hossain, M. Tourists’ willingness to pay for restoration of Sundarbans Mangrove forest ecosystems: A contingent valuation modeling study. Env. Dev. Sustain. 2022, 1–22 (2022).
    Google Scholar 
    Ekka, A. & Pandit, A. Willingness to pay for restoration of natural ecosystem: A study of Sundarban mangroves by contingent valuation approach. Indian J. Agric. Econ. 67, 902 (2012).
    Google Scholar 
    Datta, D., Chattopadhyay, R. N. & Guha, P. Community based mangrove management: A review on status and sustainability. J. Env. Manag. 107, 84–95. https://doi.org/10.1016/j.jenvman.2012.04.013 (2012).Article 

    Google Scholar 
    Ghosh, A., Schmidt, S., Fickert, T. & Nusser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 7(2), 149–169. https://doi.org/10.3390/d7020149 (2015).Article 
    CAS 

    Google Scholar 
    Ranjan, R. Optimal mangrove restoration through community engagement on coastal lands facing climatic risks: The case of Sundarbans region in India. Land Use Policy 81, 736–749 (2019).Article 

    Google Scholar 
    Dutta, M., Roy, S. & Nibirh, S. Joint forest management and forest protection committees: Negotiation systems and the design of incentives—a case study of West Bengal. Electron. J. https://doi.org/10.2139/ssrn.2245965 (2001).Article 

    Google Scholar 
    McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17(6), 1678–1693 (2007).Article 

    Google Scholar 
    Begam, M. et al. Native salt-tolerant grass species for habitat restoration, their acclimation and contribution to improving edaphic conditions: A study from a degraded mangrove in the Indian Sundarbans. Hydrobiologia 803(1), 373–387 (2017).Article 
    CAS 

    Google Scholar 
    Donnelly, M. & Walters, L. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries Coasts 37, 1562–1571 (2014).Article 

    Google Scholar 
    Ren, H. et al. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?. Ecol. Eng. 35(8), 1243–1248 (2009).Article 

    Google Scholar 
    Cheong, S.-M. et al. Coastal adaptation with ecological engineering. Nature Clim. Change 3, 787–791. https://doi.org/10.1038/nclimate1854 (2013).Article 

    Google Scholar  More

  • in

    An iterative and interdisciplinary categorisation process towards FAIRer digital resources for sensitive life-sciences data

    The categorisation system was developed through an iterative procedure including a careful evaluation at each stage. This was necessary because each of three rounds yielded substantial feedback from the expert taggers, identifying issues to be resolved and proposing improvements to the system. This process led to a much clearer understanding of the structure of sensitive data resources and a wider agreement on definitions to be applied in the tagging process. In addition, the allocation of exactly one tag per category improved during the development for many categories, indicating that the selection process was straightforward for most resources and categories. As a result, the categorisation system could be simplified and the structure improved, appropriately representing a trans-disciplinary effort. This may also be important from the user perspective. At the end of the day, the system should be so intuitive that the users searching for terms would have the same logic as the experts entered the tags.To be beneficial for the domain of LS, the categorisation system and the toolbox requires broad community approval38,39. In the project, we began the approval process with nominated experts from 6 LS RIs, embedded in a larger working group of the H2020-funded project EOSC-Life, covering 13 LS RIs. Though this can be seen as a useful starting point, the toolbox obviously needs community approval at a much larger scale. As the categorisation system is specifying a part of essential metadata for resources about sensitive data, it will be relevant to the FAIR Digital Objects (FDO) Forum for a « resources in the life sciences » FDO. The categorisation system can be used to derive FDO attributes and values for such FDOs. FDOs for the sensitive data itself, when levels of sensitivity and specific access protocols need to be specified is an interesting possible extension, and the categorisation system could support as a backbone information for access governance and technical choices. FDOs are to be “machine actionable”, so desirable mappings between different categorisation systems will be operationalisable. New European projects such as FAIRCORE4EOSC (https://faircore4eosc.eu/), FAIR-IMPACT (https://fair-impact.eu/) and other projects working on pragmatic semantic improvements for FAIR appliance will provide possibilities for registering metadata schemas and mappings that should reuse interdisciplinary approaches in the heterogeneous field of life sciences.The RDA has established and is maintaining a Metadata Standards Catalogue (MSC) (https://rdamsc.bath.ac.uk/mapping-index,5). An appropriate goal for the categorisation system would be to be included in this catalogue, after further refinement and alignment with other vocabularies addressing sensitive data in the life sciences. In any case, the work on the categorisation system can contribute to discussions on methodologies for aligning metadata schemas across scientific domains, while the categorisation system itself can be seen as an important contribution to the process of developing the most useful and appropriate cross-disciplinary terms and categories for describing sensitive data. We keep in mind that similar approaches have been applied via long and iterative processes in other scientific domains, such as understanding and predicting the evolution of climate (essential climate variables, https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables) and essential biodiversity variables for mapping and monitoring species populations40. There are biases and gaps in the existing system that need to be tackled in the future. The initial content of the toolbox demonstrator, consisting of 110 resources related to sensitive data, has been primarily selected by four RIs with a focus on clinical and biomedical research (BBMRI, EATRIS, ECRIN, Euro-Bioimaging). Other areas and sensitive data types, such as environmental, classified, and proprietary data are under-represented, as are some disciplines, such as zoology, ecology, plant and mycological sciences, and microbiology. This indicates a need for a broader coverage of resources linked to sensitive data in the future work. Another question that needs to be investigated is how interoperable the categorisation system is with other domains outside the LS that systematically deal with sensitive data, for example, the Social Science and Humanities41). In addition, systematic data on the usability/user-friendliness of the toolbox from a broad sample of potential users from the life sciences are needed. Initial and informal evaluation of these aspects by the experts involved so far has been very positive but is clearly limited in scale and needs to be supplemented by more evidence.There are major challenges to the sharing of sensitive data, including interoperability, accessibility, and governance. The primary objective of the toolbox is to improve discoverability of resources and digital objects linked to the sharing and re-use of sensitive data (F in FAIR)4. The systematic application of a standardised typology for resources about sensitive data, as defined by the categorisation system, helps to better structure, and organise the issues and results in metadata enrichment (F4, R1.3 of the FAIR principles in Supplementary, Table S1). The toolbox alone will not be enough for the ‘I’ of the FAIR principles, but it may become a useful backbone for building more interoperable classification systems for sensitive data resources.It is perhaps more common to base findability on a tagging system using keywords (plus title text). That is, for example, how PubMed works—it does not categorise resources, it adds MESH terms to them (https://pubmed.ncbi.nlm.nih.gov/). Another option would have been to try to derive keywords from text or title. In our case, a categorisation system with pre-defined dimensions and pre-listed tags was preferred by the expert group. Keywords, in isolation, suffer from several disadvantages:

    (a)

    A range of equivalent terms may be used to mean the same thing – making searching for that concept difficult, requiring multiple ‘Or’ statements.

    (b)

    They may have multiple meanings (polysemy) especially if “drawn from”, or “applied to”, a wide range of scientific disciplines.

    (c)

    The different aspects of the resource covered by keywords, i.e., the types or dimensions of keyword applied, may be inconsistent and / or incomplete.

    The categorisation system, on the other hand, guarantees that all 7 validated dimensions required are used in the tagging process and that the tags selected are standardised and defined. The toolbox categories also aid browsing of results by enabling sequential filtering using the categories and tags.In addition, there is a useful link between developing community approved categories for metadata, in this case for characterising resources dealing with sensitive data, and community understood (but implicit) ontologies used in the same area. Categories and ontologies can complement each other—without a common underlying ontology, metadata terms can be interpreted inconsistently, and without defining metadata categories, ontologies may remain implicit and inconsistent. We found, for example, that discussions on the best categorisation to use for scientific disciplines, or data types, exposed the implicit (and different) ontologies being used by different people and is based on the personal views of those in the group. Those would have been obviously rooted in and / or influenced by the language and working assumptions of their discipline(s), and their roles and experiences, (current and previous). That will be more and more the case with interdisciplinary research development and development in research careers. Developing categories in metadata can therefore play an important role in describing, understanding and, ultimately, harmonising the implicit ontologies scientists use in thinking about the area of sensitive data.In the development of the categorisation system, existing ontologies, classifications, and terminologies were taken into consideration (Table 2). However, many more have relationships to the categorisation system. An example is the Subject Resource Application Ontology (SRAO), an application ontology describing subject areas/academic disciplines used within FAIRsharing records by curators and the user community42. A first crosswalk has demonstrated considerable agreement between the toolbox category “research field” and subsections of SRAO42 and EDAM15. The toolbox has been registered as a resource (database) at FAIRsharing, a curated, informative, and educational resource on data and metadata standards, inter-related to databases and data policies (https://fairsharing.org/3577). It is planned to create a collection group of resources (standards, databases, policies) in FAIRsharing linked to the toolbox and the underlying categorisation system. This will also cover relationships to ontologies and classifications.There is a need to explore the applicability of the toolbox to specific domains. One example could be the European Joint Programme on Rare Diseases (EJP RD), where resources are made progressively FAIR at the record level to support innovative basic, translational and clinical research (https://www.ejprarediseases.org/coordinated-access-data-services/fairification-support/). The goal is to identify, refine and expose core standards for dataset interoperability, asset (data, sample, subject) discovery, and responsible data sharing, concentrating on data level rather than resource level information. Knowledge exchange between EJP RD and the toolbox could be of benefit in exploring the complementary of both approaches in adequately characterising resources linked to sensitive data and thus improving data discoverability.The first pilot study demonstrated major variation in tagging of resources if independent taggers are assessing the same resource (inter-observer variation). The example of BBMRI has shown that this variation can be considerably reduced if adequate training is performed; which in return is resource intense. Thus, to arrive at a valid and reliable tagging process, there is a necessity for adequate training and support to reduce inter-observer variation. Specific training sets and training programs as well as intercalibration tools need to be developed and implemented and approved by the community.Another option to be explored should be AI—or ML-algorithms to support automatic (or at least semi-automatic) tagging of resources. It is not easy to use AI/ML in this field due to the multilingualism and the misinterpretation of terms. Often there are different meanings between scientific disciplines and a common backbone for the application of AI/ML is difficult to achieve. It is necessary to come to a common understanding between people involved in the assessment of resources related to sensitive data in all life sciences. Nevertheless, the toolbox can become of major importance for research and application of AI/ML techniques in this field. It may serve as a resource for AI/ML to better find resources in the field by serving as a kind of gold standard to compare with. Another promising approach would be to consider a knowledge graph as an intelligent representation. For the categorisation system the approach could be used to interlink categories to a resource (e.g., “source related to sensitive data” has “geographical scope”) and to link individual tags between categories if possible (e.g., “clinical research data” result from “clinical research”). This would give a richer representation of the knowledge behind the categorisation system and the option to be integrated in existing approaches (e.g., OpenAIRE, https://www.openaire.eu/). Therefore, we will consider knowledge graphs as an intelligent knowledge representation of the categorisation system in the future.A major challenge will be the transition of the toolbox demonstrator to a mature toolbox and ultimately its maintenance, extension, and sustainability. Development of the toolbox demonstrator has been financed by EOSC-Life, but this project will end in 2023. Discussion on sustainability has been initiated with several life-science infrastructures (e.g., BBMRI, EATRIS, ECRIN and ELIXIR, another European Life-Science Infrastructure). Key aspects of sustainability that need to be considered are maintenance of the toolbox portal and tagging tool and of the toolbox content including expert time for tagging as well as human resources to maintain the system. Different approaches are under evaluation: an organization considering the resource core to its operations and taking full responsibility, or a joint ownership across multiple organisations (e.g., multiple RIs) or a community taking responsibility, either funded by future grants or through in-kind contributions from motivated research parties/individuals. Further costs to be covered will include system maintenance, input from a toolbox manager, tagging of resources by experts, as well as advertisement to the envisioned user groups, hardware costs and costs for debugging and major extension of functionality if needed. More

  • in

    Soil qualities and change rules of Eucalyptus grandis × Eucalyptus urophylla plantation with different slash disposals

    Jiao, N., Liu, J., Shi, T., Zhang, C. & Pan, D. Implement negative ocean carbon emissions and perform the carbon neutral strategy. Sci. Sinica 51, 632–643. https://doi.org/10.1360/SSTe-2020-0358 (2021).Article 

    Google Scholar 
    Arnold, R. J., Xie, Y. J., Luo, J. Z., Wang, H. & Midgley, S. J. A tale of two genera: Exotic Eucalyptus and Acacia species in China. 1. Domestication and research. Int. For. Rev. 22, 1–18. https://doi.org/10.1505/146554820828671571 (2020).Article 

    Google Scholar 
    Zhu, L., Wang, X., Chen, F., Li, C. & Wu, L. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity. Land Degrad. Dev. 30, 636–646. https://doi.org/10.1002/ldr.3249 (2019).Article 

    Google Scholar 
    Weixin, L. Eucalyptus robusta planting status and sustainable development countermeasrues based on ecological concept. For. Sci. Technol. Inform. 52, 23–25 (2020).
    Google Scholar 
    Masyagina, O. V. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations. Current Opinion in Environmental Science & Health 23, https://www.sciencedirect.com/science/article/abs/pii/S2468584421000556. Accessed 17 March 2021.xDajun, D. et al. Short-term effects of black carbon on soil extractable nutrient elements in a Pinus massoniana plantation subjected to slash burning. J. Soil Water Conserv. 33, 157–162 (2019).
    Google Scholar 
    Huanhuan, W. et al. Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability 12, 1–17. https://doi.org/10.3390/su12051922 (2020).Article 

    Google Scholar 
    McIntosh, P. D., Laffan, M. D. & Hewitt, A. E. The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. For. Ecol. Manage. 220, 185–215 (2005).Article 

    Google Scholar 
    Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).Article 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).Article 

    Google Scholar 
    Long, S., Yuan, L., Binqing, Z., Fei, L. & Tongxin, H. Effects of moderate fire disturbance on soil respiration components and soil microbial biomass in secondary forest of Maoer mountains China. J. Northeast For. Univ. 47, 90–98. https://doi.org/10.13759/j.cnki.dlxb.2019.07.016 (2019).Article 

    Google Scholar 
    Suping, Z., Falin, L., Meifang, Z., Guangjun, W. & Xiaowei, C. Effects of fire disturbance intensities on soil physiochemical properties of pour subtropical forest types. Acta Ecol. Sin. 40, 233–246. https://doi.org/10.5846/stxb201812052665 (2020).Article 

    Google Scholar 
    Nan, W., Yuetai, W., Guang, Y., Xueying, D. & Xiankui, Q. Effects of fire disturbanceon soil microbial community of larix gmelinii forset. J. Northeast For. Univ. 48, 21–28 (2020).
    Google Scholar 
    Bushra, M. & Tom, L. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia. Sci. Total Environ. 706, 36–45. https://doi.org/10.1016/j.scitotenv.2019 (2019).Article 

    Google Scholar 
    Mengya, Z., Xinjie, W., Le, L., Peng, Z. & Yao, F. Effect of burning disposal method on undergrouwth vegetation diversity and soil properties of Cunningham ialanceolata. J. Northeast For. Univ. 45, 63–67+76. https://doi.org/10.13759/j.cnki.dlxb.2017.03.013 (2017).Article 

    Google Scholar 
    Hernández, J., Pino, A. D., Hitta, M. & Lorenzo, M. Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutr. Cycl. Agroecosyst. 105, 1385–1314. https://doi.org/10.1007/s10705-016-9781-2 (2016).Article 

    Google Scholar 
    Jiang, L., Kou, L. & Li, S. Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biol. Biochem. 127, 213–222. https://doi.org/10.1016/j.soilbio.2018.09.037 (2018).Article 

    Google Scholar 
    Ma, X. Temperature and Humidity Effects on Dendrolimus Superans Butler Grow and Develop (Northeast Forestry University, USA, 2017).
    Google Scholar 
    Weng, Y. Decomposition and Nutrient Release Characteristics of Harvest Residues in Eucalyptus Plantation (Central South University of Forestry and Technology, USA, 2019).
    Google Scholar 
    Huanyu, Y. et al. Effects of residue composting treatemt on soil quality of Larix principies-rupprechtii plantation. J. Cent. South Univ. For. Technol. 36, 22–27. https://doi.org/10.14067/j.cnki.1673-923x.2016.11.004 (2016).Article 

    Google Scholar 
    Qiyue, S. et al. Optimizing the process of logging residue of Larix principis-ruppechtii based on orthogonal experiment. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 633–639 (2019).
    Google Scholar 
    Mengdi, C., Qibo, C., Jianqiang, L., Jiaxuan, L. & Ruizhang, W. Evaluation of the effects of litter input managements on the soil quality in Pinus yunnanensis forest. J. Yunnan Agric. Univ. (Nat. Sci.) 35, 149–155. https://doi.org/10.12101/j.issn.1004-390X(n).20180535 (2020).Article 

    Google Scholar 
    Kennard, D. K. & Gholz, H. L. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant Soil 234, 119–129 (2001).Article 

    Google Scholar 
    Yangyang, Y. et al. Effects of ground clearance on the growth of Eucalyptus plantation. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 41–47 (2019).
    Google Scholar 
    Changzhun, L. et al. Effects of litter treatment on soil organic carbon, total nitrogen and total phosphorus in different forset types. Sci. Soil Water Conserv. 18, 100–109 (2020).
    Google Scholar 
    Gude, A., Kandeler, E. & Gleixner, G. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol. Biochem. 47, 209–219. https://doi.org/10.1016/j.soilbio.2012.01.003 (2012).Article 

    Google Scholar 
    Kang, T., Biao, H., Zhe, X. & Wenyou, H. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai China. Ecol. Indic. 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037 (2017).Article 

    Google Scholar 
    Vidal-Legaz, B., Souza, D. M. D., Teixeira, R. F., Anton, A. & Sala, S. Soil quality, properties, and functions in life cycle assessment: An evaluation of models. J. Clean. Prod. 140, 502–515. https://doi.org/10.1016/j.jclepro.2016.05.077 (2017).Article 

    Google Scholar 
    Emmet-Booth, J. P. et al. Grass VESS: A modification of the visual evaluation of soil structure method for grasslands. Soil Use Manag. 34, 37–47. https://doi.org/10.1111/sum.12396 (2018).Article 

    Google Scholar 
    Thoumazeau, A. et al. A new framework to assess the impact of land management on soil quality. Part A: Concept and validation of the set of indicators. Ecol. Indic. 97, 100–110. https://doi.org/10.1016/j.ecolind.2018.09.023 (2019).Article 

    Google Scholar 
    Santos-Francés, F., Martínez-Graña, A., Ávila-Zarza, C., Criado, M. & Sánchez, Y. Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma 354, 113872–113872. https://doi.org/10.1016/j.geoderma.2019.07.030 (2019).Article 

    Google Scholar 
    Jihong, P., Xiaojing, L. & Qinghua, H. A new quality evaluation system of soil and water conservation for sustainable agricultural development. Agric. Water Manag. 240, 106235. https://doi.org/10.1016/j.agwat.2020.106235 (2020).Article 

    Google Scholar 
    Kang, G. S., Beri, V., Sidhu, B. S. & Rupela, O. P. A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol. Fertil. Soils 41, 389–398. https://doi.org/10.1007/s00374-005-0857-4 (2005).Article 

    Google Scholar 
    Gordillo-Rivero, Á. J., García-Moreno, J., Jordán, A., Zavala, L. M. & Granja-Martins, F. M. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrol. Process. 28, 5832–5843. https://doi.org/10.1002/hyp.10072 (2014).Article 

    Google Scholar 
    Moody, J. A., Kinner, D. A. & Úbeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 379, 291–303. https://doi.org/10.1016/j.jhydrol.2009.10.015 (2009).Article 

    Google Scholar 
    Xiaoguang, W. et al. Litter water-holding capacity and soil physical properties of main afforestation tree species in sandstone area. J. Soil Water Conserv. 34, 137–144. https://doi.org/10.13870/j.cnki.stbcxb.2020.04.021 (2020).Article 

    Google Scholar 
    Guoshuang, G. Study on the determination of soil bulk density. Journal of Irrigation and Dranage Engineering. 4, 38–40 (1983).
    Google Scholar 
    Zhu, L., Wang, J., Weng, Y., Chen, X. & Wu, L. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Ind. 117, 106530. https://doi.org/10.1016/j.ecolind.2020.106530 (2020).Article 

    Google Scholar 
    Xiao, K. Carbon and Nitrogen Mineralization and Alkalinity Release Following Application of Plant Materials to Acid Soils Differing in Initial pH (Zhejiang University, 2014).
    Google Scholar 
    Tu, J., Qiao, J., Zhu, Z., Li, P. & Wu, L. Soil bacterial community responses to long-term fertilizer treatments in Paulownia plantations in subtropical China. Appl. Soil. Ecol. 124, 317–326. https://doi.org/10.1016/j.apsoil.2017.09.036 (2018).Article 

    Google Scholar 
    Chuihua, K. Research on plant allelopathy in China for the recent 16 years. Chin. J. Appl. Ecol. 31, 2139–2140 (2020).
    Google Scholar 
    Ying, X., Yaru, L., Haiyan, Z. & Qizhi, L. Effect of polyphenols on camellia oil fatty acid and triglyceride under heating conditions. J. Cent. South Univ. For. Technol. 40, 127–134 (2020).
    Google Scholar 
    Xu, Y. et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For. Ecol. Manage. 456, 148–153. https://doi.org/10.1016/j.foreco.2019.117683 (2020).Article 

    Google Scholar 
    Sollins, P. & Gregg, J. W. Soil organic matter accumulation in relation to changing soil volume, mass, and structure: Concepts and calculations. Geoderma 301, 60–71. https://doi.org/10.1016/j.geoderma.2017.04.013 (2017).Article 

    Google Scholar 
    Bobo, W. et al. Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecol. Sin. 34, 1645–1653. https://doi.org/10.5846/stxb201310162495 (2014).Article 

    Google Scholar 
    Ruiyong, J. et al. Correlation bwtween soil enzyme activity and physicochemical characteristics in agricultural black soils in Northeast China. Res. Soil Water Conserv. 22, 132–137+142 (2015).
    Google Scholar 
    Bing, L. et al. Activity and influencing factors of soils CAT in different utilization types oflLand in Shenbei area. J. Shenyang Univ. (Nat. Sci.) 31, 465–473. https://doi.org/10.14108/j.cnki.1008-8873.2019.04.008 (2019).Article 

    Google Scholar 
    Song, Y. et al. Short-term response of the soil microbial abundances and enzyme activities to experimental warming in a boreal peatland in Northeast China. Sustainability 11, 1–16. https://doi.org/10.3390/su11030590 (2019).Article 

    Google Scholar 
    Giacomo, C. Fire as a soil-forming factor. Ambio 43, 191–195 (2014).Article 

    Google Scholar 
    Liu, J., Wu, L., Chen, D., Li, M. & Wei, C. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil. Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).Article 

    Google Scholar 
    Zhili, Z., Liwei, Z., Qian, C., Xuehua, X. & Yuling, L. Water-holding capacity of three typical forest litter and soil in Mulan-weichang. J. Soil Water Conserv. 29, 207–213. https://doi.org/10.13870/j.cnki.stbcxb.2015.01.040 (2015).Article 

    Google Scholar 
    Zhao, J. Study on the Effect of Refining Treatment on Soil Properties and Growth of Eucalyptus Urophylla Plantation (Central South University of Forestry and Technology, 2019).
    Google Scholar 
    Moro, M. A. J. & Domingo, F. Litter decomposition in four woody species in a mediterranean climate: Weight loss, N and P dynamics. Ann. Bot. 86, 1065–1071. https://doi.org/10.1006/anbo.2000.1269 (2000).Article 

    Google Scholar 
    Sharma, B. D., Arora, H., Kumar, R. & Nayyar, V. K. Relationships between soil characteristics and total and DTPA-extractable micronutrients in inceptisols of Punjab. Commun. Soil Sci. Plant Anal. 35, 799–818. https://doi.org/10.1081/CSS-120030359 (2004).Article 

    Google Scholar 
    Yonghong, L. et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province. J. Plant Nutr. Fertil. 22, 1710–1718 (2016).
    Google Scholar 
    Lipeng, W. et al. Seasonal variations of growth and photosynthetic characteristice of Eucalyptus plantation. Guangdong For. Sci. Technol. 27, 63–66. https://doi.org/10.3969/j.issn.1006-4427.2011.05.012 (2011).Article 

    Google Scholar 
    Xinmin, D., Zhonghong, W., Yongqin, Z. & Xuexia, P. Study on changes of soil salt and nutrient in greenhouse of different planting years. J. Soil Water Conserv. 21, 78–80 (2007).
    Google Scholar 
    Linying, M., Yuelan, L., Guojun, W. & Yun, L. Studies of relations between soil organic matter content and soil bulk density in different soil level in Donglan county. Hubei Agric. Sci. 53, 59–62. https://doi.org/10.3969/j.issn.0439-8114.2014.01.016 (2014).Article 

    Google Scholar 
    Mohammed, K., Lamb, D. T., Ray, C., Mallavarapu, M. & Ravi, N. Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicol. Environ. Saf. 122, 252–259. https://doi.org/10.1016/j.ecoenv.2015.08.004 (2015).Article 

    Google Scholar 
    Tsiknia, M., Tzanakakis, V. A., Oikonomidis, D., Paranychianakis, N. V. & Nikolaidis, N. P. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Biotechnol. 98, 2739–2749. https://doi.org/10.1007/s13762-013-0285-1 (2014).Article 

    Google Scholar 
    Ouyang, W., Wei, X. & Hao, F. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China. Sci. Total Environ. 450–451, 129–139. https://doi.org/10.1016/j.scitotenv.2013.02.016 (2013).Article 

    Google Scholar 
    Daniels, M. B. et al. Soil phosphorus variability in pastures: implications for sampling and environmental management strategies. J. Environ. Qual. 30, 2157–2165. https://doi.org/10.1006/jema.2001.0501 (2001).Article 

    Google Scholar 
    Yanu, P. & Jakmunee, J. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil. Talanta 144, 263–267. https://doi.org/10.1016/j.talanta.2015.06.002 (2015).Article 

    Google Scholar 
    Ryan, B. C., Maguire, R. O. & Havlin, J. L. Change in soluble phosphorus in soils following fertilization is dependent on initial Mehlich-3 phosphorus. J. Environ. Qual. 35, 1818–1824. https://doi.org/10.2134/jeq2005.0404 (2006).Article 

    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil enzyme and its reserach methods. Agric. Beijing. 1, 274–297 (1986).

    Google Scholar 
    Bailey, M. J. A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 29, 494–496. https://doi.org/10.1007/BF00269074 (1988).Article 

    Google Scholar 
    Murali, G., Alka, G., Arunachalam, V. & Magu, P. S. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Biores. Technol. 98, 3154–3158. https://doi.org/10.1016/j.biortech.2006.10.010 (2007).Article 

    Google Scholar 
    Mahajan, G. et al. Soil quality assessment of coastal salt-affected acid soils of India. Environ. Sci. Pollut. Res. 27, 26221–26238. https://doi.org/10.1007/s11356-020-09010-w (2020).Article 

    Google Scholar 
    Guishun, X. Ji Chu Tu Rang Xue (China Agriculture Press Co., 2001).
    Google Scholar 
    Qiao, J., Zhu, Y., Jia, X., Huang, L. & Shao, M. A. Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China. Hydrol. Process. 32, 2915–2921. https://doi.org/10.1002/hyp.13216 (2018).Article 

    Google Scholar 
    Liu, Y. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41. https://doi.org/10.1016/j.soilbio.2017.12.003 (2018).Article 

    Google Scholar  More

  • in

    A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages

    United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).Article 

    Google Scholar 
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).Article 

    Google Scholar 
    Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).Article 

    Google Scholar 
    Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).
    Google Scholar 
    Gómez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).Article 

    Google Scholar 
    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article 

    Google Scholar 
    Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).Article 

    Google Scholar 
    Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Article 

    Google Scholar 
    Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).Article 

    Google Scholar 
    Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).Article 

    Google Scholar 
    Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).Article 

    Google Scholar 
    Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).Article 

    Google Scholar 
    Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).Article 

    Google Scholar 
    Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).Article 

    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).Article 

    Google Scholar 
    Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).Article 

    Google Scholar 
    Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).Article 

    Google Scholar 
    Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).Article 

    Google Scholar 
    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
    Google Scholar 
    Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).Article 

    Google Scholar 
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).Article 

    Google Scholar 
    Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).Article 

    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).Article 

    Google Scholar 
    Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).Article 

    Google Scholar 
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).Article 

    Google Scholar 
    Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).Article 

    Google Scholar 
    Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).Article 

    Google Scholar 
    Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).Article 

    Google Scholar 
    Andersson, E., Barthel, S. & Ahrné, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).Article 

    Google Scholar 
    Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).
    Google Scholar 
    Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).Article 

    Google Scholar 
    Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).Article 

    Google Scholar 
    Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).Article 

    Google Scholar 
    Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).Article 

    Google Scholar 
    Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).Article 

    Google Scholar 
    Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).Article 

    Google Scholar 
    Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).Article 

    Google Scholar 
    Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).Article 

    Google Scholar 
    Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).Article 

    Google Scholar 
    Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).Article 

    Google Scholar 
    Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).Article 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).Article 

    Google Scholar 
    Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).Article 

    Google Scholar  More

  • in

    Human attachment site preferences of ticks parasitizing in New York

    The attachment site of ticks has been studied in the context of both animal and human tick preference. In Oklahoma, a study of horses indicated that A. americanum preferentially bites the inguinal area, while I. scapularis and D. albipictus, the moose-tick, primarily bite the chest and axillary region, with D. albipictus often being found on the back18. A survey of dogs and cats across the US identified a similar distribution of ticks on dogs, with the attachment being most common on the abdomen, axillary and inguinal regions. However, this was species-specific with D. variabilis preferring the head and neck specifically19. Cats were more successfully parasitized by I. scapularis which preferred the head and A. americanum, which preferred the tail and perianal region19. This is similar to a study of tick distribution on wild black bears (Ursus americanus) in Pennsylvania, indicating that the primary tick present was I. scapularis and that the greatest numbers were found in association with the ears and muzzle20. In these cases, the ability for ticks to attach to specific areas is most likely a result of the grooming habits and abilities of the animals in question.Studies of anatomical region preference in humans also reported tick bite-site specificity associated with particular tick species. For example, in Korea, H. longicornis was determined to prefer abdomen and lower extremities (33%) and the abdomen/inguinal area (26.4%)21, which is a behavior similar to that of A. americanum observed here. Although H. longicornis is present in New York1, insufficient numbers were detected to draw definitive conclusions about its biting preference here. Additionally, a study in England (I. ricinus) reported that tick bites were most common in the legs (50%) of adult humans, but in the head and necks of children (43%)22, a differentiation that our survey does not at this time include. A similar phenomenon was observed in Russia, where tick bites were most common on the head and neck of all individuals (39.2%), but were much more common in children (84.9%)23. This study determined that the bite-site of single tick bites that resulted in infection with the Tick-Borne Encephalitis virus (TBEV) were associated with lethal outcomes if the bites were located on the head, neck, arms or axilla, while less lethality was associated with bites to the lower limbs and groin. This is most directly analogous to the transmission of DTV by I. scapularis, suggesting that bite site may have a similar relationship to disease outcomes in the related North American pathogen/vector pair.Under normal circumstances, ticks exist in sylvatic cycles with specific host preferences based on the tick species and life stage, with spillover to humans occasionally occurring for species with generalist feeding habits. Therefore, the feeding behaviors of ticks are variable, and this influences the ways that the ticks interact with humans.Ixodes scapularis is less specific in host-site preferenceThe primary life stages of I. scapularis that bite humans include nymphs and adult females, although males may also be found on humans. The body segment preference of I. scapularis is less specific than for D. variabilis, which prefers the head, and A. americanum, which prefers the thighs and pelvic region. Ixodes scapularis is primarily found on the central trunk, including the groin/pelvic region, the abdomen, the thoracic region, and the head/neck. This varies between the life stages, with more adults found in the thoracic/abdominal region of the body and nymphs being more commonly found on the arms and legs. This is partly due to the substantial size difference between adult and nymph/larval I. scapularis, with larvae being almost imperceptible and nymphs having a total body length of two to four millimeters. This results in nymphs/larvae being much more difficult to see, allowing them to more readily attach to the most visible portions of the human body while adults are restricted mostly to areas covered by clothing and hair.The presence of ticks on the head and neck indicates that I. scapularis tends to climb, although not with the preference for hair observed with D. variabilis. They appear to spend substantial time moving on the host, a period where they can be removed easily without having had a chance to potentially transmit pathogens by biting. On deer, this corresponds to a preference to move toward the neck and ears where the ticks are more difficult to dislodge24,25. On humans, it results in wide distribution across the whole body with less location specificity than other ticks.In addition to body region and life stage identification, I. scapularis ticks were also screened for several pathogens to determine if infection status influences host site preference. Anaplasma phagocytophilum, B. microti, and other pathogens (DTV and B. miyamotoi) did not influence the body segment the ticks chose to feed. However, in ticks infected with B. burgdorferi, a statistically significant change in the distribution of tick bites marked by an increased report of tick bites in the midsection and a decreased tick bites in the arms, legs, and head. While this may suggest a change in tick behavior/fitness in response to infection, it may also relate to the differences in infection rates of adult and nymph/larval ticks. Larvae, having never fed, are not infected with B. burgdorferi, and the rate of infection in nymphs is lower than that of adults1. Nymphs are less likely to be infected and are more likely to attach to the arms and legs, which is a potential source of the observed difference in infection rates. However, it remains unclear why this is not observed for the other pathogens that follow the same trend of increased infection rate in adult versus nymph/larval ticks.Bacterial and protozoal agents transmitted by I. scapularis take several hours for an infectious dose to be transmitted26,27,28. Therefore, prompt detection and removal of ticks is important for preventing tick-borne disease. Furthermore, understanding where the ticks attach allows them to be more easily detected, and also assists in preparing protective clothing for individuals entering tick-endemic areas. Additionally, knowing the biting location of I. scapularis could aid in detecting potential erythema migrans, a skin condition that occurs at the point of B. burgdorferi infected tick exposure in about 80% of cases29, which is highly diagnostic for both Lyme disease and STARI, which is transmitted by A. americanum.
    Amblyomma americanum prefers the thighs and groin of subjectsAmblyomma americanum, the lone star tick, is present throughout the southern portion of New York and is particularly dominant on Long Island1. This species is relatively large, fast, and aggressive, feeding on various animals, including deer, medium-sized animals, and birds30. As a generalist feeder, both adult and nymph/larval A. americanum often bite humans in endemic areas. This experiment identified six larvae, 107 nymphs, and 48 adult A. americanum from human sources. The dominance of nymph submissions is likely due to the large size of the tick, making nymphs and adults easier to spot in more visible areas.In terms of body segment location, all life stages of A. americanum were most often found in the thigh/groin/pelvic region. Considering that most humans encounter ticks while walking through vegetation, the ticks most likely first adhere to the legs and move upward before biting. In this case, the ticks bite rapidly instead of ascending in large numbers to the torso or head. This area is also almost invariably covered in relatively tight-fitting clothing. The closeness of the fabric may also assist in inducing the ticks to feed by slowing their ascent and creating contact to induce biting.While it does not transmit the same range of pathogens as I. scapularis, A. americanum is still a medically significant species. This species can transmit Ehrlichia chaffeensis and E. ewingii31,32, which are at present rare in New York, but are likely to increase as more A. americanum becomes established. Amblyomma americanum is also associated with Southern Tick-Borne Rash Associated Illness (STARI)11, a disease of unknown etiology that has previously been observed in New York33 and with galactose-alpha-1,3-galactose (alpha-gal) allergy, a reaction to the tick’s saliva that can result in a long term, potentially serious allergic sensitivity to the consumption of red meat. While the attachment time required to transmit or induce these pathogens is still unclear, prompt detection and removal of the tick is still recommended. Knowing the approach of the tick and where it is likely to be found improves this process.Additionally, it is unclear if the results observed for A. americanum also apply to the related A. maculatum, the vector of Rickettsia parkeri, a cause of spotted fever. These ticks have been observed in the southernmost portions of New York with a high infection rate with R. parkeri34. Since early R. parkeri infection may result in a visible eschar, understanding where the eschar is most likely located can be critical for rapid diagnosis before the onset of severe disease symptoms. Considering the similarities in behavior between the two Amblyomma species, it may have similar preferences to A. americanum. Other escharotic diseases, such as F. tularensis, may also be present and linked to a tick with a highly dissimilar segment preference. The location of the escar itself, therefore, may be at least partially diagnostic for specific pathogens. However, at present, the sample size within this community engaged passive surveillance program is too small to assess its biting behavior in detail.
    Dermacentor variabilis exhibits preference for the human headIn this study, D. variabilis was almost exclusively encountered in its adult life stage. This indicates that while the adult ticks are generalist feeders that may bite humans, the nymph and larval stages are not and have much greater host specificity, either feeding exclusively on a specific type of animal or being restricted to the vicinity of animal burrows. The exact identity of the preferred larval and nymphal host of D. variabilis in New York could not be determined from these data, but is presumed to be one or several rodent species, lagomorph, or mesocarnivore with broad distribution across the eastern United States.Additionally, D. variabilis was unique among the three species of ticks studied here. It had a strong bias toward the head and neck of human hosts, as opposed to a higher preference for the midsection and pelvis/groin with I. scapularis and especially A. americanum. This is clear evidence of climbing behavior, tending upward, but is also indicative of a strong preference for dense hair. In contrast to I. scapularis and A. americanum, D. variabilis in its adult stage is less likely to feed on deer35,36, with a preference for canids36, hence its colloquial name as the “American dog tick”. Hair provides the ticks with the same benefits as feeding on canids. It protects them from being immediately detected and removed, obscuring them until they can feed extensively. This can be of potential medical consequence in the case of tick paralysis, a condition of flaccid paralysis associated with the bite of Dermacentor spp. ticks30. In such cases, prompt removal of the tick is critical for treatment. Therefore, understanding its most likely location can be useful for removal of the tick before the onset of the condition, diagnostically to confirm the presence of the tick, or during treatment to ensure its removal. Considering that the tick will most likely be adult, it should be relatively obvious with careful observation.Limitations of this studyThe data described in this manuscript derived from a set of ticks submitted by general public, with site location from a questionnaire completed upon tick submission. While speciation and pathogen testing were performed under laboratory conditions, the public completed the initial survey and is therefore subject to a level of inherent error and ambiguity. In the context of this study, this mainly concerns whether the body location submitted concerns an attachment or a tick that is still crawling over the potential host in preparation for biting. The term “attachment” may be colloquially interpreted as to contain both categories, or a person can potentially be mistaken about the state of the tick. While ticks filled with blood have fed, the situation is more indeterminate for short-duration attachments where the ticks have not yet begun to engorge. This may introduce some level of error from ticks found on a body segment that were not, at the time of collection, attached. However, the data are overall still useful for predicting the most likely location where ticks of specific species can be found on a person. Studies with test subjects and ticks under controlled conditions may assist in elucidating this matter further. Additionally, this data set was compiled without regard to gender and age group. This data was not collected with this version of the questionnaire; therefore, the tick attachment cannot be stratified by any demographic parameters of tick submitters. More

  • in

    Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

    Many eukaryotes display intraspecific genome size (GS) variation due to varying amounts of non-coding DNA1,2,3,4,5. Such GS variation can be mediated by additional genomic elements, which are physically represented either by extra (B-)chromosomes or by large heterozygous insertions into the regular chromosomes. On a DNA sequence level, non-coding DNA can be classified as highly repetitive, e.g. interspersedly repeated transposable elements or tandemly repeated satellite DNA, or as the result of previous duplications of the genome followed by pseudogenization6. The long-term gain and loss of such non-coding DNA sequences is thought to be governed by largely neutral evolutionary processes, and their excessive accumulation in some genomes can be explained by genetic drift7,8, even though selection might also sometimes play a role9,10.Non-coding DNA can affect organisms in different ways. A large number of studies document correlations between genome size and organismic traits such as cell size11,12, body size13,14, or developmental rates15, sometimes even at the within-population level13. Under some circumstances, differential amounts of non-coding DNA might even affect fitness16. Furthermore, DNA can have coding-independent effects that operate at lower levels, such as intragenomic selection. For example, (additional) genomic elements might increase their own fitness by increasing their transmission rates to offspring by meiotic drive, sometimes at the expense of their host’s fitness17,18,19. Meiotic drive in this classical sense occurs during the chromosome segregation during the meiotic divisions, even though later stages during gametogenesis can also be affected20. Recognizing and disentangling such effects is important for a better understanding of the evolution of eukaryotic genomes, in particular, the evolutionary causes of the large intraspecific genome size variation.Here we study meiotic transmission patterns of additional genomic elements in the monogonont rotifer Brachionus aplanchnoidis. Individuals of this species can differ by up to almost two-fold in genome size, which is mediated by several Megabase-sized independently segregating genomic elements (ISEs) consisting mainly of tandemly repeated satellite DNA21. The genomic data are consistent with a mixture of both B-chromosomes and large insertions to normal chromosomes21,22. Individual rotifers and their clonal offspring can be characterized by the number and size of their ISEs and their composition stays constant through hundreds of asexual (mitotic) generations22. Occasionally, monogonont rotifers engage in sexual reproduction (Fig. 1), producing sexual females, whose oocytes undergo classical meiosis with two polar bodies formed23. Unfertilized haploid eggs develop mitotically into males, and sperm production does not involve any meiotic maturation divisions24. By analyzing the genome size distributions of haploid males produced by different mother clones, it has been shown that ISEs segregate in a manner suggesting that they do not pair with each other, nor with any other part of the genome22. For instance, a clone containing three ISEs will produce males (and gametes) that might contain either zero, one, two, or three ISEs, corresponding to four different GS classes of the males in this clone. The frequencies of these different GS classes roughly approximated those expected by random segregation. However, previous studies in B. asplanchnoidis did not resolve different steps during meiotic transmission, so they were not designed to detect meiotic drive or subsequent changes in meiotic transmission, and they also did not test whether there were subtle deviations from completely independent segregation.Figure 1Schematics of rotifer life cycle. Monogonont rotifers are cyclical parthenogens, capable of both ameiotic parthenogenesis and sexual reproduction. The production of sexual females is triggered by quorum sensing chemicals, released by the animals themselves at high population density. In contrast to parthenogenetic females, sexual females produce oocytes by meiosis, and give rise to either haploid males or diploid resting eggs, depending on whether they get fertilized by a male24.Full size imageIn the present study, we test for meiotic transmission biases of ISEs. If meiotic transmission would be completely unbiased, the frequencies of haploid oocytes, or males, with different numbers of ISEs should be identical to those expected by random segregation. For example, a mother with two ISEs should produce males with zero, one, or two ISEs (hence, three male GS classes), which have relative frequencies of 0.25, 0.5, and 0.25, respectively. However, if ISEs avoid segregating into polar bodies due to meiotic drive17,20,25, one would expect to see an increase in the relative frequency of male GS classes with two ISEs, compared to those with no ISE . By contrast, if ISEs are preferentially sequestered into polar bodies due to meiotic drag 7,26, the GS class with two ISEs should be underrepresented. Our experimental approach for detecting meiotic transmission biases relies on measuring (by flow-cytometry) the observed relative frequencies of each male GS class and comparing these to their relative frequencies expected under unbiased transmission (Fig. 2). To allow for clear comparisons, the main output variable in these analyses is the observed/expected ratio (O/E-ratio), i.e., the observed frequency divided by the expected relative frequency for each GS class. If there were no transmission biases, O/E-ratios across all GS classes should equal one. In contrast, O/E-ratios larger than one indicate overrepresentation of a certain GS class, and if O/E ratios increase or decrease with genome size, this indicates drive or drag at a meiotic or postmeiotic stage (Fig. 2d,h).Figure 2Principle of inferring meiotic transmission patterns from the genome size distributions of haploid rotifer males. The first four panels (a–d) show a rotifer clone with one ISE (i.e., two corresponding male GS classes). The last four panels (e–h) show a clone with four ISEs (i.e., five corresponding male GS classes). a, e Example of flow cytometry data. b, f Conceptual model of ISE meiotic segregation. c, g Theoretically predicted GS distributions of males (relative to the female GS) under meiotic drive, meiotic drag, or in the absence of meiotic drive. d, h Theoretically predicted O/E ratios (observed vs. expected frequencies of different male GS classes) under drive, drag, or on absence of drive. O/E values of  > 1 indicate over-representation of a GS class (relative to the frequency expected from unbiased transmission).Full size imageWe implemented these ideas in a mathematical model that contains the two parameters, transmission bias and cosegregation bias. Values for transmission bias may range from − 1 to 1 in our model. For instance, a value of 0.1 denotes a 10% increase in probability that an ISE segregates towards the egg pole (this is equivalent to a transmission rate of 0.55 for this ISE, i.e. mild meiotic drive). Concerning the second parameter, cosegregation bias, a positive value means that pairs of ISEs have an increased probability of being sequestered towards the same pole (irrespective of whether this is the egg pole or polar body pole), while a negative bias favors migration towards opposite poles. Please note that a cosegregation bias value of − 1 (i.e., 100% probability that ISEs migrate towards opposite poles) resembles the default segregation pattern of regular chromosomes. By estimating the transmission bias and cosegregation bias parameter for each rotifer clone, we tried to infer and compare general meiotic transmission patterns across clones, even if they contained different numbers and types of ISEs.Transmission biases may not only arise during meiosis, as described above but also during later stages of male embryonic development. For instance, they might be caused by differences in the survival of embryos, or due to differences in the fitness of hatched males containing different numbers of ISEs. To address these potential sources of variation, we compared the transmission biases in relatively young, synchronized male eggs, older eggs accumulating in growing cultures, and hatched males. Finally, to address the question of whether a high number of ISEs affects male embryonic survival in general, we estimated and compared hatching rates of (haploid) male eggs and (diploid) female eggs in 19 rotifer clones of different genome sizes (which is highly correlated with the number and size of ISEs in the genome22).Our results suggested that the ISEs in B. asplanchnoidis exhibit diverse meiotic segregation patterns: In some rotifer clones, transmission bias was positive, while the ISEs of other clones showed negative transmission bias (indicative of drag). Furthermore, we obtained evidence for a negative cosegregation bias in some clones, i.e., pairs of ISEs showed an increased probability to segregate towards opposite poles. Overall, these transmission patterns seemed to be determined early in the haploid life cycle, probably at or shortly after meiosis, since early and late stages of male embryonic development showed very similar GS distributions. Finally, we found that very large genome size (i.e., a large numbers of ISEs) was associated with reduced male embryonic survival. More

  • in

    Habitat selection by free-roaming domestic dogs in rabies endemic countries in rural and urban settings

    Study sites and study designThe study was performed in the frame of a dog ecology research project, with details on the study locations published elsewhere15,42,43. For the current study, five study sites located in Indonesia and Guatemala were included. Site selection was carried out by each country’s research team, taking into consideration rural and urban settings, as well as differing expected number of dogs present at each location. The Indonesian study sites were semi-urban Habi and rural Pogon, in the Sikka regency, at the eastern area of Flores Island (Supplementary Fig. 6). In Guatemala, the study sites were Poptún (urban setting), Sabaneta and La Romana (both rural settings), located in the Guatemalan department of Péten, in the northern part of the country (Supplementary Fig. 7). Data were collected during May to June 2018 in Guatemala and from July to September 2018 in Indonesia.In each location, a 1 km2 area was predefined using Google Earth within which the study took place. The 1 km2 area was chosen because of the research goals of another part of the project, investigating the contact network of the dogs15. Within these areas, the teams visited all dog-owning households. In each household, the study was presented to an adult of the family, who was then asked if they owned a dog and if they were willing to participate in the study. After the dog owner’s oral or written consent was granted, a questionnaire was answered, and the dogs collared. The handling of the dogs was performed by a trained veterinarian or a trained veterinary paramedic of the team.The questionnaire data was collected through interviews with the dog owners. Multiple dogs per household could be included as multiple entries in the questionnaire. The detailed questionnaire contains information on the household location, dog demographics (age, sex, reproductive status) and management (dog’s purpose, origin, confinement, vaccination status, feeding and human-mediated transportation within and outside the pre-determined area).All dogs of a household fulfilling the inclusion criteria were equipped with a geo-referenced contact sensor (GCS) developed by Bonsai Systems (https://www.bonsai-systems.com), containing a GPS module and an Ultra-High-Frequency (UHF) sensor for contact data recording43,44. GCS devices report a 5-m maximum accuracy, a run-time of up to 10 years, can store up to 4 million data points and carry a lithium-polymer-battery (LiPo). For this study, only GPS data were analysed. The GCS were set to record each dog’s geographical position at one-minute intervals. Dogs remained collared for 3 to 5 days with the duration of the data collection being limited by the device’s battery capacity, as batteries were not re-charged or changed during the study. Throughout the time of recording, date, hour, GPS coordinates and signal quality (HDOP) raw data were collected by the GPS module and amassed into the workable databases.Exclusion criteria were dogs of less than four months of age (since they were not big enough to carry a collar), sick dogs and pregnant bitches (to avoid any risk of stress-induced miscarriages). Reasons for non-participation of eligible dogs included dog owner’s absence, dog’s absence, inability to catch the dog, and refusal of participation by the dog owner. In addition, dogs foreseen for slaughtering within the following four days were excluded in Indonesia to ensure data collection for at least four to five days. All dogs included in this study were constantly free roaming or at least part-time (day only, night only and for some hours a day). Human and/or animal ethical approval were obtained depending on the country-specific regulations. All the procedures were carried out in accordance with relevant guidelines. Ethical clearance was granted in Guatemala by the UVG’s International Animal Care and Use Committee [Protocol No. I-2018(3)] and the Community Development Councils of the two rural sites, which included Maya Q’eqchi’ communities45. In Indonesia, the study was approved by the Animal Ethics Commission of the Faculty of Veterinary Medicine, Nusa Cendana University (Protocol KEH/FKH/NPEH/2019/009). In addition, dogs that participated in the study were vaccinated against rabies and/or dewormed to acknowledge the owners for their participation in the study.Data cleaningData were stored in an application developed by Bonsai Systems compatible with Apple operating system (iOS iPhone Operating Systems), downloaded as individual csv file for each unit, and further analysed in R (version 3.6.1)46.The GPS data were cleaned based on three automatised criteria. First, the speed was calculated between any two consecutive GPS fixes, and fixes with speed of  > 20 km/h were excluded, given the implausibility of a dog running at such speed over a one-minute timespan47. It is noteworthy that car travel causes speeds over 20 km/h. However, as we were interested in analysing the dog’s behaviour outside of car transports, removing these fixes was in line with our objectives. Second, the Horizontal Dilution of Precision (HDOP), which is a measure of accuracy48 and automatically recorded by the devices for each GPS fix, was used to exclude fixes with low precision. According to Lewis et al.49, GPS fixes with HDOP higher than five were excluded, which deleted 1.3% of data in Habi, 2.2% in Pogon, 3.3% in Poptún, 1.8% in La Romana and 2.1% in Sabaneta. Third, the angles built by three consecutive fixes were calculated for each dog. When studying animals’ trajectories as their measure of movement, acute inner angles are often connected to error GPS fixes50. The fixes having the 2.5% smallest angles were excluded, to target those fixes with highest risks of being errors, while balancing against the loss of GPS fixes due to the cleaning process. With the exclusion of the smallest angles, 2.6% of data were deleted in Habi, 3% in Pogon, 2.9% in Poptún, 2.6% in La Romana and 2.7% in Sabaneta. After the automatised cleaning was concluded, 18 obvious error GPS fixes (unachievable or inexplicable locations by dogs) still prevailed in the Habi dataset and were manually removed.Habitat resource identification and calculation of terrain slopeTo analyse habitat selection of the collared FRDD, resources were delimited by a 100% Minimum Convex Polygon (MCP) including all cleaned GPS fixes per study site, using QGIS51 (Fig. 1).Figure 1GPS fixes plotted over a Google satellite imagery layer with its respective outlined computed Minimum Convex Polygon (MCP) delimitating the habitat available for the study population in: (a) Habi; (b) Pogon; (c) Poptún; (d) La Romana and (e) Sabaneta. Source QGIS (version 3.4 Madeira, http://qgis.org), map data: Google Satellite.Full size imageResources were defined by taking into consideration the following criteria: resources are (i) likely to impact upon movement patterns of dogs, (ii) identifiable by landscape satellite topography, and (iii) chosen considering information on relevant gathering places for FRDD observed by the field teams. Three resources were disclosed in all study sites: buildings, roads and vegetation coverage. All habitat relevant resources were manually identified within the available area (MCP) in QGIS using satellite imagery. All building-like structures were identified using vector polygons and summed under the layer “buildings”. Roads were identified and manually traced using vector lines in all sites, except in Poptún where the roads were automatically traced using an OpenStreetMap road layer of the area (https://www.openstreetmap.org/export). A buffer vector polygon was generated to encompass the full potential width of the roads, with a 5 m width in Habi and Poptún (semi-urban and urban site) and a 2 m width in Pogon, La Romana and Sabaneta (rural sites). In Habi, a “beach” layer was defined by generating a five-meter buffer from the shoreline in both directions using a vector polygon. The layer “sea” was defined as the vector polygon resulting from the difference between the MCP sea outer limit and the beach buffer polygon. Vegetation coverage was distinct between study sites with sparse vegetation and bushes present in all sites except Pogon, and dense forest-like vegetation present in La Romana and Pogon. These two types of vegetation were defined as “low” and “high vegetation”, respectively. In Habi and La Romana, “low” and “high vegetation”, respectively, were manually identified using vector polygons and summarised under the respective layers. Finally, open field in Habi, high vegetation in Pogon and low vegetation in Poptún, La Romana and Sabaneta were the last vector layers to be established since they represented the difference between all other polygon vector layers and the MCP total area. After all resource vector polygons had been created, an encompassing vector layer was generated by merging all resource polygon vectors for final resource classification (Fig. 2). As part of the resource classification in Habi, the airport terminal and runaway as well as waterways enclosed in the MCP area were identified but excluded from the analysis.Figure 2(a) Habi, (b) Pogon, (c) Poptún, (d) La Romana and (e) Sabaneta Habitat classification vector layers. The different habitat resources, identifiable by colour, were merged to create the comprehensive Habitat classification vector. In the Indonesian sites (a, b) and Guatemalan sites (c–e) buildings are coloured red, vegetation low in Habi, Poptún, La Romana and Sabaneta is coloured light green, vegetation high in Pogon and La Romana dark green, roads black, beach yellow, sea dark blue, airport grey, waterways light blue and open field light orange. The airport area (gray) and waterways (light blue) in Habi were not classified as separate habitat layers and were excluded from further analysis. Source QGIS (version 3.4 Madeira, http://qgis.org), map data: Google Satellite.Full size imageAfter the construction of the habitat resource layers, all GPS fixes were assigned to the respective resource they were located, using the QGIS join attributes by location algorithm. Fixes located exactly on the MCP border in Indonesia were not classified automatically and had to be manually classified to the respective resource.In non-flat topographies (all locations expect Habi) we tested the hypothesis of whether the steepness would influence the dogs’ movement patterns. The degrees of slope were calculated using a 30-m raster-cell resolution (STRM 1-Arc Second Global, downloaded from the United States Geological Survey (USGS) Earth Explorer, https://earthexplorer.usgs.gov/). The slope was assigned by the QGIS join attributes by location algorithm to each GPS fix.Statistical analysisTo quantify habitat selection in each study site, we compared resources used by the dogs with the resources available, according to Freitas et al.52. Adapting the methodology applied by O’Neill et al.18, the observed number of GPS fixes for each dog was used to generate an equivalent number of locations that were randomly distributed within the MCP area using the Random points in layer bound vector tool from QGIS. For example, if dog “D300” had 100 recorded GPS fixes, 100 random points were generated within the MCP of the respective study site and assigned to “D300”. Random points were then assigned to the respective resources and slope of that location, as previously done with the observed GPS fixes. Using this approach, the habitat resources used by each dog could be compared to the available resources in the respective study site, using a regression model.Observation independence is a fundamental presupposition of any regression model. However, the spatial nature of the point-referenced data permits perception of spatial dependence. In our dataset, spatial autocorrelation was proven for all study sites using the Moran’s I test. Therefore, we applied a spatial regression model, which takes into consideration spatial autocorrelation while exploring the effects of the study variables. A mixed effects logistic regression model accounting for spatial autocorrelation was created to quantify the effect of variables on used (i.e. observed GPS fix) versus available (i.e. randomly generated GPS fixes) resources, using the fitme function in the spaMM package in R53,54. The model’s binary outcome variable was defined as either observed (1) or random (0) GPS fix, i.e. the dog being present or absent from a position. The explanatory variable was the resource classification with “buildings”, “roads”, “low vegetation”, “beach”, “sea” and “open field” as levels in Habi; “buildings”, “roads” and “high vegetation” in Pogon; “buildings”, “roads”, “low vegetation” in Poptún and Sabaneta; and “buildings”, “roads”, and “high” and “low vegetation” in La Romana. Different habitat resources were used interchangeably as reference level. In all study sites except Habi, the slope was included as an additional explanatory variable. As observations were not evenly distributed in time, with less observations recorded towards the end of the study, a variable ”hour” was added as an additional continuous fixed effect.Each observed GPS fix was assigned to the hour of its record, with the earliest timestamp registered in each study site being assigned the hour zero. The randomly generated points were randomly assigned to an hour within the determined time continuum of the observed GPS fixes. As our focus was investigating habitat selection at a population-level, we assumed there was no within-dog autocorrelation (space/time) and each dog was independent and exhibited no group behaviour38. Still, to partially account for spatial autocorrelation of each dog’s household, the random effects included in models were defined as each dog’s household geographical location recorded during fieldwork by a GPS device. The restricted maximum likelihood (REML) through Laplace approximations, which can be applied to models with non-Gaussian random effects55, and the Matérn correlation function were used to fit the spatial models with the Matérn family dispersion parameter ν, indicator of strength of decay in the spatial effect, was set at 0.554. More